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ABSTRACT Quality and feature quantity of low- and high-resolution image pairs for training are directly
related to performance of learning-based super-resolution methods. In order to accurately increase learning
features to the low- and high-resolution image pairs, we proposed a gradient degradation model of tera-
hertz(THz) images to describe the process of a high-resolution THz image’s gradient map is how degraded
to corresponding low-resolution THz image’s gradient map. And with the proposed model, we presented a
low- and high-resolution THz image pair construction method with gradient fusion for learning-based super-
resolution. As gradient maps are fused to training pairs, performance of learning-based super-resolution
methods for THz images could be improved. In addition, we applied the low- and high-resolution THz image
pair construction method with gradient fusion to very deep super-resolution(VDSR) method and zero shot
super-resolution(ZSSR)method, named VDSRmethod with gradient fusion and ZSSRmethod with gradient
fusion, respectively. To evaluate the performance of these two improved methods, comparison experiments
with passive millimeter-wave images and our THz lab data are presented. The experimental results show
that the performance of the VDSR method with gradient fusion and the ZSSR method with gradient fusion
have significant improvements in peak signal-to-noise ratio and structural similarity index measure than the
VDSR method and the ZSSR method, respectively. It indicates that performance of learning-based super-
resolution methods for THz images could be improved by applying the proposed low- and high-resolution
THz image pair construction method with gradient fusion.

INDEX TERMS Gradient map, neural network, super-resolution, terahertz image.

I. INTRODUCTION
A high-resolution terahertz(THz) image is conducive to
image analysis in real-world applications, such as non-
destructive detection [1], [2], [3], medical imaging [4], [5],
[6], [7], [8], surveillance and security [9], [10], food safety
testing [11], [12], amongst others. Nevertheless, spatial res-
olution of THz images is limited by the hardware of THz
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imaging system and the intrinsic long wavelength of THz
wave. Therefore, it is significant important to improve the
resolution of THz images.

There are two main approaches to improve the spatial
resolution of THz images, one is to enhance the equipment
for THz imaging system [13], [14], [15], and the other is
to adopt a super-resolution method [16], [17], [18], [19],
[20]. Obviously, the first approach is complicated and expen-
sive. The other approach is a more effective and flexible
solution to obtain high-resolution THz images only using
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existing imaging system. Therefore, many super-resolution
methods for THz image have been proposed to improve
reconstruction performance. One of the most frequently used
methods for super-resolution reconstruction is the Lucy-
Richardson method, which is a type of deconvolution super-
resolution method. Nevertheless, the object’s edge in the
super-resolution reconstructed image is prone to be blurred
in the process of increasing image size with the Lucy-
Richardsonmethod. In addition, due to the degradationmodel
of THz imaging system is different from that of the optical
imaging system, and learning-based super-resolution meth-
ods have achieved state-of-the-art super-resolution recon-
struction quality for optical images, a few learning-based
super-resolution methods for THz images have been pro-
posed to obtain better performance in both objective index
and visual quality [19], [20], [21].

The main goal of a learning-based super-resolution
methods for THz images is to obtain accurate mapping
between low- and high-resolution THz images. For this pur-
pose, degradation model of THz images is constructed to
express low-resolution THz image is how generated from
a high-resolution THz image, and a deeper and more com-
plex neural networks are proposed in [19]. According to
the proposed degradation model for the frequency-modulated
continuous-wave(FMCW) THz imaging system [19], the
high-resolution THz image is first blurred by a point spread
function(PSF), then down-sampled by a down-sampler, and
finally added by a Gaussian white noise. The processing
result is the low-resolution THz image. Meanwhile, com-
pared with neural networks such as the super-resolution
convolutional neural network (SRCNN) [22] and the super-
resolution using very deep convolutional networks(VDSR)
[23], the neural network proposed in [19] is deeper with
stronger feature extraction ability and better super-resolution
reconstruction performance. However, the degradation model
of THz images proposed in [19] is just suitable for the focal
plane THz imaging system. Then a 3D degradation model
for THz imaging system is proposed in [20]. According to
the 3D degradation model, the high-resolution THz image is
blurred by a 3D PSF, then down-sampled by a down-sampler,
and finally added by a Gaussian white noise. As it is hard
to accurately obtain the 3D PSF distribution experimentally,
the 3D PSF of the typical THz imaging system is approxi-
mated by a TEM00 mode Gaussian bean. And an adjustable
deep residual convolutional neural network(Res-CNN) was
proposed to solve the accommodative super-resolution prob-
lem for THz images [20]. Furthermore, the reliability of the
PSF mathematical model shown in [20] is proved with an
experiment in [24]. On account of the features of THz images
are implicit, a inception module is designed to enhance the
feature extraction ability of their proposed network [24].

