IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 9 November 2022, accepted 6 December 2022, date of publication 19 December 2022,
date of current version 23 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3230791

==l RESEARCH ARTICLE

Efficient CFl Enforcement for Embedded
Systems Using ARM TrustZone-M

GISU YEO"', YERYEONG KIM', SUHYEON SONG2, AND DONGHYUN KWON “2

! Department of Electrical and Computer Engineering, Pusan National University, Geumjeong-Gu, Busan 46241, Republic of Korea
2School of Computer Science and Engineering, Pusan National University, Geumjeong-Gu, Busan 46241, Republic of Korea

Corresponding author: Donghyun Kwon (kwondh@pusan.ac.kr)
This work was supported in part by the Institute for Information and Communications Technology Planning and Evaluation (IITP) Grant
Funded by the Korea Government, Ministry of Science and ICT (MSIT) (Convergence Security Core Talent Training Business, Pusan

National University), under Grant 2022-0-01201; and in part by the MSIT, South Korea, under the Information Technology Research
Center (ITRC) Support Program Supervised by the IITP under Grant IITP-2022-2020-0-01797.

ABSTRACT Embedded systems are deployed in many fields, from industrial applications to personal
products. However, there are growing concerns regarding the security of these embedded systems as the
number of attacks targeting them has increased. Control flow integrity (CFI) is a well-known security solution
against these attacks. However, according to our analysis, existing CFI methods cannot be widely used in
embedded systems one or more of the following reasons. (1) They require special hardware features that are
not available in embedded systems, (2) they require that the developer recompile the source code with their
compiler toolchain and (3) they incur considerable performance overhead to ensure CFI at runtime. In this
paper, we propose CEST, a new scheme to ensure CFI on embedded systems using ARM TrustZone-M,
a security extension for embedded ARM processors. For better compatibility, we designed CEST to be binary
compatible. The evaluation results show that CEST can effectively enforce CFI compared to the existing

studies using SVC.

INDEX TERMS ARM TrustZone-M, control flow integrity, embedded system security, binary patch.

I. INTRODUCTION
In the era of the Internet of things (IoT), embedded systems
have been used in various fields such as smart homes [1],
[2], [3] and smart factories [4], [5], [6], [7]. The software on
these systems is typically developed with C/C++ because
these languages offer high performance and direct control
over the hardware resources. However, much software,
especially written in C/C++, is known for including many
software vulnerabilities such as buffer overflows [8], [9].
Thus, attackers can launch software attacks on the system
by exploiting such vulnerabilities. Among software attacks,
control hijacking attack (CHA) is notorious for manipulating
the target system’s control flow and executing the attacker’s
payload or code gadgets.

Numerous studies have been conducted to deal with CHA
and they can be categorized into two approaches; (1) code
diversification approach and (2) control flow integrity (CFI)

The associate editor coordinating the review of this manuscript and

approving it for publication was Alessandro Floris

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

approach. In code diversification approach [10], [11], [12],
[13], [14], they randomize the layout of the address space or
shuffle the order of code regions to hide the exact memory
address of the payload or code gadgets. However, as embed-
ded systems usually have small physical memory and do
not support virtual memory, this approach cannot diversify
the code memory layout sufficiently to prevent CHA in
embedded systems. On the other hand, in CFI approach [15],
they instrument the program to insert checking instructions
before control transfer instructions at compile time. By doing
this, at runtime, they check the legitimacy of the target address
of every control transfer instruction (e.g., return, indirect
Jjumps), and they can detect CHA. Consequently, in contrast
to the code diversification approach, CFI can thwart CHA in
a deterministic way regardless of the memory size.

Indeed, many researchers [8], [15], [16], [17], [18], [19],
[20], [21], [22] have defended CHA through CFI-based
solutions. However, we found the following challenges
exist when it comes to designing the CFI solution for
embedded systems. First, many security hardware features in

132675

https://orcid.org/0000-0003-0941-179X
https://orcid.org/0000-0002-7507-3111
https://orcid.org/0000-0002-8745-1327

IEEE Access

G. Yeo et al.: Efficient CFI Enforcement for Embedded Systems Using ARM TrustZone-M

TABLE 1. Comparison of defensive mechanisms against code reuse attack. The STRT is a special ARM instruction that supports an unprivileged store.
TZ-M refers to TrustZone-M technology for Arm Cortex-M processors and SVC refers to Supervisor Call.

| Silhouette [8] uRAI[16] Kage [17] TZmCFI [18] RECFISH [19] CFICaRE [20] CEST (Ours)
Binary compatiable | X X X X (6] (6] (6]
H/W Feature STRT None STRT TZ-M SVC TZ-M + SVC TZ-M
Overhead Low Low Low Low High High Low
Security guarantee Both Backward Only Both Backward Only Both Both Both

mobile and server systems are lacking in embedded systems.
For example, ARM architecture recently announced a new
instruction set extension, called branch target identification
(BTD) [23], to enforce CFI more efficiently. However, BTI
is available only in high-end ARM processors (i.e., Cortex-A
series), not low-end embedded ARM processors (i.e., Cortex-
M series). Therefore, the existing CFI solutions using those
security hardware features cannot be applied to the embedded
system as it is, and the CFI solution for the embedded system
should be carefully designed to utilize limited hardware
features. Second, in embedded systems, accessing the source
code is challenging and typically unavailable [24]. Thus, for
better compatibility, the CFI solution must be implemented
at the binary level or assembly level. Last, many embedded
systems usually have a real-time constraint that the system
must guarantee the response within a limited time. So, the
execution time overhead caused by the CFI solution should
be minimized. Otherwise, the embedded system cannot fulfill
the real-time constraint.

However, according to our preliminary survey, no solution
considered all aforementioned challenges (more details for
existing studies in section II). So, in this paper, we propose
CEST, a new technique for ensuring CFI for embedded sys-
tems. Specifically, to deal with those challenges, we designed
CEST as follows. First, CEST utilizes ARM TrustZone-
M, a unique hardware extension for embedded systems.
ARM TrustZone-M provides a trusted execution environment
(TEE), so CEST can protect its CFI enforcement routine
(named edge regulator) by running edge regulator in TEE.
More details for CEST are described in Section V. Secondly,
we propose a code instrumentation technique based on the
control transfer instruction type to make CEST applicable
to the program binary. The details for our instrumentation
technique are explained in Section V-C. Finally, we designed
a control deliverer to reduce the performance overhead that
occurs whenever CEST performs every CFI verification
operation. In particular, in previous studies, considerable
performance overhead occurs due to OS kernel intervention
for every CFI verification operation. However, the control
deliverer does not need the OS kernel intervention, enabling
efficient CFI enforcement of CEST (see Section V-D).
Our experimental results confirm the efficiency of CEST.
When performing CFI protection for a program, CEST
incurs an additional performance overhead of 159.30%,
whereas the existing work incurs a performance overhead
of 269.00%.

