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ABSTRACT Beamforming is the fundamental concept of wireless communications to serve several users
through multiple-antenna transceivers. The advent of massive multiple-input multiple-output (MIMO)
systems leads to an investigation into beamforming to reach optimal performance. However, fully-digital
beamforming implementation has to face important challenges in terms of consumed power and cost of
the RF chains and converters. To solve the problem, some studies focus on reducing hardware complexity
by dividing the beamforming into digital and analog parts, known as hybrid beamforming (HBF). In HBF
systems, the dominant part of the hardware complexity depends on the architecture of the analog network,
which determines the required RF components. In this paper, we categorize the analog beamforming parts
based on the connectivity between RF-chains and antennas.Moreover, we show the impacts of the connection
on the analog beamforming matrix. To this aim, we propose an efficient connectivity architecture in which
the antennas are divided into fully-connected and singly-connected groups so that we can deal with the
hardware complexity-performance trade-off. In addition, to achieve further performance improvements,
we propose a dynamic architecture that adjusts the connection of the RF-chain antenna to the channel state
information (CSI) through a switch network. Analytically, we propose an efficient approach to calculate the
zero-forcing precoder, which is proper for both fixed and dynamic architectures. A two-part algorithm based
on the greedy search method has also been developed to obtain switch states in dynamic architecture and
then implemented by a deep neural network (DNN). The simulation results confirm the theoretical analysis
and the suitability of the proposed architecture.

INDEX TERMS Millimeter wave communications, massive MIMO, hybrid beamforming, fixed phase
shifter.

I. INTRODUCTION
Thus far, the wireless networks have achieved a capac-
ity increase appropriate to the data traffic demands due
to the enhancements in the physical layer [1], [2], [3].
Since the techniques at the physical layer are insuffi-
cient to achieve more efficiency improvement, explor-
ing less-congested spectrum bands is unavoidable to meet
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further data traffic demands [4]. Large free bandwidths
in millimeter wave (mmWave) band and developments in
mmWave-hardware devices encourage the wireless industry
to design mmWave systems for the fifth generation (5G) and
beyond to increase the network capacity [5], [6], [7]. Path
loss, as an inherent effect of mmWave signals, degrades the
spectral efficiency of the wireless communication link. How-
ever, a redeeming property in mmWave signals is a decrease
in wavelength that allows occupying of a large number of
antenna elements in a small space [7], [8], [9]. Therefore,
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it is possible to densify antenna arrays in cities by keeping
a discreet visual footprint. It is then possible to generate high
gainwith beamforming capabilities inmmWave systems even
with the path loss effects. Furthermore, this enables the wire-
less systems to approach the objective capacity, potentially by
precoding multiple data streams [10], [11].

While conventional precoding techniques for microwave
systems are performed digitally at the baseband, which
enables accessing both the signal phase and the amplitude;
the mmWave imposes crucial practical constraints on signal
processing in mmWaveMIMO systems. Particularly, the cost
and power consumption of mmWave radio frequency (RF)
chain (analog-to-digital converters (ADC)/digital-to-analog
converters (DAC), data converters, mixers, RF amplifiers,
etc.) force the industry not to dedicate an RF-chain perMIMO
antenna element as in microwave systems [12], [13], [14].
Hence, the signal processing in mmWave systems relies on
RF processing that is under constraints due to its implemen-
tion via RF components such as phase shifters and switches.
Several works investigate two-part precoding approaches,
known as hybrid beamforming (HBF), in such mmWave
MIMO systems [13], [14], [15], [16], [17], [18], [19]. Regard-
ing hardware complexity, the RF segment, implementing the
RF precoder, is the dominant part that relies on two fac-
tors: the RF components and the RF architecture. The RF
components specify the feasible set for selecting the ana-
log beamforming coefficients, and the RF architecture deter-
mines the RF-paths connecting the RF-chains to the antenna
elements. Most published studies have considered traditional
architectures, called the fully connected (FC) and the partially
connected (PC), to develop the hybrid precoding approaches
[15], [16], [17], [18], [19], [20], [21], [22], [23]. The FC-HBF
effectively benefits the analog precoding gain by transmitting
a combination of RF signals through the antenna elements.
Nevertheless, the drawback of this system is a large number
of RF components that cause an increase in power consump-
tion and cost. On the other hand, the PC-HBF reduces the
required number of RF components by restricting the antenna
elements to be connected to only one RF-chain. Although
the PC-HBF reduces the hardware complexity, power con-
sumption, and cost of implementation, it suffers from severe
degradation of the performance. The system design trade-off,
between performance and hardware complexity, has attracted
the attention of academia and industry [13].

