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ABSTRACT For the last few years, cases of applying artificial intelligence (AI) to engineering activities
towards sustainability have been reported. Life Cycle Engineering (LCE) provides a potential to systemati-
cally reach higher and productivity levels, owing to its holistic perspective and consideration of economic and
environmental targets. To address the current gap to more systematic deployment of AI with LCE (AI-LCE)
we have performed a systematic literature review emphasizing the three aspects:(1) the most prevalent AI
techniques, (2) the current AI-improved LCE subfields and (3) the subfields with highly enhanced by AI.
A specific set of inclusion and exclusion criteria were used to identify and select academic papers from
several fields, i.e. production, logistics, marketing and supply chain and after the selection process described
in the paper we ended up with 42 scientific papers. The study and analysis show that there are many
AI-LCE papers addressing Sustainable Development Goals mainly addressing: Industry, Innovation, and
Infrastructure; Sustainable Cities and Communities; and Responsible Consumption and Production. Overall,
the papers give a picture of diverse AI techniques used in LCE. Production design and Maintenance and
Repair are the top explored LCE subfields whereas logistics and Procurement are the least explored subareas.
Research in AI-LCE is concentrated in a few dominating countries and especially countries with a strong
research funding and focus on Industry 4.0; Germany is standing out with numbers of publications. The
in-depth analysis of selected and relevant scientific papers are helpful in getting a more correct picture of
the area which enables a more systematic approach to AI-LCE in the future.

INDEX TERMS Artificial intelligence, life cycle engineering, machine learning, sustainable development
goal.

I. INTRODUCTION
With the growing digitalization of society, there is an
increased interest in the use of artificial intelligence (AI)
methods, techniques and algorithms. Life cycle engineering
(LCE) is a key factor in moving towards a sustainable society,
a major challenge for society. LCE has to overcome many
obstacles to reach the goal of a sustainable society. Using AI
and machine learning (ML) in LCE enables LCE to reach its
goal of a sustainable industry and society faster.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hualong Yu .

Taking the importance of LCE into account and the need
to move towards a sustainable and circular society, and how
the use of AI enables new possibilities in so many areas,
it is essential to explore how AI is used in LCE, considering
the broad scope of AI methods, techniques and algorithms.
This is also relevant for identifying gaps in using AI-LCE
and gaps in research and identifying areas of high potential.
This helps to identify how and where AI can support LCE
and what factors are important to enable LCE to be open
to AI. Although AI/ML is usually explored by the experts
of the community, the use of AI/ML in LCE is still limited,
which is the main focus of this study. Again, we even see a
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future where AI is the driver of LCE, dynamically optimiz-
ing economic and ecological goals. We hope this systematic
analysis and synthesis will bring insights and understanding
and enable a move towards AI-LCE [1].

Life cycle costs (LCCs) (e.g. pollution, production or other
possible areas) need to be calculated more accurately in the
future from societal and industrial perspectives. Currently,
many LCCs are not included in the price of a product and
are often left for taxpayers or future generations to deal with.
However, the move towards a total LCC for production is
ongoing and required in a sustainable society, and the move
towards this goal will continue. Increasing LCC accuracy
is an important area for LCE and will help industry and
society to focus their resources on where they make the
most progress. It is competitively necessary to have a good
estimate of the total LCC since the costs have to be paid
somewhere, and more of the costs will be included in the
price of the product. This is also an important part of how
society should navigate towards a sustainable society and
meet Sustainable Development Goals (SDG). To make soci-
ety more sustainable, the European Union (EU) introduced
an emission trading system (ETS) in 2005. The ETS is the
cornerstone of the EU’s climate change strategy. It directs
and monitors carbon emissions for the industry at a lower
level, where allowances must be purchased or traded, thus
increasing LCC.

