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ABSTRACT This paper presents a new framework for a systematic and thorough generalization of the
most well-known instantaneous transformations used in electrical engineering for power systems analysis
and computing through geometric principles based on the language of Geometric Algebra. By introducing
the concepts of Kirchhoff Vector and Kirchhoff Subspace, a new generalized transformation is presented.
Thus, it is shown how the Clarke, Park or Hyper-Space vector transformations (widely used in electrical
engineering) are particular cases of this unifying framework. Moreover, a generalization to an arbitrary
number of phases is achieved. In order to be as close as possible to the geometrical intuition, all the underlying
ideas are presented by means of spatial-like conceptualizations, substantiated by their corresponding
algebraic formulation. This proposal has potential uses in a wide range of power system applications such
as electrical machines, current compensation, power quality, electronic converters or transmission lines.
Preliminary results show the superior efficiency of themethod compared tomatrixmethods. Some real-world
examples have been included to highlight the potential use of the method.

INDEX TERMS Geometric algebra, geometric electricity, sequence components, Clarke transformation,
park transformation, hyper space vectors, Kirchhoff’s laws.

I. INTRODUCTION
Tthe study of multiphase voltages or currents and their
relationship is a topic of interest in several disciplines of
electrical and power engineering such as active filtering [1],
[2], electrical machines [3], transmission lines [4], control
HVDC AC grids [5], frequency estimation and control [6],
power converters [7] or microgrids [8]. In this context,
matrix methods are used to solve the governing equations.
The solution can be approached from an instantaneous
(time-domain) or a complex-phasor (frequency-domain for
sinusoidal supply) point of view. In general, existing methods
aim at obtaining an orthogonal matrix-based transform
under some custom predefined assumptions [9]. For exam-
ple, matrix diagonalization and eigenvalue decomposition
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techniques are widely used as a starting point [10] to remove
zero sequence component or to decouple variables. In this
way, an algebraic and calculus derivation is obtained, but
without a deeper understanding of the physical realm of the
problem. For a complete understanding of the underlying
principles, it is essential to adopt an approach that is
much more closely linked to electrical practice and in
clear connection with Kirchhoff’s laws [11]. This paper
attempts to provide a new vision based on these laws and
founded on geometrically oriented principles strongly rooted
in the engineering mindset [12]. The proposed methodology
relies on a quite new framework based on Geometric
Algebra (GA) to provide a clear spatial-like intuition,
allowing a general understanding of the transformations for
multiphase systems [13]. Recently, GA has been successfully
applied by some authors to define a generalized concept
of frequency [6], gaining new insights from a geometrical
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perspective. Other applications to power systems [14], [15] or
adaptive filtering [16] are also presented. A comprehensive
list of application fields is detailed in [17] and [18]. The
method presented here is named Simple Kirchhoff Rotation
(SKR) framework. Founded on the roots of a previous work
described in [13], a new general and efficient framework
is presented. By general, it means that: 1) it applies to an
unlimited number of phases without restriction (from two
to n-phase systems) and 2) it unifies existing transforma-
tions like Clarke-Concordia [19], Park [20], Hyper-Space
vectors [21] and others in purely time domain. By efficient,
it means that it outperforms other existing matrix methods
computationally.

The geometric operations presented in the proposed
framework (simple rotations and projections) are universally
sufficient to conceptualize all relevant geometry behind com-
monly used electrical transformations. The GA formulation
of such geometric operations is much more natural compared
to matrix formulations. This framework emphasises the
geometry over the computation, as such, it is very important
for younger engineers to intuitively understand the core
concepts behind electrical transformations. Additionally, this
unification of transformations in multiple dimensions has the
potential to benefit the analysis of multi-phase systems of
arbitrary complexity. Frequency approaches, like Fortescue’s
transformation, rely on complex phasors and will be analyzed
in a separate paper.

A. CONTRIBUTIONS AND OUTLINE
This paper mainly contributes to the following topics:
• Definition of a new framework based on geometric
principles rooted in the unified language of Geometric
Algebra that applies to multiphase power systems
dynamics and operations with an arbitrary number of
phases.

• Generalization of time domain transformations like
Clarke, Park, and Hyper-Space vector widely used in
power systems through the proposed method known as
Simple Kirchhoff Rotation. They are all particular cases
of a superior and simple geometrical model obtained by
rotations and projections in Euclidean space.

• Implementation of more efficient techniques for elec-
trical transformations. For applications requiring only
the basic geometric operation of rotating one vector
to another, the use of rotation matrices or complex
numbers is completely unnecessary, on both the lev-
els of conceptual understanding and computational
efficiency.

• Gradual Introduction of GA terminology as a compre-
hensive tool for solving general and multi-dimensional
problems in power systems from a purely geometric
point of view rather than an algebraic one.

The paper is organized as follows: Section II presents the
minimum mathematical background necessary to understand
the basics of Geometric Algebra. Section III defines the
geometrical model used to describe a multiphase system.

FIGURE 1. n-terminal electric circuit with n voltages ui referenced to a
virtual star point N and n currents ii flowing through the terminals. Both
currents and voltages fulfil Kirchhoff’s laws.

Voltages and currents are transformed into vectors that
can be manipulated in a Euclidean space through linear
transformations. Traditional transformations are identified
as geometric manipulations of vectors. Section IV presents
the Simple Kirchhoff Rotation transformation and explains
its structure and benefits as a generalization of rotations
in a n-dimensional vector space. Section V presents some
real-world cases where SKR is compared to other well-known
methods in electrical engineering. Finally, section VI draws
some conclusions about this work and proposes future ideas
for ongoing papers.

II. MATHEMATICAL BACKGROUND
The ubiquitous use of matrices to represent linear transforma-
tions occasionally results in obscuring the geometric meaning
behind them and consequently may lead to severing the
deeper geometric connections between algebraic representa-
tions in engineering minds. This problem is amplified when
combining matrices with complex numbers, as commonly
applied in many engineering disciplines. Geometric algebra
provides a powerful alternative to formulate geometric
models in ways difficult to attain using matrices and complex
numbers alone.

Many available references include sufficient explanations
for the algebra and geometry behind GA, including [22], [23],
and [24]. Introducing the full mathematical structure of GA
in a limited space is extremely difficult. As such, the basic
construction in the special case of 3 dimensions is included
in Appendix A. The generalization to higher dimensions is
provided in Appendix B along with well-known concepts like
projections and rotations.Mathematics is also restricted to the
minimum required for formulating our proposed geometric
model later on.

III. THE BASIC GEOMETRIC MODEL
A. MODEL CONSTRUCTION FOR MULTIPHASE CIRCUITS
The basic geometric model constructed here assumes a
n-terminal electric circuit (see Fig. 1) and that Kirchhoff’s
voltage and current laws apply to these terminals. A widely
common and natural representation of the currents and
voltages in such circuits involves the use of n coordinates
or components for constructing the n-dimensional multiphase
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voltage and current vector signal

x(t) = [x1(t), x2(t), . . . , xn(t)] (1)

Note that we use lower bold letters for representing vectors
and upper bold letters for multivectors. Scalars are denoted by
small non-bold letters. In GA language, the vector x(t) can be
represented through a global frame using orthonormal basis
vectors µi (see Fig. 2)

x (t) =
n∑
i=1

xi (t)µi (2)

For the sake of brevity, the time dependence will be omitted
from now on. From Kirchhoff’s current law, one can readily
check that the sum of all terminal currents always satisfies∑n

m=1 im = 0. For the voltage vector, a special node N
(commonly known as virtual star point or virtual neutral)
is introduced. Then, the voltage between each terminal m
and the virtual star point N is defined. These new voltage
quantities um have interesting properties [25] and also satisfy
Kirchhoff’s voltage law,

