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ABSTRACT In order to obtain the satellite’s in-orbit attitude information, it is necessary to track the satellite
components in satellite video sequences. To solve the problem of low illumination and target occlusion in
space environment, we propose an efficient satellite component tracking technique based on Rethinking
Space-Time Networks with Improved Memory Coverage (STCN). We classify the pixels in the query frame
by feature matching network that establishes the corresponding relationship between the frames. Unlike
STCN, we reduce the contribution of background region in feature matching and enhance the robustness
of the model in low illumination environment, thus improving the segmentation results. For lost targets
due to the overturning and occlusion of satellite components, a position information encoder module is
designed to further raise the tracking performance of the model. In addition, we present a local matching
module to upgrade the existing feature matching methods. Experiments demonstrate that compared to STCN,
our method heightens the tracking performance (J&F) by 10.1% and can achieve multi-object recognition

at 15+ FPS.

INDEX TERMS Tracking, video object segmentation, deep learning, low-light, target occlusion.

I. INTRODUCTION
With the rapid development of spacecraft technology, people
pay more and more attention to the tasks of target satel-
lite identification, tracking and attitude estimation. It has
become an important development trend in the field of satel-
lite technology in various countries to vigorously develop
information acquisition and processing technology related
to satellites and other aircraft [1], [2], [3]. Among them,
target detection and recognition, whose main content is to
accurately identify the types of space targets and effectively
invert the target attributes such as satellite geometry size, is an
important prerequisite and guarantee technology for satellite
docking.

In recent years, vision-based satellite component track-
ing and detection technology have attracted much attention
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because of its advantages of simple implementation and
low power consumption. Especially in practical appli-
cations, video sequences are the mainstay. There are
three main problems in tracking and detecting satellite
components:

(1) When the satellite is in orbit, the illumination intensity
of the satellite is constantly changing due to its constantly
changing orbital position. Especially when the satellite runs
to the back of the earth, its illumination intensity is low, and
the satellite local components in the video sequence will be
difficult to observe.

(2) In the process of tracking and detecting satellite local
components, the satellite may turn over and occlusion, result-
ing in the loss of the tracked target and the decline of detection
accuracy.

(3) When observing the target satellite, because the target
satellite is always in motion, it may cause the image cap-
tured by the imaging equipment to shake and blur, resulting

132515


https://orcid.org/0000-0001-6502-2807
https://orcid.org/0000-0002-2561-6237
https://orcid.org/0000-0001-9802-4809

IEEE Access

H. Zhang et al.: Efficient Real-Time Tracking of Satellite Components Based on Frame Matching

overturning

occlusion

FIGURE 1. Schematic diagram of satellite rollover and occlusion.

in unclear imaging and interference with the tracking and
detection of satellite local components.

The above problems pose great challenges to the tracking
and detection of satellite local components.

In this paper, the satellite tracking task is realized by
video object segmentation (VOS) [6], [7], [8] of satellite
components. VOS belongs to the field of computer vision
and has important applications in many fields. In this work,
we focus on the VOS of semi-supervised satellite compo-
nents, in which the ground truth segmentation masks of one
or more objects are given for the first frame in the video. With
the rapid development of deep learning and the introduction
of DAVIS data-set [4], [S], The task of semi-supervising
VOS has also made great progress in recent years. Many
early studies used online learning strategies to fine-tune the
corresponding network by giving the first frame mask [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20].
This method has high accuracy, but it takes a long time to
infer.

