
Received 1 December 2022, accepted 11 December 2022, date of publication 16 December 2022,
date of current version 21 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3230065

Data-Driven Haptic Modeling and Rendering of
Viscoelastic Behavior Using Fractional Derivatives
HOJUN CHA 1, (Associate Member, IEEE), AMIT BHARDWAJ 2, (Member, IEEE),
AND SEUNGMOON CHOI 1, (Senior Member, IEEE)
1Department of Computer Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
2Department of Electrical Engineering, IIT Jodhpur, Karwar, Rajasthan 342030, India

Corresponding author: Seungmoon Choi (choism@postech.ac.kr)

This work was supported in part by the Morphable Haptic Controller for Manipulating Virtual Reality (VR).Augmented Reality (AR)
Contents under Grant 2020-0-00594; in part by the Development of Non-Wearable Visual-Tactile Digital Twin Platform Technology to
provide various interpretation of digital objects from Institute of Information and Communications Technology Planning and Evaluation
(IITP) under Grant 2022-0-01005; and in part by the Data-Driven Haptic Modeling and Rendering of Normal Interactions on
Inhomogeneous Viscoelastic Deformable Objects from the Department of Science and Technology (DST), Science and Engineering
Research Board (SERB), India, under Grant SRG/2020/000539.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Institutional Review Board of POSTECH under Application No. PIRB-2021-E054.

ABSTRACT Data-driven modeling and rendering is a general approach in haptics aiming to provide highly
accurate haptic perceptual experiences simulating complex real physical dynamics, such as deformable or
textured objects. A prevalent problem in the present methods for data-driven haptics is that the computational
cost for modeling grows rapidly, even becoming intractable, as the interaction complexity or the number of
data increases. This paper proposes one data-driven method featured with greatly improved computational
efficiency for modeling viscoelastic deformable objects. This advantage is enabled by the use of fractional
derivatives for modeling features and regression forests for data-interpolation models. For the benchmark
of normal interaction on deformable objects, we describe a computational framework for data-driven haptic
modeling and rendering. Its performance is validated by physical experiments formodeling accuracy and cost
and a perceptual experiment for the similarity between real and virtual objects. The experiments demonstrate
that our method offers highly realistic haptic perceptual experiences with markedly better modeling cost (at
least ten times) than other state-of-the-art methods.

INDEX TERMS Haptics, contact modeling, rendering, data-driven, deformable object, virtual reality,
fractional calculus.

I. INTRODUCTION
This paper revisits the fundamental research problem of data-
driven haptic modeling and rendering, nicknamed ‘‘hap-
tic camera’’ [1] or ‘‘haptography’’ [2], for viscoelastic
deformable objects. As illustrated in Figure 1, this approach
captures the complex physical dynamics of a real object
when a human finger touches and explores it, expresses the
real object’s dynamics by a black-box model from the input
(finger position and its derivatives) to the output (response
force), and then simulates the black-box model to present the
identical haptic experiences to a user in a virtual environment.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yangmin Li .

The black-box models for input-output interpolation are built
empirically by applying appropriate machine learning tech-
niques to the captured real interaction data.

The data-driven approach in haptics has advantages
for objects exhibiting complex physical phenomena, e.g.,
deformable or textured objects. Such physical properties
are difficult to represent accurately using the alternative of
physics-based modeling and simulation, especially because
of the strict real-time computation requirement of haptic ren-
dering. The rule of thumb is that update rates of no less than
1 kHz are necessary to provide stable haptic interaction with
a stiff virtual object using a force-feedback interface. In fact,
the faster the update rate is, the better the stability of haptic
interaction becomes [3]. Besides, the physics-based methods
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FIGURE 1. While a user haptically interacts with a real deformable object, the user’s interaction motion and the object’s response force are
recorded, as if taking ‘‘haptic photographs’’. The recorded data is processed and used to make a blackbox computational model, e.g.,
a random forest model, between the motion (input) and the force (output). This data-driven model is used to recreate the interaction
dynamics of the real object with a haptic interface in a virtual environment.

often require an exhaustive identification or tuning procedure
of their model parameters for the faithful simulation.

A critical issue present in data-driven haptics for
deformable objects is that the amount of real interaction
data and its processing time, i.e., the modeling cost, eas-
ily becomes intractable when the interaction patterns are
complex. Examples include an object pressed by multiple
fingers and a case exhibiting significant inhomogeneous
behaviors depending on the contact position; see Section II.
In this paper, we present a new data-driven approach based
on fractional derivatives (FDs) to improve the modeling
efficiency.

Given a mathematical function, a fractional derivative is
its derivative of arbitrary order (not necessarily integer);
see Appendix A. FDs have been used to describe complex
mechanical phenomena, where viscoelasticity is one of the
main targets (Section II). In our framework, while pressing
and releasing a real viscoelastic object using an instrumented
probe, we measure the probe’s normal position to the object
surface, which represents the extent of deformation, and the
response force generated by the object (Section III). Then,
we compose an input feature vector for machine learning
models using FDs of the normal position (Section IV). Each
FD has an order between 0 and 1, corresponding to the
position and velocity. This is one of the crucial differences
from the previous data-driven methods, which used either
the position and velocity pair or the current and several past
position samples as input features (Section II). As interpo-
lation models to predict the response force, we test both
regression forests (RFs) and radial basis functions (RBFs).
The computational performance of our new approach is eval-
uated experimentally in comparison with other state-of-the-
art methods. We employ the trained models for rendering
deformable objects in a virtual environment (Section V).
Finally, the perceptual accuracy of our data-driven frame-
work is assessed by a human-subject experiment (Section VI.

