
Received 23 November 2022, accepted 13 December 2022, date of publication 15 December 2022,
date of current version 20 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3229899

LINK-GUARD: An Effective and Scalable Security
Framework for Link Discovery in SDN Networks
ISMAIL AL SALTI AND NING ZHANG
Department of Computer Science, The University of Manchester, M13 9PL Manchester, U.K.

Corresponding author: Ismail Al Salti (ismail.alsalti@postgrad.manchester.ac.uk)

This work was supported by The University of Manchester.

ABSTRACT Software-Defined Networking (SDN) is an emerging networking paradigm that creates new
opportunities for future generations of networks. The main characteristic of SDN is its ability to centralise
control through the decoupling of control decisions from the network switches to make the network more
flexible, programmable, and scalable. As part of this centralised control management, the SDN controller
maintains a holistic view of the underlying network. Therefore, topology discovery in SDN is an essential
service for topology-aware applications, such as routing, load balancing, mobility, and tracking. However,
during the SDN topology discovery process, the controllers, without proper protection, are vulnerable to
topology poisoning attacks, most notably Link Fabrication Attacks (LFAs). LFAs may be mounted due to a
leak of packet source authentication, the lack of packet integrity checks, or the reuse of static packets. In this
paper, we describe an effective and scalable security framework, LINK-GUARD, used for facilitating secure
link discoveries in an SDN network. LINK-GUARD is designed to detect and thwart LFAs, thus reducing
the risks of network topology poisoning. The framework has been implemented and evaluated on a Mininet
emulator with an RYU controller. The security analysis indicates that LINK-GUARD can effectively and
efficiently secure topology discoveries against both host-based and switch-based link fabrication attacks.
Performance evaluation results show that the legitimacy of new links can be verified nearly real-time, taking
approximately 30 milliseconds, and fake links can be detected within as low as 6 milliseconds, with a
negligible runtime overhead. These results show that LINK-GUARD is a scalable solution for dynamic and
large SDN networks.

INDEX TERMS Software-defined networking (SDN), topology discovery, OpenFlow protocol, topology
poisoning, link fabrication attacks.

I. INTRODUCTION
In recent years, with the rapid development of mobility,
cloud computing, virtualisation, and multi-tenant networks,
it has become increasingly challenging to manage traditional
networks. To address the challenges, the concept of a
programmable network has been proposed [1] and this leads
to the advent of the Software-Defined Networking (SDN)
architecture which uses centralised control and allows open
programming.

The SDN paradigm has a number of characteristics [2]
such as its ability to decouple control decisions from the

The associate editor coordinating the review of this manuscript and

approving it for publication was Ghufran Ahmed .

forwarding plane to make networks more flexible, pro-
grammable, scalable, and subject to centralised control [3].
The SDN technology is increasingly being adopted in Data
Centre (DC) networks andWide Area Networks (WANs). For
instance, it has been adopted in Google data centres [4] to
interconnect their data centre networks around the globe.

As the brain of an underlying network, the SDN logically
centralises the control plane in an entity called the SDN
controller, which interacts with and manages the underlying
network infrastructure. The controller maintains a holistic
view of the network by collecting topology information from
the SDN switches. In this way, it is possible to retain a global
view of the entire underlying network topology. The global
view entails hosts, switches, and links between any pair of

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 130233

https://orcid.org/0000-0003-2328-4942
https://orcid.org/0000-0001-9519-9128
https://orcid.org/0000-0002-0077-9638

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

switches. To ensure the proper functioning of the SDN core
services and applications, including routing, host migration
tracking, load balancing and topology-based slicing, this
global view must be up-to-date [5]. For this reason, the SDN
controller uses a topology discovery mechanism for network
topology discoveries and maintenance [6].

