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ABSTRACT Agricultural soils provide a variety of ecological services, including nutrient cycling, water
purification and storage, carbon sequestration, and flood protection. Soil Surface Roughness (SSR) repre-
sents a key parameter for evaluating the terrain quality structure, especially in the layers beneath the usual
primary tillage depth, and therefore its estimation has been widely investigated over the years in many fields
of science and engineering. This paper proposes the adoption of an innovative sensing approach that relies on
contactless measurements provided by a depth camera in contrast to traditional contact measurements such
as pin meter and roller chain. In addition, novel features are investigated to achieve a complete statistical
description of the SSR with the least number of parameters. The proposed methods are validated in an
experimental campaign performed on a vineyard plot. This research could be useful for many applications,
including soil erosion prediction models, autonomous vehicle navigation in rural and agricultural settings,
and controlled traffic farming.

INDEX TERMS Soil surface roughness, vision-based sensing, environmental preservation and monitoring,
precision agriculture, intelligent vehicles, agricultural robotic.

I. INTRODUCTION
Nowadays, the concept of sustainability is a paramount
issue for socioeconomic perspectives and environmental trou-
ble [1], and affects all the human activities. Among them,
the agriculture plays a significant role, involving several key
environmental issues, such as water resources, diffusion of
chemical plant protection products, soil threat like organic
matter reduction, compaction, erosion and so forth [2]. The
last soil degradation processes is of particular interest for
this research and it is strongly dependent on soil properties,
such as moisture, texture, and roughness. The characteriza-
tion of these properties, especially in a suitable quantitative
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way, can be meaningful to achieve the sustainability crite-
ria required today. This manuscript focuses on the issue of
the Soil Surface Roughness (SSR) evaluation, which is an
active area of research with relevance and applications to
many fields of sciences and engineering. SSR is an intrinsic
feature of soil geometry, which is generally defined as the
variation in surface elevations in relation to ‘‘zero’’ asset on
different scale terms. M.J. Romkens [3] classifies SSR at
4 scale terms: a) Original soil roughness refers to micro-relief
variation of soil aggregate on an unaltered terrain, which has a
millimeter scale. b) Surface variation due to soil alteration by
ploughing causing clodiness, the so-called random roughness
in centimeter scale. c) Oriented roughness (also cm scale) as
consequence of soil tillage by farm implements with scis-
sor tools as rippers, weeders and harrows. d) Meter scale
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SSR referring to landscape elevation variation due to hill-
slopes, depressions, ground cover, basins, etc. In this study,
the SSR is referred to as type b and c.
SSR estimate is important for several agricultural tasks.

For instance, they are considered a valuable benchmark for
soil management [4] dealing directly with the study of the
hydrological behavior on a surface during rainy events. In par-
ticular, SSR is one of the key variables in soil erosion pre-
diction models as the Revised Universal Soil Loss Erosion
(RUSLE) [5], its derivatives [6] and the LImburg Soil Erosion
Model (LISEM) [7]. The capability of managing the soil
erosion is fundamental for facing natural disasters, as floods,
loss of fertile land, soil degradation, water quality and runoff,
which occur when the amount of rain exceeds the infiltra-
tion capacity of the soil [8]. The topsoil surface profile in
agricultural land is constantly renewed in relation to tillage
practices; in fact, high soil surface roughness values are
attributable to recently tilled terrain, where disturbed clods
form elevations and depressions in surface micro-topography,
thus roughness levels change in relation to implement usage
and tillage depth conducted in field operations [9]. Conven-
tional soil tillage implies increasing water storage capabil-
ity, and a reduction of soil loss due to runoff [10]. Indeed,
soils where frequent tillage is carried out are characterized
by the formation of surface aggregates more sensitive to
disintegration by water and wind erodibility [11]. Further-
more, in plain conditions on rougher soil surfaces, rainfall
events mobilize soil aggregates, reducing relative roughness,
indirectly promoting the phenomenon of raindrop splashing,
thus forming crust and sealing the soil [12]. Since the SSR
characterizes the shape of any soil surface, they also play a
critical role for agricultural vehicle navigation, because they
directly affect the dynamic response in terms of vertical vibra-
tions, responsible for human comfort and handling perfor-
mance, traction and safety, including extreme cases of vehicle
entrapment or rollover [13]. Furthermore, new generations of
agricultural vehicles [14] need to be sensitive to the SSR in
order to achieve an advanced level of autonomous naviga-
tion, namely the optimal path planning in terms of traction,
travel velocity and safety with less or no human supervi-
sion [15], [16], that represents an important challenge for the
Agriculture 4.0 [17], [18].

Before dealing with the aims of this study along with
the sensors and parameter identification techniques, a brief
overview of these aspects is proposed, for the sake of
completeness.