Conclusions are summarized in Section VII with a plan for
future work.

Contributions of our work consist of: (1) the first appli-
cation of fractional derivatives to haptic data-driven model-
ing and rendering of deformable objects; (2) the proposal
of a regression forest-based interpolation model leading to
substantially reduced modeling cost; and (3) the physical
and perceptual validations of the modeling and rendering
performance of the developed methods.

II. RELATED WORK
The recent advances in machine learning has allowed
data-driven modeling to be actively used for describing com-
plex phenomena in many fields of science and engineering,
such as physical modeling, material modeling, weather fore-
casting, and financial forecasting [4]. In physics, researchers
have developed physics-informed machine learning models
trained on the additional information more than the physical
laws [5]. For example, Hatfield et al. [6] has highlighted
the importance of data-driven methods for high-energy den-
sity physics. In [7], the authors have used deep learning
frameworks to solve nonlinear partial differential equations.
Cenedese et al. [8] has developed a data-driven model-
ing and prediction method for non-linear dynamic systems.
Researchers have also started employing the data-driven
methods in material science Pollice et al. [9]. Forecasting or
predicting is also one of the promising topics in data-driven
modeling [10]. For example, the data-driven methods are
employed for predicting electricity consumption of a build-
ing [11] and wild fire forecasting [12].

Likewise, data-driven haptics is concernedwithmodel-free
methods that employ nonparametric machine learning tech-
niques to learn input-output mapping functions. The aim
is to model the complex physical behaviors of real objects
and simulate them in real time for rendering in a virtual
environment. The data-driven approach has been successfully
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employed for deformable objects [13], [14], [15], [16], [17],
surface textures [18], [19], [20], [21], [22], and thermal inter-
action [23]. The review in this section focuses on data-driven
haptics for deformable objects.

Höver et al. [13] were among the first who applied
the data-driven approach to accounting for the viscoelastic
behavior of a deformable object. They used the position
and velocity of a haptic tool as the input features, as in
the physics-based models. They employed an RBF-based
interpolation method to predict the output of response
force. This work was extended to modeling slip and inho-
mogeneous interactions on deformable objects [14], [15].
Yim et al. [16] presented a complete data-driven framework
for inhomogeneous objects handling both viscoelastic and
frictional responses in a unified way. For friction identifi-
cation, they estimate sliding yield surfaces and anisotropic
friction cones that depend on the contact position from the
measured data. The frictional behavior during rendering is
simulated using a virtual proxy, and its position is updated
using the sliding yield surfaces while crossing the stick and
slip regions. The position-dependent deformation of the inho-
mogeneous object is modeled using an RBF formulation
that includes an additional input variable of virtual proxy.
This notable improvement, however, significantly increases
the amount of data required and the modeling complexity.
This often makes the RBF training intractable for complex
inhomogeneous real objects.

This problem of high computational cost for modeling has
been addressed by a few groups. Sianov and Harders [17]
proposed a feature-based learning scheme for RBF models
to reduce the dimensionality of datasets. They select fea-
tures using greedy kernel selection, which effectively reduces
the modeling time for large datasets. This method was suc-
cessfully applied to viscoelastic objects explored by two
fingers.

As an alternative to RBF, we previously proposed using
regression forests, a well-known nonparametric machine
learning technique, to model viscoelastic deformable
objects [24]. In this method, the input features consist of
the current and past position samples. The RF-based model
outperformed RBF-based models in terms of prediction
accuracy, amount of training data, and computational time.
However, when tested for rendering virtual objects, we found
that the RF method did not provide stable interactions.
We observed that the RF model often simulated a negative
damping behavior, which essentially accumulates the energy
during haptic interaction and can make the rendering unsta-
ble [3], [25]. This experience motivated us to explore better
input features for RF-based models.

Recently, Abdulali et al. [26] proposed data-driven meth-
ods for hyper-viscoelastic material. In this work, deformation
data are captured using external cameras. The relationship
between applied force and deformation is represented by a
highly efficient FEM (finite element method) model. Then,
a real-time predictor is built from the FEM model and used
for haptic rendering. In their next paper [27], the authors

FIGURE 2. Concept of a springpot.

extended the framework to model the plasticity in deforma-
tion using inverse reinforcement learning.

In this paper, we use fractional derivatives to define input
features. In mechanics, FDs have long been used as an
alternative method to describe viscoelastic behaviors [28],
[29]. The key component is springpot (Figure 2), which can
be combined with other traditional mechanical elements to
model the complex dynamics of many real world objects [30].
FDs have been applied to many other research problems to
explain the viscoelastic property of deformable objects [31],
[32], elastomers [33], [34], and tissues [35], [36], [37]. FDs
have recently been introduced to haptics. Caldiran et al. [38]
studied the perceptual properties of the springpot model when
rendered with different amplitudes and phases in the fre-
quency domain.

III. DATA COLLECTION
In this paper, we focus on modeling of the viscoelastic defor-
mation behavior of a real soft object when it is pressed
and released in the normal direction. The aim is to provide
highly realistic haptic responses by simulating the model and
rendering the results using a force-feedback interface. Our
experimental setup is designed accordingly.