The Link Discovery Service (LDS) is one of the SDN
controller core services that play a vital role in network
topology discoveries. During the link discovery process,
the controllers, without proper protection, are vulnerable to
topology poisoning attacks, most notably, Link Fabrication
Attacks (LFAs). LFAs are mounted by exploiting LDS
vulnerabilities through compromised hosts or switches. If an
LDS fails to guarantee the authenticity of the link discovery
packets or if the propagation path taken by link discovery
packets cannot be verified, the risks of LFA and other types
of topological poisoning attacks will be high [7].

A. MOTIVATION AND CONTRIBUTIONS
Currently, most mainstream SDN controllers adopt the
OpenFlow Discovery Protocol (OFDP) to perform network
link discoveries [8]. OFDP leverages the traditional Link
Layer Discovery Protocol (LLDP) with a few modifications
to the packet format and operations to be compatible with the
SDN architecture [9]. Each controller implements a variant
of an LLDP packet. A link discovery process is vulnerable
to LFAs if the link discovery packets are not authenticated or
if the propagation paths taken by the link discovery packets
are not verified. To reduce the risk of attacks, some security
extensions can be used, e.g. a hash field which is added to
each packet for integrity check of the packet [10]. Similar
methods have also been proposed in the research domain.
For example, TopoGuard [7] and [11] propose the use of a
keyed hash in an LLDP packet to protect its authenticity.
There are also other proposals. For example, in SLDP [10]
and ESLD [12], LLDP packets should only be sent to non-
host ports,i.e. ports connected to an OpenFlow switch, thus
reducing the number of LLDP packets and preventing the
relaying of LLDP packets from compromised host ports. The
sOFTDP [13] is a novel security protocol designed to reduce
the control load and improve the security of the topology
discovery mechanism in an SDN controller. More detailed
discussions of related SDN topology security solutions are
given in section V.

However, these prior works have limitations. First, they
are largely designed to counter only some of the security
threats seen in a network topology discovery process, e.g.,
LLDP fabrication and LLDP relay attacks. When faced with
other threats, e.g., LLDP flooding, and port amnesia attacks,
they are not as effective. The LLDP flooding attack exhausts
controller resources and consumes the bandwidth of the
switch to the controller channel. Therefore, it negatively
affects benign packet delivery, resulting in the link’s removal
from the topology database. Port amnesia attacks, on the
other hand, enable the attacker to reset the port behavioural
profiling based on the first seen packet. Thus, an attack
can lead to relay-type LFAs. Second, adding a unique hash

value to every LLDP packet incurs a non-negligible amount
of processing overhead and time consumption in the SDN
controller. Specifically, in large-scale networks with tens of
thousands of active ports, every discovery cycle requires the
SDN controller to generate an LLDP packet with a unique
hash value for each active port in the network. Additionally,
the controller must track and match every unique hash
value for the purpose of packet authentication. Third, most
existing solutions are designed under the assumption that
only the hosts may be compromised. However, in reality,
switches are also vulnerable; they may also be compromised.
A compromised switch can also poison the network topology
view. Therefore, how to systematically thwart multiple types
LFAs effectively, but with as low overloads as possible, is still
an open research issue.

As part of our efforts on tackling this issue, this paper
describes the design and evaluation of LINK-GUARD,
a novel security framework for link discovery in SDN
networks. The novelty of LINK-GUARD lies in that it
does not assume that all network switches are trustworthy.
It can counter LFAs from both compromised hosts and
compromised network switches systematically. It achieves
this by employing three novel detection methods. First,
the Bidirectional Link Verification (BLV) method based on
two-way link direction verification is used to detect LLDP
injection attacks using compromised hosts. Second, the
Link Latency Measurement (LLM) method with a statistical
analysis technique detects host- and switch-based LLDP
relay attacks. Third, for LLDP flooding attacks detection,
we used the Per-port LLDP Packet Counter (PLPC) method,
which is based on counting the number of LLDP packets
received from each port in each discovery round. In addition,
LINK-GUARD provides a mitigation method in case of the
detection of fake links based on port blocking. This study
makes the following significant contributions:
• We implemented LFAs (fake LLDP injection, LLDP
relay, and LLDP flooding attacks) over the current
version of the mainstream controllers. In addition,
we analysed these controllers’ security measures to
detect and prevent these attacks.