A. RELATED WORKS
Currently, the worldwide economic downturn leads manufac-
turer and their suppliers to cut costs and enhance their perfor-
mances. Additionally, environmental protection is becoming
more important, and green manufacturing got an expected
practice. Based on those recognitions, in the early stage of
product design, environmental impacts must be weighed,
balanced and optimized against other concerns, such as LCC,
availability and time to market. These multiple and often
conflicting objectives pose a challenging and complex opti-
mization problem. Thus, the focus is moved from the sin-
gle methodology towards their integration and optimization.
With this aim, a new term, namely, product life cycle opti-
mization (PLCO), has been coined to identify such problems.
A PLCO multi-objective model has been proposed, which
optimizes simultaneously along the product life cycle, costs,
environmental impacts and performance values [2].

Global warming effects have become very apparent in
many parts of the world, causing governments to force their
industries to be environmentally conscious. Small individual
contributions will help abate global warming. A life cycle
assessment (LCA) for steel balls used as grinding media
in mines produced at Craster International in Zimbabwe
is discussed in [3]. It is essential to know the life cycle
environmental impacts of steel balls since they produce
greenhouse gasses in their production. The emitted carbon
dioxide, sulfur dioxide, nitrous oxide and other trace green-
house gasses have adverse effects on flora, fauna, water
bodies and humans. Interviews, questionnaires and direct

observation and measurements were used to generate the
data. The data were analyzed, and a new LCA diagram from
the results of the research and recommendations was made.
Engineering must change the current focus on eco-efficiency
to a search for solutions that are effective in terms of operating
within the share of the total pollution space that they can
claim. Engineering for environmental sustainability must be
life cycle engineering, and the paper positions it relative to
the constraints given by the boundaries of the ecosystems, the
targets of the United Nations’ sustainable development goals
and the strategies for a circular economy [4].

The paper [4] focused on the LCE of production, use and
recovery of self-chilling beverage cans. An attributional LCA
has been undertaken considering all life cycle stages of a
self-chilling can: manufacture of each part of the beverage
container, its utilization, collection of the user can and man-
agement of the waste by reuse, recycling and landfilling.
Activated carbon production is included in detail to assess its
contribution to the overall life cycle. The results are compared
with those of conventional aluminium and steel beverage cans
stored in two types of retail chiller: a single-door refrig-
erator and a large open-front cooler. A sensitivity analysis
explores alternative scenarios for activated carbon production
and recovery of the can components post-use for reuse or
recycling. The results highlight the importance of using acti-
vated carbon produced from biomass through a process with
efficient use of low-carbon electrical energy, energy recovery
from waste streams and appropriate air pollution control and
of achieving high rates of recovery, reuse and recycling of
the cans after use. The results suggest limited markets into
which the product might be introduced, particularly where
it would displace inefficient chilled storage in an electricity
system with a high proportion of coal-fired generation.

Manufacturing is becoming increasingly competitive, and
economic margins shrink, requiring manufacturers and their
suppliers to focus on cost reduction. To avoid unwanted envi-
ronmental consequences from the use of several materials,
it is necessary to consider all life cycle stages of a product
system as early as possible in the product and process devel-
opment activities. Life Cycle Engineering supports such a
systemic perspective and thus contributes to the engineering
of products with the lowest possible environmental impact.
The core methodology of LCE is Life Cycle Assessment,
which quantifies the environmental impacts of products and
processes over their life cycle [55].

LCE builds up on the comprehension of domain-specific
engineering activities and their interlinkage along the product
life cycle. Its goal is to guide engineering processes through
knowledge regarding hotspots and trade-offs in terms of
environmental, social and economic impacts. However, LCE
implementations show shortcomings due to a discontinuous
integration in key business processes as well as separated tool
environments between core engineering disciplines and LCE
methods and tools [56]. There are also many modular prod-
ucts which consist of detachable modules, which can be man-
ufactured, assembled, and serviced separately. Some of the
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modules may be reusable, recyclable or re-manufacturable
upon product retirement. Thus, modular design can provide
benefits to many aspects of the product life cycle. Different
types of integrated modular design methodology can be use-
ful for life cycle engineering such as [39].