Regardless the RF components, the performance and the
complexity are strongly linked to RF architecturesEspecially,
more RF-paths yield to better performance but with a higher
complexity. In the light of this, two architectures have been
suggested, the group connected (GC) and the overlapped
subarray (OSA), in order to balance the performance and
the hardware complexity ratio [18], [24]. The GC separates
the antenna elements and the RF-chains into disjoint groups,
up to the number of RF-chains, with the FC strategy applied
for the connection into the groups. While the number of
subarrays (groups) in the OSA is fixed and equal to the
RF-chains, the subarrays are allowed to overlap. The GC and

OSA architectures enable us to save the hardware complexity
by adjusting the number of groups and overlapped antenna
elements. Nonetheless, the limited number of implementable
architectures in both approaches implies substantial gaps
between the different performance-hardware levels in those
systems.

Inspired by the aforementioned architectures, adaptive
architectures have been put forward to attain a significant per-
formance enhancement by adding RF switches to adjust the
RF-paths (from RF-chains to antennas) or enable/disable RF
components [25], [26], [27]. The authors in [26] have devel-
oped a dynamic PC-HBF by allotting a switch between each
RF-chain and subarray. The switch states are adjusted to min-
imize the power consumption for a given data rate. This archi-
tecture has a phase shifter in each RF-path. Thus, it becomes
the FC when all switches are on. In [27], a switch is dedicated
to a phase shifter (or RF-path) in which the switch states
are obtained based on the maximum energy efficiency (EE)
criterion. Dynamic architectures deploy switch networks for
two main reasons: the EE and the spectral efficiency (SE).
Higher EEs are achieved by reducing energy consumption
resulting from disabling specific RF-paths (a phase shifter,
an element/subarray of antenna array), and an enhancement
in the SE is obtained by adjusting the RF-paths to the CSI.
Note that a dynamic architecture imposes additional hardware
requirements (switch network) compared to the correspond-
ing fixed architecture.

Motivated by the above discussion, this paper investi-
gates architecture design and develops precoder algorithms
for multi-user massive multiple-input single-output (MISO)
systems to settle the dichotomy between performance and
hardware complexity. The major contributions are:

1) A novel architecture, called the partially/fully-
connected (PFC) architecture, is proposed for massive
MISO systems. It can control the hardware complexity
through an insight into the effects of RF-paths con-
necting RF-chains to antennas. In this architecture, the
antenna elements are divided into two groups: the fully-
connected antennas (FCAs) and the singly-connected
antennas (SCAs), where the FCAs scale up the num-
ber of RF-paths by a factor linked to the number
of RF-chains. Therefore, the system design strongly
depends on the number of FCAs, which allows us to
develop systems at different performance-complexity
ratios. Furthermore, the proposed algorithm, cancel-
ing user interference in this architecture, eliminates
zero-entry elements from the precoder matrix and
reforms the optimization problem decreasing the com-
plexity burden.

2) To further improve the performance, a dynamic archi-
tecture adapts RF-paths (selecting FCAs) to the CSI
by inserting a switch network between the RF-chains
and the antenna array. It poses the problem of the
antenna selection; i.e., selecting the FCAs and allo-
cating the SCAs to the RF-chains. Since exhaustive
search is impractical, especially in massive arrays,
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FIGURE 1. The analog BF designed by the proposed PFC architecture.

a two-part approach is proposed. First, FCAs are iter-
atively selected through a greedy algorithm. Next,
the second algorithm assigns the remaining SCAs
to the users. A deep neural network that is trained
by the algorithm outputs and the CSI is developed to
perform the approach in real-time systems. Further-
more, post-processing is applied to satisfy the hardware
limitations.

Organization: the paper is organized as follows:
Section II introduces the PFC architecture and corre-

sponding zero-forcing precoder in massive MISO systems.
Section III develops the dynamic PFC architecture and
antenna assignment algorithms. The proposed DNN for the
dynamic PFC architecture is presented in Section IV. Sim-
ulation results are presented in Section V, and section VI
concludes the paper.
Notations: the following notations are used throughout

the present paper: boldface upper-case letters and boldface
lower-case letters denote matrices and vectors, respectively.
A(i, `) denotes the entry in ith row and `th column of matrix
A, (.)T and (.)H denote the transpose and conjugate transpose
operations, respectively. ‖.‖2F denotes Frobenius norm, the
notations R and C stand for the sets of real and complex
numbers, respectively. O (.) shows how the run time grows
with the input size. The mathematical expectation operator
is represented by E{.}, CN

(
0, σ 2

)
represents a zero mean

complex Gaussian distribution with variance σ 2, the N × N
identity matrix is represented by IN , b.c is the floor function,
and [N ] = {1, 2, . . . ,N }.