According to the analysis above, the super-resolution
reconstruction performance of existing learning-based super-
resolution methods for THz images is affected by two main
aspects. One is the type and structure of neural networks. The
other is the accuracy of degradation model of THz images.

Nevertheless, above degradation model is just suitable for the
THz imaging system, where the high-resolution THz image
is blurred by PSF, but not suitable for linear scanning THz
imaging system [25], [26] or focal plane array THz imaging
system [27].

To address the insufficient generality of degradation model
of THz images in existing learning-based super-resolution
methods for THz images, we considered enriching learn-
ing features included in training datasets to improve super-
resolution performance. As edge feature includes a wealth
of high-frequency information which benefit to reconstruct
high-resolution images, we added edge features of training
images to the training datasets. In the existing learning-
based super-resolution methods for THz images, low- and
high-resolution image pairs are included in the training
datasets. And low-resolution images were obtained from
high-resolution images with a degradation model of THz
images. Therefore, in order to add edge features to the train-
ing pairs, we focused on analyzing the degradation pro-
cess when edge features pass through THz imaging sys-
tem and proposed a gradient degradation model of THz
images to describe the degradation process of high-resolution
THz image’s gradient maps. In general, the gradient maps
are the most important edge features in super-resolution
methods.

Benefit from the proposed gradient degradation model of
THz images, we also presented a low- and high-resolution
THz image pair construction method with gradient fusion for
learning-based super-resolution. In the proposed construc-
tion method, a THz image is fused with its horizontal and
vertical gradient maps to constitute a three-channel image
which is the high-resolution image in training datasets.Mean-
while, according to the proposed gradient degradation model
of THz images, low-resolution THz image’s vertical and
horizontal gradient maps are obtained from corresponding
high-resolution THz image’s vertical and horizontal gradient
maps respectively. And low-resolution THz image is obtained
according to general degradation model of THz images. Then
the low-resolution THz image and its vertical and horizontal
gradient maps are fused to form the low-resolution image in
training datasets.

With the proposed low- and high-resolution THz image
pair construction method with gradient fusion, we improved
the VDSR method which is one of multi-image super-
resolution method, and proposed the VDSRmethod with gra-
dient fusion. Meanwhile, zero shot super-resolution(ZSSR)
method, which is a popular single-image super-resolution
method for optical images, is also improved in our work and
the ZSSR method with gradient fusion is proposed.

In summary, the main contributions of our study are as
follows.
• A gradient degradation model of THz images is pro-

posed. With the proposed gradient degradation model of THz
images, a low-resolution THz image’s gradient map could be
accurately deduced from corresponding high-resolution THz
image’s gradient map.
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• A low- and high-resolution THz image pair construction
method with gradient fusion is presented for learning-based
super-resolution. With the proposed training pairs’ construc-
tion method, vertical and horizontal gradient maps are added
into training images, so that the performance of learning-
based super-resolution methods for THz images could be
effectively improved.
•VDSRmethod and ZSSRmethod are improved by apply-

ing the low- and high-resolution THz image pair construction
method with gradient fusion, and the VDSR method with
gradient fusion and the ZSSR method with gradient fusion
are proposed. These two improved super-resolution methods
for THz images outperform the VDSR method and the ZSSR
method for THz images, respectively.

The remainder of this paper is organized as follows.
Section II presents the gradient degradation model of THz
images to describe degradation process of high-resolution
THz image’s gradient maps. In section III, the low- and
high-resolution image pair constructionmethod with gradient
fusion for learning-based super-resolution is introduced in
detail. Then the VDSR method with gradient fusion and the
ZSSR method with gradient fusion are presented in section
IV. In section V, the super-resolution reconstruction perfor-
mance of VDSR method with gradient fusion is validated
by comparing the performance of VDSR method with gra-
dient fusion, VDSR method, and Lucy-Richardson method.
As well, the super-resolution reconstruction performance of
ZSSR method with gradient fusion is validated by comparing
the performance of ZSSRmethod with gradient fusion, ZSSR
method, and Lucy-Richardson method. Section VI presents
the conclusion of this study and our future work.