∑n
m=1 um = 0. The two Kirchhoff

laws impose a geometric constraint on the voltage/current
vector signal defined by (2) that can be expressed as an inner
product:

x · k = 0 (3)

where

k =
n∑

m=1

µm (4)

We will call the special vector k the Kirchhoff Vector (KV),
with the special property of having all components equal
to one. The reader will probably identify that k resembles
the more traditional vector form 1n = [1, 1, . . . , 1].
KV plays a significant geometric role in many multiphase
sequence transformations as it geometrically captures the
physical Kirchhoff constraints on multiphase signal vectors.
Moreover, it represents the same 1D subspace that the
traditional zero sequence component. The geometricmeaning
of identity (3) is that the multiphase signal vector x is
always orthogonal to KV at any instant time. Another way
to describe this property is by saying that x is always
embedded in the (n − 1)-dimensional subspace orthogonal
to KV. In this work, the relation between a subspace K
and a blade K (which algebraically represents it) is denoted
by K ∝ K . Accordingly, one can write K ∝ kcI−1.
As such, this subspace will be called the Kirchhoff Subspace
(KS). We’ll see in section IV, that it contains the typical
α-β subspace along with other orthogonal 2D subspaces
for dimensions greater than 3. Using GA, the KS can be
represented algebraically by using the blade K = kcI−1

where I = µ1µ2 · · ·µn = µ1,2,...,n is the so-called phase
space pseudo-scalar. In the language of GA, the KV and KS
blade are dual (or orthogonal complements) of each other. For
a better comprehension of each of these components, the KS
and KV are represented in Fig. 3 for a 3-dimensional space.

FIGURE 2. Vector representation of a multiphase signal x in an
orthonormal basis frame µi . Each phase quantity xi is a coordinate of the
vector x.

FIGURE 3. Geometric representation of the Kirchhoff Vector (KV) and
Kirchhoff Subspace (KS). Both objects are dual to each other (orthogonal
complement).

One of the basic goals of many sequence transformations is
to express the n-dimensional signal vector x using a simpler
(n − 1)-dimensional coordinates frame that spans the
KS. In this work, a class of transformations capable of
attaining this goal is defined and it is known as Kirchhoff
Transformation (KT). A KT is a linear operator T that
performs two basic operations: 1) it maps the KV into a scaled
version of an arbitrarily selected base vectorµi, and 2) it maps
the KS into the axis-aligned (n − 1)-dimensional subspace
U spanned by the remaining basis vectors µj with j 6= i.
Without loss of generality, we will assume i = n for the
remaining of this work, and consequently, U will be spanned
by
{
µ1,µ2, . . . ,µn−1

}
. The above can be expressed as

T : k 7→ λµn or T : K 7→ U

where λ ∈ R is a scalar number. Applying the KT to the
instantaneous multiphase signal vector x, the transformed
vector y = T [x] =

∑n
i=1 yiµi is obtained. Because x always

lies in the KS, the corresponding transformed vector y will
be explicitly included in the subspace U , with a zero-valued
component yn in the direction of µn.

B. THE UNIFORMLY-SPACED KIRCHHOFF FRAME
The representation of the geometric construction presented
in the above section requires defining a suitable coordinate
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FIGURE 4. Construction of the uniformly-spaced Kirchhoff frame{
r1, r2, r3

}
in 3-dimensions.

frame for the KS. Traditionally, power engineers have made
use of a linearly dependent oblique frame {ri} that spans KS.
This frame is simply the projection of

{
µi
}
into KS. In GA,

the above can be accomplished through the linear projection
operator [26]:

ri =
1
2

(
µi − kµik

−1
)
= µi −

1
n
k = µi −

1
√
n
k̂ (5)

where k̂ = 1
‖k‖k =

1
√
nk is the unit Kirchhoff vector.

Deduction of relation (5) is also possible using the traditional
vector rejection of µi on k:

ri = µi −
µi · k
k · k

k = µi −
1
n
k (6)

Fig. 4 shows a geometric representation for the 3D case. In
addition to being simple to compute using GA, the frame {ri}
has several interesting properties. First, all vectors ri have
equal length ‖ri‖ =

√
n−1
n and are orthogonal to the KV:

ri · k =
(
µi −

1
n
k
)
· kµi · k−

1
n
k · k = 1−

1
n
n = 0 (7)

Accordingly, applying the KT to vectors ri results in a set
of vectors si = T [ri] in the subspace U . Second, the
angle between any pair of vectors ri, rj is constant ϕ =
cos−1 ri·rj

‖ri‖‖rj‖
= cos−1 1

1−n , which implies that vectors ri
are uniformly distributed in KS. For example, in a three-
wire system, n = 3 and ϕ = 120◦. Third, we can discard
one arbitrary vector, say rn, to obtain a linearly independent
basis {r1, r2, . . . , rn−1} spanning KS. This basis can be
orthonormalized, using Gram-Schmidt or any other similar
procedure, and complemented with the unit KV, i.e., k̂ = 1

√
nk

to obtain a full orthonormal basis {c1, c2, . . . , cn−1, cn} for
the n-dimensional phase signal space, also spanned by

{
µi
}
.

Note that cn = k̂. Due to these properties, {ri} will be called

theUniformly-spacedKirchhoff Frame (UKF). The use of the
KV andUKFmakes it simple to test if a given transformation,
expressed as a square matrix, is a KT. The n×n square matrix
M =

(
m1 m2 · · · mn

)
having column vectors mi represents

a KT if and only if the following two conditions hold for some
fixed j and all i:

n∑
q=1

mq = λµj mi · µj =
λ

n
(8)

The first condition (8) results from the KT property T : k 7→
λµj for some j. In the case ofM representing T, then:

T [k] = Mk = (m1 m2 · · · mn) (1 1 · · · )T

=

n∑
q=1

mq = λµj (9)

The second condition (8) results from the KT property T :
K 7→ U . This property implies that a UKF vector ri in K
is transformed into a vector si = T [ri] in U , which is by
definition orthogonal to µj. Accordingly, this property can be
expressed as T [ri] ·µj = 0 for all i = 1, 2, . . . , n. Expressing
T [ri] using matrixM gives:

T [ri] = Mri = M
(
µi −

1
n
k
)

= Mµi −
1
n
Mk = mi −

λ

n
µj (10)

which leads to:

T [ri] · µj =
(
mi −

λ

n
µj

)
· µj = mi · µj −

λ

n
= 0 (11)

Note that the second condition in (8) is equivalent to the
j-th row vector of M being equal to λ

nk; yet another relation
depending on the KV.

C. CLARKE AND PARK MATRICES AS KIRCHHOFF
TRANSFORMATIONS
In the case of a three-phase system, the power-invariant form
of the Clarke transformation matrix is:

C =

√
2
3

 1 − 1
2 −

1
2

0
√
3
2 −

√
3
2

1
√
2

1
√
2

1
√
2

 (12)

Summing its column vectors one gets m1 + m2 + m3 =√
3µ3, meaning that in this case j = 3 and λ =

√
3.

Additionally, the third row of C contains the quantities mi ·

µ3 =
λ
n =

√
3
3 =

1
√
3
as expected. The Park transformation

defines a continuous rotation at an arbitrary frequency ω. It is
composed of the dq0 matrix D

D =

 cosωt sinωt 0
− sinωt cosωt 0

0 0 1

 (13)

and the Clarke matrix C , yielding the single matrix:

P = DC

132728 VOLUME 10, 2022



A. H. Eid, F. G. Montoya: Systematic and Comprehensive Geometric Framework

=

√
2
3

 cos θ cos (θ − ϕ) cos (θ + ϕ)
− sin θ − sin (θ − ϕ) − sin (θ + ϕ)

1
√
2

1
√
2

1
√
2

 (14)

with θ = ωt and ϕ = 2
3π . Again, summing its column

vectors one gets m1 + m2 + m3 =
√
3µ3, Additionally, the

third row ofP contains the quantitiesmi·µ3 =
λ
n =

√
3
3 =

1
√
3

as expected from the Kirchhoff transformation.

