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ABSTRACT Recommender systems (RS) are increasingly leveraging the power of graphs to enhance
accuracy. However, we stipulate that existing methods don’t take into consideration the inherent behavior of
communities and the interaction between all the sub-groups of the network.
In this work, we develop a Deep Graph-based Collaborative Filtering recommender system (DGCF), which
incorporates the concept of community profiling and leverages the power of Graph Neural Networks. DGCF
utilizes multiple graphs to exploit all types of information from the different user interactions. It extracts the
overlapping communities from the homophily user-user graph and also integrates the high-order information
from the user-item bipartite graph. We conduct experiments and evaluate the DGCF on the MovieLens
datasets (ML-100K and ML-1M), and Douban dataset. Our experiments reveal significant improvements
over a number of the latest deep learning models for recommender systems. Results also support that DGCF
has the potential to render better recommendations as it extracts deep relationships using the community
structure.

INDEX TERMS Collaborative filtering, graph neural networks, recommender systems, community profil-
ing.

I. INTRODUCTION
Recommender systems (RS) play a vital role in providing
users with a personalized experience in various domains,
from e-commerce to social media. RS are at the core of a
several online services providers such as Amazon, Netflix,
YouTube, etc. RS can be formalized as a link prediction
problem: in order to estimate the user preference regarding
an item i, we need to learn the representation of the user
hu and the item hi. Then, we calculate the preference score
for user on the item (as a probability) using a score function
between both embeddings. The score function can be either a
dot product, MLP, etc.

There are majorly three different types of approaches for
RS: Content based filtering (CB) [1], Collaborative Filtering
(CF) [2], and Hybrid approaches [3].

• Content based filtering compute recommendations by
learning from information about items’ features rather
than using users’ interactions and feedback.
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• Collaborative Filtering RS make recommendations by
learning the similarity between users through the
user-item historical interactions, either explicit or
implicit feedback.

• Hybrid RS combine CF and CB techniques to benefit
from their complementary advantages.

Recently, deep learning (DL) has stepped into the world of
RS and has shown promising results by outperforming all
the traditional techniques. One of the core strengths of deep
learning in RS is its ability to capture hidden patterns through
the representation of users-items interactions.

Deep learning based recommendation models can be
divided into two main categories [4]:
• Recommendations with Neural Blocks: use one specific
deep learning technique (Convolutional neural network
CNN, Recurrent neural network RNN. . . ).

• Recommendations with Deep Hybrid Models: use a
variety of deep learning techniques. They integrate mul-
tiple neural building blocks that complement each other.

Interactions in recommender systems can be viewed as a
bipartite graph. Graphs are a powerful tool to encode inter-
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actions, and combined with DL, they generate deep graph
models such as GNNs and their variants. Graph Neural Net-
works (GNNs) [5] are a type of deep learning architectures
designed to extract deep relations on graph data for different
applications. GNNs operate directly on the graph structure to
accomplish various tasks: nodes classification, link predic-
tion, graph classification, etc.

Research objective: In this paper, we build our approach
on the novel concept of ’Community profiling’. In sociology,
Community profiling is a social research method that entails
constructing a full profile of a community’s natural needs
and resources of the members’ active participation, with the
purpose of devising and implementing a strategy to address
the concerns identified [6]. We define Community Profiling
(CP) as the process of building a detailed picture of a target
community in a network. CP helps understand the profile
of a community by taking into account its interests, values,
attitudes and interactions with other communities. Develop-
ing a community profile provides a detailed insight on the
collective behavior of users’ communities. However, deriving
a community profile from its members’ personal profiles is a
challenging task.

In this paper, we propose a novel deep graph recom-
mendation framework based on community profiling and a
model-based CF approach (DGCF), with two key novelties:

• Capturing the behavioral similarity between the user and
the item by applying message passing on the bipartite
graph while aggregating and updating the state of the
nodes when learning with GNN.