II. GRADIENT DEGRADATION MODEL OF THZ IMAGES
The goal of learning-based super-resolution method for THz
images is to restore the high-resolution image from a low-
resolution image. Then the neural network in learning-
based super-resolution method should provide an end-to-end
mapping between low- and high-resolution images. Obvi-
ously, in order to obtain the end-to-end mapping, low- and
high-resolution image pairs should be firstly constructed
for neural network’s training. Thus, the general degradation
model of THz images has been constructed [19] to obtain a
low-resolution image from a high-resolution image, which
could be expressed as follows.

y = (x ⊗ k)Ds + n (1)

where y is the low-resolution THz image, x is the high-
resolution THz image, k represents the blur kernel, ⊗ is the
convolution operation, Ds is the down-sampler with scale
factor s, and n is the additive noise with noise level α.

Meanwhile, the mapping performance of a neural network
could be improved by adding features in training pairs, i.e.,
the edge information. Hence we constructed a gradient degra-
dation model of THz images to obtain low-resolution image’s
gradient map from corresponding high-resolution image’s
gradient map for neural network’s training.

Generality, the blurred high-resolution THz image with
blur kernel k is down-sampled by bicubic down-sampler with
scale factor s [19], [20]. So equation (1) could be written as

y = x ⊗ k ⊗ Ds + n (2)

According to images’ derivative theorem of convolution,
the gradient of low-resolution image y in (2) is deduced,
which is shown as follows.

∇y = ∇x ⊗ k ⊗ Ds +∇n (3)

where ∇y is the gradient of low-resolution image y, ∇x is
the gradient of high-resolution image x, k represents the
blur kernel, ⊗ is the convolution operation, Ds is the down-
sampler, and ∇n is the gradient of the additive noise n.

According to (3), a low-resolution THz image’s gra-
dient could be accurately calculated with corresponding
high-resolution THz image’s gradient, whose degradation
process is expressed by (2). Meanwhile, we can obtain
from (3) that low-resolution THz image’s gradient is not equal
to the degradation result of corresponding high-resolution
THz image’s gradient. In the following section, with the pro-
posed gradient degradation model of THz images, a low-and
high-resolution image pair constructionmethod with gradient
fusion is introduced in detail for the purpose of adding edge
feature to neural network’s training datasets.

III. LOW- AND HIGH-RESOLUTION THZ IMAGE PAIR
CONSTRUCTION METHOD WITH GRADIENT FUSION
In learning-based super-resolution methods, the first step is
training datasets’ construction, which is directly related to
themapping performance of neural networks. In existing con-
struction process of training datasets [19], images in bench-
mark image datasets are converted into theYCbCr color space
and the Y channel is selected as the high-resolution image,
namely the images in benchmark image datasets are con-
verted into grayscale images, which are the high-resolution
image. Then the high-resolution images are degraded by
using (2) to obtain low-resolution images, which are the input
data of the neural network in learning-based super-resolution
methods.

In the proposed low- and high-resolution image pairs’
construction method with gradient fusion, the high-resolution
image is firstly converted to grayscale image, then the
grayscale image is filtered by Sobel filter to obtain x-direction
and y-direction gradient maps of the grayscale image. The
Sobel filter is a popular method to calculate the partial
derivatives of a image, thus we used a pair of 3 × 3 Sobel
filter, one estimating the gradient in x-direction to obtain the
horizontal gradient map, and the other in y-direction to obtain
the vertical gradient map. Due to rich edge features in the
horizontal and vertical gradient maps, we combine them with
the grayscale image to form a three-channel high-resolution
image. The combine process is as follows: the grayscale
image overlies on its horizontal gradient map. Then they
overlie on the grayscale image’s vertical gradient map to form
the three-channel high-resolution image. To get low- and
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FIGURE 1. The schematic diagram of low- and high-resolution image pair
construction method with gradient fusion.

high-resolution image pairs for training neural network, the
grayscale image in the three-channel high-resolution image
is processed according to (2), and the other two gradient
maps in the three-channel high-resolution image are degraded
according to (3). These three degraded images are fused to a
three-channel low-resolution image, which is the input data of
neural network in learning-based super-resolution methods.
Above low- and high-resolution image pairs’ construction
process could be illuminated in Fig 1.