D. HYPER-SPACE VECTORS MATRIX AS KIRCHHOFF
TRANSFORMATION
In [27] a general formulation of the Fryze-Buchholz-
Depenbrock (FBD) transformation is developed based on
linear algebra. A matrix H with a predefined structure is
constructed to represent the required transformation. The
Kirchhoff constraint is imposed as the identity Hk = 0. The
H matrix is (n − 1) × n where row number r starts with
r − 1 leading zeros, then element (r, r) contains the value
√
n−r

√
n−r+1

, followed by the repeated value −1
√
(n−r)(n−r+1)

for the
remaining columns in the same row r . In this work, we will
augment the matrix H with a final row of zeros to make it a
square matrix. The following is an example for n = 4:

H =



√
3
4

−1
√
12

−1
√
12

−1
√
12

0
√

2
3

−1
√
6

−1
√
6

0 0
√

1
2

−1
√
2

0 0 0 0

 (15)

By investigating the column vectors hi of H , we find they

are all of the same length ‖hi‖ =
√

n−1
n , and orthogonal to

the basis vector µn as evident by the final zero in each hi.
In addition, the angle between any pair of column vectors
hi,hj is constant ϕ = cos−1 1

1−n , meaning that vectors
hi are uniformly distributed in the subspace U spanned by{
µ1,µ2, . . . ,µn−1

}
. These are very similar properties to the

UKF vectors ri which span the KS. The geometric meaning
of the transformation H represents is clear: it projects the
frame

{
µi
}
onto the KS to obtain the UKF {ri}, then applies

a rotation transformation Trh to rotate the UKF {ri} into the
hyper-space vectors frame {hi}. Since {ri} spans the KS, while
{hi} spans U , we can conclude that the rotation Trh is itself a
Kirchhoff transformation.

IV. SIMPLE KIRCHHOFF ROTATION TRANSFORMATION
Rotations in 2 and 3 dimensions are simple and easy to
visualize. However, this is not the case for 4 and higher
dimensions, which are generally non-simple [28]. A general
rotation in n dimensions is a composite of n

2 (for even n) or
n−1
2 (for odd n) simple rotations; a direct result of the Cartan-

Dieudonné theorem [29]. Each simple rotation is completely
defined by an angle and a plane of rotation. For a general
rotation, the corresponding planes of simple rotations are
orthogonal. In matrix algebra, the eigendecomposition of
a rotation matrix can be used to compute the angle-plane
elements of its simple rotations. Generalizations of Clarke

FIGURE 5. Summary of the proposed Simple Kirchhoff Rotation (SKR)
framework.

matrices [9] to higher dimensions are typically general non-
simple rotations. Interestingly enough, the use of GA enables
the formulation of a new kind of Kirchhoff transformation,
while completely avoiding the use of intermediate frames
of any sort. The new transformation we propose performs
a rotation in n-dimensional phase space formulated using
the so-called simple geometric rotors in GA (from now on,
we use the word geometric rotor for simplicity). Note that
geometric rotors are even multivectors that perform rotations
to vectors and multivectors in any dimension. It satisfies the
two properties of KT.

A. PROPOSED METHOD
In this work, a new general method is proposed to unify
electrical transformations based on geometrical principles.
It will be referred to as Simple Kirchhoff Rotation (SKR).
Fig. 5 is a summary of the proposed SKR framework. The
SKR transformation Tn : K → U can be represented
either using a GA rotor Rn, where Tn [x] = RnxR

†
n, or

using an orthogonal matrix Mn = (m1m2 · · ·mn), where
Tn [x] = Mnx. The row vectors ci of Mn constitute the
orthonormal Kirchhoff frame satisfying Tn [ci] = µi. The
n− 1 dimensional phase subspace U can be represented
using the orthogonal complement µncI

−1 of the basis vector
µn. The n − 1 dimensional Kirchhoff subspace K can be
represented using the orthogonal complement k̂cI−1 of the
unit vector k̂ = 1

√
n

∑n
i=1 µi. The two subspaces are also

related through the SKR using Tn [x] = y ∈ U for all x ∈ K.
Finally, the SKR relates the uniformly-spaced Kirchhoff
frame vectors ri = µi −

1
√
n k̂, which span K, with the
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hyper-space frame vectors hi = mi −
1
√
n µ̂i, which span U ,

through Tn [ri] = hi. The hyperspace frame vectors hi can
also be read directly as the column vectors of Mn with the
last row replaced by zeros.

In GA, simple rotations are represented by geometric
rotors, constructed from two conveniently chosen vec-
tors. Following the first Kirchhoff transformation property
k 7→ λµn, we take the two vectors to be the unit KV, i.e.,
k̂ = 1

√
nk and the basis vector µn. Because rotations preserve

orthogonality, the simple geometric rotor also satisfies the
second Kirchhoff transformation propertyK 7→ U . The SKR
geometric rotor Rn can be defined as:

Rn =

√
1
2
+

1
2
k̂ · µn +

√
1
2
−

1
2
k̂ · µn

k̂ ∧ µn∥∥∥k̂ ∧ µn∥∥∥
=

√
1
2
+

1
2
√
n
−

1
√
n− 1

√
1
2
−

1
2
√
n

n−1∑
i=1

µiµn

= e

(
−

1
2 cos

−1
1
√
n

)(
1

√
n− 1

∑n−1
i=1 µiµn

)

= 1 6 − cos−1
1
√
n

∣∣∣∣∣
n−1∑
i=1

(
1

√
n− 1

)
i,n

(16)

The SKR geometric rotor Rn has a rotation angle of

ϕn = − cos−1
1
√
n

(17)

and a rotation plane represented by the bivector

Bn =
1

√
n− 1

n−1∑
i=1

µiµn (18)

generated by the two unit vectors 1
√
n−1

∑n−1
i=1 µi and µn.

A multiphase signal vector x can be transformed by the SKR
geometric rotor using the sandwich geometric product:

T : x 7→ RnxR†
n (19)

Additionally, one can easily construct the orthogonal rotation
matrix Mn where M−1n = MT

n for this SKR having column
vectors mi defined from the SKR geometric rotor using:

Mn =
(
m1 m2 · · · mn

)
(20)

mi = RnµiR
†
n (21)

The structure of matrixMn is the following:

Mn =


an bn . . . . . . bn − cn
bn an bn . . . bn − cn
...

bn bn . . . . . . an − cn
cn cn . . . . . . cn cn

 (22)

with

an = 1−
1

n+
√
n

bn = −
1

n+
√
n

cn =
1
√
n

The SKR structure can be analysed in terms of eigenvalues
and eigenvectors. It can be proved that there are n − 2 real
eigenvalues with value λi = ai − bi = 1 with i = 1 . . . n− 2.
Only λn−1 and λn are complex conjugate eigenvalues.