In summary,

o Implement the CFI framework for low-end embedded
ARM processor efficiently.

132676

o Our approach is designed to be implemented without
adding new hardware and modifying the compiler
considering the characteristics of embedded systems
that can be difficult to access hardware or source
code.

« Ensure efficient operation compared to the existing work
when entering the control flow verification routine. Our
design does not occur unnecessary context switching.

This paper consists of 8 sections including an introduction
section. Section II explains the research gap and comparison
with our research and related existing research. Section III
introduces the backgrounds, and the following section IV
explains the threat model and assumptions. Section V
presents our design goals (section V-A) and explains our
implementation divided into three parts. Section VI analyzes
the efficiency of our research based on run-time overhead
and binary size. Section VII discusses the limitation of our
research and future research direction. Section VIII is the
last section of this paper that contains the conclusion of this
research.

Il. RELATED WORK

Over the past decades, CFI has been considered an effective
approach to defend CHA. According to the type of control
transfer instructions, there are many schemes, such as shadow
stack [15] and branch regulation [25]. The shadow stack
places a separate stack for storing the return address in the
memory space and is a method to ensure the integrity of
the backward edge using the return located in the shadow
stack. In branch regulation, the integrity of the forward
and backward edge is guaranteed by regulating possible
operations according to the type of each branch.

To implement these CFI schemes, many researcher have
proposed CFI solutions for embedded systems. These
solutions can be categorized into code instrumentation and
hardware-based approaches. CEST belongs to the former one
since CEST also patch the binary program to enforce CFIL.
Table 1 summarizes those studies in the code instrumentation
approach and compares them with CEST. Silhouette [8] and
Kage [17] design CFI solutions for forward and backward
edges. Especially, by utilizing special hardware features, i.e.,
unprivileged load and store instructions, they can efficiently
implement CFI solutions for embedded solutions. wnRAI [16]
proposes an efficient CFI solution for backward edges
by reserving one general-purpose register to encode the
current control flow information. TZmCFI [18] enforces the
backward CFI for the embedded system by using ARM
TrustZone-M similar to CEST. All of these works [8], [16],
[17], [18] require the source code of the target program
because they are implemented by modifying the compiler.

VOLUME 10, 2022

G. Yeo et al.: Efficient CFI Enforcement for Embedded Systems Using ARM TrustZone-M

IEEE Access

However, since most embedded systems do not provide
source code and use customized build environments or
compilers, it is difficult actually to apply these solutions.
Unlike them, RECFISH [19] and CFI CaRE [20] are
implemented by using binary patches without the need for
source code. Specifically, they insert supervisor calls (SVCs)
in the target binary to safely switch to the CFI verification
code while the target program is running. However, these
SVCs incur a considerable performance overhead whenever
they are executed, so they cannot enforce CFI efficiently.
CEST is also a CFI solution based on binary patch like
RECFISH and CFI CaRE. However, CEST does not utilize
SVCs, so CEST can enforce forward and backward CFI in an
efficient way.

On the other hand, many studies are also being conducted
to attach the special hardware module to embedded systems
to ensure CFI, efficiently. The HCIC [22] implements the
hardware-based CFI based on encrypted hamming distance
(EHD) by attaching newly designed extra hardware such
as a physical unclonable function (PUF), XOR operation
hardware and an encrypted hamming distance calculation
circuit (EHDCC). FI-CFI [21] pointed out that the EHD
used in HCIC is still course-grained cause the EHD is not a
unique methodology. FI-CFI implemented more fine-grained
CFI by implementing CFI based on HMAC instead of EHD.
Both papers take advantage of being able to defend against
both jump-oriented programming (JOP) and return-oriented
programming (ROP) attacks and do not need to modify
the compiler or ISA. The CRAlert [26] detect real-time
detection of code reuse attacks by adding a system consisting
of a two-dimensional index table called branch instruction
index (BID) and a component called double-linked wait list
(DWL) between CPU core and memory. Although all three
papers mentioned above show low runtime overhead, they
can be applied only to embedded systems where developers
can change hardware. However, without additional hard-
ware, CEST can implement CFI schemes in an efficient
way VL.

Ill. BACKGROUND

A. ARMv8-M

In ARMv8-M, the memory protection unit (MPU) manages
access privileges to memory areas. Unlike the Memory
Management Unit (MMU) used in high-end processors, the
MPU does not support virtual memory; it only divides the
physical memory address area into a limited number of areas
to manage access privileges for each area.

Some manufacturers’ chipsets provide hardware-based
MPU locks to prevent the MPU from being attacked.
In STM32L552ZE used for the implementation of CEST pro-
posed in this paper, the function is managed in the SYSCFG
CPU Non-secure Lock Register (SYSCFG_CNSLCKR) . The
MPU Registers Lock bit of SYSCFG_CNSLCKR can be set
at any point during execution, but once established, it is
not unset until the processor is reset. In our approach, it is
assumed that the non-secure kernel is safely operated through
these functions.

VOLUME 10, 2022

ARMVS-M can use 16 core registers. Among them, RI3
is used as a Stack Pointer (SP), RI4 as a link register (LR),
and R15 as a Program Counter (PC). Except for these three
registers, the others are general-purpose registers. However,
in AAPCS (procedure call standard for ARM architecture),
the RI2 register is used as an intra-procedure call scratch
register. ARMv8-M has only two modes, privileged mode and
unprivileged mode.

B. TrustZone-M

ARM TrustZone-M (TZ-M) is TrustZone [27] for ARM
Cortex-M processors and a kind of physical security tech-
nology made by ARM. TZ-M is divided into two different
memory spaces: secure and non-secure.

Memory and peripherals such as flash memory and SRAM
are divided into secure and non-secure. Secure memory is
divided into secure and non-secure callable (NSC). The NSC
is an area through which a user can enter the secure area from
the non-secure area using the secure gateway (SG) instruction
in the NSC.

Memory region attribution is determined by the security
attribution unit (SAU) and Implementation Defined Attribu-
tion Unit (IDAU) [28]. IDAU is fixed to the manufacturer’s
initial setting value and cannot be modified by the program-
mer, and the authority of a specific area can be designated
through SAU. IDAU divides memory area into non-secure
and NSC, whereas SAU divides it into non-secure and secure
area. When SAU is enabled, the memory defaults to the secure
attribute. It can be switched to the non-secure attribute by
configuration. The final security attribution of memory is set
to the attribute having the higher value among the values
specified in SAU and IDAU [29], [30].