The first aspect concerns the measuring tools. Different
types have been investigated during the years to gather reli-
ablemeasurements of terrain roughness. SSRmeasuring tools
can be grouped into two general types [19], [20], [21]. The
first one includes contact devices, e.g., pin-meter, roller chain,
meshboards and others, characterised by a physical contact
between the instrument and soil surface. Contrariwise, the
second type incorporates all the devices with no physical
contact, as optical sensors, laser-based distance sensors and
so forth. To the second group belong the most modern

SSR measurement techniques and some of them will be
described below, providing some details on how they work,
their strength points and drawbacks. Straightforwardly, the
contact measuring tools are cheaper but less accurate at the
same time. Moreover, they tend to disturb or destroy the sur-
face that is under study. On the other hand, differences exist
between the various contactless sensors, in terms of accuracy,
cost and ease of use in different scenarios. For example, Syn-
thetic Aperture Radar (SAR) [22] is microwave-based remote
sensing [23], which performs well independently of weather
conditions, but depends on different instrumental parameters,
such as polarization, incidence angle and radar wavelength.
Another SSR contactless measuring tool, very used in the
field of autonomous vehicle navigation both in on-road and
off-road scenarios for hazard detection [24], but also for
agricultural terrains characterization [25], is the LiDAR. The
acronym means Light Detection And Ranging and it is able
to capture a very accurate digitize soil reconstruction with
the characterization of millimeter level roughness. However,
this technology is rather expensive, although new cheaper
LiDARs are now becoming available on the market. Other
approaches utilize acoustic backscatter techniques [26] to
quantify the SSR on centimeter scales. Stereo and depth cam-
eras represent a good trade-off between strengths and weak-
nesses of the various systems available nowadays. As amatter
of fact, they ensure dense 3D reconstruction at short/medium
range with reasonable accuracy, being at the same time more
affordable than other systems [13], [25], [27], [28]. It should
be also underlined that RGB-D devices lend themselves
very well to integration on intelligent robot farmers for high
throughput in-field monitoring, leveraging on their compact-
ness and lightness. This is not the case for other more expen-
sive yet accurate sensors such as the CESBIO–ESA laser
profiler as in [19]. This sensor is significantly more expensive
and requires a dedicated and complex setup that makes it very
difficult for practical applications. Instead, in this study the
RGB-D Intel RealSense D435 camera has been selected for
the experimental measurements, which represents one of the
original contributions of this research.

Another novel aspect refers to the proposal of a set of
parameters drawing on the statistical distribution of the pro-
file geometry that can be used to complement or replace
traditional metrics for the SSR characterization. Standard
features and more modern ones can be correlated, iden-
tifying the most convenient combination between them,
in order to achieve the best SSR description, both qualita-
tively and quantitatively. By standard SSR parameters, the
authors imply the most commonly used indices for roughness
characterization, which are normally associated with tra-
ditional hydrologic measurement techniques, such as the
random roughness [29],the oriented roughness x-y direc-
tion [30], the profile index [31], and the tortuosity [32].
In the field of vehicle engineering and robotics, different
parameters can be found in the literature. Some examples are
AutoregressiveMoving Average (ARMA) models [33], poly-
nomial chaos [34], and Power Spectral Density (PSD)-based
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approaches that were proposed in previous research by the
authors [13], [35] for vehicle ride and traversability purposes.
Here, parameters obtained from PSD-based approaches of
soil geometry are used for the SSR characterization. The aim
of this paper is thus to present a contactless and effective
method for qualitative and quantitative characterization of
soil roughness, with low money and time effort.

The paper is organized as follows. Section II introduces
the measuring devices used in the field and the mathematical
tools encountered in this paper, while Section III collects all
the results obtained from an experimental survey, along with
the experiment setup. Finally, Section IV discusses the results
and draws some conclusions.

II. MATERIALS AND METHODS
This section introduces the measuring devices and mathe-
matical tools exploited for the evaluation of the soil sur-
face roughness. First, a thorough description of the specific
measurement tools used for data gathering from the investi-
gated terrains is provided. Then, some sets of convenient soil
parameters are defined in order to handle the stochastic nature
of the data acquired on field.

A. MEASUREMENT TOOLS
As exposed above, different methods have been developed
during the years to measure and evaluate SSR. In this
research, soil roughness measurement has been acquired both
using conventional contact tools, namely the roller chain and
the pin meter, and an innovative contactless method, using the
RGB-Depth camera Intel RealSense D435. The roller chain
is a basic tool consisting of a 1 m long chain, which is located
on the soil surface adhering accurately to the soil aggregate,
then the chain extremity ismeasuredwith amillimeter-graded
ruler to have the profile length (Lp) of the transect. The pin
meter consists of a horizontal aluminum frame 1 m long,
with drill holes 10 mm spaced apart, housing 37 centimeter-
graduated aluminum rods 10 mm width. The pin meter frame
is positioned perpendicular to the ground and the rods are
inserted making them adhere to the soil surface. The data
acquired from the pin meter are the elevation values (z) of
the rods expressed in cm.