1) THREE-DIMENSIONAL CASE
Three-phase power systems can be considered from a
3- or 4-dimensional standpoint depending on the specific
application [30]. For the case of 3 dimensions, 3×3 matrices
are typically used as in Clarke or Park transformations. Based
on eq. (16), SKR geometric rotor Rn for n = 3 can be
obtained as

R3 = 1 6 − 54.74◦

∣∣∣∣∣∣∣
(

1
√
2

)
1,3(

1
√
2

)
2,3

= cos(−
54.74
2

)+
sin(− 54.54

2 )
√
2

(
µ1µ3 + µ2µ3

)
= 0.888− 0.325µ1,3 − 0.325µ2,3 (23)

and by considering (22), the matrixM3 can be obtained as:

M3 =

 a3 b3 −c3
b3 a3 −c3
c3 c3 c3


a3 = 1−

1

3+
√
3
, b3 = −

1

3+
√
3
, c3 =

1
√
3

We can construct an orthonormal frame {ci} for the KS
by rotating the

{
µi
}
frame using the inverse of the SKR

and ci = R†
nµiRn. By simple inspection, one can observe

that vectors ci are exactly the row vectors of the SKR
matrix Mn, as it’s a rotation matrix satisfying M−1n =

MT
n . Fig. 6 illustrates the orthonormal frame {c1, c2, c3} in

3 dimensions.
It is interesting to note that the SKR rotor/matrix is

different from that of Clarke as shown in [30]

RC = 0.8805+ 0.1159µ1,2 − 0.3647µ1,3 − 0.2798µ2,3

= 0.8805+ 0.474
(
0.24µ1,2 − 0.59µ2,3 − 0.77µ1,3

)
= e28.3(0.24µ1,2−0.77µ1,3−0.59µ2,3)

= 16 − 56.6◦

∣∣∣∣∣∣∣∣∣∣∣

√
2+2√

8
√√

3+2+18
µ1,3

1√
4
√√

3+2+9
µ1,3

√
2+
√
3√

4
√√

3+2+9
µ2,3

(24)

Note that, in three dimensions, both Clarke and SKR
method lead to the full diagonalization of the typical matrices
that appears in electrical machines or transmission line
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problems. For example, for an inductance matrix

L =

 Lp Lm Lm
Lm Lp Lm
Lm Lm Lp


we get the following result

LT = CLC−1 = M3LM
−1
3 =

 Lα 0 0
0 Lβ 0
0 0 L0

 (25)

where Lα = Lβ = Lp − Lm and L0 = Lp + 2Lm. We prove in
Appendix D that there is a whole family of rotations that map
the basis vector µ3 to the Kirchhoff vector k̂. The simplest
of them is the one provided by the SKR method. Moreover,
by inspecting EQs. (23) and (12), it is noted that the SKR
method uses fewer parameters than Clarke/Park method.
Therefore, potential advantages from a computational point
of view are foreseen. Section IV-B presents evidence to
support this claim.

2) FOUR-DIMENSIONAL CASE
For three-phase systems with four wires or four-phase
systems without neutral wire, the SKR geometric rotor
is:

R4 = 16 − 60◦

∣∣∣∣∣∣∣∣∣∣

(
1
√
3

)
1,4(

1
√
3

)
2,4(

1
√
3

)
3,4

M4 =


a4 b4 b4 −c4
b4 a4 b4 −c4
b4 b4 a4 −c4
c4 c4 c4 c4


a4 =

5
6
, b4 = −

1
6
, c4 =

1
2

Additionally, the column vectors hi of a related
hyper-space matrixHn =

(
h1 h2 · · · hn

)
can be constructed

by rotating the UKF vectors ri = µi −
1
nk using the

SKR. This is because the SKR, being a rotation, rotates
vectors in the KS into vectors in the phase subspace U while
preserving their angles and lengths. Fig. 7 illustrates the
UKF {r1, r2, r3} and hyper-space vectors frame {h1,h2,h3}
in 3 dimensions. The final expression for computing the
corresponding hyper-space vectors matrix is simple: Hn is
exactlyMn with the final row made zero. This is evident from
the following:

hi = RnriR†
n = Rn

(
µi −

1
n
k
)
R†
n = RnµiR

†
n −

1
n
RnkR†

n

= mi −

√
n
n
Rnk̂R†

n = mi −
1
√
n
µn

B. COMPUTATIONAL COMPLEXITY OF SKR METHOD
One of the main advantages of the SKR method over
traditional methods is that it provides a unifying framework

FIGURE 6. The simple Kirchhoff geometric rotor R3 and corresponding
orthonormal Kirchhoff frame

{
c1, c2, c3

}
in 3-dimensions.

FIGURE 7. The simple geometric rotor R3 and corresponding
uniformly-spaced Kirchhoff frame

{
r1, r2, r3

}
and hyper-space vectors

frame
{
h1,h2,h3

}
in 3D.

to think intuitively, formally and generally about transfor-
mations in power systems. Its simplicity is revealed by
equation (16), irrespective of the number of dimensions to
be considered. However, the above does not guarantee that
SKR is computationally efficient and, therefore, useful to the
engineer for its application in realistic systems. Therefore,
a series of tests have been carried out to verify the superiority
of the method over Clarke’s method, as one the most widely
used by the community.

The setup consisted of applying both methods to a set
of 1000 random voltage vectors, transforming the phase
values to modal components. For this purpose, an Intel
i7 workstation processor with 32 GBytes RAM has been
used and the implementation has been carried out using C#
language. The results obtained are shown in table 1. Notice
how the SKR method has higher computational performance

VOLUME 10, 2022 132731



A. H. Eid, F. G. Montoya: Systematic and Comprehensive Geometric Framework

TABLE 1. Processing time to transform 1000 random vectors by the
clarke and SKR method.

FIGURE 8. Performance comparison among Clarke and SKR method for
data in table 1.

than Clarke. For reduced dimensions, i.e. 3 dimensions,
Clarke is 128.36% worse than SKR. As the number of
dimensions increases, the computational complexity of
Clarke’s method increases exponentially, while the SKR
method increases linearly (see figure 8). For example, for
a 15-phase system, Clarke is 1133.6% slower than SKR.
Note that Clarke’s implementation has been realised using
standard matrix-vector multiplication methods which require
two nested loops. In contrast, a simple vector relation has
been used for the SKR implementation, which only uses a
single loop and is much more efficient. Assume a vector x in
n-dimensional space. Assume R is the SKR rotor for this

space which rotates basis vector µn to the unit Kirchhoff
vector k̂, then the rotated vector xR can be expressed
compactly using simple vector operations as follows:

xR = RxR†
= x+

(
x · µn − a

)
k̂−

(
x · µn + a

)
µn (26)

with

a =
1

1+
√
n
x ·
(
k− µn

)
=

1
1+
√
n

n−1∑
i=1

xi

C. DECOUPLING EQUATIONS AND GEOMETRIC
INTERPRETATION
One of the relevant applications of power transformations
is the decoupling of variables. This is usually accomplished
in a purely algebraic fashion by means of the Clarke matrix
(and its variants) or symmetrical components. Unfortunately,
this approach causes the underlying geometrical view and
interpretation to be completely lost. To highlight this fact, the
case of a polyphase induction electrical machine is analysed.
The equations in matrix form are as follows: [31]:

[vs] = [Rs] [is]+
d [ψs]
dt

[vr ] = [Rr ] [ir ]+
d [ψr ]
dt

(27)

where [vs] and [vr ] refer to the stator and rotor voltage
vectors, respectively. The [Rs] and [Rr ] are diagonal matrices
of resistances while the flux linkage vector in stator [ψs] and
rotor [ψr ] are defined as,

[ψs] = [Ls] [is]+ [Lsr ] [ir ]

[ψr ] = [Lr ] [ir ]+ [Lrs] [is] (28)

For symmetric machines and under the UTEM assump-
tions [32], the inductance matrices [Ls], [Lr ], [Lsr ] and
[Lrs] are symmetric and circulant [33]. A matrix system can
be understood as a linear mapping into an n-dimensional
space. Basically, the equations defined in (27) and (28)
indicate that the current vector is transformed into a voltage
vector through the resistance and inductance matrices. The
drawback of this mapping is that it produces a system of
equations that is hard to solve because of two factors: a)
the equations have variables that are coupled together and
b) the vectors involved have an extra dimension that could
be eliminated. Clarke’s method is one of those that can
help to solve the two previous disadvantages under certain
conditions, although it does not provide any geometrical
intuition about the solution. In contrast, SKR does provide
a purely geometrical perspective that can help to a better
understanding.