C. MEMORY LAYOUT

Figure 1 shows the memory security attributes predefined by
IDAU on the STM32L552ZE. It indicates that the non-secure
flash area ranges from 0x08000000 to 0x08080000, and
the NSC flash area starts at 0x0C000000. However, in the
ARMVS8-M instruction set, the maximum memory address
that can be moved by the B and BL instruction corresponding
to the direct jump is £0x00FFFFFF [29]. Therefore, it is
impossible to move from the non-secure area to the code
located in the NSC area using the direct jump instruction.
In order to overcome this in CEST, it safely moves to the
NSC area using indirect jump instruction such as LDR PC,
[PC + 4], where the destination address is stored in the code
area that the attacker cannot modify.

D. CONTROL TRANSFER INSTRUCTIONS

ARMVS-M supports several types of control transfer instruc-
tions. These can be divided into direct and indirect depending
on whether the instruction contains the destination address
or not, and are classified into a jump (branch) and call
(branch and link) depending on whether the return address is
stored in the link register. ARMv8-M does not have dedicated
instructions for return. However, following instructions are
used for return in a function; BX LR and MOV PC, LR.

132677

IEEE Access

G. Yeo et al.: Efficient CFI Enforcement for Embedded Systems Using ARM TrustZone-M

0000 0000X0
0000 0080%0
0000 8080X0
0000 0000%0
0000 8000%0
0000 0002X0

0000 000EX0
0000 000¥*0
0000 000S*0

Non-secure

NSC FLASH
FLASH

SRAM

Non-secure

NSC Non-secure NSC

SRAM Peripherals Peripherals

FIGURE 1. Example of STM32L552ZE memory layout defined by IDAU, NSC stands for ‘Non-secure-callable’.

Therefore, in this paper, instructions are classified into five
types: direct jump, direct call, indirect jump, indirect call,
and return. Among them, the instruction that can be utilized
for control hijacking attacks and the main protection target
of our system are indirect call/jump and return. A direct call
instruction is not used to control hijacking attacks, but CEST
also processes the corresponding instruction to save the return
address. Therefore, the instruction types patched by CEST are
four types that exclude direct jump.

IV. THREAT MODEL AND ASSUMPTION
A. ASSUMPTION
o Al. All code memory are not writable
o A2. All data area are non-executable
o A3. Secure memory is isolated from non-secure memory

In a state-of-the-art embedded system, memory security
policies such as W@X can be enforced using the MPU.
The target system of our study is a system in which such
a security policy exists. It is assumed that an attacker
cannot modify the memory of the code area and that code
execution in the data area is impossible. In addition, by using
ARM TrustZone-M, the non-secure and secure areas are
guaranteed to be completely separated, and it is assumed that
unauthorized access to the secure area in the non-secure area
is impossible. We presume that kernel and MPU are operating
safely through settings such as (SYSCFG_CNSLCKR).
Therefore, we aim to run the program safely when the user
application is vulnerable to adversaries.

B. THREAT MODEL
o T1. Arbitrary read access to non-secure code memory
o T2. Arbitrary write access to non-secure data memory

We assume that the attacker can write access to arbitrary
data areas through vulnerabilities in embedded systems
written in languages vulnerable to memory corruption, such
as C or C++, and hijack the control flow of normal processes.
Moreover, as the attacker has read access to the code area,
an attacker can collect gadgets to be used for the attack.

V. DESIGN
A. DESIGN GOALS
When we design CEST, we consider the following design
goals.
o Gl1. Leveraging with TZ-M
The first goal is to implement CEST on low-end
embedded ARM processors without state-of-the-art
technology such as BTI. Therefore, it offers the security

132678

Static Analysis

i| ELF Section Control deliverer
i | analysis adjustment. insertion

i [control transfer instruction Instruction
search replacement

Non-secure

Output

8
addition

Binary Firmware

Secure

FIGURE 2. Overview of CEST.

features optimized on ARM TZ-M not the various
security enforcement methodology on a high-end ARM
processor. CEST guarantees reliability by locating it in
a separate area from untrusted code using TZ-M.

« G2. Binary instrumentation
In embedded systems, the source code is often not
disclosed [24]. A variety of toolchains are utilized
according to device vendors [19]. Hence, we designed
CEST to be applied to the target software through binary
instrumentation.

o G3. Low performance overhead
Many embedded systems operate with strict real-time
constraints where the task should be finished by
the deadline. Thus, if CEST imposes a significant
performance overhead on the system, several tasks
in the system cannot be protected due to the real-
time constraint. Therefore, it is crucial to minimize
the performance overhead to make CEST a practical
technique.

B. DESIGN OVERVIEW

CEST enforces control flow integrity using ARM
TrustZone-M to prevent control hijacking attacks in an
embedded environment. CEST changes the control transfer
instructions in which control flow hijacking can occur, such
as indirect call, indirect jump, and return, to the instruction
that can safely execute through a control deliverer and binary
patch. When the changed instruction enters the edge regulator
of the secure memory through the control deliverer, the edge
regulator checks the control flow’s legality so it can be safely
changed.

In the following sections, we describe CEST by dividing
it into three parts. Part (D) in Figure 2 indicates the control
deliverer in the non-secure region. It allows all control
transfer instructions in the binary to move through the
corresponding area to the edge regulator of the secure area.
This is covered in Section V-D and deals with the process
of creating space by adding sections and the role of control

VOLUME 10, 2022

G. Yeo et al.: Efficient CFI Enforcement for Embedded Systems Using ARM TrustZone-M

IEEE Access

deliverer region. Part @) deals with the binary patch that
places the control transfer instruction in the non-secure
binary into the instructions that can be safely executed. This
is covered in Section V-C. Finally, part 3 represents the
routines verifying forward and backward edges through edge
regulator in run-time. This is covered in Section V-E.

C. BINARY PATCH

In the binary patch phase, all control transfer instructions
except direct jump in the non-secure image are replaced
with instructions to branch to the control deliverer through
static analysis. The target instructions are direct call, indirect
call/jump, and return instructions. A direct call is a function
call with a fixed destination and does not belong to the control
transfer instructions; it is processed to store the return address
in the shadow stack for a return instruction to be executed
later.