A. HARDWARE
As shown in Figure 3, the experimental setup for data col-
lection consists of a force-feedback device (Omega 3.0,
Force Dimension), a load cell (DBCM-2kg, Bongshin), and
a deformable object. The software is implemented using an
open-source haptic rendering library, CHAI3D. The load cell
is attached to the end-effector of the force-feedback device.
The other end of the load cell has a tip of 6 mm diameter
for interaction with the soft object. The tip is always located
at the center of the object’s top surface for data collection.
The deformation depth is measured by the haptic device, and
the force is by the load cell. The data (position and force) is
updated at a sampling rate of 1 kHz.

For haptic rendering, the load cell is replaced with an
aluminum handle that has a very similar size andweight to the
load cell. The upper image in Figure 4 compares the sensor
and the handle. The gravity compensation constant included
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FIGURE 3. Configuration of data collection.

FIGURE 4. Our data collection and rendering setup (top). Cubes made of
five silicon materials from Ecoflex 00-10 to Dragon Skin 10 (bottom).

TABLE 1. Silicon materials used in our work.

in CHAI3D for force rendering is adjusted according to the
changed mass of the end effector.

We consider five different silicone materials for data col-
lection. The materials are Ecoflex 00-10, Ecoflex 00-30,
Ecoflex 00-50, Dragon Skin FX, and Dragon Skin 10, from
the softest to the hardest, all from Smooth-On, Inc. Their
detailed information is available in Table 1. From each silicon
material, a cube with an edge length of 3.5 cm is molded and
used in this work; see the lower image in Figure 4.

B. TRAINING DATA
Our data collection procedure is automated using the
force-feedback device. An inverted cosine signal in (1) is

FIGURE 5. Example of collected data. The input force profile in (1) with
a = 10 N and ν = 1 Hz is applied to the object made of Ecoflex 00-10. The
upper panel compares the commanded force with the measured force.
The lower panel shows the measured contact position on the surface.

commanded as a force control signal to the device’s tip:

f (t) = −
a
2
(cos(2πνt)− 1), (1)

where a is the target (peak-to-peak) amplitude in N and ν
is the indentation frequency in Hz, respectively. To char-
acterize the object’s rate-dependent deformation property
for users’ general exploratory behavior, we choose three
amplitudes, a ∈ {2, 6, 10} (in N), and nine frequencies,
ν ∈ {0.2, 0.25, 0.33, 0.5, 1, 2, 3, 4, 5} (in Hz). For each pair
(a, ν), we collect the interaction data for a single indentation
cycle. The output force is controlled by position-derivative
(PD) control to ensure stable data collection.

We collect interaction data for each object in Figure 4 using
the 27 input force profiles (3 amplitudes× 9 frequencies).
The total length of the training dataset is 48.85 s. An example
of the collected data is provided in Figure 5. These datasets
are used for training interpolation models (Section IV).

C. VALIDATION DATA
We collect another dataset for each object to validate the
trained interpolation models. The validation set must include
sufficiently complex and general conditions that can be inter-
polated from the range of the training data. We generate a
complex force signal to indent the object by computing

fi(t) = −
ai
2
(cos(2πνit)− 1), (2)

for t ∈ [0s, 15s]. ai and νi are randomly chosen between 0.2N
and 1 N and between 0.2 Hz and 5 Hz, respectively, for i ∈
{1, 2, · · · , 5}. The values of fi(t) after the last zero-crossing
before 15 s are zero-padded to make any sum of multiple fi(t)
terms end with zero. Then, we compute

fsum(t) =
5∑
i=1

fi(t), (3)

f (t) =
10

max fsum(t)
fsum(t). (4)
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The five element signals are added in (3). The result is
normalized in (4) by the maximum force amplitude (10 N)
used for training data collection.Wemake ten validation input
force signals using (2)–(4) and then collect interaction data
for 15 s for each input signal. We apply a zero-phase moving
average filter (window size 25) to smooth both the measured
position and force data. See Figure 7 for examples.

IV. MODELING
Using the collected interaction data, we learn a nonparametric
mapping from the input (position) to the output (force). In this
paper, we propose new input features using fractional deriva-
tives, which is free from the rendering instability problem for
RF models aforementioned in Section II.

A. INPUT FEATURES
The input features are derived from the fractional derivatives
of deformation position. Here, we use the sampled sequence
of position x[n] and force f [n] from the continuous position
x(t) and response force f (t), where n is the discrete time
index. We make an input feature vector as follows:

X[n] =
(
Dr1x[n],Dr2x[n], · · · ,Dr10x[n]

)
, (5)

where Drx[n] denotes the r th-order fractional derivative of
x[n] and its order ri ∈ [0, 1] (i = 1, 2, · · · , 10). See
Appendix A for how we compute Drx[n]. The measured
response force sequence is denoted by f [n].
The training dataset of each deformable object includes the

27 position-force signal pairs measured for the 27 input force
profiles of different amplitudes and frequencies (Section III).
We represent them by xk [n] and fk [n], respectively (k =
1, 2, · · · , 27). Then, we compute Xk [n] using (5):

Xk [n] =
(
Dr1xk [n],Dr2xk [n], · · · ,Dr10xk [n]

)
, (6)

for all n ∈ {1, 2, · · · ,Nk} where Nk is the number of the
recorded samples in xk [n]. For each n, Xk [n] (input feature)
is paired with fk [n] (output force). For compact notation,
we stack Xk [n] and fk [n] for all n, such that

Xk = (Xk [1],Xk [2], · · · ,Xk [Nk ]) , (7)

fk = (fk [1], fk [2], · · · , fk [Nk ]) . (8)

Finally,Xk and fk are stacked over k , i.e., all the 27 training
signal sets, such that

X∗ = (X1,X2, · · · ,X27) , (9)

f∗ = (f1, f2, · · · , f27) , (10)

whereX∗ ∈ R(10×Nk×27) and f∗ ∈ R(1×Nk×27). Consequently,
(X∗, f∗) constitutes the full training dataset.