Engineering for environmental sustainability must be LCE
and the constraints given by the boundaries of the ecosystems,
the targets of the United Nations’ SDGs and the strategies
for a circular economy [5]. This top–down perspective is
combined with a bottom-up perspective from the product’s
life cycle and technology. For each stage of the life cycle, the
contents of the toolbox for LCE are reviewed, and a perspec-
tive is given on how absolute environmental sustainability
requirements can be incorporated into a target-driven LCE.

Increasing competitive pressure within industries produc-
ing long-living, cost-intensive products drives the need to
optimize product life cycles in terms of faster time to market,
sustainable operation, reengineering and recycling. In this
context, the complexity of information technology (IT) sys-
tems is growing and has to connect different life cycle phases.
There are still many challenges concerning interface prob-
lems between different IT systems. They are caused by dif-
ferent data formats, continuous demand for information or
integration of new technologies. Thus, LCE has played a
significant role and needs to consider integrating new Indus-
try 4.0 solutions, such as cloud services, big data or cyber-
physical systems. An overview of these challenges, future
development and new research approaches have been pre-
sented [6].

LCE has evolved in parallel with other disciplines with
similar aims. In addition to LCE, there exist many concepts,
such as industrial ecology, cleaner production, life cycle man-
agement, industrial symbiosis and circular economy. Conse-
quently, orientation becomes challenging, and a framework
to integrate them is required. The paper [7] introduced an
integrated framework for LCE defining the concept and its
boundaries. It argues for the need to reorientate LCE towards
the environmental dimension of sustainability.

II. METHODOLOGY
This section focuses on research questions and describes
the process involved in conducting the systematic literature
review (SLR) proposed in this paper following the guidelines
developed by Kitchenham et al. [8].

A. THE RESEARCH QUESTION
Based on the literature review, three research questions have
been prepared for this paper. The research questions are
presented below.

RQ1: What are the main areas of manufacturing where
LCE is dealt with/applied/conducted today or researched?

There are many manufacturing industries, such as energy
production, home appliance industry and farming industry,
where LCE technology is dealt with. The RQ1 investigates
the main manufacturing areas where LCE is deployed.

RQ2: Which engineering activities of LCE adopted ML
and AI?

RQ2.1: What ML/AI techniques/methods are used?
RQ2.2: What ML/AI tasks are used?
The second RQ2 highlights the ML/AL methods

and their LCE tasks. There are two sub-RQs in RQ2
where RQ2.1 focuses on ML/AI techniques/methods, and
RQ2.2 focuses on ML/AI tasks.

RQ3: What SDGs were they able to achieve?
The third RQ3 emphasises the global goals of SDG.
An SLR is a process for extracting, aggregating and syn-

thesising data from primary studies to answer a set of spe-
cific research questions and generate a secondary study [9].
An SLR employs inclusion and exclusion criteria to filter the
research works that will be included in the review. We incor-
porate a complementary guideline described in [10]. We also
consider the recommendations on the importance of includ-
ing a manual target search on popular venues, authors and
journals as described in [11].

FIGURE 1. Systematic review process and tasks.

Generally, an SLR involves three phases, namely, (i) plan-
ning, (ii) conducting and (iii) documenting or reporting the
review [12]. Planning involves the set-up activities, including
defining the research question, search protocol and validation
protocol. The review includes searching and filtering the stud-
ies, data extraction and schematisation. Documenting is the
final phase and involves writing up the results, answering the
research questions, making classifications and highlighting
future work or potential trends. Figure 1 depicts these three
phases.

B. PLANNING
An SLR approach was adopted in this paper. It paid atten-
tion to reviewing the current published works in LCE and
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obtaining an unprejudiced and objective summary of the
current state of the art and future potential of AI and ML
applications in LCE. SLR uses a proven scientific and repli-
cable technique for accessing and understanding all existing
relevant research on a topic question or phenomenon of inter-
est [11]. Additionally, SLRs help researchers develop relevant
insights based on the hypothetical synthesis of previous and
current research and find potential gaps in the literature [13].
This study also presents and discusses a three-stage SLR
technique approach: (i) preoperational (‘review planning’),
(ii) operational stage (‘carrying out the review’) and (ii) post-
operational stage (‘review findings’).