The D435 uses active infrared (IR) stereo technology for
depth perception and 3D scene reconstruction. It combines
a red/green/blue (RGB) color sensor, an IR projector and a
left-right IR stereo pair. The stereo imagers feature a field of
view of 87(H) × 58(V) deg, maximum depth resolution of
1280 × 720 px, and frame rate up to 90 fps, with an ideal
perception range of 0.3 m up to 3 m. The IR stereo stream
is spatially calibrated and time synchronized with the color
stream provided by a FullHD (1920× 1080) CMOS camera,
with nominal field of view of 69(H) × 42(V) deg and 30 fps
at full resolution. In this work, only the 3D points returned by
the stereo pair are used, without color information; however,
future developments may include additional features based
on color data. Specifically, the soil surface is reconstructed
in XYZ coordinates, where Z corresponds to the elevation of

the ground with respect to the camera position. This makes
the camera data comparable to the elevations of the pin
meter z.
The accuracy of elevations z recorded with both the pin

meter and the RGB-D camera has been assessed before
collecting measures on field. Pin meter accuracy is defined
by the unit of measure of its graduated rods. As described
above, the rods of the pin meters are centimeter graduated,
implying that the pin meters z accuracy stands at 1 cm. The
D435 z accuracy was determined through the image acqui-
sition in standard conditions. As a matter of fact, under the
defined camera setup (faithfully reproduced in the in-field
experiment), the inaccuracies in the elevation measurements
can be defined as the background noise recorded on a flat
surface attesting to ±0.27 cm of standard deviation, which
can be referred to as the camera elevation accuracy.

B. IDENTIFICATION OF SOIL SURFACE ROUGHNESS
PARAMETERS
Due to their random nature, the level of the SSR can be
evaluated only by means of statistical approaches. However,
some of them can only provide a qualitative description of
the terrain roughness. For instance, with the use of the roller
chain method described in Section II-A, a PI chain index can
be defined as follows [31]:

PIidx =
1
Lp
− 1 (1)

returning a non-dimensional index directly related to the level
of terrain roughness. This index is achieved with a 1 meter
long chain (the 1 at the numerator of Equation (1)) and its
projection on the terrain profile Lp. Hence, PIidx theoretically
spans from 0 to +∞ and the higher its value, the harsher
the terrain profile and vice versa. Usually, Lp is greater than
0.5 m, therefore the value of PIidx is between 0 and 1. How-
ever, more efficient indices can be introduced in order to
obtain a more representative description of the level of SSR.

By considering a single terrain profile defined as a ran-
dom function z = z(s), with s the length coordinate and
z the profile elevation, its first two statistical moments can
be straightforwardly evaluated in order to achieve an early
quantitative characterization of the profile roughness. The
first statistical moment, namely the profile average, is influ-
enced by the slope of the profile, that in turn can be carefully
evaluated by exploiting other methods, such as the first order
polynomial regression, therefore it is convenient to discard
the slope through a detrendingmanipulation, which also helps
for deleting possible offsets due to the measurement device.
After detrending manipulation the resulting average of z(s)
is zero. The second statistical moment contains significant
information about the amplitude of the roughness associated
to the terrain profile, that can be directly achieved whether
a null-mean profile is considered. As a matter of fact, the
second moment of a zero-mean profile is equal to its sec-
ond central moment, hence the mean square value and the
variance are the same. Therefore, a convenient parameter for

VOLUME 10, 2022 131737



A. Leanza et al.: Novel Measurements and Features for the Characterization of Soil Surface Roughness

FIGURE 1. Measurement tools utilized in the experiment. The roller chain
(a) and the pin meter (b) are the traditional tools for SSR characterization,
while the Intel Realsense D435 (c) is the proposed RGB-D camera.

evaluating the level of unevenness of a given (zero-mean)
terrain profile is its standard deviation σz:

σz =

√
E
[
z2(s)

]
(2)

where (E [z(s)])2 = 0. This parameter allows to define an
overall level of roughness associated to a specific terrain
profile and it is particularly suitable for the classical meth-
ods of terrain roughness evaluation, such as the pin meter.
Nevertheless, it does not give any further information on the
geometry of the terrain profile.