On the basis of ensuring accuracy, recent works are faster
than the online fine-tuning method. Space-time memory net-
works (STM) [26] introduces a memory network for the first
time, improves the accuracy of video segmentation by storing
the features of historical frames, and introduces the concept
of global matching. Collaborative video object segmentation
by foreground-background integration (CFBI) [23] height-
ens the segmentation effect by comparing the features of
foreground and background and has a good effect on multi-
scale targets. Fast end-to-end embedding learning for video
object segmentation (FEELVOS) [24] uses global matching
and local matching mechanisms for each frame to segment
the current frame through information transmission. Kernel-
ized memory network (KMN) [25] uses static images to
pre-train the model, and Gaussian kernel is introduced to
enhance the effectiveness of the memory network. Memory-
augmented self-supervised tracker (MAST) [27] proposes a
self-supervised training model, which achieves the same per-
formance as the supervised methods without any annotations.
Mask Selection Network (MSN) [28] uses temporal consis-
tency to forward and reverse the video sequences, and uses
the difference of masks given by them to correct the network,
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which effectively suppresses noise and achieves extremely
high accuracy. Reliable Propagation-Correction Modulation
for Video Object Segmentation (RPCMVOS) [29] corrects
the noise propagating in the network from the local correla-
tion frame and the global correlation frame by introducing the
propagation modulator and the correction modulator. Mul-
timodal Transformers (MTTR) [30] uses the transformer to
model the VOS task as a sequence prediction problem, which
greatly simplifies the model and has impressive results in
multiple metrics. The above methods have achieved impres-
sive results in accuracy, but it is difficult to meet the real-
time requirement of satellite component tracking. Learning
fast and robust target models (FRTM) [31] adopts a new net-
work structure composed of two lightweight modules, which
combines online learning and offline learning at the same
time, achieving high frame rate and good performance. Hier-
archical Memory Matching Network (HMMN) [32] proposed
a new memory module, which effectively utilized the time
smoothness, classified the memory, and realized more accu-
rate memory matching. Rethinking Space-Time Networks
with Improved Memory Coverage (STCN) [21] forms an effi-
cient and robust framework by establishing the correspond-
ing relationship between frames. However, the robustness
of this model to the rollover and occlusion of satellite con-
struction is poor. Pixel-Level Bijective Matching for Video
Object Segmentation (BMVOS) [22] introduces a bijective
matching mechanism to make every pixel have a chance to
contribute. Although this method has a fast-processing speed,
it is difficult to meet the aerospace requirements in terms of
accuracy.

In this work, we take STCN [21] network with the best
accuracy and speed as our backbone network. STCN is a
simple, effective and efficient framework for video object
segmentation. We propose an attention module with shared
weight to improve the detection ability of the model for satel-
lite components in low illumination environment. Through
this attention module, we can extract the features of satellite
components in the image more effectively, and distinguish
the foreground from the background. To enhance the tracking
accuracy of the model for the overturning and occlusion of
satellite components, we introduce a position information
coding scheme and propose a local matching module based
on transformer [33]. By capturing the position information
of satellite components in video images, it can effectively
avoid the problem of target loss caused by the change of gray
scale, shape and other features caused by the overturning and
occlusion of satellite components. Because the changes of
adjacent frames in the video sequence are small, our local
matching module can match features from adjacent frames,
thus bringing more excellent performance and more efficient
memory usage.

The contributions of this paper are summarized as follows:

1. We propose a video object segmentation model for

satellite component tracking, which is more robust to
low illumination in space environment, overturning and
blocking of satellite components than STCN.
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2. We propose three simple and efficient modules: atten-
tion sharing module, position information encoder and
local matching module.

3. Our network can reach the speed of 154 FPS while
maintaining high efficiency.

Il. SATELLITE COMPONENT TRACKING METHOD

Given the satellite component mask of the first frame of a
video sequence, we process the satellite component masks
of subsequent frames in sequence. We store the features of
keyframes through memory storage, compare the features of
the current frame with those of keyframes, and then classify
each pixel of the current frame.

A. OVERALL FRAMEWORK

The overview of our framework is illustrated in Figure 2.
We adopted STCN [21] as the baseline backbone. As with
STCN, we use resnet50 [34] as key encoder to get image
features, and resnetl8 as value encoder to get mask fea-
tures. Resnet, as a classic feature extraction network, is more
robust to few-shot learning than the newly proposed Swin-
Transformer [49] and EfficientNet [50]. In addition, image
features are more complex, and difficult to extract than mask
features, so a deeper network is needed to extract image
features.
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FIGURE 2. Network structure of satellite component tracking.