C. CONDUCTING
Within the LCE domain, several areas use AI to offer ade-
quate safety and an effective and efficient environment. Many
research works have been conducted to enhance the LCE
processes using AI. It aimed to study the application of AI
and ML techniques in LCE. Specifically, we focus on the AI
and ML methods discussed above (see Table 3). We sought
to comprehend and appreciate how machine AI and ML
methods will help make the LCE processes and systems
safer and more efficient. To limit the scope of this paper,
we conducted a keyword search in official publisher websites
and academic databases, such as Springer, Elsevier, Scopus,
Science Publication, Taylor & Francis,

FIGURE 2. Selection of articles for feature extraction.

Directory of Open Access Journals, Association for Com-
puting Machinery, Wiley Online Library, Inderscience, IEEE
Xplore and Google Scholar. Our keyword search was guided
by the approach presented in [14]. The following keywords
were used in our searches: (i) AI in LCE, (ii) AI in industrial
manufacturing, (iii) ML application in LCE and (v) adaptive
manufacturing with AI. Figure 2 shows the study framework
for selecting the relevant papers.

A total of 153 papers were downloaded; all papers were
read entirely to ensure that they were within the scope of
this study. Out of the 153 papers, 8 were duplicates, and
2 papers not published in English were removed, leaving
143 records shortlisted for the screening stage. Four records
were found to overlap, and 3 papers (newspaper articles and
webpages) were also omitted, reducing the eligible papers for
our qualitative analysis to 136.

Of the 136, 22 papers (review studies on AI and ML
applications in LCE) and 72 papers (AI and ML applications
in fields rather than LCE) were further excluded. Conse-
quently, 42 papers were used in the quantitative analysis of
our SLR.

D. REPORTING
1) SUSTAINABLE DEVELOPMENT GOALS
The United Nations General Assembly (UN-GA) adopted
the 17 SDGs in 2015 as the blueprint for achieving a better
and more sustainable world for all by 2030. Countries are
supposed to fulfill these 17 goals to make the world a better
place to live for future generations.

2) WORD CLOUD
Word cloud is one of the visualisation techniques of text-
based features of the data, where a grouping of words is
displayed in various sizes. The larger and bolder the term,
the more frequently it appears in a document, and the more
essential it is.

We used the word cloud a few times in this paper.

3) CHORD DIAGRAM
Chord diagrams, also known as radial network diagrams, are a
form of data visualisation that became quite popular because
of how colourful and eye-catching they can be. They are
most useful when trying to convey the relationship between
different entities.

In this paper, we used one chord diagram to show the
relationship between engineering activities and tasks.

III. FEATURE EXTRACTION
Several features are extracted from the selected papers for
further analysis.

A. SUSTAINABLE DEVELOPMENT GOAL
The SDGs or global goals are a collection of 17 inter-
linked global goals designed to be a ‘blueprint to achieve
a better and more sustainable future for all’. We have
made an effort to connect the paper’s content to that of
the SDG objective; for example, if a paper discusses any
creative solutions employing artificial intelligence or other
digital approaches in the industrial sphere, we include
it in SDG 9.

According to our interpretation of the SDG’s subject, the
articles that were chosen primarily addressed SDGs 9, 11, and
12, which are presented in Table 1.
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TABLE 1. List of SDGs (keep only 9,11, 12).

B. ENGINEERING ACTIVITY
Engineering activity is another important feature extracted
in this paper to find only those engineering activities where
LCE-AI technology is used. Several engineering activities,
such as industrial operations, logistics, maintenance and
repair, manufacturing, operation at end-user, order dispatch-
ing, packaging planning, power equipment residual life,
procurement, product assembly, product design, production
design, production performance, product life cycle, reuse
remanufacturing and recycle and service design are investi-
gated through the selected papers.

C. COMPANY AND COMPANY TYPES
Which company the engineering activity took place in and
what type of company it was also investigated. Most of the
selected articles are part of academic research in different
universities; however, they highlight different industrial use
cases. It was found that LCE-AI technology has been widely
used in the automotive industry, battery production technol-
ogy, a manufacturing company, the railcar industry, the robot
and automation industry and university research.