In Figure 2 two different profiles are displayed, sharing the
same standard deviation σz but having very different shape.
In order to achieve a quantitative shape characterization of
a given terrain profile, the analysis in the spatial frequency

FIGURE 2. Example of profiles with the same σz standard deviation but
with different geometry.

domain represents a convenient approach. Spatial frequen-
cies are the spatial corresponding of the most common time
frequencies, defined as 1/T , where T is the time period.
Similarly, spatial frequencies are defines as 1/λ with λ the
wavelength. The spatial frequencies content of the two pro-
files depicted in Figure 2 is different and can be appropriately
evaluated and even parameterized. Although a generic ran-
dom profile contains a theoretical infinite number of wave-
lengths, in practice there is always an upper and lower limit.
The longest and shortest profile wavelength are defined by
the profile length and twice the value of the spatial sampling
frequency, in compliance with the Nyquist-Shannon theorem.
Therefore, the waveband of interest is obtained, depending
on the sampling frequency and the profile inspection length.
Once the spatial waveband has been defined, the next step
consists in selecting a convenient tool to capture the spatial
frequencies content of the terrain profile. In this research the
one-sided Power Spectral Density (PSD) grounded on the
Bartlett-Welch method [36] is exploited in order to achieve
a quantitative spatial frequency description of the terrain
profiles. As an example, Figure 3 shows the PSD (solid grey
line) of a generic terrain profile. As seen from this figure,
the PSD typically decreases with increasing wavenumber �,
defined as 2π times the spatial frequency. It is common to
approximate the spectral density curve of the terrain profile
by an exponential equation, which gives a straight-line fit on
a log–log plot of the PSD spatial frequency diagram (solid
black line in Figure 3):

8̂ (�) = R�w (3)

where w and R are constants that relate, respectively, to the
slope and scaling of the fit line 8̂ and represent a new set
of convenient parameters to quantitative describe the spatial
frequency content of a generic random terrain profile and
then achieving a sort of shape representation of the terrain
roughness. From the PSD fit line, completely described by
means of these two parameters, it is possible to recover the σz
by using the following equation [37]:

σ 2
z =

∫
+∞

0
8̂ (�) d� (4)
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FIGURE 3. Example of profiles with the same σz standard deviation but
with different geometry.

considering a zero-mean terrain profile. The meaning of
Equation (4) is that the area under the PSD line into the wave-
band of interest is equal to the zero-mean profile variance.
Therefore, the greater the area below the PSD line, the harsher
the profile. The slope of the PSD line provides insights on
how the spatial frequencies are distributed into the waveband:
the steeper the line, the more energy is concentrated on low
spatial frequencies, meaning that the profile is characterised
by unevenness such as bumps or pits, characterised by high
amplitude and long wavelength λ. This information is pro-
vided by the waviness w and the higher its absolute value, the
steeper the PSD line in the log-log diagram. The R param-
eter poses the PSD line with respect to the ordinates in the
log-log plot and by considering the fundamental wavenumber
�0 = 1 rad/m. For a given waviness w, the higher the value
of R, the harsher the profile because a greater area is under
the PSD line.

Summing up, enough information about the overall level
of terrain roughness and also about the profile geometry can
be achieved by the use of the standard parameter σz and the
new ones R and w, respectively. Moreover, as stated above,
they are tightly connected by Equation (4).

C. COMPARISON OF SSR INDICES
A comparison of SSR indices is pursued, in order to study the
reliability of the proposed coefficients, taking into account
the overall data acquisition-elaboration efforts, precision and
suitability of soil surface characterization and a statistical
elaboration, to know the measurement capability for recog-
nizing different theses is undertaken by one-way ANalysis Of
VAriance (ANOVA) and the correlation between coefficients.

III. EXPERIMENTAL RESULTS
This section collects experimental results obtained from data
collected with the devices described in Section II-A and
performed on a suitable test ground. An overview of the
experimental environment is provided before dealing with the
results achieved in this research.

A. EXPERIMENTAL SETUP
The area selected for the experimental Soil Surface Rough-
ness (SSR) measurements is a viticultural area known as
‘‘Alto Monferrato’’ in north-west Italy. Measurements were
collected in February 2022 in three vine rows in which three
soil roughness cases were considered: i) Vine row 30 cm
ripping with three working tool rippers recently tilled (RT),
i.e. the day before the measurements; ii) Vine row 30 cm
ripping with three working tool rippers tilled in past (PT),
i.e. 114 days before the measurements; iii) Vine row no-till
(NT), with a cover crop. These theses are chosen to observe
significant differences in SSR by traditional measurements.
In particular, low values of SSR are expected in NT, high
values are attended in RT, and intermediate values in PT due
to rainfall events that cause soil particle mobilization [38].
RT and PT rows present low or no vegetation, NT was char-
acterized by an homogeneous vegetation cover, mainly com-
posed of poaceae and clovers, having regular heights ranged
in 3-6 cm height from the ground. Trimmed branches residues
are disseminated in every vine rows. In light of the rainfall
data collected by an infield site weather station, referring to
PT rows were recorded 44 rainfall events occurred from the
past tilling until the measurement, with 188 mm of rain in
total amount and 18.7MJ/ha of kinetic rainfall energy. During
that time, no particularly intense rain events were recorded
that can result in elevated erosive events. The EI30 Rainfall
Erosivity Index calculated for each rain event revealed low
values, unlike a single event where 35.4 mm in 52 hours has
fallen with an EI30 of 30.9

MJ mm
ha hr .