Previous mask

We add the attention module to the key encoder, which
can help us clearly distinguish the foreground from the back-
ground in the image, and make the model connect with the
features of satellite components in the subsequent feature
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matching. We add a position information encoder to the value
encoder. This module allows us to get the position of the
corresponding satellite component in this frame. By sending
the corresponding mask and the position information into
the value encoder, a more accurate mask feature map can be
obtained.

Figure 3 shows the inferring process of our method. The
memory in the figure contains the feature map of the key
frame and the previous frame. The position information
is embedded into the feature map of the memory bank
through the position information module. The current frame
gets the corresponding feature map through encoder. After
that, the feature map obtained from the current frame is sent
to the attention sharing module for local and global matching
with the feature map in the memory. Finally, the matched
result is sent to a decoder to obtain a mask.

We send the feature maps of the keyframe and the pre-
vious frame into the global matching module and the local
matching module, respectively. By comparing the features
of the current frame and keyframe, the feature query of the
current frame and previous frame searches all possible key
feature combinations. The final matching score is obtained
by linearly adding the global matching result and the local
matching result. We will introduce the local matching module
later.

The global feature matching formula is as follows:

2
SE2 = kM k2 — ’k?”z 1)

where M represents the keyframe in memory, which we
collectively call the memory frame, Q represents the cur-
rent frame, K represents the feature matrix obtained by key
encoder, i and j respectively represent the positions of the
memory frame and the current frame in the video sequence,
S represents the correlation degree, and L2 represents the
Euclidean distance. Finally, the matching matrix of the mem-
ory frame and the current frame can be obtained, and the
result can be obtained by matrix multiplication calculation
of the matching matrix and the mask features in the memory
module:

vl =yM 552 ()

where VM represents the mask feature matrix in the mem-
ory module. Finally, the memory characteristic matrix V7 is
passed to the decoder to generate a mask.

B. ATTENTION SHARING MODULE

At present, attention mechanism [33] is widely used in vari-
ous fields of deep learning. Attention mechanism is used in
most unsupervised VOS tasks [35], [36], [37], [38], [39], but
rarely used in semi-supervised tasks. The images captured
during the satellite docking process have the characteristics of
single background and low illumination. By adding attention
module, the foreground and background in the video can be
effectively distinguished, and the robustness of the model to
low illumination environment can be enhanced.
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FIGURE 3. Process of satellite components tracking.

Our attention sharing module is shown in Figure 4. The
feature matrix obtained by the key encoder takes the maxi-
mum, average and variance along the channel dimension, and
a new feature matrix is obtained. The feature matrix passes
through a 7 x 7 convolution kernel to obtain a weight matrix
with channel 1, which represents the attention distribution
probability of the frame. Finally, the weight matrix is used to
point multiply the key features and the corresponding mask
features respectively.

As shown in Figure 5, the abscissa in the figure represents
the number of pixels, and the ordinate represents the variance
of the corresponding pixels along the channel direction. The
red dotted line represents the pixels of satellite components,
and the blue solid line represents the background pixels. It can
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FIGURE 5. The variance of the channel direction of the corresponding
pixel point of the feature map.

be clearly seen from the figure that the characteristic variance
of satellite components is generally larger than that of the
background.

Figure 6 shows our attention map. The left side of the
figure shows the satellite image, and the right side shows
the corresponding attention heat map. We show a total of
three groups of probability maps of attention distribution of
images. We use the variance of the channel dimension of the
feature map as one of the output features. We consider that the
background of the satellite image is single and the variance
of the corresponding features is small, while the features of
the satellite components are complex and the variance of
the corresponding features is large. Using variance value as
output feature can effectively improve the ability of the model
to distinguish foreground from background.

