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ABSTRACT Cervical cancer is one of the most common cancers among women. Fortunately, cervical cancer
is treatable if it is diagnosed timely and administered appropriately. The death rate of cervical cancer has
been greatly reduced since Pap smear test was applied. However, Pap smear test is a time-consuming and
error-prone process. Moreover, classifying cervical cells into different categories is clinically meaningful
but also challenging in the field of cervical cancer detection. To address these concerns, computer-aided
diagnosis systems with deep learning need to be designed to automatically analyze cervical cytology images.
In this study, we construct a deep convolutional neural network with feature representations learned via
multiple kernels with different sizes to automatically classify cervical cytology images, named DeepCELL.
Firstly, we design three different basic modules of DeepCELL to capture feature information via multiple
kernels with different sizes. Then, we stack several such basic modules to form the cervical cell classification
model. Finally, we perform a series of experiments to evaluate the proposed method on two cervical cytology
datasets: Herlev and SIPaKMeD. Our method achieves the accuracy of 95.628%, precision of 95.685%, recall
of 95.647% and F-score of 95.636% on SIPaKMeD dataset, which are the highest among all competing
methods. Similarly, our method also achieves satisfactory result on Herlev dataset. In summary, extensive
experimental results demonstrate that our proposed method has a promising performance in cervical cell
image classification.

INDEX TERMS Cell image classification, cervical cell detection, deep learning, neural networks.

I. INTRODUCTION around the world in 2020 [3]. Moreover, cervical cancer

Cervical cancer is one of the most frequent cancers around
the world. In fact, cervical cancer is the fourth most prevalent
form of cancer among women [1]. Cervical cancer has a
severe influence on the health and lives of women world-
wide. According to data from the World Health Organization,
approximately 570,000 women worldwide were diagnosed
with cervical cancer, and around 311,000 women died from
this cancer in 2018 [2]. The deaths continue to rise over
the years, and cervical cancer has led to 342,000 deaths
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is the primary cause of cancer deaths in 36 countries [3].
Thankfully, cervical cancer is one of the most likely forms
of cancer to be successfully treated after diagnosis, as long as
it can be detected at the early stage and managed in a proper
manner [2]. A leading tool, i.e., Pap smear test, is a commonly
adopted technique in the early diagnosis and treatment of
cervical cancer. According to the research [4], the use of
Pap smear test has reduced the number of deaths related to
cervical cancer by 60%.

Although Pap smear test is one of the most useful tech-
niques in cervical cancer screening, it is a manual technique
that requires cytologists to identify cervical cells, which is
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time-consuming, costly and fallible. Since manual screening
is very cumbersome, it is necessary to develop automated
screening systems [5]. Cytoanalyzer system is the first auto-
mated screening device for Pap smears [6]. Then, another
cytology automated apparatus CYBEST [7] is designed to
extract the morphological features from cell images. Those
systems are not interactive. BioPEPR [8] is one of interac-
tive image analysis systems. PAPNET is the first cytologi-
cal screening system to introduce interaction in automated
screening [9], and more automated systems appear such as
AutoPap 300 [10].

Computer-aided diagnosis (CAD) systems can automati-
cally analyze abnormal cells from given cervical cytology
samples, which have been extensively applied in cervical
cancer detection. However, there are limitations in CAD
techniques. Most of them rely on the quality of cell seg-
mentation and hand-crafted feature extraction. For example,
Win et al. [11] propose a computer-assisted screening system
for cervical cancer. They extract features from the regions
of segmented nuclei and cytoplasm. Then they employ a
random forest classifier for feature selection and implement
classification combining several classifiers. Nevertheless,
their method is complicated and tedious, because it involves
many procedures in cell segmentation, and also feature
extraction and selection. In this case, there is a huge need
for more effective tools to diagnose and treat cervical
cancer.

Despite years of research in the cervical screening field,
accurate classification remains a huge challenge due to sev-
eral issues. Firstly, many methods only consider hand-crafted
features. Secondly, it is vital to extract feature patterns
via multiple kernels with different sizes in image analysis
tasks. However, many researchers ignore this aspect and
only apply small-sized kernels in their models. To improve
these issues, we propose a novel deep CNN model with
three versions to directly classify cervical cytology images,
named DeepCELL. Especially, we develop several different
strategies to extract feature information via multiple kernels
with different sizes. Firstly, three basic modules are designed
and subsequently integrated to build our DeepCELL model.
Specifically, we use convolutions with multiple kernels to
capture feature information from neighborhoods at different
levels. The first strategy is to employ 5x5,3x3 and 1 x 1 con-
volutions to focus on feature representations with multiple
sizes. The second strategy is to apply dilated convolutions to
obtain feature information from distant neighbors. Consider-
ing that using a lot of convolutions heavily increases compu-
tational complexity in the first strategy, our third strategy is to
replace larger convolutions with several smaller ones. That is,
we replace a 5 x 5 convolution with two 3 x 3 convolutions
to reduce computational cost. Then, we train our model on
two Pap smear datasets. A series of experimental results
demonstrate that our proposed DeepCELL outperforms some
existing CNN models in terms of precision, recall and
F-score, as well as accuracy on SIPaKMeD and Herlev
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datasets. In addition to the comparison with CNN mod-
els, we also compare our DeepCELL with some recently
developed methods on both two datasets. Extensive exper-
iments further verify the promising performance of our
DeepCELL in cervical cell detection.