II. SYSTEM MODEL
Let us consider the downlink transmission of a multi-user
massive MISO system, where a base station (BS) is equipped
with an antenna array of size Nt to serve K single-antenna
users as depicted in Figure 1. The BS is designed based on
the PFC strategy, as explained in subsection A, to perform the
analog beamforming. It is shown that we can achieve the
optimal performance of the fully digital BF for flat fading
channels by using fully analog BF [21], [23], [28]. Accord-
ingly, in this paper, the digital BF part is not used and the
number of RF-chains, NRF , is considered equal to the mini-
mum, i.e., the number of data streams, K . The BS applies the
precoder matrix F ∈ CNt×K on data stream vector x, where
E{xxH} = IK . Therefore, the received signals on the users’
side are given by:

y =
√
ρHFx+ n, (1)

where H ∈ CK×Nt represents the channel matrix, n ∈ CK×1

is the complex Gaussian noise vector with n ∼ CN (0, IK ) ,
and the normalization constant ρ is chosen to respect the
transmit power constraint P:

ρ =
P

‖F‖2F
. (2)

In the following subsection, the proposed PFC architecture is
presented, which is capable of handling the trade-off between
hardware complexity and performance.

A. PARTIALLY/FULLY-CONNECTED (PFC) ARCHITECTURE
Analog BF systems can be categorized, in general, based on
the connection strategy in the analog part, as illustrated in
Figure 2. As shown in Figure 2(a), the FC strategy connects
all the RF-chains to all the antennas throughNRFNt RF-paths.
Although this architecture requires the most complex hard-
ware, it puts no constraint on the precoder matrix, allowing
the achievement of the optimal performance. Notice that
each entry in the precoding matrix F represents an RF-path
connecting an RF-chain to an antenna.

On the other hand, the PC architecture, the simplest one,
has one RF-path per antenna that drastically simplifies the
hardware. It results in a block-diagonal precoder matrix with
only Nt non-zero entries. In fact, a large number of zeros in
the matrix represent the deleted connections compared with
the FC strategy, which tumbles the performance.

The GC architecture, depicted in Figure 2(c), divides
RF-chains and antennas into disjoint groups, which deploy
the FC strategy for inside-group connections. The complexity
of the architecture lies between the FC and PC. As a result,
more RF-paths exist in the system, which means there are
more non-zero elements in the matrix. A certain flexibility
is obtained because the number of groups can vary from 1
(equivalent to the FC architecture) to NRF (equivalent to
the PC). Therefore, the number of non-zero elements (or
RF-paths) to be optimized can be selected from the set
{Nt , 2Nt , . . . ,NRFNt }.

As shown in Figure 2(d), the OSA structure allows the
groups to overlap to cope with the hardware complexity-
performance challenge. Here, each RF-chain is connected
to a subarray of the size Mt = Nt − (NRF − 1)1Mt ,
where 1Mt represents the number of overlapped elements.
Therefore, Nt/NRF + 1 different levels of performance can
be designed by adjusting the number of overlapped elements
1Mt . In fact, FC and PC architectures are two special cases
for 1Mt = 0 and 1Mt = Nt/NRF , respectively. The GC and
OSA, nevertheless, offer the view of adjusting the number of
RF-paths, and it seems that the development of this approach
is essential for the effective management of the hardware
performance trade-off.

In this paper, we propose a novel connectivity that we call
partially/fully-connected (PFC). It is capable of adjusting the
number of RF-paths in Nt + 1 different levels, while the
precoder matrix still has a simple form, suited to analytical
optimization. As shown in Figure 2(e), we divide the available
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FIGURE 2. The analog BF connection architectures: (a) the FC strategy, (b) the PC strategy, (c) the GC strategy, (d) the OSA strategy with 1Mt overlapped
antennas, (e) the proposed PFC strategy with Nc FCAs.

antennas into two groups. The first group, comprising NU
antennas, is implemented as PC, i.e. one RF-path per antenna.
The second group, comprising the remaining antennas, Nc =
Nt−NU , is implemented via FC architecture, i.e. each antenna
is connected to all the RF-chains. We call the antennas of the
first group singly-connected antennas (SCAs) and those of
the second group fully-connected-antennas (FCAs). We note
that, Nc = 0 converges to the PC strategy and Nc = Nt to
the FC strategy. One of the advantages of this structure is that
it allows controlling the user priority by assigning more or
less SCAs to a specific user, which creates flexibility in user
priorities. If the number of antennas assigned to the kth user is
denoted by Nuk , the following expression should be verified:∑
Nuk = NU .
Without loss of generality, we assume the following order-

ing for antenna connections:
The Nu1 first antennas are connected to the first RF-chain,

the Nu2 following antennas to the second RF-chain, and so
on. The last Nc antennas are the FCAs connected to all
the RF-chains. With this assumption, the analog precoding
matrix F can be expressed as:

F =


fu1 0 . . . 0
0 fu2 . . . 0
...