For the sake of simplicity, a seven-phase inductionmachine
example is analyzed. The geometric rotor for this seven-phase
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system is as follows:

R7 = 16 − 67.79◦
∣∣∣∣∣

6∑
i=1

(
1
√
6

)
i,7
= 16 − 67.79◦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
√
6
µ1,7

1
√
6
µ2,7

1
√
6
µ3,7

1
√
6
µ4,7

1
√
6
µ5,7

1
√
6
µ6,7

with the corresponding matrix (see eq. (22))

M7 =



a7 b7 b7 b7 b7 b7 − c7
b7 a7 b7 b7 b7 b7 − c7
b7 b7 a7 b7 b7 b7 − c7
b7 b7 b7 a7 b7 b7 − c7
b7 b7 b7 b7 a7 b7 − c7
b7 b7 b7 b7 b7 a7 − c7
c7 c7 c7 c7 c7 c7 c7


a7 = 1−

1

7+
√
7
, b7 = −

1

7+
√
7
, c7 =

1
√
7

As in previous cases, note the regular structure of the
matrix. If we follow the traditional eigenvalue computation
of the SKR linear map, we get

λ1 = λ2 = λ3 = λ4 = λ5 = 1

λ6 =
1
√
7
+ j

√
6
√
7
= cos (67.79)+ j sin (67.79)

λ7 =
1
√
7
− j

√
6
√
7
= cos (67.79)− j sin (67.79)

with possible eigenvectors

v1 = (−1, 1, 0, 0, 0, 0, 0)

v2 = (−1, 0, 1, 0, 0, 0, 0)

v3 = (−1, 0, 0, 1, 0, 0, 0)

v4 = (−1, 0, 0, 0, 1, 0, 0)

v5 = (−1, 0, 0, 0, 0, 1, 0)

v6 =
j
√
6

(
1, 1, 1, 1, 1, 1,−j

√
6
)

= (0, 0, 0, 0, 0, 0, 1)+
j
√
6
(1, 1, 1, 1, 1, 1, 0)

v7 = −
j
√
6

(
1, 1, 1, 1, 1, 1, j

√
6
)

= (0, 0, 0, 0, 0, 0, 1)−
j
√
6
(1, 1, 1, 1, 1, 1, 0)

We get five real and two conjugated complex eigenvalues
and eigenvectors. The interpretation of this result is somehow
challenging. Complex numbers are usually associated with
rotations, but it is not clear that this formal complexification
would be useful while starting with a real mapping between
real vectors. A purely geometrical interpretation would
be more interesting. This is provided by the concept of
eigenblade (see Appendix E). In this way, we are allowed

to rewrite eigenvalues λ6 and λ7 as a single eigenvalue λB.
In the same vein, eigenvectors v6 and v7 can be replaced by the
simple eigenblade B while capturing the complex structure
(i.e., the ability to square to -1) of these eigenvectors,

λB = 1

B = u ∧ v = −
1
√
6

6∑
i=1

µi,7
(29)

with

u = <(v6) = µ7

v = =(v7) =
1
√
6

6∑
i=1

µi (30)

Note that B in (29) is exactly the same as the bivector
in (18) encoding the plane of rotation of the geometric
rotor in (16). Moreover, the angle of rotation θ (the angle
between the KV and µ7) is given by the real or imaginary
parts of the original eigenvalues λ6,7 = 1

√
7
± j
√
6
√
7
=

cos θ ± j sin θ . Thus, the two conjugate eigen-pairs (λ6, v6)
and (λ7, v7) encode, in an obscure complex algebra manner,
the actual geometrical rotational component of the SKR.
Therefore, it is evident that the SKR method is interpreted
geometrically as a rotation in the plane defined by B to align
the k̂ vector (KV) with µ7. The remaining eigenvectors form
a subspace of dimension n − 2 orthogonal to the bivector
B as can be easily verified by taking the inner product
between any vector v1 to v5 with B. Because they are all
equal to one, they form an identity map on the subspace
spanned by the corresponding eigenvectors v1 to v5. Due to
the excess identity map represented by eigenvalues λ1 to λ5,
the classical matrix multiplication operation performs many
unnecessary arithmetical operations to achieve what a simple
rotation can compute using equation (23). This difference
in computational time increases rapidly as dimensions get
higher.

If the same analysis is carried out with the generalised
Clarke transformation proposed by Willems [9], the result
is to produce more eigenblades than the SKR method,
therefore more orthogonal rotation planes, which implies a
greater degree of freedom to produce matrices that achieve
a better decoupling between the variables. This is the main
advantage of Clarke over SKR at the moment. Future work
will be able to analyse this situation and find the efficient
set of simple rotations that allow decoupling systems by full
diagonalisation of matrices, not only in circulant symmetric
matrices whose elements on the diagonal are equal, but also
in any other type of matrix, for example, asymmetric systems
like in untransposed transmission lines or asymmetrical
machines.

V. APPLICATIONS OF SKR METHODOLOGY
A detailed validation of the proposed framework is presented
in this section by comparing its results with other widely used
methods such as the p − q theory [34], FBD method [21]

VOLUME 10, 2022 132733



A. H. Eid, F. G. Montoya: Systematic and Comprehensive Geometric Framework

FIGURE 9. Active filter for a three-phase four-wire power system.

TABLE 2. Comparison of RMS current compensation Case #1. values in
amperes [A].

andVector Theory [35], [36]. Current compensation in 4-wire
systems with arbitrary voltages is investigated for simplicity,
but multi-phase systems with more than 3 phases can be
analyzed also. The advantages of our approach rely on
obtaining optimal results concerning the energy losses in
power transmission considering equal resistances of all the
wires. More complex cases can be handled by adding more
dimensions.

A. CURRENT COMPENSATION
In order to assess the current compensation operating
principles, several real-world examples were analyzed in
terms of SKR, Akagi p-q, Vector and FBD methodologies.
The three-phase four-wire system of Fig. 9 represents a
typical scenario where a load is supplied by a power source
and an active filter is used to compensate for the current
that causes non-active power to flow. The goal is to achieve
minimum losses in the transmission line.

1) CASE 1. SCHOOL BUILDING
For the first case under study, a school-type building at
the University of Almeria is considered. It consists of
several floors with offices, laboratories, and classrooms.
The measurements were carried out in the main electrical
panel using the openzmeter power quality analyzer and smart
energy meter [37]. The three phase-to-neutral voltages as
well as the three line and neutral currents were measured.
The signals were acquired at 24 kHz and the measurement

FIGURE 10. Voltage and current waveforms for a school building. Top)
voltage supply, middle) source line currents, and bottom) SKR4D line
currents.

took several minutes. The active power consumption was
45.55 kW.

The top and middle of Fig. 10 show the voltage and current
waveforms for the uncompensated situation, while the bottom
shows the compensated current by SKR. Table 2 shows the
RMS values of the currents and a loss indicator given by
the squared norm of the current vector. It can be seen that
the best results are obtained for the 4D SKR method and
for FBD. They are optimal by treating all wires equally.
Another consequence is that some current is allowed to flow
through the neutral wire. In contrast, both Akagi and 3D SKR
without zero sequence voltage (SKR3D0) achieve slightly
worse results with a null neutral current. Finally, the Vector
and the 3D SKR methods give the worst results in terms
of losses. In our opinion, this is quite an interesting point.
By treating three-phase four-wire systems as 4-dimensional
systems, optimal results in terms of transmission losses are
achieved.