B. MODEL TRAINING
For each object, we estimate an interpolation function 9,

f [n] = 9 (X[n]) , (11)

which predicts the response force f [n] from the FD fea-
ture vector X[n]. To this end, we learn a regression forest

FIGURE 6. Structure of regression using a random forest.

model on the training dataset prepared for the object. An RF
consists of many decision trees and can be used for regres-
sion [39]. As illustrated in Figure 6, an input vector is fed to
many decision trees in parallel, and their output values are
averaged to obtain the final output; refer to [39] for more
on RFs.

For RF model training, we choose the following parame-
ters: ten orders of FDs in (5) = {0.05, 0.10, · · · , 0.50}, the
number of decision trees = 100, and the stopping criteria =
minimum five samples at leaf nodes. We use FDs of many
different orders to fully utilize the strength of RFs for auto-
matically searching for meaningful features in a large feature
space. Each of the ten orders explicitly represents the different
time-dependent behavior (see Figure 19 in Appendix A) so
that RF training can choose the best rate-related features. For
implementation, we use the source codes available in [40].
The resulting interpolation models are denoted by RF-FD
models.

For comparison, we also train a radial basis function on
input features consisting of FDs:

X[n] =
(
Dr1x[n],Dr2x[n]

)
. (12)

To choose the best two orders for each object, we train RBF
models with all pairs of orders chosen from the ten orders
used for the RF-FD models. Then, we select the pair that
results in the lowest root mean squared error (RMSE) for
the validations datasets. The chosen FD orders are shown in
Table 2, and the resulting models are called RBF-FD models.
Note that including more FD terms in the input features
significantly increase the computation time for RBF model
training. The computational results of such cases are not
compared in this paper.

TABLE 2. Fractional derivative orders chosen for RBF models.
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Lastly, we train another RBF model on the conventional
input features of position and velocity:

X[n] =
(
D0x[n],D1x[n]

)
= (x[n], v[n]) . (13)

The velocity v[n] is estimated using the first-order adap-
tive windowing method [41]. These models are named
RBF-PV, as an implementation of the previous state-of-the-
art model [13] for comparison.

All the models are trained on a reduced dataset randomly
sampled from the original training dataset, as in [13]. We use
only 20% of the training data after repeated tests. The size
of the training dataset critically affects the time required for
model training. The 20% ratio of the training data to use was
determined by empirical tests. Using larger ratio tended to
make training of RBF models infeasible.

The two RBF models, RBF-FD and RBF-PV, use the fol-
lowing settings for training: the number of kernel points =
100 and the cubic spline interpolation method. These num-
bers, as well as the number of trees for RF models, were
chosen considering the update rate of haptic rendering of the
trained models. As the model size increases, the computation
time of rendering becomes longer, which degrades the stabil-
ity of haptic rendering.

C. MODELING PERFORMANCE
Examples of the force curves predicted by the RF-FD, RBF-
FD, and RBF-PV models for all the objects are presented in
Figure 7 with the measured force curves. They are chosen
from the modeling results of the ten validation input profiles
(Section III-C) to represent the average performance. The
lower panels in Figure 7 show the errors between the mea-
sured and predicted force curves. Generally, the output force
profiles closely match the measured force responses for all of
the three data-driven models. The absolute prediction errors
are less than 0.4N for all the objects, except Ecoflex 00-10
(the softest material). For Ecoflex 00-10, the absolute errors
sometimes increase to around 1N.

We consider the absolute percentage error (APE) as the
difference between themeasured and predicted forces divided
by the measured force. For perceptual similarity, the APE
should lie below the just noticeable difference (JND) of
human force perception. Figure 8 presents the APE vs. the
measured force for each object’s trained models. Each plot
also shows the JND curve of force perception for compari-
son. The JND curve is initially very large and then rapidly
decreases as the reference force increases, finally plateauing
to the constant Weber fraction (10%) [42]. The APEs for
all the models lie below the JND curve for the reference
force larger than 2 N for all the objects, which is generally
acceptable [26], [43]. Among the three models, the two FD
methods show lower APEs than RBF-PV.

For each object, we also compute the RMSEs averaged
over the ten validation datasets. The results are shown in
Figure 9. RF-FD and RBF-FD, trained on the fractional
derivatives, result in slightly lower RMSEs than RBF-PV

FIGURE 7. Exemplar modeling results on validation signals.

trained on the standard position and velocity data. RF-FD and
RBF-FD have very similar RMSEs for all the objects.
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FIGURE 8. Absolute percentage errors on the validation dataset.

Last, we report the modeling computation time for both
feature computation and model training. The measurement

FIGURE 9. RMSEs of the three interpolation models.