• Capturing the proximity similarity of users and their
belonging to sub-groups by modeling a user-user graph,
while learning simultaneously on the bipartite graph
to capture the behavioral similarity signal, and then
employing an information fusion layer that integrates
both information provided from the user-item bipartite
graph and the user-user graph.

The core idea is to enhance the RS accuracy by capturing
different types of signals on multiple graphs. It means a more
refined representations of user nodes. We conduct intensive
experimental studies on a real-world dataset. Results demon-
strate the superior performance of DGCF compared to the
latest state of the art models.

Paper organization. The paper starts with Section 2 that
reviews the relevant literature. Section 3 introduces the pro-
posed deep learning-based recommender system (DGCF).
The results of applying DGCF to the MovieLens and Douban
Datasets are shown and discussed in Section 4. Finally,
we discuss potential research directions.

II. LITERATURE REVIEW
Our novel approach integrates concepts from 1) Model-based
Collaborative Filtering methods, and 2) Graph-based Rec-
ommender System models. Given the extensive scope of our
study, we focus on works that are the most relevant to the
DGCF approach.

A. MODEL-BASED COLLABORATIVE FILTERING METHODS
Model-based CF methods is a subgroup of the collaborative-
filtering models in recommender systems. It learns the sim-
ilarities between users and items by extracting information
from the data set to build a model that can generate rec-
ommendations. There are common classical approaches for
model-based CF such as clustering [7], classification [8],
Latent model [9], Markov decision process (MDP [10]), and
the most extensively used method Matrix Factorization [11]
and its variants NMF [12], PMF [13], and BNMF [14]. How-
ever, in recent years, various model-based CF methods have
been extensively using deep learning techniques and archi-
tectures to capture different types of signals that translate the
behavior of the user. Deep learning-based recommendation
models are more powerful than traditional approaches [15].
Modeling the non-linearity in data allows deep learning tech-
niques to capture complex and intricate user-item interaction
patterns. Additionally, they help automate the feature engi-
neering process and thus reduce the efforts in hand-crafting
the features. Existing deep learning-based recommendation
models make use of one or more deep learning techniques.
Because of the flexibility of deep neural networks, combing
different strategies producemore powerful hybridmodels [4].

B. GRAPH-BASED RECOMMENDER SYSTEM MODELS
Graph-based RS is a novel category of CF models. It models
users’ preferences directly on a Graph structure. The graph
can be an abstraction of different objects, such as users,
items, and attributes. The use of graphs is a promising direc-
tion for building a more effective RS because they effec-
tively capture all types of interactions (non-linear and non-
trivial) between all objects. Previousworks used randomwalk
approaches on graphs [16], [17]. These methods take as input
a graph from the user-item interactions. They start from a
node j and then choose, at random, one of his neighbors
and move to it. The same step is repeated t times until all
nodes are processed. The random walk algorithm is used to
rank items based on the preferences of the users. However,
those methods are less effective and lack model parameters
to optimize the objective function. HOP-Rec [18] is also a
baselinemethod that combines the factorization approach and
the graph model. It begins by taking a random walk over
the user-item graph, then it trains the matrix factorization
with BPR to build the recommender model. However, this
method only uses high-order connectivity to enhance the
training data. Among all deep learning models, Graph Neural
Networks (GNNs) [5] are the most dominant technique for
recommender systems nowadays. Their ability to learn from
graph-structured data enables them to capture different types
of interactions between nodes. The intuition behind GNNs
is that nodes are naturally defined by their neighbors and
connections. GNNs begin by accumulating feature informa-
tion from the users’ neighbors, then combine the aggregated
data with the node’s current state. The technique is repeated
until a stable equilibrium is reached. Later on, various GNN
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TABLE 1. Existing literature reviews in the domain of ‘‘Overlapping
Community Detection’’.