The main contributions of our paper are as follows:

1) Extract feature patterns via multiple kernels with differ-
ent sizes from cervical cell image data. To do so, we design
a new CNN model to learn feature information from differ-
ent kernels for automated cervical cell image classification.
Specifically, we extract feature information with multiple
size kernels and apply dilated convolutions to learn feature
information from distant neighbors. Moreover, we replace
larger convolutions with smaller ones to reduce the number
of parameters.

2) Apply our developed model to two publicly available
datasets with annotated cellular images. To the best of our
knowledge, most researchers use Herlev dataset for cervical
cell detection in their models. According to a study [12],
more than 90% of the studies in their review employ Her-
lev to validate the performance of proposed methods. It is
insufficient to show the effectiveness of their methods when
using Herlev with only 917 cropped cell samples for training
and testing. Cell samples in Herlev are too fuzzy to apply
well to cervical cell detection in the real world. Although
some researchers also utilize private cell image data for their
methods, it is tough to compare the performance of different
detection methods. Thus, we employ two public cell image
datasets in this study to facilitate the comparison among
different methods.

3) Acquire deep features from cell image data. Unlike
existing methods that rely upon cell segmentation and hand-
crafted features, our method can automatically learn deep
features from cell images. Hence, classification process
avoids the reduction in accuracy caused by incorrect segmen-
tation. Moreover, such an automatic classification model is
less dependent on manual operation and less susceptible to
human errors that occur during the diagnosis and treatment
of patients.

4) Show the effectiveness of our method in cervi-
cal cell detection. We investigate the performance of our
method with different evaluation metrics, including accuracy,
precision, recall and F-score. Experiments show that our
method produces superior performances on both Herlev and
SIPaKMeD datasets. As a result, our method has a great
potentiality in improving the performance of cervical cell
detection.

The rest of our paper is organized as follows.
Section 2 shows the related work of deep learning in cervical
cell analysis. Section 3 describes the cervical cytology image
data sources used in this study, and presents our proposed
automated cervical cell classification method with multiple
size kernels. In Section 4 and 5, the experimental results are
analyzed and discussed. Finally, Section 6 summarizes this
study and draws the conclusion.
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Il. RELATED WORK

This section introduces some convolutional neural networks
(CNNs) and applications of deep learning in cervical cell
segmentation and classification.

In recent years, deep learning techniques have gained
extensive attention and been widely developed for computer
vision tasks, such as image classification [13], segmenta-
tion [14] and object detection [15]. As a promising model
of deep learning, CNNs have been successfully utilized
in various tasks. Also, methods of accelerating inference
stage are important for CNNs. For example, [16] develops
a hardware-efficient dataflow based on CNN to reduce com-
putations. Reference [17] proposes a low-power and low-cost
NCS2 cluster to accelerate the inference stage. Reference [18]
constructs a low-cost real-time hardware accelerator and
decreases extra internal memory usage. Unlike traditional
methods that depend heavily on hand-crafted features, CNNs
can directly classify raw image data and automatically learn
features from original data. Many research has proven that
CNN models have excellent performance in image anal-
ysis, such as AlexNet [19], VGGNet [20], ResNet [21],
GoogleNet [22], Inception-v3 [23], and DenseNet [24].

VGGNet [20] is proposed by Simonyan and Zisserman
from the University of Oxford. Its main idea is to implement
small 3 x 3 convolutional kernels and build the deeper net-
works. VGGNet demonstrates that an increase in the depth
of a neural network can yield better performance. How-
ever, the accuracy would get saturated and degrade rapidly
with the increasing number of network layers. Consequently,
He et al. [21] develops a novel CNN model, called ResNet.
They introduce a special residual block for CNN, which
greatly improve the network performance. In residual block,
they add a skip connection, also known as identity map-
ping. A lot of residual blocks are stacked into ResNet. Both
VGGNet and ResNet can gain great performance, while they
have a large number of parameters and demand high compu-
tational costs.

Different from the above network models, GoogleNet [22],
i.e., Inception-v1 has a low computational cost. The major
highlight of GoogleNet is the inception module that com-
bines convolutions of multiple kernels with different sizes to
extract features from data. GoogleNet is the main combina-
tion of multiple inception modules. Then, several variants are
created to improve Inception-v1, such as Inception-v2 and
Inception-v3 [23]. They employ small convolution kernels
to replace large ones, and change traditional kernels into
asymmetric kernels. In this way, the deeper networks can be
obtained. DenseNet [24] directly connects all previous layers
to a current layer to gain more feature information. DenseNet
reuses features and greatly reduces the number of parameters,
which ensure that it has an excellent performance in computer
vision tasks.

Recently, CNN models have greatly improved perfor-
mance in various medical imaging tasks, such as lung
disease classification and lymph node detection based on
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CT images [25], breast cancer prediction on ultrasound
images [26], and brain tissue segmentation from MRI
images [27]. Moreover, a growing number of studies have
shown that CNN models have great potential in cell image
classification, such as HEp-2 cells [28], red blood cells [29]
and white blood cells [30]. Thus, CNN can be regarded as an
important tool for analyzing cervical cell images [31], [32],
thereby assisting doctors in the fight against cervical cancer
to a certain extent.