C. POSITION INFORMATION ENCODER

For the tracking task of satellite components, satellite com-
ponents often turn over and occlusion. If the appearance
information is used in feature matching, it is easy to be visu-
ally disturbed, because it is completely based on the visual
information. To alleviate this problem, we propose a position
information encoder. In fact, the deep convolution neural
network itself has a certain ability to encode absolute position
information [40], [41], [42], but it is very limited. In the
field of machine translation, the relative position information
in the sequence is effectively encoded by the extended self-
attention mechanism [37], and in the field of object detection
some people introduce the position information into trans-
former [44]. However, there is no position information coding
method suitable for satellite component tracking.
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FIGURE 6. Probability map of attention distribution of satellite images.
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FIGURE 7. Architecture of position information encoder.

Figure 7 shows the architecture of the position information
encoder. As shown in the figure, after the historic mask passes
through the position information extraction module, there are
three kinds of position information encoding results: sine
spatial positional embedding, relative positional embedding
and coordinate position embedding. The sine spatial posi-
tional embedding refers to End-to-end object detection with
transformers (DETR) [44], which is composed of sinusoidal
functions with different frequencies. The difference is that we
don’t embed the position code by linear addition. To retain
the original mask features fully, we embed the position code
by splicing the mask and location information. Other position
information is embedded in the same way. Relative position
embedding is a learnable position information matrix with
64 channels, which is transformed into the same size as
the mask feature map by linear interpolation. We use three
coordinate matrices to form coordinate position embedding,
which respectively represent the position change on the X
axis, the position change on the Y axis and the position
change of the polar coordinate with the center as the origin.
Our position information embedding module is defined as:

P=P ®PfoPC 3)

where @ indicates catting in the channel dimension.
By embedding the above three position information matrices,
the position information of the satellite components in the

VOLUME 10, 2022

current frame can be effectively obtained, and a more accurate
feature matrix can be provided for the subsequent feature
matching links.

D. LOCAL MATCHING MODULE

Global matching is responsible for comparing the feature
information of keyframes in a video sequence with the current
frame, while local matching is responsible for comparing the
feature information of the current frame position in a video
sequence in spatial-temporal neighborhood. Global matching
has the advantages of simple implementation and higher rea-
soning speed. Moreover, in feature matching, because there
are many keyframes, global matching has strong robustness
to the wrong feature matching in partial keyframes. However,
there is no concept of time consistency in global matching.
If the appearance information of the segmentation target is
similar to that of the background, or the appearance infor-
mation of different segmentation targets is similar, it will
probably lead to wrong segmentation results. This is fatal to
the tracking of satellite components. Because in the process of
satellite component segmentation, segmentation objects with
very similar appearance information often appear, such as two
very similar solar panel wings or antennas. Local matching
mainly focuses on the information in the spatial-temporal
neighborhood of each current frame position. Because the
image changes little in the adjacent video frames, especially
the position information changes. Therefore, it is more effi-
cient to deal with local matching of similar targets.

In order to enhance the detection accuracy of the model
for targets with similar appearance, we not only added the
position information encoding module, but also proposed the
local matching module. Several existing works also use local
matching [23], [24], [43] or optical flow [45] to improve the
segmentation accuracy of the model. However, few people
use transformer to design local matching module. Our local
matching module is defined as follows:

ko = MLP(fp) @)
kyr = MLP(fyr) (5)
v = MLP(vy) (6)
Sioe = kg - KV + P(kg) )
lo¢ = Sioe - (v + V) 8)

where fg represents the feature map of current frame, fy
represents the feature map of memory frame, vy represents
the memory mask feature map, Sy, represents the local
affinity matrix, kg and kps represent the feature vectors of
the current frame and the memory frame, respectively. The
current frame fg and the memory frame fs get the feature
matrix through the key encoder, and the feature matrix gets
kg and kys through two full connection layers respectively.
Like transformer, kg and kys are query values and key values
respectively. p(i) represents the spatial neighborhood with
the pixel i of the corresponding query frame as the center
in the memory frame. P (kg) and v, are the relative position
embedded information [37] in the local affinity matrix and the
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FIGURE 8. A random subset of video sequence satellite components
dataset.