derivatives have emerged such as GCN [19]which iteratively
aggregates information from neighbors by approximating
the first-order eigendecomposition of the graph Laplacian,
GraphSage [20], GAT [21], GGNN [22] and many more.
Therefore, more recent works have started to apply GNN to
recommender systems [23], [24], [25], [26]. LightGCN [23]
is a variant of GCN, it only uses the main GCN component
which is the neighborhood aggregation for the recommen-
dation task. It learns and extract user and item embeddings
from the user-item bipartite graph, with the final embedding
being the weighted sum of the embeddings acquired at all lev-
els. The embedding of all layers is averaged using LightGCN.
The collaborative signal stored as a high-order connection in
the embedding function is used by Neural Graph Collabo-
rative Filtering (NGCF) [24], which incorporates user-item
interactions into the GCNmodel. PinSAGE [25] applies GCN
on the item-item graph. It generates the item embedding from
the graph structure (global and local) and the feature informa-
tion of the item. Multi-GCCF [26] incorporates three types of
graphs: a user focus perspective with user-user, an interaction
focus with user-item and an item focus perspective with item-
item, in order to learn the final representation of users and
items. The user-item bipartite graph uses two GCN layers,
and for the user-user and item-item, it uses one GCN layer.

C. COMMUNITY DETECTION TECHNIQUES
In network analysis, community detection is a critical task.
The goal is to discover and extract sub-structures in a net-
work. Most of the works and efforts are directed toward
defining efficient methods for finding disjoint communities
in a network. Deep learning approaches for detecting com-
munities have been proposed in numerous works [42], [43],
[44]. However, in real-world networks, communities over-
lap, which means that nodes in the graph belong to many
groups. In our novel approach, we aim to define, discover
and extract sub-structures of the graph using Community
detection. Some researchers have conducted surveys and sys-
tematic literature reviews to provide insightful information
about overlapping community detection. Table 1 lists the
existing literature in this field.

CNNs, GANs, and auto-encoders are the three most com-
monly used deep neural architectures in community detec-
tion: [51] used a CNN model to detect communities in
topologically incomplete networks, which have some edges
missing when compared to real-world networks. Refer-
ence [52] included sparse matrix convolution within a CNN

framework to deal with the highly sparse representations
associated with adjacency matrices. Furthermore, [54] used
auto-encoders to address the matches between the network
topology and node attributes by developing a graph regu-
larized auto-encoder approach. In the GNN spectrum, [53]
introduced a non-backtracking operator to define the edge
adjacency, others [55] used the Markov random field and
combined it to an attributed network to detect communities.
Despite all the work that have been done, it is still challenging
to generate community embeddings instead of creating user
embeddings: how to capture the relation between the node in
the graph and the community structure (moving from 1-hop
or more from nodes in the graph to sub-graphs instead).

III. METHODOLOGY
This section outlines the main aspects of the methodology
used for our DGCF framework, depicted in Figure 1. DGCF
contains three main key components. The first layer is a
Community Encoding layer (CE) that encodes latent infor-
mation based on the user-user similarities graph by extracting
overlapping sub-structures of the graph. The second is a
Bipartite Graph Convolutional Networks encoder (EB-GCN)
that generates representations of users and items and captures
the collaborative signal in the user-item interaction bipartite
graph. The outputs of both layers are federated in an infor-
mation fusion layer (IF) that aggregates the embeddings from
different perspectives.

A. COMMUNITY ENCODING LAYER (CE)
In order to identify community profiles, we first need to detect
those communities. We thus use a community Encoding layer
(CE) to compute the homophily network’s sub-communities
from the user-user graph. In the CE layer, we render an affil-
iation matrix by combining GCN and the Bernoulli–Poisson
model. We create a user-user graph G in addition to the
user-item bipartite network by computing jaccard similarity
on the rating matrix.

We consider the overlapping community detection prob-
lematic as a probabilistic inference task. Detecting commu-
nities in this manner entails inferring the unseen affiliations
of users to communities from the user-user network G, using
a GCN architecture. We denote the affiliation of users into
communities as F , and A as the binary adjacency matrix of
the undirected unweighted graphGwhere N is the number of
user nodes.