...
. . .

...

0 0 . . . fuK
fc1 fc2 . . . fcK

 , (3)

where fuk ∈ CNuk×1 and fck ∈ CNc×1 contain the beam-
forming coefficients of the SCAs and FCAs related to the
kth RF-chain, respectively.

B. PRECODER OPTIMIZATION
In this section, we aim to obtain F by solving the optimization
problem of the zero-forcing precoder. We do not impose any
constraint on the F entries, thanks to the analog front-end
design given in [21] and [23]. The only constraint comes
from the structure simplifications obtained by deleting some
RF-paths, which results in the special form of the matrix F as
given in (3). In other words, a large number of entries must
be forced to zero. Since the inter-user interference intensely
curtails the performance of the multi-user systems, we design

F in such a way that nullifies the interference. More precisely,
the kth column of the precoder matrix F, denoted by fk , shall
satisfy: {

hk fk ′ = 1, k = k ′

hk fk ′ = 0, k 6= k ′.
(4)

where hk is the kth row of the channel matrix H. Therefore,
we form the optimization problem as:

F = argmin
F

‖F‖2F

s.t. HF = IK . (5)

It means that from all the possible solutions, the onewithmin-
imum transmit power is selected. Since the precoder matrix
F is a sparse matrix containing (K − 1)NU zero elements,
it hinders the problem (5) to be solved through classical
approaches. Therefore, we place all non-zero elements, Nnz,
of F in the vector f̂ ∈ CNnz×1 as:

f̂ =
[
f̂1, . . . , f̂K

]T
, (6)

in which f̂k =
[
fTuk , f

T
ck

]
. Also, we express the channel matrix

as:

H =
[
HU1 ,HU2 , . . . ,HUK ,HC

]
K×Nt

, (7)

where HC ∈ CK×Nc is the sub-matrix of the channel matrix
corresponding to the FCAs, andHUk ∈ CK×Nuk is the channel
sub-matrix corresponding to the Nuk SCAs assigned to the
kth user. Now, (5) can be rewritten as:

f̂ = argmin
f̂

∥∥∥f̂∥∥∥2
F

s.t. Ĥf̂ = î, (8)

where î = vec(I) and Ĥ ∈ CK2
×Nnz is defined as:

Ĥ = Blckdg(H1, . . . ,HK ), (9)

and Hk =
[
HUk |HC

]
. The problem (8), under some condi-

tions discussed below, has a straightforward solution as:

f̂ = ĤH
(
ĤĤH

)−1
î. (10)

Once f̂ is computed, we put its entries back to the matrix F by
using (6).
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FIGURE 3. The BS architecture deploying the dynamic PFC strategy.

C. DISCUSSIONS
1) Since the matrix Ĥ is a block diagonal matrix, f̂k can be
computed independently of the others as:

f̂k = HH
k

(
HkHH

k

)−1 ik , (11)

where ik is the kth column of IK . This observation will greatly
reduce the computation complexity.
2) In order forHkHH

k to be an invertible matrix, the follow-
ing constraint is required: Nuk + Nc ≥ K , ∀k .
3) In the case of fully-connected strategy, where Nc = Nt ,

we have:

Hk = H ∀k = 1, . . . ,K . (12)

By substituting (12) in (11), f̂k = HH
(
HHH

)−1 ik , where f̂k
is exactly the kth column of the F, therefore:

F = HH
(
HHH

)−1
, (13)

which is the conventional zero-forcing precoder.

III. DYNAMIC PFC ARCHITECTURE
In the previous section, we did not focus on how to select the
FCAs and how to assign the SCAs to the users. Obviously,
the optimal selection of antennas depends on CSI to achieve
SE improvement. Here, given the channel, we propose an
antenna assignment method that adapts the RF-paths to CSI
via a switch network controlling the connection of the outputs
to the antennas dynamically. It is named ‘‘dynamic PFC
architecture’’. Mathematically, it can be obtained by the mul-
tiplication of the outputs by a permutation matrix A of size
Nt × Nt . Therefore, received signals at the users’ side can be
written as:

y =
√
ρHAFx+ n. (14)

Let us define the set C containing the indexes of FCAs and
the set Uk containing the indexes of SCAs assigned to the
kth user. The switch matrix A can be written as:

A = [aP(1), . . . , aP(Nt )], (15)

where aP(i) denotes a column vector of length Nt with 1 in
the P(i)th position and 0 elsewhere, and the permutation P is
defined as:

P : {1, . . . ,Nt } → {U1, . . . ,UK , C}. (16)

By taking into account the permutation, we define the new
channel matrix as:

H̃ = HA

=
[
HU1 ,HU2 , . . . ,HUK ,HC

]
K×Nt

, (17)

where HUk ∈ CK×Nuk and HC ∈ CK×Nc consist of the
columns indicated in Uk and C, respectively. If the switch
matrix A is known, the beamforming matrix F is derived as
before from (5) by substituting H by H̃.

Since HAF = IK , as before, we minimize the ‖F‖2F but
for all the possible combinations given by A. Therefore, the
optimal permutation can be obtained from:(

Copt ,Uopt
1 , . . . ,Uopt

K

)
= argmin

C,U1,...,UK
‖F‖2F

s.t. HAF = IK . (18)

Since ‖F‖2F =
∑K

k=1

∥∥∥f̂k∥∥∥2, we can simplify the argument of
the summation as:∥∥∥f̂k∥∥∥2

F
= f̂Hk f̂k

= iHk

((
HkHH

k

)−1)H

HkHH
k

(
HkHH

k

)−1
ik

= iHk

((
HkHH

k

)−1)H

ik

=

[(
HkHH

k

)−1]
k,k
. (19)

By substituting (19) in (18), we have:(
Copt ,Uopt

1 , . . . ,Uopt
K

)
= argmin

C,U1,...,UK

K∑
k=1

[(
HkHH

k

)−1]
k,k
.

(20)

An advantage is that the computation of the optimized F
is not required at each permutation, only ‖F‖2F is needed,
using the last simplified expression. However, the number
of permutations is prohibitive to make an exhaustive search.
In the following section, we propose a heuristic method with
two relatively simple algorithms: the first one selects the
FCAs, and the second one assigns the SCAs to users.

A. ALGORITHM 1: SELECTING FCAs
Since most of the beamforming is done by common antennas,
we prioritize the FCAs selection. Intuitively, we select the
most important antenna, Nc columns of the matrix H, which
is the most informative part of H. This problem has been
addressed in [29], according to which, we face the following
optimization problem:

C = argmin
C

Tr
{(
HCHH

C
)−1}

, (21)

where the set C contains the indexes of the selected columns.
To solve this complex combinatorial column selection prob-
lem, [30] proposes a less complex greedy removal method.
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Algorithm 1 selecting FCAs
Input: H, Nc
1: C(0) = {` ∈ N : ` ≤ Nt }
2: For t = 1, . . . ,Nt − Nc

3: ` = argmin` Tr
{(

HC(t)HH
C(t) − h`hH`

)−1}
s.t. ` ∈ C(t)

4: C(t+1) = C(t) − {`}
5: end
Output: C and HC

Therefore, we iteratively identify the least informative col-
umn and eliminate it from the matrix. The algorithm starts
with C(0) = [Nt ]. Then, one member is removed in each
iteration. For instance, in the tth iteration of the algorithm,
` ∈ C(t) is found from:

` = argmin
`

Tr
{(

HC(t)HH
C(t) − h`hH`

)−1}
,

s.t. ` ∈ C(t) (22)

then ` is removed for the next iteration, i.e, C(t+1) = C(t) −
`, and the `th column of the matrix H(t)

C to give H(t+1)
C . The

algorithm proceeds by removing one element at a time until
|C(t)| = Nc. A complete pseudocode of the algorithm is given
in the Algorithm 1.

B. ALGORITHM 2: ALLOCATING SCAs TO USERS
The second algorithm aims to assign the remaining antennas,
in the set N = [Nt ] − C, to the users in such a way that
the Frobenius norm of F is minimized. For a given C, the
problem (20) can be written as:

(U1, . . . ,UK ) = argmin
U1,...,UK

K∑
k=1

[(
HkHH

k

)−1]
k,k
. (23)

As shown in Algorithm 2, we start with the empty sets Uk
(k = 1, . . . ,K ) and add iteratively selected antennas to them.
We construct the corresponding Hk = HC , for all k , then
we append the carefully-selected ith column of the channel
matrix, hi, to Hk as:

Ĥki = [hi,Hk ] i ∈ N . (24)

To analyze the effect of adding the ith column to the set Uk
on the ‖F‖2F, we define the matrix 1 as:

1(k, i) = pk − pki, (25)

where

pk =
[(

HkHH
k

)−1]
k,k
, (26)

pki =
[(

ĤkiĤH
ki

)−1]
k,k
. (27)