• We propose an effective and scalable security frame-
work called LINK-GUARD to improve the security
of the topology discovery mechanism. LINK-GUARD
presents simple and effective novel detection methods
for host and switch-based LFAs. In addition, it provides
a mitigation method to prevent relaunching LFAs.

• We implemented LINK-GUARD on the Mininet emu-
lator with the RYU controller. We conducted a secu-
rity analysis to evaluate LINK-GUARD effectiveness
against LFAs under different attack scenarios. In addi-
tion, we evaluated the performance overhead introduced
by LINK-GUARD over different network scales. The
experimental results were compared with those of the
latest related works.

The rest of the paper is organised as follows. Section II
presents an overview of OpenFlow-based Software Defined
Networks (SDN) and their topology discovery mechanism.

130234 VOLUME 10, 2022

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

In Section III, we analyse the LFAs in different scenar-
ios. Requirements specification described in section VI.
Section V comprehensively analyses the existing solutions
and their limitations. In Section VI, we present the details
of our proposal (LINK-GUARD). The experimental setup
is presented in Section VII. In Section VIII, we evaluate the
effectiveness of LINK-GUARD against LFAs. In Section IX,
the performance of LINK-GUARD is evaluated in terms of
the link validation delay, resource consumption, and detection
rate. In Section X, we discuss the study limitations and future
research directions. Finally, the conclusions are drawn in
Section XI.

II. BACKGROUND
This section provides an overview of OpenFlow-based
Software Defined Networks (SDN) and their topology
discovery mechanism, known as the OpenFlow Discovery
Protocol (OFDP).

A. SOFTWARE-DEFINED NETWORKING
Software-DefinedNetworking (SDN) is a new programmable
network framework that separates the control plane from
the data plane, allowing a single control plane to handle
multiple devices. Plane separation allows networking devices
to become simple forwarding units governed by a logically
centralised controller, which serves as the network’s operat-
ing system.

The SDN architecture consists of three layers: application,
control, and infrastructure [2], [14], [15], [16]. Each has
its own functional sub-layers and communication interfaces,
as shown in Figure 1.

FIGURE 1. General SDN layer architecture.

The application layer is comprised of several applications
that manage the entire data plane via a control layer. These
applications include routing, access control, load balancing,
and topology-based slicing. The control layer consists of
the centralised SDN controller software, which serves as

the network’s brain. The infrastructure layer consists of the
data-forwarding devices (such as switches and routers) that
route the data packets based on the forwarding instructions
received from the SDN controller.

Moreover, the application and control layers communicate
via an unstandardised northbound API. Currently, the Rep-
resentational State Transfer (REST) protocol appears to be
the most popular northbound interface [17]. The OpenFlow
protocol, on the other hand, is the most widely used
southbound API for communications between the controller
and infrastructure plane devices [18].

B. OpenFlow
OpenFlow protocol, as specified by ONF [19], is a communi-
cation protocol between OpenFlow controllers and Openflow
forwarding devices. The OpenFlow protocol permits the SDN
controller to instruct OpenFlow-enabled switches on how
to handle different types of incoming packets. In addition,
it provides a secure communication channel between the
controllers and switches for events and statistical information.

The OpenFlow switch consists of two components: (1) An
OpenFlow channel that is used to communicate with the
SDN controller over a secure channel Transport Layer
Security (TLS) on Transmission Control Protocol (TCP)
port 6653 [20]; and (2) An OpenFlow flow table, composed
of flow entries that specify packet match conditions and
resulting actions. The SDN controller collects the topology
information and forms a global view of the underlay network
topology by exchanging Packet-In and Packet-out messages
with OpenFlow switches.