Owing to the rich edge features in low- and high-resolution
image pairs constructed in Fig.1, we applied the low- and
high-resolution image pairs’ construction method with gra-
dient fusion to VDSR method which is one of multi-image
super-resolution method. Meanwhile, we applied the low-
and high-resolution image pairs’ construction method with
gradient fusion to ZSSR method, which is a popular single-
image super-resolution method for optical images. The detail
of these two improved super-resolution methods is presented
in the following section.

IV. VDSR METHOD WITH GRADIENT FUSION AND ZSSR
METHOD WITH GRADIENT FUSION
Benefit from the rich edge features in the low- and high-
resolution image pairs constructed by the proposed method
above, wemodified the VDSRmethod and the ZSSRmethod,
which are typical supervised SR method and typical unsu-
pervised super-resolution method, respectively. And we pro-
posed VDSR method with gradient fusion and ZSSR method
with gradient fusion for THz images.

The VDSR method with gradient fusion for THz images
includes three steps. The first step is construction of training
datasets. In this step, all images in datasets of 291 are con-
verted to gray images. Then, the construction process of low-
and high-resolution image pairs are according to Fig.1.

The second step is training the designed residual
convolutional neural network(ResCNN) using low- and
high-resolution image pairs constructed in the first step.
In training step, the input low-resolution image is interpolated

FIGURE 2. The schematic illustration of the reconstruction process of
high-resolution THz Image in the VDSR method with gradient fusion.

to the output size as done in the previous VDSRmethod [23].
Then, the interpolated image is mapped to an estimation of
the high-resolution image. In our method, a fully convolu-
tional ResCNN is adopted, with 20 layers, each of which
has 64 channels. Besides, ReLU activation is used on the
first 19 layers, while no activation was applied on the last
layer. Furthermore, L1 loss is used with the Adam optimizer.
Moreover, we trained all experiments over 80 epochs.

The third step refers to reconstructing high-resolution THz
image with the ResCNN trained in step two. As shown
in Fig. 2, x-direction and y-direction gradient maps of the
super-resolution reconstructed THz image are calculated, and
they are fused with the super-resolution reconstructed THz
image to form a three-channel image. After that, the three-
channel image is normalized. Then, the high-resolution THz
image is reconstructed with the ResCNN trained in step two.
On the whole, steps of the VDSR method with gradient
fusion is almost the same with that of the VDSR method
[23], except for the dimension of training data and super-
resolution reconstructed image. The dimension of training
data and super-resolution reconstructed image in the VDSR
method is one, but the dimension of training data and super-
resolution reconstructed image in the VDSR method with
gradient fusion is three. Benefit from more edge informa-
tion contained in training data in the VDSR method with
gradient fusion than the VDSR method, the mapping per-
formance of ReCNN could be improved for the VDSR
method with gradient fusion. Therefore, the super-resolution
reconstruction performance of the VDSR method with gra-
dient fusion will be better than that of the VDSR method
theoretically.

The ZSSR method with gradient fusion for THz images is
one of single image super-resolution methods. Thus, the most
difference between the ZSSR method with gradient fusion
and the VDSR method with gradient fusion for THz images
is the source of training datasets. In the ZSSR method with
gradient fusion, the source of training datasets is the super-
resolution reconstructed THz image. Nevertheless, the source
of training datasets in the VDSRmethod with gradient fusion
is the benchmark image datasets.

In the first step of the ZSSR method with gradient fusion
for THz images, which is illustrated in Fig. 3, the three-
channel low- and high-resolution training images are firstly
constructed according Fig. 1. After that, the three-channel
high-resolution THz image is randomly cropped, and the
low-resolution THz image is cropped in terms of the cropping
region in high-resolution image. Then the cropped low- and
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FIGURE 3. The schematic illustration of the training data construction
process in the ZSSR method with gradient fusion.

high-resolution image pairs are the training data for the ZSSR
method with gradient fusion.

Meanwhile, to enrich low- and high-resolution image pairs
for training, each low- and high-resolution image pairs is
transformed using 4 rotations (0◦, 90◦, 180◦, and 270◦) as
well as their mirror reflections in the vertical and horizontal
directions. In this case,×8more image-specific training pairs
are added.