For each theses (i.e., terrain types) described above, five
1 meter long patches of soil have been investigated for a
total of fifteen terrain instances. Each terrain portion has been
acquired by using the D435 camera, mounted on a support
and accurately positioned with the optical axis perpendicular
to the ground and at a height of 1 m, capturing a large amount
of information, such as photos, the point cloud with the RGB
content, infrared images and other information. Furthermore,
for each patch, surveys with contact instruments, namely
the roller chain and the pin meter, have been carried out in
order to quantify the level of SSR by referring to reference
profiles inside the inspection window. Figure 4 outlines the
layout of the frame acquisitions, along with the 90 deg cam-
era positioning and the sampled terrains profile. As shown
in the figure, for each terrain portion under investigation,
highlighted with a yellow area, two terrain profiles (red lines)
have been surveyed always at +10 and +90 cm from the
camera support (represented by a rotated green c in the fig-
ure), except for the first patch where a further middle line
(+50 cm from the support) has been measured. This layout
was maintained for all three theses. All the acquisitions have
been performed keeping track of the position with respect
to every vine row, in order to allow the repeatability of the
surveys and a correct matching between camera acquisitions
and profile measurements.

Data acquisition with the three different tools described
above gets an idea on the effective timing of each
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FIGURE 4. Layout of terrain surveys. In yellow the camera acquisition frames, in red the profile sampled with the roller chain and
pin meter.

operation execution. Empirical observations demonstrate that
one acquisition of pin meter data, consisting of frame set-
tling and leveling, insertion of the graded rods and elevation
readings, accounts 15-20 min of operational time, while one
acquisition of roller chain profile length takes 1.5min approx-
imately and finally the camera capture has required about
5 min for support position, camera angle adjustment and take.
However, it has to be taken into account the time required for
data elaboration: while traditional measurements only need
the indirect measure calculation, the RGB-D data need to
be extrapolated and elaborated by programming languages
before achieving any measurement. Nevertheless, the latter
steps can be automated.

Section II-A describes how the devices employed in this
research work. However, the acquisitions made with the cam-
era have to be carefully handled, before getting any kind
of measurement, in order to achieve an accurate matching
between the actual part of terrain under study and the associ-
ated point cloud stored in a .ply file. One can use the photo
captured with the camera for a correct visualization of the
associated point cloud by considering some landmarks such
as stones, sprigs and so forth. Matlab environment includes
a dedicated package for managing .ply files. This package
allows to import and visualize the point cloud gathered by
the camera before running any algorithm to obtain the values
of soil parameters described in Section II-B. It is worth high-
lighting that the position of the camera can be automatically
estimated by tracking the reference frame with the use of
sensors such as IMU. For instance, the D435i is a special
version of the D435 camera employed in this research which
also includes IMU. D435 camera has a cone of view and then
a portion of reliable acquired points that is smaller than the
patch length displayed in Figure 4, due to the camera position,

height and angle with respect to the ground. In Figure 5 the
area of reliable points acquired with the camera and associ-
ated to the first patch of the RT soil is displayed, along with
the middle profile highlighted in red. This profile has also
been sampled with the contact methods, therefore the σz value
can be achieved both for the profile acquired with the pin
meter and that extracted by the point cloud, by considering
a strip of 1 cm of width equal to the accuracy of the pin meter
device. A very similar value of the standard deviation has
been obtained for both methods, ensuring the correctness of
the two approaches.

It is worth pointing out that the raw point cloud stored
in the .ply file is too dense if compared with the accuracy
of the contact method (e.g. the pin meter) and moreover the
points location is not regular and thus not suitable to manage.
Therefore, the point cloud was meshed with a regular-spaced
grid with 1 cm step, equal to the accuracy of the pin meter,
before applying any algorithm for SSR parameters identifi-
cation. The grid obtained by meshing the patch depicted in
Figure 5a is displayed in Figure 5b. To achieve amore reliable
meshed surface, the edges of the patch have been cut before
the grid generation to avoid edge effects. The advantage of
having a regular meshed surface lies in the ability to slice
the patch in several profiles along x or y direction and to
perform any patch investigation in a more convenient way.
In this research, each profile is intended in the s = y direction,
with z its elevation and each realization is with respect to the
x direction. Finally, each profile has been detrended prior to
analysis for the reasons explained in Section II-B.