Huang et al. [33] develop a generative adversarial net-
work called Cell-GAN for cervical cell segmentation. Firstly,
Cell-GAN is trained to get a probability distribution of cell
morphology, then a single cell image is generated for each
cell. Finally, the contour of the generated cell is treated as
the segmentation line, and next the input image is cropped.
A study [34] proposes a lightweight feature attention net-
work model to segment the nucleus and cytoplasm regions in
cervical cell images. This model can acquire rich features of
input images based on a lightweight feature encoder module,
and employ the feature layer attention module to capture
the channel dependency of features. Manna et al. [35] use
three classic CNN models to form an ensemble model so that
several individual models can be considered in the predic-
tions. The ensemble method has a great performance com-
pared to some state-of-the-art methods on two benchmark
cervical cytology image datasets. However, this method is
more complicated than the individual base models. It inte-
grates several base models to make the final decision, so it
is more likely to get superior performance to the individ-
ual base models. A study [36] shows an internet of health
things-driven framework to classify whether cervical cell is
normal or abnormal. They fuse transfer learning into this
framework with some pretrained CNN models, which are
utilized to extract features from cervical cell images. Then,
feature classification is performed to predict cell category
with some classifiers. In [37], a hybrid deep feature fusion
approach is proposed based on deep learning for cervical cell
classification. In this approach, different models including
ResNet50, VGG16, VGG 19 and XceptionNet are employed
to extract features and then the feature fusion approach is
utilized. Zhang et al. [38] employ a CNN pretrained on
large-scale image datasets and then fine-tune it for cervi-
cal cell classification. In their work, a public Herlev and a
private HEMLBC datasets are employed to assess the pro-
posed approach, and good results are shown on both datasets.
In [31], a lightweight CNN with knowledge distillation is
designed to obtain an efficient model with lower computa-
tional costs for the classification task of cervical cells. The
experimental results demonstrate that the proposed method
achieves great performance under limited resources. Refer-
ence [32] develops an image segmentation approach with
multiple phases for overlapping cervical cells. A CNN is
used to recognize cell locations and get probabilistic image
maps in the first phase. The second phase mainly presents
multi-layer random walker graph-based region growing to
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separate the cytoplasm. The final segmentation is obtained
using the Hungarian algorithm in the third phase.

lll. MATERIALS AND METHODS

A. DATASETS

Our DeepCELL method with three strategies is evaluated
on two publicly available cervical cytology image datasets:
Herlev and SIPaKMeD.

1) HERLEV DATASET

Herlev [39] is acquired from the Herlev University Hospital
(Denmark) with a digital camera and microscope, which
contains 917 images of single cells. Among them, 675 cells
are abnormal, and 242 cells are normal. Each cell sample is
examined by two experts, and a cell sample is discarded if
there is any disagreement. Herlev Pap smear cell images are
classified by experienced doctors and cyto-technicians into
seven classes, including (1) mild squamous non-keratinizing
dysplasia, (2) moderate dysplasia, (3) severe dysplasia, and
(4) carcinoma in situ, (5) superficial squamous epithelia,
(6) intermediate squamous epithelia, (7) columnar epithe-
lia. These seven classes can be further categorized into two
groups: abnormal and normal. The first four classes are
abnormal cells, while the rest of classes are normal cells,
as shown in Table 1. We would like to determine whether
a cell sample is normal or abnormal, which is a binary clas-
sification problem.

2) SIPaKMeD DATASET

SIPaKMeD [40] is collected with an optical microscope
and a camera, which includes 4049 images of single cells.
SIPaKMeD are categorized by skilled cytopathologists based
on the cellular structure and morphology into five classes,
including (1) Dyskeratotic, (2) Koilocytotic, (3) Metaplastic,
(4) Parabasal, (5) Superficial/Intermediate. The first two
classes are abnormal cells, the third class is benign cells,
and the remaining classes are considered as normal cells,
as shown in Table 2.

B. DATA PREPROCESSING

Each image dataset is randomly split into three parts: 60%
for training, 20% for validation and 20% for testing. Herlev
dataset consists of 917 single-cell images, so 549, 184 and
the remaining 184 single-cell images are available for train-
ing, validation and testing, respectively, in each experiment.
SIPaKMeD dataset contains 4049 cellular images. Likewise,
we obtain 2426, 811 and the remaining 812 single-cell images
for training, validation and testing, respectively, in each
experiment. Although the original images in a Pap smear
dataset have varying sizes, in this study all images are resized
to 224 x 224 pixels and then are input into our DeepCELL.

C. DeepCELL
Our DeepCELL is to analyze cervical cell images by learning
feature patterns via multiple kernels with different sizes. Our
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DeepCELL focuses on receptive fields with multiple size
kernels. The workflow of our DeepCELL method is shown in
Figure 1, where orange, yellow and green represent 5 x 5, 3 x
3 and 1 x 1 convolutions, respectively. First of all, cervical cell
images are taken as the input to our DeepCELL. The structure
is inspired by [41]. Here we adopt three strategies to learn
feature patterns with multiple size kernels from cervical cell
images. For the first strategy DeepCELL-v1, our method has
the ability to extract feature information via multiple kernels
with different sizes. For the second strategy DeepCELL-v2,
we utilize dilated convolutional layers to replace conventional
convolutional layers. Dilated convolutions can extract feature
information from distant neighbors [42]. At the same time,
the dilated convolutional layers can also improve compu-
tational efficiency of our DeepCELL, because they do not
increase the number of parameters while obtaining feature
information from distant neighbors [43]. In addition, the more
convolution kernels with different sizes, the greater the num-
ber of parameters and computational cost in DeepCELL-v1.
Thus, the third strategy DeepCELL-v3 is used to solve this
problem. We replace one 5 x 5 convolution with two 3 x
3 convolutions based on kernel factorization. In this way,
we can get the same receptive field yet with fewer parameters,
and also increase the depth of network. Several such basic
structures are stacked to construct our classification model.
Finally, the output layer yields whether cervical cells are
abnormal or normal for binary classification, or it produces
more specific categories for multi-class problem.