1(k, i) is interpreted as the amount of decreased power when
the ith column is assigned to Uk . Therefore, we use 1 as

Algorithm 2 Allocating SCAs to the Users
Input: H, C;
1: Initialization:
N = [Nt ]− C;
Uk = {}, ∀k = 1, . . . ,K ;
Hk = HC , ∀k = 1, . . . ,K ;

2: For k = 1 : K
3: Ĥki = [hi,Hk ] ∀i ∈ N ;

4: pk =
[(

HkHH
k

)−1]
k,k

;

5: pki =
[(

ĤkiĤH
ki

)−1]
k,k

;

6: 1(k, i) = pk − pki;
7: end

8: Repeat
9: (k, `) = argmaxk,`∈N 1(k, `)

s.t. |Uk | < Nuk

10: Allocate `th ant. to the kth user: Uk = Uk ∪ {`};
11: Remove `th ant. from remained ant. and set: N = N − {`};
12: Update Hk =

[
HUk ,HC

]
;

13: Update kth row of 1 from steps 2 to 7;

14:Until |N | = 0

Output: Uk , ∀k = 1, . . . ,K ;

TABLE 1. Implementation Details of the DNN.

the metric for column selection at each iteration in such a
way that the pair (`, k), generating the maximum value in1,
is selected:

(k, `) = argmax
k,`∈N

1(k, `)

s.t |Uk | < Nuk . (28)

The selected column ` is added to Uk , which changes Hk
and pk . Therefore, the kth column of 1 is updated before
allocating another antenna. Then, algorithm 2 proceeds until
all antennas are allocated.

IV. PROPOSED DNN FOR THE DYNAMIC PFC
ARCHITECTURE
In this section, we present the use of a deep neural network
trained to predict the results of the algorithms 1 and 2 directly
from the CSI. The configuration of the neural network we
used is illustrated in Table 1; it has four layers including the
input layer, two dense layers, and the output layer. The hidden
layers deploy KNt units and the rectified linear unit (ReLU)
function, as the activation function, but the output layer uses
the sigmoid function.

The input layer is fed by a 3D matrix denoted as X ∈
RK×Nt×3, with (i, j, :)-th entry, a vector of size 3 containing
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absolute, real, and imaginary parts of the (i, j)-th entry of the
channel matrix. The training label matrix Y, of size K × Nt ,
shows the connection between RF-chains and antennas. Y is
constructed in the simulation using the previously proposed
algorithms as:

Y(k, n) =

{
1 n ∈ Uk or n ∈ C
0 otherwise

(29)

In the training phase, the DNN is trained end-to-end in a
supervisedmanner.More specifically, a dataset of the channel
matrix and the corresponding connection matrix Y are used
to train the DNN to predict the connections for a given input
channel matrix.

A. DATASET
We have generated Lp realizations of the channel matrix with
different user locations. For each of which, Ln noisy channel
matrices are generated as:

H(lp,ln) = H(lp) + z, (30)

where z is a complexGaussian noisematrix, whose entries are
i.i.d. and follow the distribution CN (0, σ 2

z ). For each noise-
less channel matrix H(lp), the sets C and Uk are constructed,
thanks to Algorithm 1 and Algorithm 2, respectively. Then
the training label, Y(lp), is calculated from (29). Furthermore,
theY(lp) is considered as the training label for all noisy forms
of theH(lp), which gives the input-output pairs of the training
data.

B. TRAINING PHASE
During the training process, the DNN is fed by the train-
ing data generated for Lp = 1000 channel realizations.
To account for different channel characteristics, for each
channel realization, Ln = 99 noisy channels are gen-
erated by adding synthetic noises for different powers of
SNRTRAIN ∈ {15, 20, 25} (33 noisy channels of each power),
where SNRTRAIN = 20 log10

(
|H (lp)(i,j)|2

σ 2z

)
. In the training

process, 70% of all generated data is selected as the training
set and the remaining as the validation set.