2) CASE 2. NOISY GRID AND THREE-PHASE INDUCTION
MOTOR
The second case of study consists of a typical electrical
drive driving a three-phase 4-wire induction motor. The
same measurement procedure as in the previous case was
performed, acquiring the voltage and current demanded
by the electrical drive. In this case, the applied voltage
contains a high noise component as well as a high third
harmonic. The active power measured during the experiment
was 89.79 W. Fig. 11 shows the voltages and currents of
the uncompensated load (top and middle, respectively) and
the current compensated by the SKR4D method (bottom).
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FIGURE 11. Voltage and current waveforms for an electrical drive. Top)
voltage supply, middle) line currents, bottom) SKR4D line currents.

TABLE 3. Comparison of RMS current compensation Case #2. Values in
milliampere [mA] for the current.

Table 3 shows a brief summary of the value of the currents
for each stage. It can be seen that, again, the SKR4D and
FBDmethods outperform all other approaches by using more
degrees of freedom and allowing the current to flow through
the neutral wire.

B. POWER QUALITY AND GEOMETRY
The use of SKR allows an intuitive understanding of power
quality phenomena in three-phase systems in general. In par-
ticular, it allows obtaining a three-dimensional visualisation
for 4-wire systems which was not possible before. The
representation in Fig. 12 shows the spatial trajectory of
the transformed SKR voltages v̄a, v̄b and v̄c for a three-
phase four-wire system in a real building in the University
of Almeria. The real voltages were measured from line-to-
neutral and afterwards the three line-to-virtual neutral and
neutral-to-virtual neutral were computed, i.e., vaN , vbN , vcN

FIGURE 12. SKR applied to a three-phase four-wire line to virtual neutral
voltages in a real building. The top left shows an orthogonal view of the
plane enclosing the trajectory. The top right image shows a side view of
the same trajectory. The bottom left shows a different perspective while
the bottom right adds the nominal circle, i.e., the nominal balanced and
sinusoidal voltage supply.

and vnN . A total of one hour of measurements were acquired.
Colours are used to represent different orbits for every cycle.
It can be noticed that the trajectory is almost flat due to the
fact that there is not much imbalance between the phases.
It can also be seen in the upper left view (perpendicular to the
plane formed) that the voltage has a typical hexagonal shape
due to the presence of harmonics (specifically harmonics
5 and 7). The upper right view shows the plane viewed from
the side where some small deviations can be observed. The
lower left view shows another point of view of the setup
while the lower right view adds the ideal circular trajectory
of a perfectly sinusoidal and balanced voltage. Note how
harmonics and unbalance caused by power quality events
distort the nominal circle. The application of SKR allows us
to reduce the dimensionality of the problem and find a curve
with properties related to the electrical quality. For example,
for balanced systems, the trajectory describes a circle,
while for unbalanced systems, ellipses are formed. This
information can be used for detailed analysis of the power
quality and to find incipient problems that lead to faults or
failures.

VI. CONCLUSION
This paper investigates the generalization of transformations
commonly used in electrical engineering by means of
Geometric Algebra. For this purpose, the paper formulates
some conceptual and computational tools:
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• The introduction of new conceptual geometric entities
defined in a Euclidean space, such as the Kirchhoff
Vector and Kirchhoff Subspace, as well as geomet-
ric operators such as geometric rotors, leads to the
formulation of an orthogonal transformation based on
simple rotations (SKR) for any n-dimensional space that
circumvents the use of traditional intermediate vector
basis, matrices and complex numbers.

• We further reveal how matrix-based electrical transfor-
mations can be understood as geometric manipulations
of an original orthonormal basis through projections and
simple rotations.

• A new efficient implementation of SKR based on linear
algebra is also presented, outperforming the classical
matrix methods.

The approach taken in this work opens up interesting
possibilities to unify different applications in electrical
engineering without restriction to a limited number of
phases.
• The presented real-world case studies confirm the
benefit of the proposed approach. As illustrated by
the provided examples, the use of SKR reduces the
problem’s dimensionality and enables the discovery of
a curve with attributes linked to electrical quality, such
as the trajectory of balanced and unbalanced systems,
and the presence and nature of harmonics. This data
can be later utilised to conduct a thorough study of the
power quality and identify any problems that could lead
to faults or failures.

• Future work should further investigate the application
of the proposed SKR model in more complex scenarios
in energy engineering disciplines such as compensation,
fault analysis, active filtering, multiphase AC machine
modelling, and microgrids.

• In addition, new geometric insights should be gathered
for the study of other important transformations based
on complex numbers such as symmetrical components.

APPENDIX A - CONSTRUCTION OF 3D GEOMETRIC
ALGEBRA
In 3-dimensional spaceR3, we assume the standard orthonor-
mal basis and denote it as µ(1) =

{
µ1,µ2,µ3

}
, µi · µi = 1,

µi ·µj = 0. One can construct a Euclidean geometric algebra
G3 on R3 using a new fundamental product of vectors known
as geometric product. The geometric product is a bilinear,
associative, distributive, and non-commutative product on
vectors. The geometric product of a basis vector with itself
is the same as its inner product µiµi = µ2

i = µi · µi = 1.
On the other hand, the geometric product of two different
basis vectors is a new algebraic element called a basis 2-blade
µiµj, which satisfies µiµj = −µjµi. This new element
µiµj (denoted as µi,j for short) is an algebraic representation
of the 2-dimensional subspace spanned by

{
µi,µj

}
, and

accordingly is said to be of grade 2. Using this concept the
set of grade 2 basis blades µ(2) =

{
µ1,2,µ1,3,µ2,3

}
are

constructed. A visual representation of the elements in µ(1)

FIGURE 13. Representation of the 8 basis blades for 3-dimensional
Euclidean geometric algebra: basis 0-blade/scalar {1} (black point at
origin), basis 1-blades

{
µ1, µ2, µ3

}
(red, green, and blue vectors), basis

2-blades
{
µ1,2, µ1,3, µ2,3

}
(blue, green, and red circles), and basis

3-blade/pseudo-scalar {I} =

{
µ1,2,3

}
(orange sphere).

(the 3 standard unit vectors) and µ(2) (the 3 perpendicular
circles) is shown in Fig. 13. Note that, geometrically, a
2-blade is not a circle. The closest geometric description
of a 2-blade is a directed area of arbitrary shape and
position, parallel to a given 2-dimensional subspace. This is
a geometrically intuitive generalization of the concept of a
vector as a directed segment of arbitrary position capable of
algebraically representing 1-dimensional subspaces. In this
work, circles are used to visualize 2-blades for clarity of
illustration. We can use the geometric product once again
to define the set of grade 3 basis blades µ(3) =

{
µ1,2,3

}
containing a single algebraic element I = µ1,2,3 which
represents the whole 3-dimensional space, visualized as a
sphere in Fig. 13. Note that the geometric product of 4 or
more basis vectors will not give basis blades of a grade
higher than 3. The single element I = µ1,2,3 is called the
pseudo-scalar of G3. Additionally, µ(0) = {1} is used to
represent a basis for real numbers as in R. Finally, a basis of
8 blades of mixed grades is obtained for the whole geometric
algebra G3 using µ = µ(0) ∪ µ(1) ∪ µ(2) ∪ µ(3) ={
1,µ1,µ2,µ3,µ1,2,µ1,3,µ2,3,µ1,2,3

}
. An element A ∈ G3

is called a multivector, and is a linear combination of basis
blades in µ with the general form:

A = a+ a1µ1 + a2µ2 + a3µ3

+ a1,2µ1,2 + a1,3µ1,3 + a2,3µ2,3

+ a1,2,3µ1,2,3 (A.1)

In the above expression, a... ∈ R are real numbers. Note
that the geometric product of two multivectors is another
multivector in the same GA; i.e. the set of multivectors is
closed under the geometric product, in addition to being
closed under linear combinations of multivectors. We can
group terms of the same grade in a multivector and express it
asA = 〈A〉0+〈A〉1+〈A〉2+〈A〉3 where 〈A〉0 = a is its scalar
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(or grade 0) part, 〈A〉1 = a1µ1 + a2µ2 + a3µ3 is its vector
(or grade 1) part, 〈A〉2 = a1,2µ1,2 + a1,3µ1,3 + a2,3µ2,3 is
its 2-vector (or grade 2) part, and 〈A〉3 = a1,2,3µ1,2,3 is its
3-vector (or grade 3) part.