D. AI-ML METHODS AND TASKS
The AI-ML tasks and methods have also been investigated
through the selected papers. Table 2 presents a summary of
the AI-ML tasks and methods.

E. KEYWORDS
Keywords are also extracted as features from the selected
papers. All the keywords are then analysed using a word
cloud to see which keyword is mostly used in the selected
papers.

F. YEAR
The timeframe is extracted as a feature, especially in which
year the selected papers are published and extracted.

G. COUNTRY
The country of the article is extracted. In this case, the country
is considered based on the authors’ country.

H. PUBLICATION TYPE
The publication types, such as journal, conference and work-
shop, are extracted as features.

TABLE 2. AI/ML tasks and methods identified in the selected papers and
used in the classification process.

I. TECHNOLOGY USED
The technology used for the experiment was also investi-
gated. Most of the experiment was conducted using a local
computer environment; however, few experiments were con-
ducted in a cloud environment. Additionally, a simulation-
based experiment was done in several experiments.

J. DATASETS
The dataset characteristic was another feature investigated
from the selected papers.

IV. ANALYSIS AND SYNTHESIS
Table 3 presents a summary of the 42 articles.

We found 42 papers that explored AI/ML and various
aspects of LCE. The above graph depicts the number of
papers published in each year from 1997 to 2021. We also
found the majority of them, i.e. 12 papers in 2021. As shown
in Figure 3, AI/ML has been applied in LCE basically for the
last 5 years and is increasing yearly.

Figure 4 shows a variety of engineering activities cov-
ered in the publications. The green ones on the left were
also mentioned in the ‘AI-LCE’ paper [46]. In seven papers,
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TABLE 3. The final 42 articles present Engineering activity, AI methods and AI tasks.
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TABLE 3. (Continued.) The final 42 articles present Engineering activity, AI methods and AI tasks.
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TABLE 3. (Continued.) The final 42 articles present Engineering activity, AI methods and AI tasks.

FIGURE 3. The number of papers by year.

FIGURE 4. Engineering activities.

we foundmore categories like ‘Manufacturing’ and fivemore
categories that we kept in ‘Others’.

Figure 5 shows the number of papers by engineering
activities.

It can be seen that most engineering activities where
AI/ML is applied are production design, product design,
maintenance and repair and manufacturing. It also seems that
product assembly and procurement are still limited in apply-
ing AI/ML, where future LCE could be considered. However,
other engineering activities in LCE, e.g. product life cycle
and packaging, and performance order dispatching, are the
newest engineering activities where AI/ML is increasingly
applied.

Several AI/ML algorithms and their related tasks are used
in LCE, as they are observed in the 42 papers. In Fig. 6 we
have found, ‘Prediction’ and ‘Classification’ are the twomost
used AI/ML tasks in those 42 papers, both are 14.29%. From
Fig 8 we see that those are 6 papers. Fig. 7 the word cloud

FIGURE 5. The number of papers by Engineering activities.

FIGURE 6. Pie chart for AI/ML tasks identified in the papers. The size of
the task represents how many papers in percentage this task was
mentioned. Some papers did not specify any tasks, they are classified as
‘Not Specified’(i.e., 2.38%). A paper may mention more than one task and
contributes to the size of all these tasks.

compares the word term of the title and keywords of the
papers.

We expanded AI to artificial intelligence in the word cloud
but ‘using’ in the stop word list. We have made a list of
stop words removing non-relevant keywords to give a more
relevant picture of the word cloud for titles.We also expanded
acronyms and merged synonyms, e.g. ‘LCE’ translates to the
phrase ‘life cycle engineering’, ‘life cycle’ to ‘lifecycle’ and
diagnosis to diagnostics (for full synonyms and stop words
used, contact authors).
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FIGURE 7. To give an intuitive image of the papers, we made a word
cloud comparison between all titles and all keywords of the papers but
we removed words related to the specific application and those with low
significance. We added words to the stop word list that do not contain
information on their own, e.g. assistant, analysis, method, replace, order,
ambiguity, estimation and dispatch. We also added some words related
to the application, e.g. railcar and hydrogen. We translated several
specific AI and ML terms to AI or machine learning since we called them
in detail in Figure 13. We used synonyms to handle stemming and words
with similar meanings.