F := GCN θ (A) = ReLU (ÂReLU (ÂW (1))W (2)) (1)

where Â = D−1/2ÃD−1/2 is an adjacency matrix of the
graph G normalized, D is the diagonal degree matrix of A,
Ã = A + IN is the adjacency matrix with self loops with
N is the number of nodes in the graph, and W (1) and W (2)

are the weights that we optimize using the GCN architecture.
In the equation, we use the ReLU non-linearity to the output
layer to ensure non-negativity of the affiliation matrix F .
We aim to minimize the negative log-likelihood by finding
the right parameters (weights) θ in the GCN model, which is
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formulated as:

θ := argminθL(GCNθ (A)) (2)

where L represents the negative log-likelihood of the
Bernoulli–Poisson model.

L(F) = −
∑

(u,v)/∈E

log(1− exp(−FuFTv ))+
∑

(u,v)/∈E

FuFTv (3)

Fu and Fv are the row vector of community affiliation F of
node u and node v respectively and E is the set of edges that
links nodes in the graph.

In order to optimize theF matrix, we update the parameters
of the neural network architecture byminimizing the negative
log-likelihood. In this encoding layer, we use 2-layer of GCN,
with a hidden size of 128 and the final layer is the output of
the number of communities to detect. We also apply the batch
normalization and the dropout with a ratio of 0.5 to avoid
overfitting. We take advantage of the distinct relationships
conveyed by the two graphs by combining the CE and EB-
GCN layers’ outputs (user-item graph and user-user graph).

B. BIPARTITE GRAPH CONVOLUTIONAL NETWORKS
ENCODER (EB-GCN)
We propose a Bipartite Graph Convolutional Networks
encoding layer (EB-GCN) to address the data sparsity prob-
lem in CF by generating two additional embeddings: the user
embedding and the item embedding.

The embedding vectors of user u and item i are denoted by
eu and ei, respectively, with d indicating the embedding size.
In this encoding layer, it takes as input the user-item bipar-

tite graph where the set of type nodes ranges between user
nodes and item nodes. The key idea is to capture the collabo-
rative signal from all types of interactions in the network, and
then learn the final representation of both user and item. For
this, we use GNN algorithms on the bipartite graph to their
maximum potential.

The EB-GCN layer exploits high-order connectivity from
the user-item interaction. It leverages on the message-passing
architecture of GNNs to encode the user and item nodes by
iteratively aggregating information from the user’s neighbors.
The high-order propagation is translated as a stacking on l
embedding layers. Each embedding layer encompasses the
construction of the message and the aggregation of the mes-
sage.

The construction of the message of a user-item (u,i) is
defined as mu←i:

mu←i = h(ei, eu, pui) (4)

where h(·) is the function that encodes the message, where the
embeddings of user u and item i are inputs, and the coefficient
pui helps control the decay factor on each propagation and on
each edge (u,i).

The message encoding function h is defined as below:

mu←i =
1

√
|Nu||Ni|

(W1ei +W2(ei � eu)) (5)

where W1 and W2 ∈ Rd ′×d are the trainable weights that
extract propagated information and d ′ is the transformation
size. The pui is set as the graph Laplacien norm 1/

√
|Nu||Ni|

where Nu and Ni represent the first-hop neighbors of user u
and item i. After extracting and constructing the message,
we aggregate the messages propagated from the user u’s
neighborhood to enhance its representation.