FIGURE 10. Average modeling times of the three interpolation models.

was performed on a regular PC (Windows 10, i7-11700k
CPU, 32 GB memory) using Matlab. Results are shown in
Figure 10. The computation times were similar regardless
of the real object for all three models. Their means were
11.9 s, 126.7 s, and 126.7 s for RF-FD, RBF-FD, and RBF-
PV, respectively. Therefore, the RF-FD method requires less
computation by more than ten times than the two RBF meth-
ods. The actual modeling time will decrease in proportion
to the number of surface contact points when we extend our
modeling approach to inhomogeneous objects as in [16].

The above results indicate that RF-FD provides similar
accuracy to the two RBF methods at greatly superior model-
ing cost. Note that the prediction accuracy and computation
time can be further improved if the parameters are optimized
per object. For example, Figure 11 shows the variable impor-
tance of the ten FD features obtained from the RF training
for the five real objects. A variable importance is a relative
indicator of how much information the corresponding feature
provides to a random forest. The plots show that fractional
derivatives of low orders are dominant for hard objects (low
viscosity), whereas those of medium orders (0.3-0.5) are
more important for soft objects (high viscosity). Including
higher order terms close to 1.0 is not necessary for the
objects tested, although it may be for highly viscous objects.
We may further improve the prediction and/or computation
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FIGURE 11. Variable importance from RF training results.

FIGURE 12. Procedure of haptic rendering. Data-driven model simulation
for RF-FD and RBF-FD (a) and for RBF-PV (b). Virtual coupling to improve
rendering stability (c).

performance by using only the features of high importance
for each object.

V. HAPTIC RENDERING
For haptic rendering, we recreate the deformation dynamics
of a real object by simulating its data-driven model and then
generating the response force. To this end, the end-effector of
the haptic device is replaced by the handle shown in Figure 4.

Our haptic rendering program is implemented under
Microsoft Windows using C++ and CHAI3D, similar to
the data collection program. Since we train RF and RBF
models using MATLAB, the resulting models are loaded into
the haptic rendering program. A loader file for RF models
includes all information required to construct and simulate a
regression forest. Given an input feature vector, all decision
trees in the RF are traversed, and their results at the leaf nodes
are averaged to determine the final output force. A loader
file for RBF models delivers information about the centers of
radial basis functions and their weights. Using these values,
our program computes the rendering force for an input feature
vector of RBF models.

The overall procedure of haptic rendering is depicted in
Figure 12. The position of the haptic tool is denoted by x.
As shown in Figure 12a, the past position samples for 171ms

Algorithm 1 Virtual Coupling Algorithm
function virtual_coupling(x, v, fM )

if xproxy = NULL then
xproxy← x
vproxy← v
fVC ← 0

else
fVC ←−k(xproxy − x)−b(vproxy − v)
fproxy← fM + fVC
aproxy← fproxy/m
vproxy← vproxy + aproxy1t
xproxy← xproxy + vproxy1t

end if
return fVC

end function

are queued in a vector. It is convolved with a fractional deriva-
tive filter of the same length to compute fractional derivative
features for RF-FD and RBF-FD models. The FD filter can
be precomputed because our models use the fixed fractional
orders (0.05, 0.1, · · · , 0.5), fixed time difference (1 ms), and
limited length (171); see Appendix A. The FD features are
input to a data-driven model (RF-FD or RBF-FD) to compute
the virtual model force fM . For RBF-PV computation, shown
in Figure 12b, we use the tool velocity v provided by the hap-
tic device’s driver. Its output is smoothed using an exponential
moving average (EMA) filter with the weighting factor α
for the current term of 0.7. These position and velocity are
the input to an RBF-PV model, which calculates the output
force fM .
The data-driven model output fM is used as the input to

a virtual coupling algorithm to improve rendering stabil-
ity, as depicted in Figure 12c. Its computational steps are
specified in Algorithm 11. In the pseudocode, xproxy, vproxy,
and aproxy denote the virtual proxy position, velocity, and
acceleration, respectively. xproxy is initialized with NULL
before the initial contact. fproxy is the force applied to the
virtual proxy to update its movement, and fVC is the force
output of the virtual coupling. 1t is the sampling time.
The algorithm simulates the simple dynamics of a virtual
spring-damper system connecting the device position and the
virtual proxy. The virtual proxy is treated as a quasi-static
point mass, and its movement is simulated accordingly. The
algorithm returns the coupling force between the two points.
We use the following parameters: spring constant k =
1.5 N/mm, damping coefficient b = 20 Ns/mm, and mass
m = 50 g, which are manually tuned. The output force fVC
of virtual coupling is smoothed further by an EMA filter
with α = 0.7. This final output force f is sent to the
force-feedback device for haptic rendering. The effects of
virtual coupling and EMAfiltering are illustrated in Figure 13
using an example.

1We thank Arsen Abdulali and Seokhee Jeon, the authors of [26], for
providing the working codes of virtual coupling for deformable objects.
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FIGURE 13. Comparison between the force computed from data-driven
models and its smoothed force by virtual coupling and EMA filtering.

TABLE 3. Update rates (Hz) of the three data-driven models.