Table 3 is the specific description of the architecture
of DeepCELL. Figure 2 presents the basic module in
DeepCELL. In Figure 2(a), yellow, green and orange rep-
resent 3 x 3, 1 x 1 and dilated convolutions, respectively.
Moreover, one 5 x 5 or dilated convolution can be replaced
with two 3 x 3 convolutions, which are represented as red
color. In Figure 2(b), orange, yellow and green represent 5x 5,
3 x 3 and 1 x 1 convolutions, respectively.

We utilize several branches in our DeepCELL model to
learn feature information by putting multiple convolutions
with different kernel sizes in parallel. We set our DeepCELL
to five phases, and follow several principles in [41] to deter-
mine the number of layers in each phase. The first phase
consists of one layer including 5 x 5,3 x 3 and 1 x 1 con-
volutions. Then, two layers are utilized in the second phase,
including 5 x 5,3 x 3 and 1 x 1 convolutions in the first
layer and identity is added in the second layer. The third and
fourth phase have six and twelve layers respectively. In these
two phases, their first layers both contain 5 x 5, 3 x 3 and
1 x 1 convolutions and identity is added for the rest of their
layers. The structure of the last phase is similar to that of the
first phase. In the first phase, we only use one layer, because
this phase runs with large-resolution images, which is time-
consuming. Similarly, the images from the second phase still
have large resolution, so we employ two layers in this phase.
There are more channels in the last phase, thus we only utilize
one layer to save parameters. In addition, we arrange most
of the layers into other phases.
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TABLE 1. Herlev Pap smear dataset.

Class No. Category Description of Cell Type Cell Count Subtotal
1 Abnormal Mild squamous non-keratinizing dysplasia 182
2 Abnormal Moderate squamous non-keratinizing dysplasia 146
3 Abnormal Severe squamous non-keratinizing dysplasia 197
4 Abnormal Squamous cell carcinoma in situ intermediate 150 675 Abnormal
5 Normal Superficial squamous epithelial 74
6 Normal Intermediate squamous epithelial 70
7 Normal Columnar epithelial 98 242 Normal
Total 917
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FIGURE 1. Workflow of DeepCELL. Orange, yellow and green represent 5 x 5,3 x 3 and 1 x 1 convolutions respectively.
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(a) The basic module of DeepCELL-v2

(b) The details of basic module in DeepCELL

FIGURE 2. Basic module in DeepCELL. (a) Yellow, green and orange represent 3 x 3, 1 x 1 and dilated convolutions respectively. (b) Orange, yellow

and green represent 5 x 5,3 x 3 and 1 x 1 convolutions respectively.

1) DeepCELL-v1

A DeepCELL-v1 basic module consists of 5 x 5 convolutions,
3 x 3 convolutions and 1 x 1 convolutions, as well as identity
mapping. Our DeepCELL integrates convolutions of different
size kernels (5 x 5,3 x 3, 1 x 1) to capture different fea-
ture representations, inspired by the inception modules [22].
The modules with different size kernels can capture various
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spatial information. The basic module of DeepCELL-v1 is
shown in Figure 1 and Figure 2(b).

2) DeepCELL-v2

A DeepCELL-v2 basic module mainly contains dilated con-
volutions, 3 x 3 convolutions and 1 x 1 convolutions, as well as
identity mapping. Dilated convolution, also known as Atrous
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TABLE 2. SIPaKMeD Pap smear dataset.

Class No.  Category Specific Category Cell Count
1 Abnormal Dyskeratotic 813
2 Abnormal Koilocytotic 825 1638 Abnormal
3 Benign Metaplastic 793 793 Benign
4 Normal Parabasal 787
5 Normal Superficial/Intermediate 831 1618 Normal
Total 4049

TABLE 3. Specific description of the architecture of DeepCELL.

Phase InputSize Output Size Input Channel Output Channel
1 224 x 224 112 x 112 3 64
2 112 x 112 56 x 56 64 64
3 56 x 56 28 x 28 64 128
4 28 x 28 14 x 14 128 256
5 14 x 14 X7 256 1024

convolution, comes from the wavelet decomposition [44].
Dilated convolution has recently been utilized for a variety
of tasks. In DeepCELL-v2, dilated convolutions are applied
to obtain the feature information from distant neighbors. The
basic structure of DeepCELL-v2 is illustrated in the following
Figure 2(a).

3) DeepCELL-v3

In order to reduce the number of parameters in DeepCELL-v1,
we replace one 5 x 5 convolution with two 3 x 3 con-
volutions to construct the basic module of DeepCELL-v3,
which is inspired by [23]. The replacement of large-size
convolution into small-size convolution can increase the
depth of CNN while reducing the number of parameters and
computational complexity. We know that the receptive field
of one 5 x 5 convolution is the same as the receptive field
of two consecutive 3 x 3 convolutions, while the number of
parameters of the latter is less than that of the former. The
basic module of DeepCELL-v3 is shown with the dotted box
in Figure 2(a).