memory mask feature map, respectively. The final matching
resultloc is achieved by dot multiplication of the local affinity
matrix and the mask feature map.

lIl. EXPERIMENTS

In this section, we describe the experimental results obtained
from this study. In section A, we introduced our datasets and
evaluation metrics. In section B, we introduced our training
details. Section C shows the performance of our model in
different scenarios, and compares our model with the latest
methods. In order to verify the effectiveness of each module
proposed by us, we conducted extensive ablation experiments
in Section D. In section E, we give the detailed running time
of each component of the model.

A. DATASETS AND EVALUATION METRICS

The dataset of satellite images we use comes from Systems
Tool Kit (STK), which is the world’s top satellite simulation
software produced by AGI Company of the United States.
The version of STK we use is 10. We mainly use STK to
provide a high-precision visual simulation module, which
can provide users with high-fidelity visual support in space.
We collected 18 video sequences as our training set and
6 video sequences as our verification set. A video sequence
contains a satellite, and each video sequence contains 40 to
60 satellite images.

Figure 8 shows a partial dataset image. In order to ensure
the validity of our data set, while simulating the satellite
docking scene, there are many images in our data set when
the satellite turns over and blocks. We choose the solar wing
and antenna as our tracking objects. First, these two satellite
components exist in almost all satellites, so to estimate the
attitude of the satellites during docking, has high universality.
Secondly, the solar wing and antenna always exist in pairs.
However, for many of the most advanced models at present,
it is difficult to accurately distinguish two similar tracking
objects, and the tracking of similar objects is very common
in the tracking of satellite components.

We use J &F, an evaluation index commonly used in VOS.
J score is calculated as the average Intersect over Union
(IoU) score of prediction mask and the ground truth mask,
which describes the accuracy in the whole mask area. F' score
is calculated as the average boundary similarity measure
between the prediction mask and the ground truth mask,
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TABLE 1. Satellite component dataset. We marked thousands of pictures
for testing and training. All our video sequences contain the situation that
the satellite components turn over. The overturning of satellite
components in the table is defined as: in a video sequence, the color
information of the tracked object changes, and the occlusion of satellite
components is defined as: in a video sequence, there are some frames
where the tracked object does not appear.

Number Training set  Test set
All video sequences 18 6

All video images 948 345
Video  sequences containing 18 6
satellite component turn over

Video sequences containing the 8 3

occlusion of satellite components

which describes the accuracy of the object boundary. J&F
refers to calculating the average value between them. The
evaluation metric is defined as follows:

S, N Sgr
= < 0e ©)
Sy U Ser
2B, - B
== 7 (10)
Bp +Br
J+F
J&F = —; (11)

where S, represents the prediction result of the model and
Scr represents the ground truth. B, and B, respectively rep-
resent the precision and recall of the prediction mask relative
to the ground truth. B, and B, are defined as follows:

j2
B, = -~ (12)
Pai
Pr
B = —_ 13
"= bor (13)

where Pr is the number of boundary elements correctly
predicted by the model, Py is the total number of boundary
elements predicted by the model, and P g7 is the total number
of boundary elements with the ground truth.