The second step of the ZSSR method with gradient fusion
for THz images is training a designed ResCNN with low-
and high-resolution image pairs constructed in the first step.
The input low-resolution image is interpolated to the output
size as done in the previous ZSSR method [28]. Then, the
interpolated image is mapped to an estimation of the high-
resolution image. A fully convolutional ResCNN is adopted
in our method for estimating the high-resolution image, with
four layers, each of which has 64 channels. Besides, ReLU
activation is used on the first three layers, while no activation
was applied on the last layer. Each layermaintains the original
image size. As for the size and number of convolution kernels
as done in the previous ZSSR method [28]. Furthermore, L1
loss is used with the Adam optimizer, and the optimization is
stopped when we get to a learning rate of 10−6.
The third step of the ZSSR method with gradient fusion

for THz images is reconstructing high-resolution image with
the ResCNN trained in step two. Specifically, a method is
adopted for reconstructing the high-resolution image as done
in ZSSRmethod [28] (which generates 8 different outputs for
the 8 rotations and flips of the test low-resolution image, and
then combines them).

In summary, the difference between the ZSSR method
with gradient fusion and the ZSSR method is the dimension
of training data and that of super-resolution reconstructed
image. The dimension of training data and super-resolution
reconstructed image in the ZSSR method is one, but the
dimension of training data and super-resolution reconstructed
image in the ZSSR method with gradient fusion is three.

As the VDSR method with gradient fusion and the ZSSR
method with gradient fusion utilize the gradient maps of
training images, the mapping between low-resolution image
and high-resolution image is more accurate. In order to quan-
titatively evaluate the super-resolution performance of the
VDSR method with gradient fusion and the ZSSR method
with gradient fusion, comparison experiments are addressed
in the next section.

V. EXPERIMENTS AND RESULTS
In this section, we selected the VDSR method to evaluate
the VDSR method with gradient fusion by comparing their
reconstruction performance. In the same way, the ZSSR
methodwas selected to evaluate the ZSSRmethodwith gradi-
ent fusion by comparing their performance. Meanwhile, the
popular Lucy-Richardson method was selected as a type of
deconvolution super-resolution method.

Before performance comparison, we introduced peak
signal-to-noise ratio (PSNR) and structural similarity index
measurement(SSIM) as the performance index. In the super-
resolution reconstruction performance comparison experi-
ments, two real datasets are considered. One was collected
in 2015 at Universidad de Granada with a passive wave
millimeter camera [29], the other was collected in our THz
lab with linear scanning THz imaging system.

A. SUPER-RESOLUTION RECONSTRUCITON
PERFORMANCE INDEX
PSNR and SSIM are important objective indicators to eval-
uate the effect of super-resolution method. PSNR is defined
as the ratio of peak signal power to average noise power. The
calculation formula is expressed as follows.

PSNR(dB) = 10 log10(
D2MN∑

i,j
(x(i, j)− y(i, j))2

) (4)

where x(i, j) denotes pixel (i, j) of the actual high-resolution
image and y(i, j) represents pixel (i, j) of the reconstructed
high-resolution image. D is the maximum peak-to-peak
swing of the signal (255 for 8-bit images). It can be assumed
that the noise x(i, j) - y(i, j) is uncorrelated with the signal.
M andN are the width and height of the actual high-resolution
image.

SSIM evaluates the similarity between the reconstructed
high-resolution image and the actual high-resolution image
from the perspective of the image structure. The calculation
formula is written as follows.

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ

2
y + C1)(σ 2

x + σ
2
y + C2)

(5)

where µx and µy are separately pixel mean of the actual
high-resolution image and the reconstructed high-resolution
image. σx and σy are separately pixel standard deviation of
the actual high-resolution image and the reconstructed high-
resolution image. C1 and C2 stand for two constants. It indi-
cates the closer the SSIM value is to 1, the more similar the
two images are.

The hardware condition of the comparison experiments
is CPU intel R©CoreTMi7-10700K@3.8GHz, 64G memory,
and Geforce RTX 2080Ti graphics card, while the software
environment is Windows10, Python-3.7, and TensorFlow2.2.

B. SUPER-RESOLUTION PERFORMANCE COMPARISON
EXPERIMENT WITH THE PMMWIS
The PMMWIs is collected in 2015 at Universidad de
Granada with a passive wave millimeter camera, named
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FIGURE 4. Examples of THz images in PMMWIs and those with stripe
noise. Top row: original THz images in PMMWIs datasets. Bottom row: the
top row THz images with stripe noise.