APPENDIX B - CONSTRUCTION OF N-D GEOMETRIC
ALGEBRA
Given a n-dimensional real vector space Rn defined by an
orthonormal vector basis µ(1) =

{
µ1,µ2, . . . ,µn

}
, we can

construct a set of basis blades µ =
⋃n

i=0 µ
(i) for a Euclidean

geometric algebra Gn using the geometric product. In this
general case, we need to define µ(i) for i = 2, 3, . . . , n,
in addition toµ(0) = {1} and the givenµ(1). Each basis blades
set µ(i) of grade i contains exactly

(n
i

)
=

n!
i!(n−i)! elements

called basis i-blades.
Each basis i-blade µj1,j2,...,ji ≡ µj1µj2 · · ·µji is defined

through the application of the geometric product to a unique
combination of i basis vectors taken from µ(1).
As a result, the total number of basis blades in µ is∑n
i=0

(n
i

)
= 2n. The n grade basis blade I = µ1,2,...,n is called

the pseudo-scalar of Gn. A multivector A ∈ Gn is a linear
combination of basis blades in µ. We can group terms of the
same grade in a multivector and express it as A =

∑n
i=0 〈A〉i

where 〈A〉i is called its grade i part. Note that 〈A〉i = 0 by
definition for i < 0 or i > n.
Two useful operations on a multivector A =

∑n
i=0 〈A〉i are

its grade involution A and reverse A† defined as:

A =
n∑
i=0

(−1)i 〈A〉i (B.1)

A†
=

n∑
i=0

(−1)i(i−1)/2 〈A〉i (B.2)

Note that for a vector a ∈ Rn we get a = −a and a† = a.
This algebraic construction encodes a very rich mathematical
structure capable of representing sophisticated geometric
models in n-dimensions in a clear way. We can use a
special subset of multivectors, called blades, to algebraically
represent arbitrary subspaces of all dimensions in Rn.
Additionally, we can express arbitrary rotations in Rn using
another subset of multivectors called geometric rotors (rotors
for short). Using the geometric product, we can perform
a reflection of a vector in a subspace of any dimension
as needed. We can also express the projection of a vector
into an arbitrary subspace using simple geometric algebra
formulations. Such basic operations are extremely helpful
in formulating and understanding the proposed geometric
model.

APPENDIX C - TRANSFORMATION OPERATORS IN GA
A. LINEAR PROJECTIONS
We can define a geometrically significant product on mul-
tivectors derived from the geometric product. This product
is called the left-contraction product, and can be computed

using:

AcB =
n∑
i=0

n∑
j=0

〈
〈A〉i 〈B〉j

〉
j−i (C.1)

The left-contraction of two vectors u, v is exactly their
inner product ucv = u · v. Many important geometric
operations on vectors and subspaces can be expressed using
the left contraction. Some classes of multivectors have
inverses under the geometric product AA−1 = A−1A = 1,
which can be generally defined using:

A−1 =
1〈

A†
cA
〉
0

A† (C.2)

Note that
〈
A†
cA
〉
0
∈ R for any multivector. When A is a

blade, then A−1 is a scaled version of A, which is a blade
with the same grade as A, and represents the same subspace
A. Most notably, vectors are among themain elements having
inverses in geometric algebra defined simply using

v−1 =
1
v · v

v (C.3)

Having a vector a ∈ Rn, we can construct a blade A of
grade n − 1 which represents the subspace A orthogonal to
a using the dualization (also called orthogonal complement)
operation:

A = acI−1

= (−1)n(n−1)/2 acI (C.4)

In this work, we denote the relation between a subspaceA
and a bladeA, which algebraically represents it, usingA ∝ A.
Accordingly, we can also write A ∝ acI−1.

We can either use the vector a or its dual blade A to
compute the reflection v′ of a vector v on subspace A
using:

v′ = −AvA−1 = −ava−1 (C.5)

The projection PA [v] of vector v on the (n− 1)-dimensional
subspace A is computed using any of the following:

PA [v] =
(
vcA−1

)
cA =

1
2

(
v− AvA−1

)
=

1
2

(
v− ava−1

)
Fig. 14 shows a step-by-step representation of these opera-
tions in 3 dimensions. Note that for the 3-dimensional case,
the cross product of two vectors a × v is exactly vcA =
vc
(
acI−1

)
.

B. SIMPLE ROTATIONS
The geometric framework we propose in this work requires
the generalization of complex numbers to geometrically
act as rotation operators in n-dimensions without algebraic
restrictions. Multiplication with a complex number of unit
length c = eθ i performs a rotation with angle θ in the
complex plane C; geometrically equivalent to a rotation in
a 2-dimensional real vector space R2. Geometric algebra
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FIGURE 14. Representation of several linear reflection and projection transformations in 3 dimensions. Top left) vector v, a and
2-blade A. Top right) Projection of v over a and reflection of v over a. Bottom right) Projection of v over A and reflection of v over A.
Bottom left) Left contraction of v over A (same result as cross product of v and a).

provides a general algebraic alternative for such use of
complex numbers using a special class of multivectors
called simplerotors. In order to properly define a simple
geometricrotor in n-dimensions, we need to provide an angle
of rotation θ and any 2-blade U representing the plane of
rotation. The required simple geometricrotor is a multivector
R = 〈R〉0+〈R〉2 containing only elements of grades 0 and 2,
which can be defined using:

R = cos 1
2θ + sin 1

2θÛ = e
1
2 θÛ (C.6)

where Û =
1

〈UcU〉0
U is a unitary 2-blade. In order to

rotate a vector v ∈ Rn with angle θ parallel to the
2-dimensional subspace U represented by Û , the geometric
product is applied:

R
θ,Û [v] = RvR† (C.7)

In addition, the opposite of a simple rotation transformation
is represented by the reverse of its geometric rotor R†

=

cos 1
2θ − sin 1

2θÛ = e−
1
2 θÛ :

R−1
θ,Û

[v] = R
−θ,Û [v] = R†vR (C.8)

In this work, we will use a special polar notation for simple
geometric rotors to emphasize their geometric meaning:

R = e
1
2 θÛ ≡ 16 θ

∣∣∣Û . This notation is very similar
to the polar\phasor notation associated with a complex
number of unit length c = eθ i ≡ 16 θ . When Û is
listed as a sum of basis blades of grade 2, we can write
them vertically after the vertical separator. For example, for
Û = 0.267µ1,2 + 0.535µ2,3 + 0.802µ3,1 and θ = 60◦ one
can write the simple geometric rotor as:

R = 16 60◦

∣∣∣∣∣∣
0.2671,2
0.5352,3
0.8023,1

= 16 60◦ |0.2671,2+0.5352,3+0.8023,1

Note that we have omitted the µ symbol for a more compact
notation in this new polar form. Fig. 15 illustrates the main
elements of a simple geometric rotor in 3 dimensions and the
concept of rotation parallel to a plane. Note also that only
in 3 dimensions one can define the rotation using an axis
u = ÛcI−1. In higher dimensions, however, the orthogonal
complement of the rotation 2-blade is not a vector, and the
axis representation is not valid.