B. TRAINING DETAILS

We use an 11GB 2080Ti GPU with the Adam optimizer [46]
using PyTorch [47] to train our model. In the process of data
preprocessing, firstly, we reduce the short edge of the image
to 480 pixels, which can effectively speed up the training and
inferring of the model with little impact on the accuracy. After
that, we will randomly flip the image horizontally and shake
the color. We use a batch size of 4 and 3000 iterations during
training. In each iteration, we select three time-sequential
frames from a video sequence, with the first frame as the
starting frame to form a globally matched training sample.
Then, the previous frame of the last two frames is taken as
a training sample for local matching. A total of five images
are taken from the video sequence. First, we use the globally
matched first frame and the corresponding locally matched
frame to predict the second frame, and then use the first and
second frames as global matches to predict the third frame
together with the locally matched frame of the third frame.
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The momentum of our Adam optimizer is set to f; =
0.9, B2 = 0.999, the basic learning rate is 1073, and the L2
weight decay of 10~7. Our learning rate decays with a decay
ratio of y = 0.1. We use cross entropy as our loss function.
In addition, in training, we choose the top-p% pixels with the
highest loss to carry out back propagation. p is 100 in the
first 1000 iterations, then linearly decreases to 15 in 1000 to
2000 iterations, and finally remains unchanged. Our model
doesn’t need to set any hyperparameters when inferring.

Figure 9 shows the change of loss function of three meth-
ods in training. It can be seen that the learning efficiency of
the three methods is excellent. However, after 1000 iterations,
the loss of our model is obviously lower than the other two.
This shows that our model has better performance for satellite
component tracking.

2.5r -
—ours
STCN
2 —aot
w15
[%2}
S
1
0.5
0! - ]
0 50 100 150
Iteration/20

FIGURE 9. Total loss curve in different model during training.

Because it is difficult for us to obtain a large number of
labeled satellite images, we use transfer learning to solve the
problem of few-shots learning. Specifically, we use STCN
[21] pre-trained parameters to initialize the network skele-
ton. Standard normal distribution initialization parameters are
used for attention module, position information module and
local matching module. Moreover, Siamese network [48] is
used in the backbone structure of our network, which is more
robust to few-shots learning.

Figure 10 shows the influence of the pre-training model on
the loss during training. It can be seen from the figure that
the model is easier to converge after using the pre-training
model. In addition, the basic learning rate of the model with
no pre-training is 107, and the other hyperparameters are
the same as the model with pre-training. We choose different
basic learning rates and optimizers to train our models with no
pre-training. Most of these models can hardly converge, and
even the gradient explosion with loss value of NaN will occur.
Using the pre-training model can not only make the training
easy, but also improve the performance of the model [51].
Especially for few-shot learning, it is very important to use
pre-training model.

We use data augmentation to enrich our dataset. Specifi-
cally, we perform the same color jitter of (brightness=0.1,
contrast=0.03, saturation=0.03), and random gray scale
with a probability of 0.05 on the extracted images in
the video sequence. After that, we perform color jitter of
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FIGURE 10. Comparison of loss curves between pre-training and no
pre-training.

(brightness=0.01, contrast=0.01, saturation=0.01), and per-
form different random affine on each image.

C. EVALUATIONS

Table 2 tabulates the comparison between our method and the
most advanced methods in VOS segmentation benchmark at
present. We made a comparison on three standard metrics:
region similarity J, contour accuracy F and average score
J&F. For the calculation of model speed, we calculate multi-
object FPS, which is defined as the total number of output
masks divided by the total time for the model to process all
images. For the speed of comparison methods, we use the
same device to measure according to the above standards.

TABLE 2. Comparisons between different methods. All models are
trained on the same device using our dataset, and the corresponding
pre-training weights are loaded before training. All three methods are
iterated 3000 times.

Method fps J F J&F
STCN 20.2 72.4 84.7 78.5
aot 12.1 76.5 84.8 80.6
Ours 15.1 83.5 93.7 88.6
TABLE 3. Performance of models in different scenarios.

J F J&F
Rollover 72.9 97.5 85.2
Occlusion 80.1 89.4 80.6
Background is the earth.  90.2 96.4 93.3
Low illumination 90.8 91.4 91.1

As shown in Table 3, we listed the performance of our
model in different scenarios. It is obvious from the table
that our model performs well in common satellite scenes.
Our model is not only robust to the turning and blocking
of satellites, but also shows excellent performance in low
illumination and complex background.

Figure 11 shows the comparison between our model and
other models in terms of speed and accuracy. Although our
model is inferior to STCN in speed, our model is far superior
to other models in evaluation metric J&F. Figure 12 shows
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FIGURE 11. Comparison of speed and accuracy of different methods.