The following represents the definition of the aggregation
function:

e(1)u = LeakyReLU (mu←u +
∑
i∈Nu

mu←i) (6)

The first element of the aggregation function represents the
information retained by user u. The second element is the
aggregation of all the information obtained and captured from
his neighborhood. Similarly, we propagate information from
adjacent users to derive the representation of the embedding
e(1)i for item i.
We optimize the pairwise BPR loss [28], which is exten-

sively used in the recommender systems field, to learn the
model parameters. The loss function is as follow:

Loss =
∑

(u,i,j)∈N

−ln(σ (ŷui − ŷuj)+ λ||θ ||) (7)

where N denotes the set pairwise training data with observed
and unobserved interactions. The observed and unobserved
user-item interactions are taken into account in the pairwise
BPR loss. If we assume that items with which a user inter-
acts are referred to as positive examples (observed), we can
assume that items with which the user does not interact
are referred to as negative samples (unobserved). The pair-
wise BPR loss assigns higher prediction values for observed
than unobserved samples. σ is the sigmoid function while
θ incoporates all trainable model parameters that includes
the weights, and λ controls the regularization. We also apply
dropout techniques, particularly node dropout, to prevent the
model from overfitting [28]. This technique is only used in
the training of the model.

The EB-GCN layer generates two embeddings, one of the
users and one of the items.

C. INFORMATION FUSION
From the CE and the EB-GCN layers, we output the user
embedding EU , the item embedding EI , and the community
affiliation matrix F . In the information fusion (IF) layer,
we summarize all the embeddings and define the fusion
method.

We create the community profile CP, from three different
outputs based on the two encoding layers EU ∈ Rn×d , EI ∈
Rk×d , and F ∈ Rn×c where n is the number of users, k is the
number of items, c is the number of communities, and d is
the embedding size,as follow:

CP = (Fᵀ
· EU ) · EI (8)

Furthermore, in order to choose the fittest communities,
we select the top two affiliations for each user. The fusion
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FIGURE 1. The general architecture of DGCF.

formula is helping capture the similarity between the embed-
ding of user u and item i while taking into consideration the
profile of communities that the user belongs to. As a result,
each user’s item recommendations are based on the profile of
their top two communities.

IV. EVALUATION AND RESULTS
The dataset we use to perform our experiments are one of the
widely used datasets for recommendation research, which are
MovieLens and Douban. We evaluate our model based on:

• The effectiveness of the recommender: whether DGCF
achieves high-precision recommendations.

• The performance of the recommender compared to the
latest benchmark reference models.

The conducted experiments are mainly focused on the final
recommendations. However, in order to understand the differ-
ent components of DGCF, we also perform a deep evaluation
of the quality of communities in the CE component and
investigate the viability of including the CE layer in our
model.

A. DATASET AND EVALUATION METRICS
1) DATASET
We decide to work with three well known public, real-
world dataset in recommendation research, the MovieLens
datasets [29], and Douban dataset [56]. The summary for all
datasets are shown in Table 2.

The MovieLens datasets is extracted from the MovieLens
website, which is a movie recommendation service. The
MovieLens-100k dataset consists of 105 user–movie ratings,
943 users and 1682 movies. The scale of the rating leverage
from 1 to 5 (between dislike and like). Each user preference
is represented as a tuple of four elements: user, item, rating

TABLE 2. Statistics of the datasets.

and timestamp, whereas the MovieLens-1M dataset consists
of 6040 users and 3706 items, which is a larger size dataset.

The Douban dataset is a movie rating service in the man-
darian communities, it contains 136, 891 rating for 3000 users
and 3000 items.

In order to train themodel, the data is divided into a training
dataset (70% of the MovieLens dataset) and the test dataset
(30% of the data).

2) METRICS
In order to evaluate the quality of recommendations, we use
the Root Mean Squared Error (RMSE), the Mean Absolute
Error (MAE) and Normalized Discounted Cumulative Gain
(NDCG). RMSE is the disparity between the real and pre-
dicted values is defined as an error. The model’s perfor-
mance and ability to predict future values improves as errors
decrease.

To compute RMSE, we calculate the difference between
predicted recommendations and the ground truth recommen-
dations, which is called residual. For each data point, we com-
pute the norm of residual, then the mean of residuals and take
the square root of that mean.