The information flow of DeepCELL module can be repre-
sented as y = x + f1(x) + f2(x) + f3(x), where f](x) expresses
a5 x 5 convolution or dilated convolution or two consecutive
3 x 3 convolutions, f>(x) is a 3 x 3 convolution, and f3(x)
is a 1 x 1 convolution. Specifically, we adopt the convolu-
tions with multiple kernel sizes to learn the comprehensive
features, then merge these extracted features, and next pass
them to the next layer. Integrating convolutions with different
kernel sizes can acquire rich information representations.
Considering that 5 x 5,3 x 3, and 1 x 1 convolutions have
different kernel sizes, we use the padding operation to extend
the image in order to ensure that convolutions of different
kernel sizes can also obtain feature maps with the same sizes.
After that, we can add these feature maps together, and then
transfer the output to the next layer. Our DeepCELL model is
mainly built by a stack of several such basic modules and a
classification layer.
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IV. EXPERIMENTAL RESULTS

A. EVALUATION METRICS

To investigate the performance of our proposed DeepCELL
model, we use several evaluation metrics, i.e., accuracy, pre-
cision, and recall, as well as F-score. The definitions of these
evaluation metrics are shown below.

TP + TN
Accuracy = (D
TP+ TN + FP + FN
. TP
Precision = —— 2)
TP + FP
TP
Recall = ——— 3)
TP + FN
Precision x Recall
F — score = 2 x @

Precision + Recall

where TP (true positive) represents the number of positive
samples that are correctly classified. FP (false positive) is the
number of samples in negative class that are misidentified as
positive samples. TN (True negative) denotes the number of
negative samples that are correctly detected. FN (false neg-
ative) is the number of positive samples that are incorrectly
classified as negative samples.

Accuracy indicates the proportion of samples that are cor-
rectly identified. Precision measures the classification poten-
tial of correctly recognizing positive samples from all the
predicted positive samples. Recall measures the classification
potential of correctly detecting positive samples from all
the true samples. F-score is the harmonic mean of precision
and recall, which assesses the trade-off between precision and
recall. Generally speaking, the higher the values of precision,
recall and F-score are, the better the performance of the
method is.

B. PERFORMANCE COMPARISON

To demonstrate the effectiveness of our proposed cervical cell
classification method DeepCELL, we independently train our
DeepCELL with three versions of strategies on two cervical
cell image datasets. In addition, we compare its performance
with state-of-the-art models, including VGG-16, GoogleNet,
DenseNet-121, Inception-v3 and ResNet-18. All of the exper-
iments are performed using Python installed on a 64-bit
Windows 10 operating system with Intel Core i7 CPU. The
GPU is the NVIDIA GeForce RTX 2070.

The experimental settings for our DeepCELL are as fol-
lows. The stochastic gradient descent (SGD) with momentum
is utilized to train our method for 100 epochs. The initial
learning rate, weight decay and momentum are set to 0.01,
le-4, and 0.9 respectively. Our DeepCELL trains and tests
917 cell images from Herlev dataset and 4049 cell images
from SIPaKMeD dataset. The input images of our DeepCELL
are 224 x 224 pixels. Pytorch framework is adopted to design
our proposed method for cervical cell image classification.
The robustness of our DeepCELL method is assessed by
repeating the experiments ten times to average the results.

Table 4 displays the performance of our DeepCELL
in comparison with existing methods on Herlev dataset
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FIGURE 3. Confusion matrix of our method with three strategies on Herlev dataset.

TABLE 4. Performance of cervical cell classification methods on Herlev
dataset.

Models Categories  Precision (%) Recall (%) F-score (%)
VGG-16 Abnormal 89.130 91.111 90.110
Normal 73913 69.388 71.579
GoogleNet Abnormal 89.362 93.333 91.304
Normal 79.070 69.388 73.913
DenseNet-121 Abnormal 84.967 96.296 90.278
Normal 83.871 53.061 65.000
Inception-v3 Abnormal 85.161 97.778 91.034
Normal 89.655 53.061 66.667
ResNet-18 Abnormal 89.231 85.926 87.547
Normal 64.815 71.429 67.961
DeepCELL-vl  Abnormal 93.525 96.296 94.891
Normal 88.889 81.633 85.106
DeepCELL-v2  Abnormal 96.183 93.333 94.737
Normal 83.019 89.796 86.275
DeepCELL-v3  Abnormal 92.857 96.296 94.545
Normal 88.636 79.592 83.871

considering cell categories (abnormal and normal). From
Table 4, one can see that the best F-score is 94.891% for
abnormal cells and 86.275% for normal cells, both of which
are obtained from our proposed DeepCELL. On the other
hand, ResNet-18 gets an F-score of 87.547% for abnormal
cells and 67.961% for normal cells. Moreover, F-score is
91.034% for abnormal cells while F-score is 66.667% for
normal cells in Inception-v3. There is an apparent difference
in the ability to classify abnormal cells and normal cells for
Inception-v3. We can see that all models have more ability to
identify abnormal cells compared with the ability to identify
normal cells. Unlike these benchmark models, there is a
small difference in the ability to detect different categories
of cervical cells in our DeepCELL. In addition to our model,
the benchmark model has relatively obvious differences in
the classification ability between abnormal and normal cells.
In other words, our DeepCELL can get superior performance
no matter which categories of cervical cells are. Hence, our
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DeepCELL can get more satisfactory classification results
than other models.

Figure 3 depicts the confusion matrix of our method with
three strategies on Herlev dataset. As shown in Figure 3, some
cervical cells are easier to be detected whereas others are
relatively difficult. For example, our DeepCELL-v1 correctly
detects 130 out of 135 cells, and 40 among 49 cells. In addi-
tion, our DeepCELL-v2 correctly predicts 126 from 135 cells,
and 44 out of 49 cells. We can see that our DeepCELL
can recognize abnormal cells better than normal cells, but it
performs well in classifying abnormal and normal cells.