C. POST-PROCESSING PHASE
The trained DNN accepts the input of size K × Nt × 3,
and predicts the matrix Ŷ, which contains the connection
‘‘probabilities’’. To satisfy the connectivity constraints, post-
processing is required to obtain the sets C and Uk . We suggest
a straightforward solution, where the Nc columns of Ŷ with
the largest sum-value are assigned to set C. In fact, it consists
of selecting the antennas with the most connectivity to all
users. Next, to assign the antennas to the users, a max-min
simple approach is applied to add the number ` to the set
Uk . Intuitively, we first look for the less significant antenna,
and we connect it to the user with the most probability of
connection. For that, we sum up all the columns of Ŷ and
select the minimum. Then, in that column, we select the user

Algorithm 3 Post-Processing for the Proposed DNN

Input: Ŷ;
N = [Nt ];
Uk = {}, ∀k = 1, . . . ,K ;
C = {};
Repeat

` = argmax`∈N
∑K

k=1 Ŷ(k, `)
C = C ∪ {`};
N = N − {`};

Until |C| = Nc
Repeat

` = argmin`∈N
∑K

k=1 Ŷ(k, `)
k = argmaxk Ŷ(k, `)

s.t. |Uk | < Nuk ;
Uk = Uk ∪ {`};
N = N − {`};

Until |N | = 0
Outputs: C, and Uk , ∀k = 1, . . . ,K ;

TABLE 2. Computation Times (in Milliseconds).

with the most probability of connection. The post-processing
is summarized in Algorithm 3.

The complexity of the proposed algorithms is predomi-
nantly dependent on the computational complexity of the
matrix inversion and sorting data, which are of the order
O(n3) and O (n log n), respectively. In Algorithm 1, the
computational complexity grows linearly by the number of
iterations, Nc. It calculates Nt − i matrix inversions in the
ith iteration, so the total number of computing matrix inver-
sion is Nc (Nt − (Nc − 1) /2). Furthermore, in each iteration,
it sorts the trace values in step 3, where the maximum number
of values is Nt . Therefore, the computational complexity of
Algorithm 1 is O

(
Nc
(
(Nt − (Nc − 1) /2)K 3

+ Nt logNt
))
.

Algorithm 2 includes two loops; the complexity of
the first loop depends on calculating NU matrix inver-
sions; the complexity of the second loop grows lin-
early by NU , and calculating N 2

U/2 matrix inversion.
Furthermore, it sorts values of matrix 1 in each itera-
tion. Therefore, the computational complexity of Algo-
rithm 2 is O

(
NU

(
K 4
+ NU/2K 3

+ NUK log (NUK )
))
.

Algorithm 3 sorts a vector of the size Nt in each iteration,
therefore its complexity is of the order O

(
N 2
t logNt

)
.

Furthermore, the computation time of the algorithms is
presented in Table 2 for a different number of FACs when the
BS equipped with 256 antennas to serve 10 users. It shows
the proposed DNN significantly reduces the computation
time.
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FIGURE 4. Signal flow from the RF-chain j to the antenna i .

V. SIMULATION RESULTS
In this section, the simulation results are presented to show
the relation between performance and hardware complexity
in a multi-user massive MISO system, and to compare them
with the FC and GC strategies [21]. In the following simula-
tions, we consider Saleh-Valenzuela channel, which models
the propagation environment as a geometric channel with Ncl
paths [31]. The channel vector between user k and the BS, hk ,
is expressed as:

hk =

√
Nt
Ncl

Ncl∑
i=1

αiat (φi, θi)H , (31)

where αi represents the channel gain of the ith path.
We assume that all the paths have the same average power,
αi ∼ CN (0, 1). The φi and θi are angles of departure uni-
formly distributed across 60 degrees in the azimuth domain
and 20 degrees in elevation [15]. The a (φi, θi) represents the
array response vector of transmitter antenna array. For a N by
M uniform planar array (UPA), a (φi, θi) is given by [32]

a (φi, θi) =
1
√
NM

[
1, . . . , e

2π
λc
d(n sin(φi) sin(θi)+m cos(θi)),

. . . , e
2π
λc
d((N−1) sin(φi) sin(θi)+(M−1) cos(θi))

]T
,

(32)

where λc is the the wavelength, d is the inter-element spacing,
and 0 ≤ n < N and 0 ≤ m < M are the y and z indexes of
antenna elements, respectively.
implementation model:To simplify the hardware complex-

ity, the architecture of the analog beamforming is presented in
[21] and [23]. In this architecture, the complex weightings are
approximated by Np fixed phase shifters (FPS) and a switch
network presented in Figure 4. The advantage is that the
generated phases are shared among all the other coefficients
in the same row of the matrix F. It is shown in [23] that with
only 11 FPSs per RF-chain, a quasi-optimal performance can
be obtained. In our simulations, the transmitter is equipped
with a 16 × 16 UPA with half-wavelength spacing between
elements, Np = 11, and NRF = K . Furthermore, we assume
that there is no priority between users, so the same number of
antennas are assigned to them.

A. SPECTRAL EFFICIENCY
To analyze the performance of the proposed architecture, the
sum-rate criterion is considered:

Rs =
K∑
k=1

log2

(
1+

ρ |hk fk |2

ρ
∑K

k ′=1,k ′ 6=k |hk fk ′ |
2
+ 1

)
. (33)

FIGURE 5. The sum-rate as a function of Nc for Nt = 256, K = 10 and
SNR = 10 dB.