FIGURE 8. The number of papers by task (algorithms) by year. The x-axis
is the total number of papers containing a specific term. The colours
represent the countries of the first author.

FIGURE 9. Word cloud of the task of engineering activities in LCE that we
have manually identified in all the selected papers.

Figure 8 shows the number of papers per task (algorithm)
for each year. It can be seen that most of the papers are from
between 2016 and 2021. For example, the prediction task was
applied to five papers.

Figure 9 shows the word cloud of tasks tackled by
42 papers.

TABLE 4. Selected AI - LCE papers with the first authors’ affiliation.

Table 4 shows a list of countries based on the author’s
workplace. Here it can be observed that most of the
work is done in Europe, even in Germany. Only a few
works had authors from different nations collaborating
on them.

None of the 42 papers identified any specific SDG number
that has been addressed by the authors. However, this study
attempted to find the SDGs and connect the dots between
SDGs and their solutions. For example, if they used an inno-
vative way to solve industrial challenges, the study linked
them to SDG 9. Figure 11 shows the analysis, where most
of the papers are found in SDG 9, i.e. ‘Industry, innovation
and infrastructure.
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FIGURE 10. The number of papers by SDG.

FIGURE 11. Chord diagram connecting engineering activities mentioned
in the papers (on the left side of the diagram, one paper can mention
more than one engineering activity; therefore, it is included in more than
one engineering activity). The diagram connects the papers with the ML
tasks mentioned in the paper on the right side, and one paper may
mention more than one task. The engineering activity, ‘Others’, are
engineering activities, such as order dispatching and packaging.

Why do we try to relate to it?
The goalsmust be achieved not just by countries but also by

industry, researchers and businesses. We attempted to link the
SDG with the problems that the papers addressed. Although
papers are not required to specify the SDG problems they
tackled, it was our objective to do so. Based on our findings,
goals 9, 12, 9 and 11 and 9 and 12 are mentioned in those
42 documents.
Goals that match with these papers:
Goal 9: Industry, innovation and infrastructure promoting

sustainable industrialisation, upgrading technological capa-
bilities of the industrial sector, increased resource use effi-
ciency and greater adoption of clean and environmentally
sound technologies and industrial processes are aligned with
LCE.1

Goal 11: Sustainable cities and communities, safe
and affordable housing, sustainable transport system and
planning and inclusive and sustainable urbanisation are
discussed.2

1https://www.un.org/development/desa/disabilities/envision2030-
goal9.html

2https://www.globalgoals.org/11-sustainable-cities-and-communities

TABLE 5. Demonstrates Fig 11 in more details.
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TABLE 5. (Continued.) Demonstrates Fig 11 in more details.

Goal 12: Responsible consumption and production, which
targets to achieve sustainable management and efferent use of
natural resources, significantly reduce the waste generation
by prevention, reduction, recycling and reuse.3

According to goal number 9, the industry needs to upgrade
the technological capabilities in the industrial sector to make
the industrial process much smoother. It can be in the design,
manufacturing process or other parts of the industrial prod-
uct development life cycle. As technological advancement is
always on the move, new technological implementations in
the industrial process are necessary to fulfill goal 9. Digitisa-
tion, particularly AI, the Internet of Things and data lakes of
the few that can be applied to make a sustainable industrial
process.

Table 5 shows the chord diagram of Fig 11 in further
depth and indicates the relationship between ‘‘Engineer-
ing Activities’’ and ‘‘Tasks’’ in terms of the number of
papers. For instance, 1.11% of papers addressed issues for

3https://www.un.org/development/desa/disabilities/envision2030-
goal12.html

FIGURE 12. In this word cloud, we show all the different AI/ML methods
used in the selected paper. We found many different ML/AI methods
mentioned in the papers to give a visual impression of which A/ML
methods are most mentioned, used or discussed in the selected papers.
See also Table 1 for more details.

the logistic ‘‘Engineering Activities’’ with the classification
‘‘Task.’’