Table 5 shows the performance of different meth-
ods for classifying each of the five cell categories on
SIPaKMeD dataset, considering cell categories (Dysker-
atotic, Koilocytotic, Metaplastic, Parabasal, Superficial/
Intermediate). As it can be seen in Table 5, most of the
existing models lead to F-score of above 80% on five cate-
gories of cervical cells, except for Inception-v3 that acquires
F-score of less than 80% on Koilocytotic and Metaplastic.
Specifically, F-score values of Dyskeratotic, Parabasal and
Superficial/Intermediate exceed 90% in VGG-16, GoogleNet
and DenseNet-121, which are higher than those of Koilocy-
totic and Metaplastic. Different from these models, F-score of
Superficial/Intermediate is 91.765% for Inception-v3, which
is better than those of other four categories. ResNet-18 has
worse performance on Koilocytotic compared with the other
four categories, which only achieves an F-score of 84.571%.
Our DeepCELL-v1 and DeepCELL-v2 both yield F-score of
100% on one type of normal cell, i.e., Parabasal category.
Clearly, our DeepCELL-v1 and DeepCELL-v2 reach perfect
performance on this type of cell. Among all other types
of cells, our method with three strategies obtains F-score
values of more than 90%. However, the performances of other
competing methods are relatively lower than our proposed
method, and some of their F-score values are just more than
80% in five cell categories.

Figure 4 illustrates the confusion matrix of our method
with three strategies on SIPaKMeD dataset. Certain cat-
egories of cervical cells are likely to be classified cor-
rectly, yet some other cell categories have fewer chances
to be recognized precisely. As shown in Figure 4, our
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TABLE 5. Performance of different methods for five categories on SIPaKMeD dataset.

Models Categories Precision (%) Recall (%) F-score (%)
VGG-16 Dyskeratotic 95.513 91.411 93.417
Koilocytotic 88.816 81.818 85.174
Metaplastic 81.667 92.453 86.726
Parabasal 98.039 94.937 96.463
Superficial/Intermediate 95.906 98.204 97.041
GoogleNet Dyskeratotic 95.597 93.252 94.410
Koilocytotic 87.742 82.424 85.000
Metaplastic 88.344 90.566 89.441
Parabasal 98.649 92.405 95.425
Superficial/Intermediate 87.701 98.204 92.655
DenseNet-121 Dyskeratotic 95.706 95.706 95.706
Koilocytotic 82.184 86.667 84.366
Metaplastic 93.197 86.164 89.542
Parabasal 99.342 95.570 97.419
Superficial/Intermediate 91.477 96.407 93.878
Inception-v3 Dyskeratotic 89.308 87.117 88.199
Koilocytotic 78.431 72.727 75.472
Metaplastic 80.921 77.358 79.100
Parabasal 81.714 90.506 85.886
Superficial/Intermediate 90.173 93.413 91.765
ResNet-18 Dyskeratotic 97.315 88.957 92.949
Koilocytotic 80.000 89.697 84.571
Metaplastic 91.558 88.679 90.096
Parabasal 94.410 96.203 95.298
Superficial/Intermediate 96.319 94.012 95.152
DeepCELL-v1 Dyskeratotic 95.783 97.546 96.657
Koilocytotic 91.515 91.515 91.515
Metaplastic 96.026 91.195 93.548
Parabasal 100 100 100
Superficial/Intermediate 94.186 97.006 95.575
DeepCELL-v2 Dyskeratotic 97.561 98.160 97.859
Koilocytotic 96.732 89.697 93.082
Metaplastic 97.436 95.597 96.508
Parabasal 100 100 100
Superficial/Intermediate 91.160 98.802 94.828
DeepCELL-v3 Dyskeratotic 96.319 96.319 96.319
Koilocytotic 95.395 87.879 91.483
Metaplastic 92.216 96.855 94.479
Parabasal 100 99.367 99.683
Superficial/Intermediate 94.220 97.605 95.882

DeepCELL-v1 can identify 158 from 158 Parabasal cells,
which is perfect. It also accurately detects 159 out of
163 cells, 151 out of 165 cells, 145 out of 159 cells,
and 162 out of 167 cells on Dyskeratotic, Koilocytotic,
Metaplastic and Superficial/Intermediate categories, respec-
tively. Similarly, our DeepCELL-v2 can detect 158 from
158 Parabasal cells. That is to say, Parabasal cells are detected
with the highest performance. Our DeepCELL-v2 success-
fully predicts 160 among 163 Dyskeratotic cells, 148 among
165 Koilocytotic cells, 152 among 159 Metaplastic cells, and
165 among 167 Superficial/Intermediate cells. It is obvious

VOLUME 10, 2022

that our designed model has more potential to classify
Dyskeratotic and Parabasal cells compared to other three
cervical cell categories. However, our DeepCELL model can
generally identify all five cervical cell categories well.

The performance of our method and other competing meth-
ods on two Pap smear datasets is shown in Table 6, which is
obtained by averaging the results of ten experiments.