Function call instructions such as BL and BLX must store
the return address in the shadow stack. Therefore, it is patched
to enter the control deliverer using the direct call instruction
BL. The return address is stored in the LR register when
entering the control deliverer in runtime. As described earlier,
the direct call instruction is not included in the control transfer
instructions, so using the BL instruction to enter the control
deliverer does not cause security problems.

Indirect jump instructions such as BX, TBH, and LDR PC,
RO are also converted to BL, where the address at which
the instruction is located (to be precise, the address of the
following instruction) is contained in LR register so that it can
be utilized in the edge regulator. The LR register is no longer
used when returning a function within the non-secure region,
so this method does not affect the operation of the program.
The address of the following instruction is required to operate
in the edge regulator, which will be described in detail in
Section V-E. For the return instruction, neither the address
of the instruction nor a return address is required. Therefore,
it is patched to enter the control deliverer area using a direct
jump.

For indirect call/jump and return, most of the instruction is
2 bytes in thumb mode. However, some instructions require
4 bytes of space after the patch. To solve this, CEST used
the previous and current instructions to secure 4 to 6 bytes
of space and proceed with the patch. After that, the previous
instructions are executed in the control deliverer.

In return, there is only a 2 bytes return instruction in
the basic block occasionally. Figure 3 shows an example
of a case where only a 2 bytes return instruction is in
the basic block. In this case, the previous instruction is
located in another basic block (e.g., the instruction located
at 0x0804BF14 in Figure 3). In other words, when the patch
is performed in conjunction with the previous instruction,
some instructions branch to the middle of the newly generated
4 bytes instruction, causing abnormal execution. This can be
solved by moving both the previous basic block and the basic
block that consists of the return instruction to the control
deliverer area. This approach will allow a little more bytes
to go into the control deliverer area, but CEST will still work

VOLUME 10, 2022

Trampoline

080515EC
080515EE
080515F0
080515F4
080515F8

LDRR3, [PC, 0x0C] Y|
STRB RO, R3

POP {R4, R12}
B Gateway+1C

DWORD 0x200006D9

0804BF10 | CBZRO,loc_0804BF16 0804BF10 | CBZ RO, loc_080515F0

0804BF12 | LDRRS, [PC, 0x1C]
0804BF14 | STRBRO, [R3]

1L

|| 0804BF16 | POP {R4, PC}

[0804BF14 [Bloc 080515EC —

|| 0804BF34 | DWORD 0x200006D9

(a) Original Code (b) Patched Code

FIGURE 3. Example of patching 2 bytes return block. The left side is the
original binary, and the right side is the patched binary. The instructions
located at 0 x 0804BF14 and 0 x 0804BF16 are merged as single
instruction located at 0 x 0804BF14 in patched binary. The colored blocks
in the original binary are relocated on the trampoline (blue, yellow,
green). PC-relative instructions (e.g., 0 x 0804BF12) are updated to
appropriate instruction by the situation.

Non-secure Secure

Gateway indirect_jump_veneer

LDR PC, [PC, 12] SG

LDR PC, [PC, 12] | B indirect_jump_regulator
™ LDRPC, [PC,12] «--------- ==
LDR PC, [PC, 12]
DWORD direct_call_veneer
DWORD indirect_call veneer |-~

L

H return_veneer
1 [sa
‘

! [B return_regulator

DWORD indirect_jump_veneer
DWORD return_veneer

Control Deliverer
A

Trampoline

Edge Regulator

MOV r12, rN
— B Gateway + 8

indirect_jump_regulator

func1

BXNS R12

BL &trampoline +K

func1_branch_target
MOV R1, R4

--- Data Operation
— Control Flow

FIGURE 4. Example of CEsT implemented binary. control deliverer
consists of gateway and trampoline.

as before without issues. If there is a PC-relative instruction in
the basic block to be moved, the processing of this instruction
is also performed simultaneously. For example, in Figure 3,
the instruction located at 0 x 0804BF12 in (a) is modified
with appropriate offset at 0 x 080515EC in (b).

D. CONTROL DELIVERER

The control deliverer is split into two; gateway that exists for
safe entry into the secure area, and trampoline that exists to
set the argument to be passed to edge regulator. The gateway
always has a fixed size of 32 bytes regardless of binary, and
trampoline increases in size according to the number and type
of instructions to be patched in the binary. Figure 4 shows how
trampoline and gateway operate in a system to which CEST
is applied through an example of indirect call. In Figure 4,

132679

IEEE Access

G. Yeo et al.: Efficient CFI Enforcement for Embedded Systems Using ARM TrustZone-M

BL of funcl is a result of patching an indirect call instruction,
showing that the control flow is moved to trampoline. Then,
in trampoline, set the argument to be passed to edge regulator,
move to the area corresponding to the indirect call of gateway,
and enter the secure area.

1) TRAMPOLINE

Unlike previous studies [19], [20] that used the immediate
field of SVC to distinguish the control transfer instruction
after binary patching, CEST uses BL and B to carry out the
same feature. Since no field can be used as a comment in these
instructions, the original instruction cannot be distinguished
by the method used in the previous paper. To mitigate this
problem, CEST secures enough space for binary patching
through the trampoline area, and adds instructions to identify
the original instruction to trampoline. Therefore, the original
instruction in the binary is fetched to move to a specific
position within trampoline (e.g., trampoline+ offset). After
that, instructions containing information about the original
instruction to be transferred to edge regulator are added to
the corresponding location (trampoline+offset).

The original instruction type to be patched and the
instruction set added to the frampoline are described in
Table 2. In the case of direct call instructions, the destination
can be specified through static analysis. Therefore, in the
binary patch step, the absolute address of the function to be
called is calculated, and then the address is put in the RI2
register. In the direct jump/call instruction, the operation’s
destination is contained in the register, an operand of the
instruction. However, the destination is unknown with static
analysis, and the destination can only be specified at runtime.
The operand is calculated within the trampoline, moved to the
RI2 register, and entered into the edge regulator to process
this.

The size of the trampoline increases linearly according
to the number of control transfer instructions to be patched
theoretically. However, while patching, if there are identical
instructions in the non-secure area, the previously created
instructions in trampoline are reused without adding new
instructions. Therefore, the size of the finally created
trampoline can be reduced. For example, the same function
is called in different places in a non-secure area. In this case,
the instructions corresponding to the function call are added
in trampoline only once. The same function call instruction
jumps to the instructions previously created in trampoline.