B. OUTCOMES
Once the reliability of both the contact and contactless
approaches has been guaranteed and after careful data
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TABLE 1. Average values of every soil parameters defined in this manuscript with respect to each theses and for each measurement device along with
results coming from ANOVA tests.

FIGURE 5. Raw point cloud (top) a relative grid with regular step grid of 1 cm (bottom), for the first patch of RT.
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FIGURE 6. Mean profiles obtained by a linear interpolation of the average
of measures gathered with pin meter, for each theses.

FIGURE 7. Examples of profiles drawn from surfaces acquired with the
D435 camera on the three thesis.

pre-processing, several analysis have been performed in order
to evaluate the level of SSR of the investigated terrains, the
strength points and drawbacks associated to each method and
the information carried by each soil parameter defined in this
manuscript.

As depicted in Figure 4, 11 profiles have been measured
with the contact devices for each theses, for a total of 33 mea-
sured terrain profiles. Therefore, a representative value of
the SSR parameters related to each kind of terrain can be
obtained. 33 measures have been acquired in-field with roller
chain, obtaining an average PIidx of 0.26 for the RT soil,
followed by a reduction to 0.15 for the PT one and achiev-
ing a mean of 0.05 for the No-Tilled soil. 33 profiles have
also been measured with the pin meter and the averaged
σz has been calculated, showing the highest values for the
RT (3.12 cm), intermediate values for the PT (1.74 cm) and
very low σz for the NT (0.05 cm). Figure 6 displays the
averaged profiles relative to each theses, obtained by the pin
meter measures. The profiles in the figure are achieved by
a linear interpolation between a couple of measured points,
highlighted with a cross on the profile lines. As one can
see, the mean profiles related to RT and PT soil are similar
in the shape, but the RT one has a higher amplitude, also
confirmed by the value of σz, because the PT one has been
modelled and smoothed by atmospheric phenomena, such as
rain, wind and so forth. Instead, the NT profile is rather flat
with an amplitude always less than 1 cm for the considered
case.

For the sake of completeness, Figure 7 displays three
examples of profiles drawn from one of the surfaces acquired
with D435 camera on the three different kinds of terrain.
Since the camera is characterized by a higher accuracy with
respect to the pin meter, the profiles appear smoother, lead-
ing to a more reliable measurements. This aspect repre-
sents a very important advantage in the use of the modern
vision system technologies in place of the traditional contact

FIGURE 8. Correlation matrix chart of PIidx of the roller chain, σz of the pin meter, σz of the D435, Log(R), and w SSR
measurement values. At the upper part of the graph, the numbers represent the correlation coefficient r , the stars represent
the p-value of the correlation (* p<0.05; ** p<0.01; *** p<0.001). The lower part graphically represents the correlation of
each variable combination. Diagonal cells show the reference measurement and their histograms. Each cell corresponds to
the variables intercepted along their horizontal and vertical axes.
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FIGURE 9. Average values and confidence intervals of σz relative to pin meter and D435 camera, log of R
parameter and waviness w , for every replica of each theses.

devices. Again, the profile lines are obtained by a linear
interpolation of the sampled points, highlighted with a cross
in the figure.

Table 1 shows the average outcomes of data collected with
traditional methods and with the Intel RealSense D435 and
processed withMatlab, for each theses. ANOVA tests demon-
strated highly significant differences for each indicator, and
post-hoc analysis has shown that there are clear differences
between the measures for each theses and all indices except
for the index w, since no significant differences were found
between RT and PT theses. This means that traditional mea-
surements, as well as the proposed indices by RGB-D camera

acquisition, give solid information about the surface rough-
ness status of the soil. Another statistical evidence is repre-
sented in Figure 8, where the correlation of each measure
variable has reported. The analysis show a high statistically
significant correlation in almost every combination. The tight
correlation (r = 0.81) between traditional measurements and
σz D435 is reported with particular attention, as well as σz
D435 have close correlation (r = 0.75) with R coefficient (or
rather its log(R) transformation), while w parameter doesn’t
explain soil roughness traditional indices (r = −0.32 with
σz pin meter and r = −0.28 with PIidx). The correlation
analysis therefore provides indications on the reliability of the
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proposed measurements assuming the traditional ones as
ground truth.