The above procedure is executed repeatedly in a dedi-
cated thread. Table 3 shows the three data-driven models’
update rates measured using a regular PC (Windows 11,
i7-11700k CPU, 32GB memory). The update rates are simi-
lar regardless of the real object used for modeling. RBF-PV
shows the fastest update rate (mean 1982.6 Hz), followed by
RBF-FD (mean 990.3 Hz). This difference is due to the use
of FD features. RF-FD shows the lowest update rate (mean
788.3 Hz), indicating that rendering force computation using
RF models using 10 FD features is slower than RBF models
using 2 FD features by approximately 20%. Nonetheless, all
of these update rates are sufficient for the haptic rendering of
relatively soft deformable objects.

When computing FD features, we use the FD coefficients
precomputed assuming 1-ms sampling time. The average
update times for RF-FD andRBF-FD are 1.27ms and 1.01ms
(Table 3). Thus, we need to examine whether the force output
errors caused by the sampling time difference in RF-FD are
significant. RF-FD has a sampling time of 1.27 ms, and
the derivative orders that have high variable importance are
lower than 0.4 (Figure 11). The errors in the value of the
fractional derivative are negligible, according to Figure 20
in Appendix A. Thus, the slightly lower sampling time of
RF-FD is expected not to cause practically noticeable prob-
lems. For confirmation, we resample the actual rendering
results of position and force to have the exact 1-ms sam-
pling time by linear interpolation and compare them with
the rendering results. An example is shown in Figure 14 for
the RF-FD model of Ecoflex 00-50. The actual rendering
results with approximately a 1.27 ms sampling time and the
resampled results with the exact 1-ms sampling time show
very similar time-force curves. This close similarity is also

FIGURE 14. Time-force curves for the actual rendering results of the
RF-FD model for Ecoflex 00-50 and the resampled results at the sampling
time of 1 ms.

observed for the other objects. Therefore, the RF-FD model
is quite robust to the variability in the update rate of haptic
rendering, at least in the range of real materials tested in this
work.

VI. PERCEPTUAL EXPERIMENT
We performed a user study to validate the perceptual per-
formance of our data-driven haptic modeling and rendering
framework for viscoelastic deformable objects. Participants’
task was to compare the similarity between real and virtual
objects and then represent it using a number. This similarity
rating paradigm has been frequently used in related studies to
data-driven haptics [16], [18], [19], [21], [26], [44].

A. METHODS
1) PARTICIPANTS
We recruited 18 adults (5 females and 13 males, average age
24.2 years) for this experiment. None of them had a history
of neurophysiological disorders. They were provided with
written and verbal instructions about the experiment. They
were paid KRW 15,000 (' USD 12) for compensation.

2) TASK
Participants sat comfortably in front of a computer monitor.
They controlled the force-feedback device (Omega.3) with
their right hands and used their left hands to enter responses
using a keyboard; see Figure 15. A physical wall was placed
between the haptic device and the monitor screen to block
any visual cues regarding the device movements and the
real/virtual objects.

Figure 16 illustrates the experimental setup. When a real
object was placed on the left side, the corresponding virtual
object was rendered on the right side, and vice versa. Par-
ticipants explored both objects while pressing and releasing
them in the vertical direction using the haptic device without
a time limit. To guide the haptic exploration, the monitor
screen displayed the haptic interface point (HIP), a visual
guideline, and a contact line. The HIP represents the position
of the device tool tip in the virtual environment. The contact
line was aligned with the top faces of the real and virtual
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FIGURE 15. Setup of the perceptual experiment. A participant controls
the force-feedback device while watching the monitor screen. The
force-feedback device and deformable objects are visually blocked by the
physical wall.

FIGURE 16. Configuration of real and virtual objects used in the
perceptual experiment. Note that on the monitor screen, real or visual
objects are not displayed.

objects. The visual guideline indicated the maximum permis-
sible penetration depth (7.5 to 11mm) used for training the
models. An invisible virtual wall was also rendered to define
theworkspace limit while helping participants interact around
the centers of the real/virtual object’s top faces.

We provided two specific instructions to participants to
ensure the rendering to take place in the range covered by the
data-drivenmodels. First, they were asked not to penetrate the
objects exceeding the visual guideline. Otherwise, a warning
message was given. This precaution was to keep the rendering
force stay within the force range of the training data. Second,
they were asked not to move too fast while touching the
objects. An error message was shown when their movement
velocity was four times larger than the maximum velocity
used to generate the training data. Additionally, participants
wore noise-canceling headphones that played white noise to
prevent any possible effect of external sound on the experi-
mental results.

3) CONDITIONS
We tested 21 experimental conditions: the 5 deformable
objects (Ecoflex 00-10, Ecoflex 00-30, Ecoflex 00-50,

Dragon Skin FX, and Dragon Skin 10) × the 3 trained
models (RF-FD, RBF-FD, and RBF-PV) + 5 upper bound
conditions (per material) + 1 lower bound condition. The
upper bound conditions were to compare two identical real
objects included to obtain maximum similarity scores. In the
lower bound condition, participants compared the two most
different real objects: Ecoflex 00-10 (the softest) and Dragon
Skin 10 (the hardest). This condition provided a perceptual
anchor for the most dissimilar case.

The haptic rendering functions for RF-FD and RBF-FD
were executed as fast as possible at the update rates shown in
Table 3. For RBF-PV, the update rate was fixed at 1000 Hz.