2) GATEWAY

The gateway refers to the first 32 bytes of the control
deliverer. In the gateway, four LDR PC, [PC, 0x0C]
instructions for entering from non-secure to secure and edge
regulator address that is distinguished by the types of original
control transfer instruction are stored. LDR PC, [PC, 0x0C]
instruction corresponds to an indirect jump but it works as
same with a direct jump. The PC+0x0C points to the 4 bytes
address included in the code area, so attackers cannot modify
it since the W@X policy. Therefore, the instruction can be
safely used according to the previously set assumption. The

132680

TABLE 2. List of patched instructions.

Instructions added

Type Original Instruction into control deliverer
Direct Call BL func LDR r12, [PC, 4]
B Gateway
. MOV r12, N
Indirect Call BLX N B Gateway + 4
MOV r12, N
BX N B Gateway + 8
Indirect jump LDR r12, [A, 1B, #N |

LDR pc, [TA, 1B, #N | B Gateway + 8

LDRBrl2,[rA, 1B |

ADD 12, LR, r12, LSL#1

B Gateway + 8

LDRH 12, [rA, 1B, LSL#1]
ADD 12, LR, r12, LSL#1

B Gateway + 8

TBB [rA, rB |

TBH [rA, 1B, LSL#1]

BXIr
MOV pe, Ir

POP { rA-rB, pc }

B Gateway + 12

POP { rA-rB, r12}
B Gateway +12

Return

reason for entering secure mode through this method is that a
direct jump cannot be performed immediately due to physical
limitations on the STM32L552ZE memory layout covered in
Section III. In ARM, direct jump instruction has 2 or 4 bytes
in length. As a result, the maximum range in which a direct
jump can be performed is base address =0x00FFFFFF, but
since non-secure memory and secure memory are different by
0x04000000, LDR PC, [PC+N] instructions are used as a
solution.

Previous studies entered secure mode through the SVC
handler, but CEST uses the control deliverer in the user
code area to enter secure mode. This implementation method
provides two main advantages. First, context switching does
not occur because it is unnecessary to switch from user mode
to supervisor mode. Therefore, it is possible to enter the
secure area more efficiently and faster than in existing studies.
This makes it possible to satisfy our goal G3, mentioned
in Section V-A. Second, space for binary patching can be
secured without affecting the layout of the existing code area.
This enables us to satisfy our design goal G2 of implementing
CEST using only binary without the need to recompile the
source code.

3) SECURITY CONSIDERATION
The R12 register transfers an argument to the edge regulator
on implementing the CEST. According to the ARM archi-
tecture procedure call standard (AAPCS), the RI2 register
is a scratch register for intra-procedure calls, especially for
long branch veneers. The R12 register is a register that does
not need to be backed up in call [31]. Even if the RI2
register is used in the intra-procedure call, those instructions
will be replaced by another instruction in the binary patch
stage because intra-procedure call instruction is a control
transfer instruction that can be exploited to control hijacking
attacks. Therefore, if the original binary is a binary following
AAPCS, booking the R12 register in CEST does not affect the
operation of the basic program.

Using the control deliverer and R12 registers do not affect
the security level of CEST. In the binary patch phase of

VOLUME 10, 2022

G. Yeo et al.: Efficient CFI Enforcement for Embedded Systems Using ARM TrustZone-M

IEEE Access

Non-secure Non-secure Secure

User-level Code User-level Code Code

control deliverer (0]5) edge regulator
[LDR PC, [PC, 0xC]

1
1
1
1
1
1
I I
1
1
1 A
1 1
functionl . function !
oo o 1 oo i} !
J|BL_ function2 1 BL _ control deliverer_|f |
... SR [Data !
I 1
1 1
1
1

«———--fF-==

shadow stack

B control deliverer

| = Function Call ==Return == Data Operation

FIGURE 5. Summarized flow of direct call and return in the CEST
implemented system. The left side shows the original binary, and the right
side shows CEST implemented system. The highlighted instructions in
function1 and function2 are patched into an instruction to enter control
deliverer.

CEST, all instructions using the RI2 register in the binary
are changed. Even if an attacker uses an instruction that
modulates the RI2 register in the trampoline, the attacker
cannot change the control flow with manipulated R/2 register.
This is because CEST enters the edge regulator immediately
after changing the RI2 register value in the trampoline.
To be specific, even if an attacker manipulates the RI2
register by using instructions in frampoline generated from
indirect call/jump as a gadget, edge regulator can verify
whether the RI2 register contains an appropriate value.
A detailed description of this verification method is provided
in Section V-E.

In addition, CEST entered edge regulator directly without
going through the supervisor mode. However, the operation
mechanism of CEST does not have a significant adverse
effect on security compared to the supervisor mode. In order
to enter the NSC area from the non-secure area, the
instruction must go through the SG (secure gateway), so it
is impossible to switch from the non-secure area to an
arbitrary secure area. Therefore, the attacker can only access
a limited area even if the attacker enters the secure area by
manipulating the data in a non-secure area. Before entering
the secure area, security can be further strengthened by
adding argument sanitizing in the NSC area if required.

E. EDGE REGULATOR
The edge regulator consists of four types, depending on the
instruction type to be processed: direct call, indirect call,
indirect jump, and return. A function info table is required
for the edge regulator’s operation. This table stores the entry
address of functions in the non-secure user code area and
the size of the function. This information is obtained from
information analyzing the symbol in the binary patch step.
There is no need to verify the forward edge for the direct
call because it is a function call with a fixed destination.
Therefore, it is implemented only for saving the return
address in the shadow stack and jumping to the function to
be called. As explained in Section V-D, In control deliverer,

VOLUME 10, 2022

Non-secure Non-secure Secure

User-level Code User-level Code Code

control deliverer edge regulator

LDR P, [PC, 0xC]

1
1
1
[}
' e
1
1
1
1
1
functionl ! functionl
[}
b - 4 v Lifeamaranes
B0 —— 1 1|l control deliverer
j ! MOVRO, R3 Data
MOV RO, R3 . ;
.
1
1
1

-4 -q4-->

PR U S

function info table

| = Indirect Jump == Data Operation

FIGURE 6. Flow of indirect jump in CEST.

CEST stores the function address into R12 register and edge
regulator branches to the destination using R12 register. This
process corresponds to) — @ — @ in Figure 5.

For indirect calls, CEST firstly checks whether the
destination address is in NSC area.This is because the existing
NSC call existing in the binary of the non-secure area also
enters the NSC area through the BLX instruction. Since an
NSC call can only move to the SG instruction, it fetches
4 bytes of the memory address and verifies whether it matches
the SG instruction. If the destination is located in a non-secure
zone, CEST must handle both the backward edge and forward
edge. The backward edge is handled by storing the return
address in the shadow stack same as a direct call. The forward
edge is verified whether the destination is in the function
info table because the destination must be the entry of the
functions. CEST terminates the program if the target address
is not in the function info table.