Figures 5 and 6 present the evaluation metrics histograms
for each method to present the performance more directly.
As shown in Figure 5 and Table 6, our DeepCELL out-
performs other methods in all evaluation metrics on Herlev
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FIGURE 5. Overall performance comparison of different methods on
Herlev dataset.

dataset after running models ten times and then taking the
average. Specifically, the performance of VGG-16 is the best
among the benchmark methods. Accuracy, precision, recall
and F-score of VGG-16 are 86.957%, 85.923%, 80.125% and
81.954% respectively. Our DeepCELL achieves the highest
results including an accuracy of 92.717%, a precision of
91.565%, a recall of 89.707%, and a F-score of 90.475%
respectively. The best accuracy of 92.717% is acquired by
our DeepCELL-v2, which is almost 6% higher than the next-
best VGG-16 and approximately 8% higher than ResNet-18.
Similarly, our method achieves an F-score of 90.475%, which
is better than the second highest F-score of 81.954%. In addi-
tion, although there is a slight difference in the results of
our model with three versions, they perform better than
those competing methods. Obviously, the performance of
our method is relatively stable for binary classification of
abnormal and normal cervical cells.

As shown in Figure 6 and Table 6, our DeepCELL is
superior to those competing methods in all evaluation metrics
on SIPaKMeD dataset based on the average of ten exper-
iments. As we can see, DenseNet-121 achieves the accu-
racy of 92.032%, precision of 92.264%, recall of 92.036%
and F-score of 92.025%, which is the most remarkable
result compared to other methods. Among those metrics, our
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FIGURE 6. Overall performance comparison of different methods on
SIPaKMeD dataset.

DeepCELL produces the highest accuracy of 95.628%, which
is around 3.6% higher than the second best DenseNet-121
and about 11.5% higher than Inception-v3. Similarly, our
DeepCELL yields the great performance with the F-score of
95.636%, which is 3.611% higher than the second best model.
Also, three versions of our DeepCELL are not very different
for their performance in each evaluation metric even though
the results of DeepCELL-v1 and DeepCELL-v3 are slightly
lower than that of DeepCELL-v2. This clearly illustrates that
our DeepCELL is stable enough for multi-classification of
cervical cells.

Through the above analysis, we can find that our proposed
DeepCELL method has the best performance on both Herlev
and SIPaKMeD datasets comparing with other methods.
In particular, our DeepCELL achieves the highest classifica-
tion accuracy and F-score, all of which reach more than 90%
(highlighted in bold in Table 6). The results of our DeepCELL
far exceed other competing methods in all evaluation metrics.

To further show the cell classification ability of our pro-
posed method, we compare it with some existing methods
on Herlev and SIPaKMeD datasets in terms of accuracy,
precision, recall and F-score, respectively. Table 7 displays
the comparison of classification performance among differ-
ent methods on Herlev dataset. It can be concluded from
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TABLE 6. Performance of cervical cell classification methods on two Pap smear datasets.

Datasets Models Accuracy (%) Precision (%) Recall (%) F-score (%)
Herlev VGG-16 86.957 85.923 80.125 81.954
GoogleNet 86.359 85.697 78.418 80.802
DenseNet-121 85.924 84.891 78.122 80.225
Inception-v3 84.946 84.084 76.610 78.617
ResNet-18 84.783 82.385 78.319 79.368
DeepCELL-v1 92.391 91.565 88.704 89.923
DeepCELL-v2 92.717 91.545 89.707 90.475
DeepCELL-v3 91.630 90.660 87.471 88.871
SIPaKMeD VGG-16 91.071 91.186 91.082 91.054
GoogleNet 90.493 90.603 90.486 90.476
DenseNet-121 92.032 92.264 92.036 92.025
Inception-v3 84.138 84.464 84.118 84.097
ResNet-18 91.318 91.539 91.327 91.280
DeepCELL-v1 95.259 95.305 95.278 95.262
DeepCELL-v2 95.628 95.685 95.647 95.636
DeepCELL-v3 95.074 95.051 95.085 95.086

Table 7 that the proposed DeepCELL has better classification
performance than other methods in general. In particular, the
proposed DeepCELL-v2 outperforms other methods in both
accuracy and F-score. Specifically, DeepCELL-v2 obtains
an improvement of 6.25%, 3.81% and 3.41% respectively
compared with others in F-score. The method of Liu et al.
[45] reaches the lowest F-score of 84.23% among all com-
peting methods. The method of Bhatt et al. [46] exhibits
the lowest accuracy of 78.142% compared to other methods.
Our DeepCELL-v2 achieves an improvement of 4.69% and
14.58% in accuracy than the methods proposed by Liu et al.
[45] and Bhatt et al. [46], respectively. Our DeepCELL
gains the higher value in precision, which means that it
correctly identifies more positive cells from all the predicted
ones. Besides, our DeepCELL-v1 achieves the second highest
accuracy with only 0.326% lower than DeepCELL-v2. Our
DeepCELL-v2 gets better performance in terms of precision
and F-score, even though it produces only a slightly higher
value in accuracy compared to RF (Random Forest) [47]. It is
clear that our proposed DeepCELL improves the performance
of cervical cell recognition.

Table 8 presents the comparison of the proposed method
with existing studies applied on SIPaKMeD dataset. The
proposed DeepCELL-v2 gains the best performance with an
accuracy and F-score of 95.628% and 95.636%, respectively.
The method proposed by Win et al. [11] in 2020 yields the
accuracy of 94.09%. On the contrary, our DeepCELL-v2
achieves the highest accuracy of 95.628%, which is 1.54%
higher than the method of Win et al. [11]. The higher accuracy
suggests that the model effectively detects the total cells. Our
DeepCELL-v2 is better than the second best method [35]
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TABLE 7. Comparison of classification performance among different
methods on Herlev dataset.