4) PROCEDURE
The experiment consisted of three sessions of identical
design. In one session, each experimental condition was
tested once, except the low bound condition. The low-bound
conditionwas repeated four times. Thus, one session included
24 trials. The order of the experimental conditions was ran-
domized per session and participant. Each participant com-
pleted all of the three sessions in a within-subject design.

In each trial, participants compared two deformable (real
or virtual) objects. The experimenter manually switched the
real objects under the tip of the haptic device. The haptic
device generated no force while a real object was explored.
The positions (left or right) of the real and virtual objects
were randomly selected per trial. Participants compared the
haptic responses of the two objects sufficiently without a time
limit. Then, they rated the perceptual similarity between the
two objects by entering a number between 0 and 100 using a
keyboard.

Before performing the main sessions, participants had a
training session. The training session had the same procedure
as that of the main session. Participants familiarized them-
selves with the haptic device and the experimental task. The
experimenter provided feedback on participants’ behavior of
executing the task whenever necessary.

At the end of the experiment, participants had a debriefing
session and answered a questionnaire consisting of the fol-
lowing five questions:

Q1 Was there any unstable or abnormal behavior from the
haptic device during the experiment?

Q2 What criteria have you opted for rating similarity?
Q3 Could you distinguish between real and virtual objects?
Q4 If your answer to Q3 is yes, then what were your

criteria?
Q5 Which factors/aspects can improve the rendering?

In addition, we recorded the trajectory of the HIP in all
trials and sessions.

B. RESULTS
1) OUTLIER REMOVAL
Some participants showed inconsistent responses in the
experiment. For objective assessment, we computed the stan-
dard deviations (SDs) of the similarity scores collected in
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FIGURE 17. Displacement-force hysteresis curves constructed from the HIP trajectories of all participants.

FIGURE 18. Similarity rating results of the perceptual experiment. The means of each condition are specified right above
the horizontal axis. For each material, conditions without statistically significant differences are grouped using the same
letters.

the same experimental conditions for each participant. Two
participants, P4 and P13, showed very high inconsistency.
Their SDs averaged across the 21 experimental conditions
exceeded 30, while the mean SDs of the other participants
were between 3.87 and 24.33. We also checked possible
inconsistency due to the stimulus position by averaging the
similarity scores collected when the trainedmodel was placed
left or right. Two participants, P6 and P13, failed this test.
Their left-right difference scores were over 30, while the aver-
age of the other participants was 5.47. As a result, we removed
the experimental data of the three participants, P4, P6, and
P13, and proceeded with the data of the other 15 participants.

2) HIP TRAJECTORIES
Figure 17 shows the displacement-force hysteresis curves
combining all the HIP trajectories and the command forces,
collected from the interaction data of one participant, for
each virtual object and data-driven model. A hysteresis curve
for a typical viscoelastic object exhibits different behaviors
when the object is pushed (loading) or released (unloading).
In Figure 17, each curve’s upper and lower parts represent
the loading and unloading behaviors, forming an ellipti-
cal curve. Harder objects, e.g., Dragon Skin 10, shows a

smaller hysteresis curve with higher stiffness, while softer
objects, e.g., Ecoflex 00-10, shows a larger hysteresis curve
with low stiffness. These behaviors are consistent with those
reported in the literature for real and virtual viscoelastic
objects [13], [43], [45]. Other participants resulted in similar
displacement-force curves.

3) SIMILARITY SCORES
Figure 18 presents the collected similarity scores SS in
box plots for all the 21 experimental conditions. In the
upper-bound conditions (comparison between the same real
objects), the mean SS ranged from 81.6 to 88.5, with a grand
mean of 84.2. In the lower-bound condition (comparing the
softest and hardest real objects), the mean SS was very low
at 8.7. The mean SS values of the three data-driven models
were substantially greater than the lower bound, and they
were comparable to the upper bounds. For the five materials,
the RF-FD models resulted in the mean SS values between
73.8 and 85.5, RBF-FD between 72.0 and 81.7, and RBF-PV
between 77.9 and 82.7.

For statistical analysis, we applied two-way repeated-
measures ANOVA with the independent variables ofMethod
(RF-FD, RBF-FD, RBF-PV, or REAL) andMaterial (Ecoflex
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00-10, Ecoflex 00-30, Ecoflex 00-50, Dragon Skin FX, and
Dragon Skin 10) to SS. The data of the lower-bound condition
were not included.Method (F(3, 45) = 6.74, p < 0.001) and
the interaction betweenMethod andMaterial (F(12, 180) =
2.84, p = 0.001) had significant effects on SS, but Material
did not (F(4, 60) = 2.08, p = 0.094).
To further examine the significant interaction term,we con-

ducted simple effect tests on the SS of each Material.
Method had a significant effect at Ecoflex 00-10 (F(3, 42) =
7.30, p < 0.001), Ecoflex 00-50 (F(3, 42) = 3.40, p =
0.026), and Dragon Skin FX (F(3, 42) = 2.87, p = 0.047).
We ran Tukey’s post-hoc tests for the significant cases. For
Ecoflex 00-10, a significant difference in SS existed between
the two FD models and the upper bound condition. For
Ecoflex 00-50, RF-FD and the upper bound condition showed
a significant difference. For Dragon Skin FX, no significant
differences were found among the four conditions ofMethod .

4) QUESTIONNAIRE
The participants’ responses to the five questions are summa-
rized as follows.