An indirect jump is mainly used to process switch-case
statements and goto statements inside the function. It means
that the range that can be moved through the indirect jump
must be within the scope of the corresponding function.
Therefore, the edge regulator processes the forward edge
by identifying the function where the instruction is located
and then examining whether the destination is within the
boundaries of that function. When entering the control
deliverer, this instruction is patched to the BL instruction,
so that the edge regulator can know the address of the
instruction through the LR register. The edge regulator
searches the function info table to identify the function where
this instruction is located and verify the destination stored in
the R12 register is within the boundaries of the function.

As return instruction is not for the forward edge, the edge
regulator does not process it for the forward edge. Instead,
the return address is recovered from the shadow stack that is
saved at the time of the function call and returned there. This
operation corresponds to @ — Q) — ©®) in Figure 5.

VI. EVALUATION
A. ENVIRONMENT SETUP

The environment setting for the testing is carried out
on the STMicroelectronics Nucleo-L552ZE-Q [32] board

132681

IEEE Access

G. Yeo et al.: Efficient CFI Enforcement for Embedded Systems Using ARM TrustZone-M

| baseline CEST svC

Percentage of overhead
«n
g
5]

NS A 2 o o & 5 B & 2 L Q0
> N \2 &7 2 o & & \2 ¥
L &L & g & X7 0 S S S
P & L& @ 2 AS R NS PG e
S E LS S B SO Q ST @<
N N ? @ ¥
& N2

FIGURE 7. Runtime overhead graphs for 19 benchmarks. The blue solid
bar graph is the baseline and execution time of the unmodified code. The
hatched orange bar graph represents the runtime overhead of CEST. The
green dotted bar graph shows the execution time overhead of the code,
assuming that SVC is used. The baseline is always 100%, and the graph
shows how much overhead it has compared to the baseline.

with the ARM Cortex-M33 processor supporting the ARM
TrustZone-M technology and using the instruction set archi-
tecture of the ARMv8-M [29]. Zephyr OS [33] is installed
on the target board to implement the CEST. Radare2 [34]
is used as a library for the binary patch. A python library,
pyelftools [35], is used to analyze the ELF and add a new
area control deliverer. We evaluate the performance of CEST
using BEEBS [36] the open-source benchmark software.

B. MICRO-OPERATION

The most significant difference in our implementation
compared to previous papers is that we enter the edge
regulator directly in the secure area from the non-secure
user without going through the supervisor mode. In other
words, assuming that the overhead of the routine verifying
the integrity of each edge is similar, the part showing the
most significant difference in execution time will be the time
required to enter the part verifying the integrity of the
edge. Therefore, before measuring the overhead of the entire
system, we measured overhead by implementing the cases
of entering the secure area from supervisor mode through
SVC instruction and entering the secure area through the
control deliverer in the non-secure user area. Entering the
integrity verification routine via SVC (previous works) shows
145 cycles overhead while entering the integrity verification
routine using the control deliverer (our implementation)
requires only 44 cycles. This proves that the SVC-based
method requires approximately 3.29 times more cycles than
the trampoline-based method. This is an overhead that occurs
when the SVC handler is not implemented, and a larger
overhead will appear if the SVC handler is being used to
implement functions such as system calls. When we assume
this situation, 361 cycles in the existing implementation
whereas there are only 44 cycles in our implementation,
resulting in about 8.2 times more overhead in the current
works.

C. RUN-TIME OVERHEAD

Two types of implementation were carried out in figure 7 to
evaluate the run-time overhead. The first implementation

132682

is an implementation that checks both the integrity of the
backward and forward edge which is fully functional of
CEST. The second is implemented for comparison with the
previous paper [19], [20], checking the run-time overhead
when entering the branch verification routine using SVC. The
baseline is a run-time of non-modified benchmark source
implementation. Based on the micro-operation testing results,
the existing approach that used the SVC has 100 cycles
of overhead compared with ours. So we compare the
overhead on run-time by adding dummy instructions to
our implementation. Figure 7 shows the run-time overhead
for 19 benchmarks included in BEEBS. The maximum
execution time overhead for our implementation is observed
as 652.27% compared to the baseline, and the minimum is
observed as 0.20% tested with bubble sort benchmark. For the
19 benchmarks used in our evaluation, an average execution
time overhead of 159.30% was observed compared to the
baseline.

As can be seen from the trend shown in the graph, the
19 benchmark results can be analyzed by dividing them
into three parts. In the case of the two benchmarks at the
right end (duffcopy and cover), a substantial overhead
appears compared to other benchmarks, It can be seen that
the run-time overhead of the implementation using SVC
and the implementation using CEST is relatively small.
The cover benchmark is an artificially created program to
test the indirect jump, and significantly more indirect jump
instructions are executed compared to the general program.
In these two benchmarks, many table searches occur to safely
process indirect control transfer instructions, which is the
reason for the high execution overhead of these benchmarks.
Similarly, since the table search overhead occupies a large
proportion compared to other overheads, this test case
shows relatively few advantages of our implementation using
control deliverer instead of SVC.

Next, the picojpeg, hashtable, prime, tarai,
and recursion benchmarks also present large overheads.
These benchmarks are cases where the overhead is large
because there are many control transfer instructions com-
pared to the program size, or the number of indirect jump and
indirect calls is large. This is a typical result due to the nature
of the implementation that validates the control transfer
instruction and shows how efficiently our implementation
using the control deliverer can reduce the execution time
compared to the SVC implementation in this situation. For
all the benchmarks performed, the average execution time
overhead for processing one control transfer instruction is
87.25 cycles.

In the experiment conducted in this study, only the time
difference between the method using SVC and the control
deliverer is measured based on the results of micro-operation.
Our implementation can be more effective in the real-world
scenario than in experiment. This is because CEST does not
take table searching time to process direct call instructions.
In CEST, all necessary parameters are set before entering
the edge regulator using the control deliverer; hence, there
is no need for table searching to identify the destination

VOLUME 10, 2022

G. Yeo et al.: Efficient CFI Enforcement for Embedded Systems Using ARM TrustZone-M

IEEE Access

TABLE 3. Binary size overhead. The ratio is the size of the binary that is
increased compared to the size of the non-secure area. Edge regulator
has a constant size regardless of benchmark binary.