C. TOPOLOGY DISCOVERY SERVICE
One of the essential functions of the SDN controller is to
provide an accurate, near real-time view of the underlying
network topology to the application plane services. A routing
service, for example, requires the network topology to route
the network traffic to its destination.

Topology discovery is a process used by the controller to
learn about the three main network entities: hosts, network
equipment (e.g., switches), and the inter-connected links
between the switches. The SDN controller discovers the
actual location of the hosts within the network by utilising
the Host Tracking Service (HTS) [7]. OpenFlow switches
are discovered during the initial handshake process with
the controller. The links between switches are discovered
and tracked by a Link Discovery Service (LDS) [7]. LDS
can dynamically discover network links by leveraging the
OpenFlow Discovery Protocol (OFDP).

OFDP is considered to be a de facto protocol for link
discovery in current mainstream SDN controllers [9], [21].
The OFDP adopts the layer 2 Link Layer Discovery Protocol
(LLDP)with a fewmodifications to the protocol operation for
compatibility with the SDN architecture. Figure 2 shows the
format of the LLDP packet, which is divided into the header
and payload. The header consists of a destination address,
source address, and Ethernet type. The payload of the LLDP
packet consists of a different set of Type-length value (TLV)

VOLUME 10, 2022 130235

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

FIGURE 2. The format of LLDP packets.

FIGURE 3. Discovering a unidirectional link from S1 to S2 using OFDP.

fields. Some controllers maintain a distinct set of TLVs. The
Chassis ID, Port ID, and Time To Live (TTL) TLVs are used
to store the switch data path id (dpid), port number, and
timestamp, respectively. The Optional TLVs store additional
information that is not required for the topology discovery
process.

Figure 3 illustrates the discovery process of the unidirec-
tional link between the two OpenFlow switches (denoted by
S1 and S2). The discovery process can be divided into four
steps.
Step 1: The SDN controller C0 requests all the switch

S1 active ports. Subsequently, controller C0 encapsulates the
LLDP packet inside a Packet-Out message for each active
port in S1. After that, the controller sends them to switch S1.
Step 2: After the Packet-Out message reaches switch S1,

the LLDP packet is forwarded to a specific output port
(port 1).
Step 3: Upon receiving the LLDP packet, switch S2

encapsulates the LLDP packet as a payload into a Packet-In
message and forwards it to controller C0.
Step 4: Controller C0 receives a Packet-In message with

the meta-data of the destination dpid and destination port
number. Based on the LLDP payload and meta-data, the
LDS can discover a unidirectional link from switch S1 to
switch S2.

Most SDN controllers can discover a bidirectional link
(two-way link direction) by simply repeating the same
process in the reverse direction [22].

III. TOPOLOGY POISONING ATTACKS
During the SDN topology discovery process, controllers,
without proper protection are vulnerable to topology poison-
ing attacks, most notably Link Fabrication Attacks (LFAs).
An attacker’s aim with LFAs is to mislead the controller
into adding fake links to the network topology. An LFAs is
mounted by compromising the switches or hosts that exploit
LDS vulnerabilities. For instance, if an SDN controller fails to
guarantee the authenticity of link discovery packets to prevent
any modification. In addition, if the controller is unable to
verify the propagation path of the link discovery packets to
avoid any host port involved in the process [7].

LFAs are classified into three types: fake LLDP injection,
LLDP relay, and LLDP flooding attacks. An adversary can
create a fake link by injecting malicious LLDP packets into
the network to mislead the controller into adding a fake link
to the topology view. An adversary can relay LLDP packets
between two switches by taking advantage of the controller
LLDP broadcast to create fake links. In addition, an adversary
aims to use an LLDP flooding attack to consume the SDN
controller’s computing resources.