Also, it can be seen from Fig. 13 that the chord diagram
represents the interrelationship between the AI/ML task and
engineering activities based on the number of papers. For
example, prediction tasks are used in six papers: two from
production design, two from product design, one from manu-
facturing and one from service design, as shown in the above
diagram.

Figure 12 shows the word cloud of AI/MLmethods used in
42 papers, such as support vector machine (SVM), reinforce-
ment learning and random forest (RF), to name a few.

V. DISCUSSION
This paper investigates the contributions of AI in LCE
through an SLR, i.e. SLR, for the past decades. The need
for a research protocol for SLR is considering transparency,
transferability and replicability of the work, which are the
characteristics that make a literature review systematic. This
helps minimise the bias by conducting exhaustive literature
searches.

Initially, 153 articles related to LCEwere found in different
publications, such as Springer, Elsevier, Scopus, Taylor &
Francis, IEEE Xplore and Google Scholar. However, 111
articles were excluded based on the title and abstract and
which are not focused on AI-LCE. This huge number of
articles are out of the scope of this paper and excluded.
Consequently, 42 articles were selected through the quan-
titative analysis of SLR methods focused on AI-LCE. The
selected 42 articles to highlight the contributions of AI/ML
approaches/methods/techniques in different areas of LCE.
Different AI/ML algorithms have been discussed to explore
the possibilities and make LCE activities more automated
and smarter. To give an intuitive image, a comparison of the
word cloud of titles and keywords is presented in Figure 7 of
the selected articles but removed words related to the spe-
cific application and those with low significance. This figure
visualises that the titles are centred on the word ‘Life Cycle
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Engineering’, whereas other high-frequency terms are ‘AI’
and ‘ML’. Figure 8 presents another word cloud based on the
keywords of each article; however, in this case, only com-
puter science-related keywords are considered. Figure 8 also
provides a crystal-clear visualisation that the selected papers
highlight more on ‘LCE’ and ‘AI’.

Three RQs have been addressed throughout the articles,
and different analyses have been conducted. To answer the
RQs, 14 different features have been extracted and further
analysed using different visualisation techniques, such as
chord diagrams, pie charts and bar plots. Extracted features
are also analysed in tabular format to understand the greater
significance level of AI-LCE.

The first RQ aims to investigate the main areas where LCE
is mostly dealt with. Literature shows that LCE is applied
in ten different areas, including product design, production
design, procurement, logistics, product assembly, component
production, service design, maintenance and repair, opera-
tion at end user and reuse remanufacturing/recycling [1].
However, this paper further identifies five more areas where
AI-LCE technology is used. These additional five areas are
product life cycle, packaging planning, order dispatching,
industrial operations and product performance, which are
presented in Figure 4. Figure 5 then highlights the number of
articles considering different engineering activities. Interest-
ingly, the greatest number of articles is found for production
design, whereas the lowest number of articles is found for
product assembly. One of the reasons behind this can be that
automation processes are applied more for production design
activity than product assembly. Similar results are also found
using the word cloud, which is presented in Figure 10. The
analysis in Figure 13 also shows that the largest groups of
papers in LCE address production design, product design and
maintenance and repair.

To see the trend of AI-LCE per year, the selected arti-
cles are analysed using a bar plot (Figure 3). It is seen
that AI-LCE-related articles were not published before 2014.
For our investigation, only four articles are found before
2014 because AI is quietly a new era of technology that has
been deployed enormously in recent years. This is visible in
Figure 3 that the trend has a significant increment after 2014,
which is a true reflection of AI being used in LCE.

It is also investigated to see which country/countries are
the pioneers in publishing AI-LCE articles around the globe.
Table 4 presents the number of articles considering the first
author’s country name, where the top three pioneer countries
are Germany, the USA and the UK, publishing nine, four
and three articles, respectively. For the bigger picture, Fig-
ure 11 then highlights that Europe is the ultimate geolocation
to publish AI-LCE articles.