[Bytes [Ratio
Control Deliverer 207.37 1.09%
Function Info Table | 1376.84 | 7.36%
Edge regulator 608

address of a direct call. Considering that the table searching
overhead for processing indirect call/jump is exceptionally
large in the experimental result, it can be predicted that the
implementation of CEST is more efficient than that shown in
the experiment.

D. BINARY SIZE

The most significant part of the memory size that increases
due to the implementation of CEST is the branch table
that contains the entry and size of all functions located in
a non-secure area. This is 1376.84 bytes on average for
19 benchmarks, accounting for 7.36% of the size of the non-
secure area. In the case of the control deliverer, it increases
according to the number of control transfer instructions.
However, memory waste can be reduced by reusing the
previously created set of instructions when using the same
instruction. Therefore, the memory size occupied by the
control deliverer compared to the entire non-secure image
is only 1.09% on average. It is impossible to compare the
binary size overhead described directly numerically in the
implementation in CFI CaRE [20] with the overhead of our
study. However, in the case of the branch table, as it is used
to process the forward edge in the implementation of the
existing research, the binary size of our study will generate
a similar level of overhead. In addition, in CFI CaRE [20]
and RECFISH [19], an additional table is used to specify the
return address of a direct call. This value increases linearly
as much as the number of control transfer instructions.
Therefore, it is expected to have a similar overhead to the
control deliverer in this study.

VII. DISCUSSION

In this study, patching is carried out and evaluated only
for the non-secure user area. However, codes in the kernel
area can also enter the secure area more quickly using the
control deliverer. For complete protection of this kernel
area, as implemented in other papers, it is necessary to
implement the exception shadow stack to perform exception
return safely. We implemented a solution to prevent control
flow hijacking using shadow stack and branch regulation.
However, this is an example of the implementation presented
in this paper. Existing CFI solutions monitor all indirect
branches in the binary, and our implementation also monitors
all indirect branches in the same way, so it is theoretically
possible to apply a solution other than branch regulation. It is
also possible to extend this technique to other methodologies
through the same approach. It is also possible to check the
legitimacy of memory access by fetching further instructions
(e.g., memory load/store) and modifying the edge regulator
in the secure area instead of fetching control transfer
instructions.

VOLUME 10, 2022

VIil. CONCLUSION

This paper presents CEST that enforces the CFI with
low overhead utilizing the ARM TZ-M and the control
deliverer. CEST secures the shadow stack and function info
table by locating the assets of CEST in the ARM TZ-M.
Moreover, CEST provides binary compatibility considering
the characteristic of the embedded system environments that
use various compile environments and tools. CEST used the
control deliverer instead of SVC used in existing studies
to reduce the execution time. Through efficient design,
the performance improvement is approximately 40.76%
compared to the implementation through SVC. In the SVC
implementation, table search is required for CFI enforcement
of direct call instructions, but in CEST, CFI can be enforced
without table search using control deliverer Therefore, the
performance improvement in the actual program is expected
to be higher than benchmarks in this study.

REFERENCES

[1] K. Bing, L. Fu, Y. Zhuo, and L. Yanlei, “Design of an Internet of Things-
based smart home system,” in Proc. 2nd Int. Conf. Intell. Control Inf.
Process. (ICICIP), vol. 2, 2011, pp. 921-924.

[2] J.-C.Wang, C.-H. Lin, E. Siahaan, B.-W. Chen, and H.-L. Chuang, “Mixed
sound event verification on wireless sensor network for home automation,”
IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 803-812, Feb. 2014.

[3] V.Sivaraman, H. H. Gharakheili, A. Vishwanath, R. Boreli, and O. Mehani,

“Network-level security and privacy control for smart-home IoT devices,”

in Proc. IEEE 11th Int. Conf. Wireless Mobile Comput., Netw. Commun.

(WiMob), Oct. 2015, pp. 163-167.

B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart factory

of Industry 4.0: Key technologies, application case, and challenges,” IEEE

Access, vol. 6, pp. 6505-6519, 2017.

W. Rong, G. T. Vanan, and M. Phillips, ‘““The Internet of Things (IoT) and

transformation of the smart factory,” in Proc. Int. Electron. Symp. (IES),

Sep. 2016, pp. 399—402.

[6] N. Shariatzadeh, T. Lundholm, L. Lindberg, and G. Sivard, “Integration

of digital factory with smart factory based on Internet of Things,”

Proc. CIRP, vol. 50, pp.512-517, Jun. 2016. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S2212827116305066

S. Wang, D. Li, J. Wan, and C. Zhang, “Implementing smart factory of

Industrie 4.0: An outlook,” Int. J. Distrib. Sensor Netw., vol. 12, no. 1,

2016, Art. no. 3159805, doi: 10.1155/2016/3159805.

J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R.J. Walls,

“Silhouette: Efficient protected shadow stacks for embedded

systems,” in Proc. 29th USENIX Secur. Symp. (USENIX Secur.),

Aug. 2020, pp.1219-1236. [Online]. Available: https://www.

usenix.org/conference/usenixsecurity20/presentation/zhou-jie

L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in

memory,” in Proc. IEEE Symp. Secur. Privacy, May 2013, pp. 48-62.

[10] Pax Team. Accessed: Dec. 19, 2022. [Online]. Available: http://
pax.grsecurity.net

[11] H.Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis, ‘“Compiler-
assisted code randomization,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2018, pp. 461-477.

[12] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim, “SGX-
Shield: Enabling address space layout randomization for SGX programs,”
in Proc. Netw. Distrib. Syst. Secur. Symp., 2017, pp. 1-15.

[13] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, ‘“Readactor: Practical code randomization
resilient to memory disclosure,” in Proc. IEEE Symp. Secur. Privacy,
May 2015, pp. 763-780.

[14] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan,
P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and W. Aiello, *“Shuf-
fler: Fast and deployable continuous code re-randomization,” in Proc.
12th USENIX Symp. Operating Syst. Design Implement. (OSDI).
Savannah, GA, USA: USENIX Association, Nov. 2016, pp. 367-382.
[Online]. Available: https://www.usenix.org/conference/osdil6/technical-
sessions/presentation/williams-king

[4

=

[5

—

[7

(8

—

[9

132683

http://dx.doi.org/10.1155/2016/3159805

IEEE Access

G. Yeo et al.: Efficient CFI Enforcement for Embedded Systems Using ARM TrustZone-M

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity
principles, implementations, and applications,” ACM Trans. Inf. Syst.
Secur., vol. 13, no. 1, pp. 1-40, Oct. 2009, doi: 10.1145/1609956.1609960.
N. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “«RAI: Return
address integrity for embedded systems,” Sandia Nat. Lab. (SNL-NM),
Albuquerque, NM, USA, Tech. Rep. SAND2020-0869C, 2020.