This section describes LFAs and possible attack imple-
mentation scenarios. In addition, we analysed the security
measures taken by different mainstream controllers to avoid
LFAs. Furthermore, we analysed the effects of LFAs on
the SDN architecture layers. Our study mainly focused on
the LFAs initiated by compromised hosts and switches.
We separately analysed the three attack types: fake LLDP
injection, LLDP relay, and LLDP flooding attacks.

A. FAKE LLDP INJECTION ATTACK
Attackers can create fake links by injecting malicious LLDP
packets into the network. Simultaneously, the controller can
not verify the legitimacy of the LLDP packet. There are two
possible scenarios for creating fake links by injecting forged
LLDP packets, as follows.
Scenario 1 (Injecting Fake LLDP Packets Using a Single

Compromised Host): In this scenario, we assume that only
a single compromised host generates and injects a modified
LLDP packet into an interface, which is directly connected to
anOpenFlow switch. To simulate a fabricated LLDP injection
attack using a single compromised host as shown in Figure 4
(a), the attack can be divided into the following steps:

1) The compromised host H1 connected to switch S1 via
port 1 sniffs the LLDP packet sent from the controller.
Different third-party open-source tools are used to
capture the network traffic, such as TCPdump [23].

130236 VOLUME 10, 2022

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

FIGURE 4. Fake LLDP injection attacks. (a) injecting fake LLDP packets using a single compromised host. (b) injecting fake LLDP packets using two
compromised hosts.

2) The attacker changes the Chassis ID TVL to S3 and
Port ID to 1. The malicious LLDP packet follows
the same format as the given controller. Host H1
then injects a modified LLDP packet into port 1 of
switch S1.

3) When switch S1 receives the forged LLDP packet,
it forwards it to the controller without noticing any
abnormal activity in the network. Switch S1 treats this
packet as if it comes from a switch connected to port
1 and forwards it to the controller after encapsulating it
in a Packet-In message with the ingress information as
(S1,1).

4) After the controller receives the forged LLDP packet,
it determines that a unidirectional link exists between S1
and S3. Subsequently, the controller updates the overall
network topology.

Scenario 2 (Injecting a Fake LLDP Packet Using Two
Compromised Hosts): In this scenario, we assume that there
are two compromised hosts that generate and inject modified
LLDP packets into an interface directly connected to an
OpenFlow switch. The difference between this scenario and
scenario 1 is that two compromised hosts are involved in the
attack. For instance, as shown in Figure 4 (b), a compromised
H3 forges the LLDP packets using the Chassis ID TLV
set to S1 and Port ID set to 1. H3 then injects them via
port 1, which is connected to OpenFlow switch S3. Switch S3
forwards the packets to the controller as Packet-In messages.
The controller receives the Packet-In messages and assumes
an existing direct unidirectional link between S3 and S1.
Using the two compromised hosts, an attacker can mislead
the controller to build a bidirectional fake link between S1
and S3.

Each controller constructs and generates a different variant
of an LLDP packet. Some controllers add security features
(such as cryptic hash values) to LLDP fields. We divided
controllers into three categories based on the security features
added to the LLDP packet TLVs. The first category comprises
controllers that generate LLDP messages without hash

values. These controllers are vulnerable to fake LLDP injec-
tion attacks, including RYU, POX, and Beacon controllers.
The second category includes controllers that add a unique
hash value to any of the TLVs of the LLDP packet. A static
hash value is added once and repeated for all the topology
discovery rounds. As authors [7], [8] have mentioned,
by performing reverse engineering, it is possible to obtain
the necessary details to reconstruct an LLDP packet with
a valid hash value to create a poisoned packet. Floodlight,
Opendaylight, andHPEVAN controllers are examples of such
controllers. The third category comprises controllers that
generate a dynamic hash value for each active port in each
topology discovery cycle. ONOS controllers use SHA256 for
the hash function over the port number and the timestamp as a
single cryptographic key in each discovery cycle. As a result,
ONOS is resistant to fake LLDP injection attacks.