Figure 5 illustrates the sum-rate as a function of Nc, going
from PC to FC strategies. As it can be seen, for small values
of Nc, the performance sharply increases by assigning more
antennas to the set of FCA’s, resulting in more complex hard-
ware. The designer can select the desired trade-off between
complexity and performance. As expected, the dynamic PFC
significantly improves the SE for small values ofNc; the price
to pay is the added switch matrix before the antennas.

B. ENERGY EFFICIENCY
To put the energy consumption into perspective, we define
the EE as ξ , Rs

Ptot
, where Ptot is the total power consumption

introduced as:

Ptot = P+ PBB + NRFPRF + NRFNpPaPS + NnzNpPsw
(34)

In this equation, P is the transmit power; PaPS , PBB, and
PRF are, respectively, the powers consumed by a PS, by the
baseband processor, and by an RF-chain; Psw represents the
power consumed by a switch. In this simulation, their values
are set to: PFPS = 10mW , PQPS = 30mW ,PCPS = 50mW ,
PBB = 200mW , PRF = 300mW , andPsw = 5mW [22]. Also,
the number of switch networks Nnz in the FC, GC, PFC, and
dynamic PFC architectures are KNt , KNt/g, NU + KNc, and
2Nt + Nc(K − 1), respectively.
Figure 6 illustrates the energy efficiency as a function of

the number of FCAs. This shows that the maximum energy
efficiency is achieved by considering no antenna as FCA in
dynamic PFC architecture, while the fixed PFC architecture
requires a few FCAs.

C. DNN BASED ANTENNA ASSIGNMENT
In Figure 7 and Figure 8, the trained DNN is used for anten-
nas assignment in the dynamic PFC architecture. To have
a fair comparison with the GC architecture [18], we con-
sider approximately the same hardware complexity for both
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FIGURE 6. Energy efficiency achieved by different values of Nc , when
K = 10, and SNR = 10 dB.

FIGURE 7. Sum-rate versus SNR, with K = 10, Nc = 113 in the PFC,
g = 2 in the GC.

structures. Therefore, the number of shared antennas is
determined by:

Nc = b
Nt (K − g)
g(K − 1)

c, (35)

where b.c denotes the floor function. Since the performance
of the GC strategy decreases by increasing g, to achieve com-
parable performance, the number of groups is set to the mini-
mum, i.e., g = 2. Figure 7 reveals a non-negligible gain in the
sum-rate for the dynamic PFC compared to the GC architec-
ture. The performance of FC architecture deploying double
PS (DPS) and quantized PS is also illustrated. For instance,
at 10 dB of SNR, the PFC and dynamic PFC architectures
obtain 81.62% and 92.26% of the FC rate, respectively, while
the GC strategy achieves 69% of that. Figure 8 presents the
energy efficiency versus SNR. It indicates that the energy
efficiency of the proposed architecture is significantly better
than that of the FC and the GC structures. It reveals that even
though the FC structure has better spectral efficiency, it has

FIGURE 8. Energy efficiency achieved by different values of SNR, when
K = 10, Nc = 113 in the PFC, and g = 2 in the GC.

a lower energy efficiency because of the number of deployed
switches.

VI. CONCLUSION
The present paper considered the downlink transmission in
multi-user massive MISO systems, where the analog BF is
performed at the BS. Regarding the impacts of RF-paths
on performance and hardware complexity, we proposed a
cost-efficient architecture with Nt + 1 distinct levels of com-
plexity/performance trade-off. Particularly, the antenna ele-
ments are divided into two groups.Nc antennas are connected
to all the RF-chains through the FC architecture, and each of
the rest is connected to only one RF-chain, as the PC strat-
egy, reducing hardware complexity. The lack of connection
between all the RF-chain/antenna pairs imposes constraints
on the form of the precoder matrix, i.e., zero elements, which
makes the optimization proceduremore complicated.We pro-
posed an analytic solution for the optimization of the precod-
ingmatrix by using the zero-forcing approach. To improve the
performance, the dynamic antenna assignment is presented,
which poses a complex combinatorial optimization problem.
A suboptimal greedy solution is given for antenna selection
with reasonable complexity. To further simplify the imple-
mentation for real-time applications, we proposed a machine
learning approach that gets the CSI and gives directly the
antenna assignment matrix, thanks to a post-processing sim-
ple algorithm. Finally, we presented promising simulation
results on the performance of the proposed architecture for
the mmWave channels.
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