STCN

Aot

Ours

FIGURE 12. Visualization of semi-supervised VOS results with the first
column being the reference masks to be propagated.

how our model compares with other models during mask
propagation. The red box and blue box in the figure indicate
the effect comparison of the left wing and the right wing of the
satellite under different models. It can be seen that other mod-
els are difficult to accurately distinguish satellite components
with similar appearances since they have no specific design
for processing low illumination and highly similar objects.
Figure 13 shows the comparison of the effects of different
models in the case of satellite component overturning and
occlusion. GT in the figure represents the ground truth. Due
to its attention sharing module, position information encoder
and local matching module, our model is more effective for
the overturning and occlusion of satellite components com-
pared to other models.

STCN

Overturning
Detail
Occlusion

Detail

FIGURE 13. Visualization of satellite tracking results under rollover and
occlusion.

D. ABLATION STUDY
In Table 4, we analyze the effect of each module on the model.
The comparison of speed and accuracy between different
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TABLE 4. Ablation study of three modules. ATT denotes attention sharing
module, POS denotes location information module, and LOC denotes
local matching module.

ATT POS LOC fps J F J&F
1 W N N 151 835 937 88.6
2 W 196 775 837 806
3 y 162 785 846 815
4 y 16.1 840 898 869
5 \ y 159 838 89.1 86.4
90 - o
»1
2
. 4
u_86 45
]
T84
82
| |
80" !
15 16 17 18 19 20

FPS

FIGURE 14. Visualization of speed and accuracy between different
modules.

modules can be seen more intuitively from Figure 14. As can
be seen, enabling a certain module alone has a very lim-
ited improvement in accuracy. Among them, we are most
interested in the local matching module. One of the reasons
is that this module occupies the most computing resources.
In the case of taking up a lot of computing resources, the
improvement of model accuracy by local modules is very
limited, but if it is enabled with other modules at the same
time, the performance of the model can be greatly enhanced.
In short, location information and attention information play
a greater role in local matching. We speculate that this is
because the gap between memory frame and query frame
is small in local matching, and the performance of similar
location information and similar attention weight matrix is
stronger in matching.

As shown in Table 5, the performance of the model with
pre-training is far superior to that without pre-training. This is
because the model can hardly converge without loading pre-
training weights. It is difficult to learn some basic texture and
color features only by our data set, especially for encoders
that need to extract features.

TABLE 5. Influence of using pre-training model on resuilts.

J F J&F
Pre-training 83.5 93.7 88.6
No pre-training  36.5 54.0 45.2

E. ANALYSIS OF RUNNING TIME AND REAL-TIME
PERFORMANCE

We analyze the running time of each component of the two
models in Figure 15. The running time in the graph repre-
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FIGURE 15. The average running time of our model and STCN in each
component respectively.

sents the time required for the model to process one image.
Although the speed of our method is lower than that of STCN,
it can still reach the processing speed of 66.2 milliseconds.
Our method can be used in real time. We add a local matching
module which takes a lot of computing resources to improve
the performance of the model, as described in the ablation
experiment.

IV. CONCLUSION

We propose a simple and efficient tracking framework for
satellite components. We propose the attention sharing mod-
ule, which can effectively improve the performance of the
model and solve the problem of low illumination tracking
in space environment. Our proposed location information
module and local matching module effectively solve the prob-
lem of tracking target loss caused by the overturning and
occlusion of satellite components. Compared with the most
advanced methods at present, our method has more excel-
lent performance in tracking satellite components. However,
when the tracking target in the video sequence is lost for a
long time and the components of the satellite are overturned,
the local matching module will fail because there is no corre-
sponding tracking target in the previous frame, and the ideal
performance may not be achieved only by global matching.
Moreover, in the docking task of satellites, higher speed and
lighter weight models are needed. We will further complete
it in the future work.
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