Q1 Eleven out of the 15 participants sometimes felt (unsta-
ble) vibrations while exploring the virtual objects.

Q2 All of the participants regarded the response force as
the main criteria for similarity rating. Three partic-
ipants also considered the change in response force
when they varied the haptic exploration velocity.

Q3 Eight participants could distinguish virtual objects
from real objects.

Q4 The major sensory cue for detecting virtual objects
was oscillations that the participants sometimes expe-
rienced at deep penetration.

Q5 Ten participants provided suggestions to improve the
haptic rendering. Six of them were about removing
unrealistic oscillations at deep penetration.

C. DISCUSSION
The similarity scores were bounded below by 8.7 (between
the most different real objects) and above by 84.2 (between
the same real objects). This resulted from the participants’
general tendency to avoid extreme responses. All of the
data-driven models led to high similarity scores comparable
to or slightly smaller than the upper bound. The mean simi-
larity scores of RF-FD, RBF-FD, and RBF-PV across all the
objects were 78.1, 77.0, and 80.4, respectively. No signifi-
cantly different cases were found among the pairs of the three
data-driven models for any of the five materials (Figure 18).
Therefore, all of the data-driven models and rendering meth-
ods are highly and similarly effective in replicating the defor-
mation dynamics of a real object.

In one of the related studies [46], similar perceptual simi-
larity scores were obtained for the same materials using the
FEM-based modeling approach. The similarity scores of our
RF-FD model were 75.4 and 77.3 for Ecoflex 00-30 and
Ecoflex 00-50, respectively (Section VI-B). The FEM-based

approach in [46] provided the similarity scores of 82.7 and
84.9 for the same two material cases. The scores of both
studies are very high, although the absolute scores cannot
be compared in a statistically meaningful way due to the
difference in the detailed methods and environment in the
experimental setups. Therefore, our work demonstrates that
viscoelasticity can be modeled on a smaller amount of data
in a greatly shorter time than any other models from the
literature, while preserving the high accuracy.

The unrealistic oscillation problem mentioned by many
participants generally occurred when the user touched a vir-
tual object with a very fast velocity or penetrated very deep
into the object. In our data-drivenmodels, the dynamics infor-
mation for such high velocity or deformation is not defined,
and the rendering is likely to exhibit unexpected behaviors.
In fact, this problem is common to all data-driven methods.
One remedy can be extrapolationwith awell-defined physics-
based model if the input variables exceed the data collection
ranges.

VII. CONCLUSION
In this paper, we have presented a new data-driven approach
for haptic modeling and rendering of viscoelastic deformable
objects. Our approach is to train a regression forest model
along with features consisting of fractional derivatives of the
haptic device position. This new method can reduce the com-
putational cost of modeling to a great extent while maintain-
ing modeling accuracy and rendering quality. This advantage
is demonstrated by physical and perceptual experimental data
in reference to the other state-of-the-art methods that use
radial basis functions to interpolate between the position and
velocity data.

For future work, we plan to extend our methods to model
inhomogeneous deformable objects and multiple finger
exploration. Modeling of frictional behaviors on the objects
may also be considered. We also plan to adopt more up-to-
date machine learning techniques, such as physics-informed
deep neural networks.

APPENDIX A
COMPUTATION OF FRACTIONAL DERIVATIVES
A fractional derivative, first proposed in 1695 by L’Hospital,
is a derivative of arbitrary order, real or complex. As with
integer-order derivatives, the r th-order fractional derivative of
a function f (x) is described as:

Dr f (x) =
dr f (x)
dxr

, (14)

where Dr represents the operator for the r th-order fractional
differentiation.

For efficient computation, we use the Grünwald–Letnikov
fractional derivative [47], as defined below:

Dr f (x) = lim
h→0

lim
m→∞

m∑
k=0

c(r, k)f (x + (r − k)h),
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FIGURE 19. Examples of fractional derivative Dr f (t) with orders
from 0 to 1.

FIGURE 20. Effects of different sampling intervals on the computed
values of fractional derivatives.

c(r, k) =
(−1)k

hr
0(r + 1)

0(k + 1)0(r − k + 1)
(15)

where 0 is the gamma function.
In our modeling and rendering processes, the independent

variable is the time t , and we approximate (15) by taking
small h and large m, such that

Dr f (t) =
m∑
k=0

c(r, k)f (t + (r − k)h). (16)

We set h = 1ms, corresponding to the update (sampling)
time of data collection and haptic rendering. We use m =
171 as larger values cause overflow in computing the gamma
functions (double floating-point type, 64-bit CPU).

Given r , the coefficients c(r, k) are precomputed for all
k (0 ≤ k ≤ m). Then, (16) works as a filter on f (t) and can
be easily computed in real time.

An example that demonstrates the effects of fractional
derivatives is shown in Figure 19 computed using (16).
The fractional derivatives show gradual transitions between
f (t) = D0f (t) and its first-order derivative f ′(t) = D1f 1(t).

During haptic rendering, the update rate may vary depend-
ing on many internal and external factors. Figure 20
shows changes in the computed values of fractional
derivatives for different sampling times. Compared to the

reference at h = 1 ms, the values remain very sim-
ilar for the shorter (0.8 ms) and longer (1.2 ms) sam-
pling time when the derivative order r is low until
r = 0.50. The differences become more notable as r
increases further to 1.00.
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