RMSE =

√√√√1
n

n∑
j=1

(yj − ŷj)2 (9)
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TABLE 3. The overall performance comparison of Recommender systems.

The MAE refers to the mean of the absolute values of
each prediction error on all instances of the test data set.
Prediction error is the difference between the actual value and
the predicted value for that instance.

MAE =
1
n

n∑
j=1

|yj − ŷj| (10)

The NDCG is the average score that measures the consis-
tency between the ranking of predicted ratings and the ground
truth for each user. It is used to assess the accuracy of global
and personalized ranking.

Furthermore, we utilize various metrics to assess the qual-
ity of the discovered communities. The DGCF accuracy
improves as the communities become more refined:

• Coverage: The number of intra-community edges to the
total number of edges is the coverage(C) of a partition
C of a graph [30], [31]. The higher the coverage value,
the higher the partition’s quality.

• Density [41]: represents the average density of the
detected communities, weighted by community size.
The density is the ratio of the number of edges in the
community to the maximum number of edges it can
hold. The greater this metric’s value, the better the com-
munity detection quality.

• Conductance [32]: represents the average conductance
of the detected communities, weighted by community
size. The conductance is the ratio between relationships
that point outside a community C and the total number
of relationships of C . The lower the conductance, the
more ‘‘well-knit’’ a community is.

• Clustering coefficient [33]: represents the average clus-
tering coefficient of the detected communities, weighted
by community size. It measures the number of triangles
in a community.

B. BASELINES
To best evaluate the performance of our model, we consider
different types of the latest deep learning models for recom-
mender systems in our baseline selection:

• SparseFC (2018) [36]: is a neural network model where
the weight matrices are reparametrized in terms of
low-dimensional vectors using kernel functions.

• NGCF(2019) [24]: encodes the collaborative signal
using high-order connectivities on a bipartite graph to
generate embeddings.

• GraphRec (2019) [34]: a factorization model that uses
the features from the user-item bipartite interaction
graph.

• IGMC (2019) [35]: is based on extracting an h-hop
enclosing subgraphs, performing a node labeling to
define the user type of node and the item node, and then
feed it into a GNN model.

• MG-GAT (2020) [37]: uses the attention mechanism to
aggregate the neighbors’ information of the user node
and the item node, in order to learn the user/item repre-
sentations.

• GLocal-K (2021) [38]: uses a pre-trained autoencoder
with a kernelized weight matrix (2d-RBF kernel) and
fine-tuned the auto-encoder with the rating matrix.

• GHRS (2022) [39]: It is a graph-based model that uses
an autoencoder to extract new features based on com-
bined attributes on a user-user similarity graph.

C. PARAMETER SETTINGS
Pytorch is used to implement our DGCF model. In the EB-
GCN layer, the size of the model’s embedding is set to 64.
We train our models using the Adam optimizer with default
parameters, and the model parameters are initialized using
the Xavier initializer. The learning rate is set to 10−3, the L2
normalization coefficient to 10−5, and the dropout ratio to
0.5. Furthermore, we employ an early stopping mechanism,
in which the optimization is terminated if the training loss
does not improve after 50 epochs.

D. COMPARISON WITH BASELINES
The performance of our approach is reported in Table 3
when compared to seven baselines on three datasets. It shows
that our model deep graph collaborative filtering model sig-
nificantly outperforms all baselines on all three datasets
by a large margin when looking toward rating accuracy
(MAE), focusing on the importance of the bad rating pre-
diction (RMSE) and how good the ordering is (NDCG).
More precisely, our DGCF outperforms GLocal-K the
third best model in ML-100K, best model in ML-1M
and Douban, with 0.0849/0.084/0.044, 0.0127/0.039/0.006,
0.0198/0.012/0.007 improvement of RMSE/MAE/NDCG on
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TABLE 4. The overall comparison of quality metrics in detecting
communities for the MovieLens 100K dataset.