‘‘Wavecamm’’. The center operating frequency of ‘‘Wave-
camm’’ is 94 GHz. The PMMWIs datasets is consisted of
3309, 125 × 195 images of 33 different people. Example
images of the PMMWIs are shown in Fig. 4.

Due to nonuniformity of channel in THz scanning imaging
system, the THz images have background texture. For a more
realistic simulation of the noise situation of THz scanning
imaging system, stripe noise is added to each image in the
PMMWIs datasets by using (6) [30].

yij = xijgi + oi (6)

where xij and yij denote respectively the response value and
the observed value of THz detectors. gi is the gain of the i-
th THz detector, which is Gaussian distribution (with 1 mean
and 0.15 standard deviation), while oi is the bias of the i-th
THz detector, which is Gaussian distribution (with 0 mean
and 12 standard deviation).

In addition, adding stripe noise could enhance the learning
ability of neural network and add more edge features for
training data. Examples of the THz images are shown in
Fig. 4, where Fig. 4(a), Fig. 4(b), Fig. 4(c), and Fig. 4(d)
are original THz images in PMMWIs datasets, Fig. 4(e), Fig.
4(f ), Fig. 4(g), and Fig. 4(h) are the example THz imageswith
stripe noise.

In our experiments, we randomly chose 100 images from
PMMWIs datasets as the super-resolution reconstructed THz
images. Scale factors are 2, 3, and 4. Then, the performance
of Lucy-Richardson method, VDSR method, VDSR method
with gradient fusion, ZSSR method and ZSSR method with
gradient fusion is illustrated in Table 1.

As presented in Table 1, the average PSNR and SSIM
values of the Lucy-Richardsonmethod are the least compared
with other compared super-resolution methods in scale fac-
tor 2, 3, and 4. It means the super-resolution reconstruction
performance of the Lucy-Richardson method is the poorest

TABLE 1. Average PSNR (dB) and SSIM results of contrastive
super-resolution methods on PMMWIs.

with the compared methods. In scale factor 2, 3, and 4, the
average PSNR values of the VDSR method with gradient
fusion is improved by 8.14%, 7.54%, and 4.82% compared
to that of the VDSR method, respectively. And the average
SSIM values of the VDSR method with gradient fusion is
improved by 20.02%, 38.41%, and 22.21% compared to that
of the VDSR method, respectively. Then we can easily get
that the super-resolution performance of VDSR method with
gradient fusion is significantly better than that of VDSR
method.

Meanwhile, we can notice that the ZSSR method with
gradient fusion achieves a significant super-resolution recon-
struction performance improvement comparedwith the ZSSR
method in scale factor 2. Although the average SSIM value
of the ZSSR method with gradient fusion is improved by
42.53% compared to that of the ZSSR method in scale fac-
tor 3, the average SSIM value is decreased from 0.9402 in
scale factor 2 to 0.6589 in scale factor 3. It means the
super-resolution reconstruction performance decreases as the
increase of scale factor. The reason is the limited learning
information in low- and high-resolution image pairs for ZSSR
method with gradient fusion as the size of the images is small
in PMMWIs.

Then we can obtain that the VDSR method with gradi-
ent fusion and the ZSSR method with gradient fusion have
good super-resolution performance than the VDSR method
and ZSSR method separately when the scale factor is 2.
When the size of super-resolution reconstructed THz image
is small and the scale factor is large, limited learning infor-
mation could be provided for the ZSSR method with gradient
fusion and the ZSSR method. As a result, the performance
of the ZSSR method with gradient fusion and the ZSSR
method will obviously deteriorate as the increase of scale
factor.

C. SUPER-RESOLUTION PERFORMANCE COMPARISON
EXPERIMENT WITH OUR THZ LAB DATA
In this part of experiment, THz images are captured by
a linear scanning THz camera (Linear Tera-512, detection
spectrum range is 50GHz∼0.7THz, pixel number is 512). The
THz source’s frequency is 0.3THz. The linear scanning THz
imaging system is shown in Fig. 5.
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FIGURE 5. (a) the Linear scanning THz imaging system in our THz lab.
(b)Scheme of the Linear scanning THz imaging system setup. Typical
distances between the source and the mirror and between the mirror and
the linear camera are indicated.

FIGURE 6. The detected samples and their THz images. Top row: four
different types of samples. (a) empty capsule, (b) square aluminum plate,
(b) Chinese angelica, (d) agilawood. Bottom row: the THz images of the
samples in the top row.