Method Accuracy (%)  Precision (%) Recall (%) F-score (%)
RF 92.040 80.000 95.500 87.066
Bhatt et al. 78.142 79.268 95.588 86.666
Liu et al. 88.030 - - 84.230
DeepCELL-v1 92.391 91.565 88.704 89.923
DeepCELL-v2 92.717 91.545 89.707 90.475
DeepCELL-v3 91.630 90.660 87.471 88.871

TABLE 8. Comparison of the proposed method with existing methods on
SIPaKMeD dataset.

Method Accuracy (%) Precision (%) Recall (%) F-score (%)
Ensemble 95.430 95.340 95.380 95.360
Win et al. 94.090

DeepCELL-v1 95.259 95.305 95.278 95.262
DeepCELL-v2 95.628 95.685 95.647 95.636
DeepCELL-v3 95.074 95.051 95.085 95.086

proposed in 2021 with an improvement of less than 1.0%
in terms of all metrics. However, this ensemble method
is more complex than ours. The method [35] adopts an
ensemble learning technique, which combines several base
models to make the final decision thus outperforming than
the individual base models. Additionally, although our pro-
posed DeepCELL-v1 is slightly lower than DeepCELL-v2
among all metrics, it also obtains the decent classification
performance.
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TABLE 9. Ablation study of the proposed method on Herlev dataset.

Method Run Time (s) Params Size (MB) Accuracy (%) Precision (%) Recall (%) F-score (%)
[41] 1438 29.87 89.423 86.767 85.801 86.211
DeepCELL( [41] + 5 X 5 conv) 2927 148.93 92.587 91.730 88.994 90.174
DeepCELL(replace with 3 X 3 conv) 3334 147.75 91.497 90.048 87.737 88.770
94 In order to reduce the number of parameters in our method,
92 - we also adopt another strategy, which is to use two 3 x 3 con-
volutions to replace one 5 x 5 convolution. From Table 9,
0 _ ] — — we can find that the parameter size is reduced after replacing
88 - one 5 x 5 convolution with two 3 x 3 convolutions in the pro-
86 posed DeepCELL method. Overall, our models have higher
] computational costs than the model from [41], but they obtain
84 better performance in accuracy, precision, recall and F-score.
82 This can also illustrate the effectiveness of our DeepCELL on
80 cervical cell classification task.
8 C. LIMITATIONS OF THE PROPOSED METHOD
76 BTl | S, .l | The proposed method has good performance in cervical cell
Accuracy (%)  Precision (%) Recall (%) F-score (%) classification, but also has some limitations. Firstly, the pro-

m0.1 20.01 O0.001

FIGURE 7. Comparison of different initial learning rates for our method.

V. DISCUSSION

A. PARAMETER SELECTION

In this subsection, we compare different initial learning rates
using our models on the Herlev dataset in Figure 7. It can be
seen that our model has the best classification performance
in terms of accuracy, precision, recall and F-score when the
initial learning rate is set to 0.01. Therefore, we select 0.01 as
the initial learning rate in this study.

B. ABLATION STUDY

To further show the performance of our method, we apply
five-fold cross validation strategy to train our method on the
Herlev dataset. In five-fold cross validation, four of five folds
are used as training set, and the remaining one as validation
set. This process is repeated for five times, and the final
performance of the methods are obtained by averaging results
from five validation sets.

The structure of our models is inspired by [41], which
mainly consists of 1 x 1 and 3 x 3 convolutions. To learn
features with multiple size kernels from cervical cell images,
we add 5 x 5 convolutions based on the model from [41] in our
model to capture different feature representations. It means
that our model mainly consists of 5 x 5, 3 x 3 and 1 x
1 convolutions. Specifically, we compare our method with the
method from [41] with different convolutional layers using
five-fold cross validation on the Herlev dataset. As shown
in Table 9, our method achieves better performance than
the method [41], which can demonstrate that adding extra
5 x 5 convolutions is effective in cervical cell classification.
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posed method has only been applied to cervical cell image
classification in this study and has not been implemented
in other tasks. In addition, our method has more abilities
to classify abnormal cells than normal cells on the Herlev
dataset. Hence, the ability of our method to classify normal
cells needs to be improved.

VI. CONCLUSION
More and more researchers have recently tended to design

highly efficient deep neural networks with great accuracy for
cervical cell detection. Therefore, we develop an end-to-end
automated cervical cell detection model with three different
versions, which can extract deep feature information via mul-
tiple size kernels from cell images. Then, we assess the per-
formance of our designed model on two cervical cell image
datasets, Herlev and SIPaKMeD. Experimental performance
of our DeepCELL is better than that of other competing CNN
models for cervical cell detection on both datasets, including
accuracy, precision, recall and F-score. Moreover, our pro-
posed method achieves a certain improvement in cervical cell
detection compared with other existing methods applied to
two benchmark cervical cytology datasets, which illustrates
that our DeepCELL is robust and comparable to the state-of-
the-art approaches. The superiority of our proposed method
is further illustrated through the comparison of cervical cell
classification performance among different methods on two
datasets. It has evidenced that the exploration of features via
kernels with multiple sizes contributes to improve the detec-
tion ability of cervical cells to a certain extent. The purpose
of our study is to provide a segmentation-free and highly
accurate classification model for cervical cells. We hope that
the construction of our DeepCELL can assist physicians and
cytologists in cervical cancer screening to a certain extent.
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