TABLE 5. Communities’ description for the MovieLens-100K dataset.

three explicit datasets ML-100K, ML-1M, and Douban,
which has the rating from 1 to 5.

This suggests that exploiting Homophily communities and
utilizing multiple graphs to extract different embeddings
deliver relevant items in the recommendation list.

Furthermore, to assess and verify the quality of commu-
nities extracted by our CE layer, we conduct a comparison
of quality metrics between ground truth communities and
predicted communities in Table 4 for the MovieLens 100K
dataset. We obtain 7 communities detailed in Table 5. The
initial Ground Truth communities is a randomized binary
assignment of users in communities. Table 4 shows that the
detected partitions have lower conductance, higher density
and higher clustering coefficient than the Ground Truth com-
munities.

E. ON THE EFFECTIVENESS OF THE COMMUNITY
ENCODING LAYER (CE)
Our DGCF approach relies on a Deep Learning (DL) archi-
tecture to perform all steps, from community detection to
community profiling and rendering recommendations. While
results show that DGCF outperforms all the latest baseline
methods, we set out to investigate the pertinence of our
proposed DL-based architecture by trying to answer a main
question: Is including a community encoding (CE) layer in a
DL architecture really pertinent?

Our initial GCF [40] approach relied on distinct com-
munities detection using classical network analysis metrics.
It follows major steps from creating the homophily network
using similarity metrics, to identifying communities and their
key nodes, and finally computing recommendations to users
using the key node’s profile. The intuitive next step was to
use the same assumptions and upgrade GCF by consider-
ing the overlaps between communities. We thus translated
the community detection step into a CE layer in DGCF.
To examine whether adding a community encoding layer in
the DL architecture is relevant, we compared our results with
different deep learning models but mainly with the NGCF

approach. NGCF is a DL-based approach that computes rec-
ommendations on a user-item bipartite graph. It generates
embedding for each type of node: item and user, and feeds it
into predictions. Our DGCF approach goes further by fusing
information from the EB-GCN and CE layers. The NGCF
only captures the similarity signal based on the behavior of
the user towards items, while DGCF captures more signals
mainly the community behavioral signal, which reflects the
impact of the sub-group (in analogy to the impact of belong-
ing to communities (or societies) on individuals in real life).
The results in table 4 illustrate how including the community
detection step improves overall performance and confirm
our hypothesis that it is beneficial in adding contextual and
topological information.

DGCF proves that using GCN layer for bipartite graphs
doesn’t capture all signals in the graph. It actually captures the
signal of the similarity outside the properties of sub-groups in
the graph. In other words, it doesn’t take into consideration
the local properties of communities while learning. Thus,
integrating the CE layer is important, mainly for recom-
mender systems, to capture the local and global properties
of the network.

V. CONCLUSION AND FUTURE WORK
In this paper, a novel collaborative filtering approach is pre-
sented. It produces users’ recommendations using commu-
nity profiling. The model incorporates multiple graphs to
integrate any and all contextual information latent in user-
item relationships. The proposed model, DGCF, stacks vari-
ous neural layers to construct users and items embeddings and
learn users communities affiliations. It utilizes the learned
communities profiles to render accurate recommendations.

In terms of RMSE evaluation metric, experimental results
show that our DGCF model outperforms CF baseline models
in recommender systems. DGCF, compared to the baselines
models, is able to detect sub-groups topologies in a network
which helps refines the embedding of the user and the com-
puted recommendations.

For future work, we plan to enhance the DGCF model by:

• Improving the embeddings through adding new
attributes and features such as users’ geographic fea-
tures, etc. The idea is to shed more light on possible hid-
den relationships lying within users features similarities.

• Including the temporal aspect into the DGCF model to
handle the dynamic behavior of the user: capturing the
time aspect signal is important in order to understand the
overall behavior of the user through time, and the impact
it has on his purchases (items).

• Investigating the range of applicability of the DGCF
model outside of e-retailing into areas like biomedical
applications, education, etc.
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