Y. Du, Z. Shen, K. Dharsee, J. Zhou, R. J. Walls, and J. Criswell,
“Holistic control-flow protection on real-time embedded systems with
Kage,” in Proc. 31st USENIX Secur. Symp. (USENIX Secur.). Boston, MA:
USENIX Association, Aug. 2022, pp. 2281-2298. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/du

T. Kawada, S. Honda, Y. Matsubara, and H. Takada, “TZmCFI: RTOS-
aware control-flow integrity using TrustZone for Armv8-M,” Int. J.
Parallel Program., vol. 49, no. 2, pp. 216-236, Apr. 2021.

R. J. Walls, N. F. Brown, T. L. Baron, C. A. Shue, H. Okhravi,
and B. C. Ward, “Control-flow integrity for real-time embedded sys-
tems,” in Proc. 31st Euromicro Conf. Real-Time Syst. (ECRTS),
vol. 133, S. Quinton, Ed. Dagstuhl, Germany: Schloss Dagstuhl—
Leibniz-Zentrum fuer Informatik, 2019, pp. 2:1-2:24. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2019/10739

T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in Proc. Int. Symp. Res. Attacks, Intrusions, Defenses. Springer, 2017,
pp. 259-284.

A. Fu, W. Ding, B. Kuang, Q. Li, W. Susilo, and Y. Zhang, “FH-
CFI: Fine-grained hardware-assisted control flow integrity for ARM-based
10T devices,” Comput. Secur., vol. 116, May 2022, Art. no. 102666, doi:
10.1016/j.c0se.2022.102666.

J. Zhang, B. Qi, Z. Qin, and G. Qu, “HCIC: Hardware-assisted control-
flow integrity checking,” IEEE Internet Things J., vol. 6, no. 1,
pp. 458-471, Feb. 2019.

Branch Target Identification. Accessed: Dec. 19, 2022. [Online].
Available: https://developer.arm.com/documentation/ddi0596/2020-12/
Base-Instructions/BTI-Branch-Target-Identification

P. Kiaei, C.-B. Breunesse, M. Ahmadi, P. Schaumont, and J. Van
Woudenberg, “Rewrite to reinforce: Rewriting the binary to apply
countermeasures against fault injection,” in Proc. 58th ACM/IEEE Design
Automat. Conf. (DAC). IEEE, 2021, pp. 319-324.

M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev, ‘“Branch
regulation: Low-overhead protection from code reuse attacks,” SIGARCH
Comput. Archit. News, vol. 40, no. 3, pp.94-105, Jun. 2012, doi:
10.1145/2366231.2337171.

W. Wang, G. Hu, X. Xu, and J. Zhang, ““CRAlert: Hardware-assisted code
reuse attack detection,” IEEE Trans. Circuits Syst. Il, Exp. Briefs, vol. 69,
no. 3, pp. 1607-1611, Mar. 2022.

P. Guo, Y. Yan, C. Zhu, and J. Wang, “Research on arm TrustZone and
understanding the security vulnerability in its cache architecture,” in Proc.
Int. Conf. Secur., Privacy Anonymity Comput., Commun. Storage, 2020,
pp. 200-213.

Trustzone Technology for ARMVS-M Architecture. Accessed: Dec. 19,

2022. [Online]. Available: https://developer.arm.com/documentation/
100690/0201/

ARMVS-M Architecture Reference Manual, 284-286, 584-586.
Accessed: Dec. 19, 2022. [Online]. Available: https://developer.

arm.com/documentation/ddi0553/latest

STM321552XX Datasheet, Ultra-Low-Power Arm Cortex-M33 32-Bit
MCU+Trustzone+FPU, 165 DMIPS, Up to 512 KB Flash Memory, 256kb
SRAM, SMPS. Accessed: Dec. 19, 2022. [Online]. Available: https://www.
st.com/resource/en/datasheet/stm321552cc.pdf

On the AAPCS, With an Application to Efficient Parameter
Passing. Accessed: Dec. 19, 2022. [Online]. Available: https:/
community.arm.com/arm-community-blogs/b/architectures-and-
processors-blog/posts/on-the-aapcs-with-an-application-to-efficient-
parameter-passing

STMicroelectronics. STM32 NUCLEO-144 Development Board
With STM321552ZE MCU, SMPS, Supports Arduino, ST ZIO and
Morpho Connectivity. Accessed: Dec. 19, 2022. [Online]. Available:
https://www.st.com/en/evaluation-tools/nucleo-1552ze-q.html

132684

(33]

(34]

(35]

(36]

Zephyr OS. Accessed: Dec. 19, 2022. [Online]. Available: https:/
www.zephyrproject.org/

Radare2: The Libre Unix-Like Reverse Engineering Framework.
Accessed: Dec. 19, 2022. [Online]. Available: https://github.
com/radareorg/radare2

PyelfTools, a Pure-Python Library for Parsing and Analyzing EIf Files
and Dwarf Debugging Information. Accessed: Dec. 19, 2022. [Online].
Available: https://github.com/eliben/pyelftools

J. Pallister, S. J. Hollis, and J. Bennett, “BEEBS: Open bench-
marks for energy measurements on embedded platforms,” CoRR,
vol. abs/1308.5174, Dec. 2013.

GISU YEO is currently pursuing the bachelor’s
degree in computer science and engineering
with the Department of Electrical and Computer

= s Engineering, Pusan National University, Busan,

Republic of Korea. His research interests include

- cyber-physical systems and embedded system
= security.

YERYEONG KIM is currently pursuing the bach-
elor’s degree in computer science and engineering
with the Department of Electrical and Computer
Engineering, Pusan National University, Busan,
Republic of Korea. Her research interests include
robotics, compiler, and operating systems.

SUHYEON SONG received the B.S. degree in
computing systems from the Unitec Institution of
Technology, Auckland, New Zealand, in 2021.
His research interests include computer system
security and ARM TrustZone.

DONGHYUN KWON received the B.S. and Ph.D.
degrees in electrical and computer engineering
from Seoul National University, South Korea,
in 2012 and 2019, respectively. He is currently
a Professor with the School of Computer Sci-
ence and Engineering, Pusan National University,
South Korea. His research interest includes system
security against various types of threats.

VOLUME 10, 2022

http://dx.doi.org/10.1145/1609956.1609960
http://dx.doi.org/10.1016/j.cose.2022.102666
http://dx.doi.org/10.1145/2366231.2337171