TABLE 2. Average PSNR (dB) and SSIM results of contrastive SR methods
on our THz lab’s images.

In our experiments, four samples are selected, and
20 images are collected for each sample. The size of each
THz image is 512×512. The samples and corresponding THz
images are shown in Fig. 6.

And we performed the Lucy-Richardson method, the
VDSR method, the VDSR method with gradient fusion,
the ZSSR method, and the ZSSR method with gra-
dient fusion. Table 2 shows the average PSNR and
SSIM values for these super-resolution methods in scale
factor 2, 3, and 4.

As can be seen from Table 2, the performance of the Lucy-
Richardson method is the worst in scale 2, 3, and 4 (both
PSNR and SSIM). Meanwhile, it is observed that the VDSR

FIGURE 7. Examples of reconstruction quality of highlighted windows in
the THz images of Fig. 6(b) and Fig. 6(c), zoomed in columns 2-6
constructed by various super resolution methods-(b) the Lucy-Richardson
method, (c) the VDSR method, (d) the VDSR method with gradient fusion,
(e) the ZSSR method, (f) The ZSSR method with gradient fusion.

method with gradient fusion achieves a significant super-
resolution reconstruction performance improvement com-
pared with VDSR method. In scale factor 2, 3, and 4, the
average PSNR value of the VDSR method with gradient
fusion is improved by 7.84%, 4.27%, and 4.43% compared
to that of the VDSR method, respectively. And the average
SSIM value of the VDSR method with gradient fusion is
improved by 8.94%, 14.58%, and 15.06% compared to that of
the VDSRmethod, respectively. Likewise, the average PSNR
and SSIMvalues of the ZSSRmethodwith gradient fusion are
significantly outperformed to that of ZSSR method in scale
factor 2, 3, and 4 as presented in Table 2. This means that in
contrast to the VDSR method and the ZSSR method, higher
PSNR and SSIM values are achieved in corresponding super-
resolution methods with gradient fusion.

In order to visually show super-resolution reconstruction
effect of the compared methods, the THz images in Fig. 6(b)
and Fig. 6(c) were super-resolution reconstructed with scale
factor 2, and the super-resolution reconstructed THz images
are converted to pseudo-color images. The pseudo-color
images of the original THz images are shown in the first
column in Fig. 7. To clearly show the super-resolution
effect of the compared methods, the same local regions
of each reconstructed image were zoomed, and the
zoomed pseudo-color images are presented in columns 2-6
in Fig. 7.

In Fig. 7, one of our observations is that the VDSR method
with gradient fusion produces relatively sharp edges and
high contrast THz image compared with the super-resolution
reconstructed result of the VDSR method. In the same way,
the ZSSR method with gradient fusion produces slightly
sharp edges compared with the ZSSR method in visual.
And the THz images reconstructed with the Lucy-Richardson
method are the most blurred ones when compared with other
super-resolution methods.

VI. CONCLUSION
In this paper, we proposed the gradient degradation model
of THz images. The proposed gradient degradation model
of THz images accurately describes how a high-resolution
THz image’s gradient map degrades to corresponding low-
resolution image’s gradient map. And according to the
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proposed gradient degradation model of THz images, the
low- and high-resolution image pairs’ construction method
with gradient fusion is proposed for learning-based super-
resolution methods. Benefit from it, the performance of the
VDSR method with gradient fusion is significant improved
compared with that of VDSR method. In the same way,
the performance of the ZSSR method with gradient fusion
is much better than that of the ZSSR method. It means
the low- and high-resolution image pairs’ construction
method with gradient fusion could effectively improve the
performance of the learning-based super-resolution meth-
ods without gradient fusion. And the results of our com-
parison experiments validated this. For other learning-
based super-resolution methods, such as the enhanced
deep residual networks for single image super-resolution
(EDSR) and the second-order attention network for sin-
gle image super-resolution (SAN), it is easy to apply
the proposed low- and high-resolution image pairs’ con-
struction method to improve super-resolution reconstruction
performance.

In our work, we added the gradient information to training
pairs and improved super-resolution performance. Further
more, we could try to extract gradient map’s features with
a separate neural network and fuse the extracted features
with those extracted from original training images. Because
an separate neural network for edge feature extraction is
more flexible and accurate compared to neural networks
applied in this paper. Thus, this will be researched in our
future work.
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