The second RQ investigates the AI/ML methods and tasks
that are most commonly used in LCE. Table 3 highlights the
overview of AI/ML methods and tasks based on engineering
activity. It is observed that fuzzy logic and decision tree (DT)
are used mostly for logistics, whereas deep learning method,
convolutional neural networks and long short-term memory

are used for maintenance. For manufacturing activity, DT and
RF algorithms are mostly used. Overall, it is observed that
DT, SVM, neural network (NN) and RF algorithms are the
most popular methods for different engineering activities.
Figure 14 presents a word cloud to provide an instinctive
overview based on all AI/ML methods mentioned in the
selected articles. The word cloud shows that RF, LSTM,
DT and NN are bolder than other methods. We also inves-
tigated which AI/ML tasks, such as classification, clustering
and prediction, are mostly used in LCE. Figure 6 presents a
more vivid analysis of AI-ML tasks used in LCE. It is noted
that ‘‘prediction’’ and ‘‘classification’’ have the highest pro-
portion (14.29%), followed by ‘‘decision support’’ (9.52%),
‘‘data analysis,’’ ‘‘natural language processing,’’ and ‘‘regres-
sion’’ (7.14%), and so on. Figure 9 presents the number of
papers by AI-ML tasks each year. It is observed that most of
the papers are between 2016 and 2021 and in 2021, e.g. the
prediction task was applied to six papers.

Figure 11 shows a chord diagram to emphasise which
AI-ML tasks aremostly used for which engineering activities.
This is an interesting observation, which helps forecast the
future trend of AI in engineering activities in the indus-
try. This chord diagram also represents the interrelationship
between the AI/ML task and engineering activities based on
the number of papers. For example, prediction tasks are used
in six papers: two from production design, two from product
design, one frommanufacturing and one from service design,
as shown in the diagram.

Furthermore, the third RQ emphasises 17 SDGs, and this
paper investigates which SDGs are obtained most in the
selected articles. From the extracted features, it is observed
that only SDGs 9, 11 and 12 are achieved by the selected
articles. Figure 10 shows a pie chart highlighting that 25 arti-
cles (∼=25%) obtained SDG 9 and 8 articles (∼=19%) obtained
SDG 12. However, eight articles (19%) obtain SDGs 9 and
12, and one article obtains SDGs 9 and 11. The other SDGs
are not found in the selected papers, which are not relevant to
AI-LCE.

VI. CONCLUSION
This paper investigates the contributions of AI to LCE
through a systematic review considering the literature of past
decades. It also aims to determine the current and potential AI
techniques in LCE, enhancing the study and practice of LCE.
We used a specific set of inclusion and exclusion criteria to
identify and examine papers from several fields: production,
logistics, marketing and supply chain. Primarily 153 papers
were selected and based on inclusion and exclusion crite-
ria, 42 articles were selected as final consideration for fur-
ther analysis. The inclusion and exclusion criteria included
thoroughly scanning the title, abstract and application field
related to LCE. This paper provides insights through sys-
tematic analysis and synthesis. It has been observed that
academic papers onAI-based LCE have been increasing since
2015, and the trend is increasing. We categorized the scien-
tific papers based on which LCE activity they addressed and
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which AI techniques they used. Most papers are of a technical
characteristics and in the area of applied AI research. The
main applications of AI in LCE are Classification, Predic-
tion, Decision Support and Data Analysis. Looking at the
findings there may be missed opportunities, and the area of
AI-LCEmay benefit from amore systematic approach. Using
techniques such as chord diagrams, pie charts and matrices
enables a visualization of what is ongoing in the research area
of AI-LCE.

AI techniques used in LCE are mainly different algorithms
in ML, such as NN, SVM and RF. It is also noticed that
most LCE research papers are on production, manufacturing
and logistics. However, in the chord diagram, we see that the
largest groups of papers in LCE address production design,
product design and maintenance and repair.
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