The quantitative parameters introduced above are dis-
played in Figure 9, averaged for every replica of each theses.
The overall level of SSR indicated by the σz parameter is
displayed in the two plots on top for measurements obtained
with the pin meter and the camera respectively. The results
achieved with ANOVA analysis are graphically supported
by these two plots, where the three theses are easily distin-
guishable. A further useful information provided in this figure
is the variability associated to every replica of each theses
beside the mean value. It has been achieved by performing
the standard deviation of the involved parameter (e.g. σz for
the first two plots on top). As expected, the highest variability
in terms of σz is obtained for the RT case, because the higher
level of terrain unevenness, the more broad their distribution,
since the shape of the soil surface can be subjected to abrupt
variations in a very small area. A clear example is given by
the soil patch displayed in Figure 5, where the profiles at
x ' −0.2 m are clearly very different with respect to those
at x ' 0.2 m, both in geometry and level of roughness.
Vice versa, the NT theses show the lowest mean values and
variability at the same time. The PT behaves between RT and
NT, as expected. The two bottom plots display the average
value and their interval of confidence for the two features
associated to the PSD referred to every replica. For these
parameters, the RT and PT cases are less distinguishable,
especially by looking at the waviness w. Although the mean
value ofR is enough different for these two cases, it is strongly
influenced by thewaviness, as shown in the correlationmatrix
depicted in Figure 8, leading to an intersection of boundaries
relative to these two theses. The NT soil continue to behave
very different, instead. The lack of a clear distinction of the
RT and PT especially with respect to w parameter means that
they show a very similar surface shape, but with different
level of height as provided by the σz parameter and as shown
by the mean profiles displayed in Figure 6. Contrariwise, the
shape of the NT theses is quite different and more ‘‘regular’’
because a lower level of |w|means an absence of soil uneven-
ness with high amplitude like bumps or pits. In short, with a
simple glace, these plots allow a high comprehension on how
the level and the shape of the SSR characterise each theses.

IV. DISCUSSION AND CONCLUSION
This paper investigates novel methods to evaluate the soil sur-
face roughness. First, traditional and new devices have been
compared, with a focus on the two contact methods based on
the roller chain and the pin meter along with an innovative
approach to the contactless vision system represented by the
Intel RealSense RGB-DD435 camera. Then, different param-
eters have been defined in order to quantify the overall level
of terrain roughness and how discontinuities are distributed
among the spatial frequencies to achieve an adequate repre-
sentation of their shape. The consistency of themeasurements
collected by the involved devices, especially by the pin meter
and the D435 camera, has been guaranteed by the value of

the standard deviation σz associated to each theses, that is
very similar if computed from pin meter measures or camera
acquisitions and processing. The SSR results reported are not
directly comparable with the literature as they are closely
correlated with the tool used and the depth of tillage. How-
ever, the range of values are in good agreement with similar
studies [9], [39]. Herodowicz-Mleczak et al. [40] calculated a
mean Height Standard Deviation (HSD) of 30.9 mm for soil
plowed, using raster-vector calculation algorithm from DEM
obtained by photogrammetric images.Values obtained for
σz for RT (soil recently tilled) with the three methods
are consistent with initial roughness value indicated in
the RUSLE2 database for subsoiler (Ra = 1.2 inches =
30.48 mm) [41], [42].

There are several advantages in using the proposed
vision-based contactless approach.
• First, the profiles are not modified by the measurement
device, whereas contact methods involve touching the
terrain, thus slightly influencing its shape.

• More information can be captured and in a shorter time.
As a matter of fact, the camera is able to acquire an
entire patch of terrain composed of different profiles,
instead the traditional methods like the roller chain or
the pin meter can capture only a profile per time. More-
over, their positioning and measure taking is more time
consuming, less practical and can not be automatized.

• Contactless vision systems are characterized by higher
accuracy than traditional contact methods.

• Devices like the camera used in this research can be
mounted on autonomous systems and the level of the
SSR can be automatically evaluated for different tasks
characterized by very high technological content.

One limitation of the proposed estimation approach lies in
its intrinsic contactless nature. Poor measurements can be
expected in the case of physical obstacles between the camera
and the soil surface, including low vegetation covering the
vineyard soil [20]. As a result, the acquisition of soil surface
roughness data through contactless tools must be carried out
in conditions of predominantly bare terrain or with a uniform
and recently regulated ground cover through cutting tools.
Two conditions that are often verified in the field due to the
requirement of constant maintenance of the ground cover or
the tillage of the soil which eliminates the presence of weeds.