APPENDIX D - KIRCHHOFF ROTATIONS FAMILY
There is a whole family of rotations that map the basis
vector µn to the Kirchhoff vector k̂. For example, in three-
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FIGURE 15. Representation of a simple geometric rotor R = 1 6 θ |Û. and
its effect on a vector v in 3-dimensional space.

dimensional space, the simplest of them is the SKR rotor
defined as:

R3 = 16 − 54.74◦
∣∣∣∣∣ 1
√
2
µ1,3

1
√
2
µ2,3

Another one of this family is the power-preserving Clarke
transformation (in geometric rotor form):

RC = 16 − 56.6◦

∣∣∣∣∣∣∣∣∣∣∣

√
2+2√

8
√√

3+2+18
µ1,3

1√
4
√√

3+2+9
µ1,3

√
2+
√
3√

4
√√

3+2+9
µ2,3

The family can be described as a rotor function R(θ ) of a
single free parameter θ ∈

[
−
π
2 ,

π
2

]
such that k̂ = Rµ3R

†.
For each rotor R in the family, its angle of rotation is denoted
as ϕ(θ ) ∈ [φ, π] and its unit bivector of rotation is denoted
as N̂(θ ), where

φ = cos−1
(
µ3 · k

)
= cos−1

(
1
√
3

)
= 54.74◦

and ϕ(θ ) = ϕ(−θ ) is an even function in θ with ϕ(−π2 ) =
ϕ(π2 ) = π and ϕ(0) = φ.
The geometry of this method requires the definition of a

set of pure rotors

S(θ) =

√
1
2
(1+ cos θ)+

√
1
2
(1− cos θ)

1√
−B2

B

where B = (k̂ − µ3)
∗ is the 2-blade orthogonal to the

difference vector k̂ − µ3. Rotor S performs a rotation in the
plane B by an angle θ ∈

[
−
π
2 ,

π
2

]
.

The next step in the process requires the use of S(θ ) to
perform a rotation of the constant bivector N defined as

N = k̂ ∧ µ3 =
1
√
3
µ1,3 +

1
√
3
µ2,3

to obtain

N̄(θ ) = S
(
k̂ ∧ µ3

)
S† =

(
Sk̂S†

)
∧

(
Sµ3S

†
)

followed by a projection of µ3 and k̂ on N̄ to get

u(θ ) = (µ3cN̄)cN̄
−1

v(θ ) = (k̂cN̄)cN̄
−1

Finally, the rotor R(θ ) is defined as the rotor that rotates unit
vectors û(θ ) into v̂(θ ) through the smallest angle between
them

ϕ(θ ) = cos−1
(
û · v̂

)
After some algebraic manipulations, we can summarize the

procedure for defining R(θ ) in the following relations:

φ = cos−1
(

1
√
3

)

ϕ(θ ) = cos−1

1+
2
(
1− 1

√
3

)
sin2(θ )

(
1+ 1

√
3

)
− 2


where −π2 ≤ θ ≤

π
2

θ (ϕ) = ± sin−1
√
2

cosϕ− 1
√
3(

1+ 1
√
3

)
(cosϕ−1)

where φ < ϕ < π

S(θ ) =

√
1
2
(1+ cos θ)+

√
1
2
(1− cos θ)

1√
−B2

B

B =
(
k− µ3

)∗
=
(
µ3 − k

)
cµ1,2,3

N̄(θ ) = S(θ )
(
k ∧ µ3

)
S†(θ )

=
1
√
3

[
S(θ) (µ1 + µ2)S

†(θ )
]
∧

[
S(θ )µ3S

†(θ )
]

N̂(θ ) =
1√
−N̄

2
(θ )

N̄(θ )

R(θ ) = exp
(
1
2
ϕ(θ )N̂(θ )

)
=

√
1
2
(1+ cosϕ(θ ))+

√
1
2
(1− cosϕ(θ ))N̂(θ )

We get the SKR at the smallest rotation angle

ϕ = φ = cos−1
(

1
√
3

)
⇔ θ = ±

π

2

and the Clarke transformation at a larger angle of

ϕ = cos−1
(

1
√
6
+

1
6

√
3
√
6+

15
2
−

1
2

)
= 56.6◦

θ = ± sin−1
(
12
√
2− 12

√
3+ 6

√
6− 12

9
√
2− 16

√
3+ 5

√
6− 12

)
= ±0.0758

We can clearly see the geometric and algebraic simplicity of
SKR compared to the Clarke transformation.
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APPENDIX E - EIGENVALUES AND EIGENBLADES
In linear algebra, a real square matrix M of size n with
determinant ±1 represents an orthogonal transformation.
The eigen-decomposition of such a matrix gives a set of
n possibly complex eigen-value\vector pairs (λi, vi) =
(αi + jβi, ai + jbi). For this case, the following property is
always fulfilled

|λi| =

√
α2i + β

2
i = 1

Moreover, whenever a complex number α + jβ is an
eigenvalue forM , so is its complex conjugate α − jβ.
Geometric algebra provides an intuitive interpretation of

these pairs using the concept of eigenblades [38], [39],
[40]. For a linear operator T [·], an eigenblade B encodes a
subspace B for which T [x] = αx for all vectors x ∈ B using
a single real eigenvalue α. For orthogonal transformations,
we generally have 3 cases depending on the eigenvalue.

1) The first case is associated with a real eigenvalue λi =
1. In this case, the associated eigenvector vi encodes
a 1-dimensional eigen-subspace where the linear oper-
ator performs a simple identity transformation on all
vectors in this subspace. By identifying all subspaces
with eigenvalues equal to 1, we can safely ignore or
skip them during an efficient computation of the linear
map.

2) The second case is associated with a real eigenvalue
λi = −1. This time, the associated eigenvector
encodes a 1-dimensional eigen-subspace where the
linear operator performs a reflection on the hyperplane
V i = vicI−1n orthogonal to vi. This is the most basic
set of reflections in linear and geometric algebra as
described by Cartan–Dieudonné theorem.

3) Finally, the third case is the complex eigenvalue
λi = αi + jβi, which encodes a rotation inside a
2-dimensional eigen-subspace spanned by the real and
imaginary parts of the associated eigenvector vi = ai+
jbi. The angle of rotation is simply θi = tan−1 βi

αi
, and

the eigenblade (plane of rotation) is Bi = bi ∧ ai [41].
Using this information, a simple geometric rotor could
be constructed for each 2-dimensional eigen-subspace
of matrix M . Note that the other complex conjugate
eigen-pair with value λj = αj − jβj must be ignored
as it redundantly encodes the same simple rotation, just
using different basis vectors.

Combining the above cases together for a given orthogonal
transformation matrix, we get a smaller set of orthogonal
eigenblades encoding three kinds of basic maps on vectors:
identity, simple reflection, and simple rotation. In this way,
we can computationally ignore the identity eigen-space,
and perform only simple reflections and rotations in any
order, due to their orthogonality, using more efficient single
loops instead of 3 nested loops of matrix multiplication.
Additionally, the geometric interpretation becomes much
more obvious compared to interpreting the original complex
eigen-pairs of the orthogonal transformation matrix.
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