The SSR parameters defined in this manuscript provide
information not only on the surface unevenness amplitude,
but also on its shape. A convenient set can be selected to
get a complete SSR description with a number of parameters
as small as possible. For instance, the value of σz provide
the overall level of the SSR amplitude and the value of w
gives information on their shape. Therefore, a full description
of their amplitude and geometry can be achieved with only
two parameters among those defined in this paper. This pair
of parameters is particularly suggested by the authors, but
different combinations can be selected. For instance, the two
features coming from the PSD-based approach, namely the R
and w, with the R in place of the σz for describing the overall
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level of the SSR can be chosen. Nevertheless, this selection
may be less convenient, because the σz provides a direct value
of the SSR amplitude, instead R is strongly influenced by
the waviness w, as shown in the correlation matrix chart in
Figure 8 and hence it may assume very different values for a
given SSR amplitude when the area underlying the PSD line
in the waveband of interest is preserved (see Section II-B).
Herodowicz-Mleczak et al. [40] also recently pointed out the
needing of a quantitative description of the soil surface rough-
ness. They analysed two of the most used indexes (HDS,
height standard deviation) and T3D (tortuosity index), which
provide different information about soil roughness, with HSD
describing the soil surface roughness on the ‘‘macro’’ scale,
and T3D at the ‘‘micro’’ scale. The results of the present study
are in agreement with results of Herodowicz-Mleczak et al.,
that concluded that a single index, namely HSD, is not suf-
ficient to describe the surface roughness of a post-treatment
soil.

RGB-D camera depth information has been shown to
be highly reliable and statistical analysis determined high
correlation between traditional and newmeasures. This study
highlighted the strengths of the measures proposed for soil
surface characterization: in comparison with further con-
tactless technologies able to collect soil surface elevation
and other information as the roughness, e.g. Digital Eleva-
tion Models (DEMs) by terrestrial LiDAR [43], the RGB-D
camera used in this study is more affordable and easy-
to-use device, that gives back on the soil surface micro-
topography information with successful accuracy compared
to more sophisticated and expensive technologies. This study
proposes further indices capable of providing more informa-
tion on soil micro-topography. Nevertheless, coefficient w is
unable to appreciate substantial differences between RT and
PT, due to the fact that these two theses share the same profile
geometry, as also appear in Figure 6 and 7. Besides, PT soils
can be considered as the same thesis of RT, where the same
soil tillage was performed but 114 days before, thus water
erosion has just begun the process of particlemobilization and
soiling, and consequently only the decrease in sods elevation
is notable.

The information provided by an in-depth knowledge of
the SSR both in terms of amplitude and shape can be very
useful for many agricultural applications, especially in the
context of Agriculture 4.0. This advantage increases whether
this information is captured and elaborated automatically.
The applicability of RGB-D camera for hydrological and
agricultural reasons is multiple. In first instance, SSR infor-
mation is a required measurement for RUSLE calculation,
especially in C factor (Land-cover management factor) where
SSR is related to tillage practices. The great advantage of
RGB-D technology is to obtain up-to-date information on
the SSR even following erosive events. The RUSLE model
would therefore benefit from more accurate and realistic data
associated to a wide range of soil tools and management
options. Modelling is not only aimed to soil erosion. As an
example, Prasad Gimire et al. [44] used the FASTR overland

flow model to demonstrate how surface micro-topography,
namely soil surface roughness, affects the hydrological con-
nectivity and therefore the risk of overland flow in relatively
flat agricultural fields, with implications for irrigation man-
agement. Another virtuous use of 3D acquisition on exten-
sive terrain surfaces is to detect possible preferential path
for overland water flow by rill erosion, which, depending
on slopes and rainfall intensity, can significantly increase
soil loss [45]. Rapid and effective assessment of soil surface
roughness would be useful to assess the susceptibility of a
soil to produce runoff and sediment yield, which are affected
by the adopted tillage practices with a relevant multi-scale
temporal, and spatial, variation [46]. To identify possible
critical situation in time, means to prevent by adopting good
practices in soil management. A further strength of camera
usage for agricultural applications is its portability: with due
adjustments, the camera can be mounted on farm tractors
frequently used during field operations and SSR acquisition
can be achieved simultaneously. This proposed device would
therefore become a local-specific monitoring tool for soil
condition, to be integrated with other automatically acquired
data such as weather stations and soil moisture sensors.

Many applications can take benefit from the parameters
proposed in this study. A good example is provided by
the autonomous navigation of Unmanned Ground Vehicles
(UGVs) for agricultural tasks. The knowledge of the ampli-
tude and geometry of the SSR leads to several useful results.
An agricultural autonomous vehicle equipped with this kind
of technology and intelligence can make decision about the
optimal path in terms of trajectory, traction and travel velocity
by itself, with less or even no human supervision. Further-
more, in the context of the big data, a huge number of sampled
agricultural SSR can provide useful information for a correct
design of the vehicle suspension systems to enhance traction,
human safety and vehicle manoeuvrability especially for off-
road scenarios, like the agricultural environments.

Encouraged by the results obtained in this research, in the
next future the authors undertake to develop novel mea-
surement approaches and features selection for soil surface
roughness characterization, in order to achieve an ever higher
level of knowledge and capacity to distinguish different kinds
of terrain, for the manifold advantages reached in several
agricultural aspects.
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