B. LLDP RELAY ATTACK
An LLDP relay attack is a type of LFAs. Instead of injecting
fabricated LLDP packets, an attacker just relays LLDP
packets from one port to another, taking advantage of the
controller LLDP broadcast. Two possible network entities
are used to successfully create fake links by relaying LLDP
packets: host-based and switch-based.

1) HOST-BASED LLDP RELAY ATTACKS
We assume that there are at least two compromised hosts in
the network that are under adversary control. The adversary
must create a communication channel between the two
compromised hosts to relay the LLDP packets. There are
two methods used to build a communication channel: an
out-band channel (physical links) and an in-band channel
(logical tunnel).
Scenario 1 (Relaying LLDP Packets Using an Out-Band

Channel): An attacker is required to create an out-band
communication channel to bridge the two network interfaces.
Two network mediums can be used to create out-band

VOLUME 10, 2022 130237

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

FIGURE 5. LLDP relay attacks. (a) host-based LLDP relay attacks. (b) switch-based LLDP relay attacks.

channels: wired and wireless connections. Creating a direct
wire connection (coaxial or fibre cable) between two hosts
has some physical restrictions, such as distance, which
limits the capability to build the channel in all network
environments [24]. An out-band wireless channel is a better
choice for avoiding these physical restrictions. A wireless
channel can be built in either infrastructure or ad hoc
mode. Infrastructure mode requires the use of an access
point to connect two hosts. In the ad hoc mode, each
host communicates directly with each other within the
communication range [25].

Figure 5 (a) illustrates the relaying of LLDP packets
using two compromised hosts via an out-band channel. Upon
receiving the LLDP packet from switch S3 via port 1,
compromised host H3 instantly forwards the packet over
an out-band channel to an associate, host H1. Thereafter,
H1 sends the packet to the directly connected OpenFlow
switch S1 via port 1, which adds its ingress information
and forwards it to the controller. The controller assumes
a unidirectional link between (S3,1) and (S1,1). Thus, the
topology information is updated, resulting in a unidirectional
fake (non-existing) link in its network topology view.
A bidirectional link can be easily built by making host H1
send the received LLDP packets via port 1 to host H3. Host
H3 forwards the packet to switch S3 via port 1.
Scenario 2 (Relaying LLDP Packets Using an In-Band

Channel): In this scenario, the attacker uses an in-band
channel to relay LLDP packets to create a fake link
between the two switches. The attacker must have a network
connection between the two compromised hosts to relay
LLDP packets. The network connection can be verified using
different tools such as the ping tool. Two major protocols
are used to communicate between hosts: the Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP).
Unlike UDP, TCP requires a virtual connection before
exchanging data between the hosts. The controller is less
likely to identify the ports of the two connected hosts as host

ports when using the UDP client-server mode. This is because
the client does not need to form a connection with the server.

Using a UDP client/server connection, an attacker can send
an LLDP packet from H1 to H3, as shown in Figure 5 (a).
Both the compromised hosts have an executable program
with three threads. The first thread is used to sniff the LLDP
packet from the port directly connected to the switch (e.g.,
port 1 of host H1). Whenever the first thread receives an
LLDP packet, it triggers a second thread. The second thread
is used to create a UDP socket and send the received LLDP
packet to another compromised host (e.g., host H3). The
LLDP packet is encapsulated as a datagram in the IP packet.
The third thread extracts an LLDP packet from the IP packet
received from the UDP socket. It then relays the LLDP packet
to the port directly connected to the switch (e.g., port 1 of host
H3). Both compromised hosts performed these three threads
to create a bidirectional fake link between S1 and S3.

2) SWITCH-BASED LLDP RELAY ATTACKS
In a switch-based LLDP relay attack, we assume at least
one compromised switch in the topology. Attacks via
compromised switches not only have the same capabilities
as host-based LLDP relay attacks but also have significant
consequences and severity in the network [26].

The idea behind a switch-based LLDP relying attack
is to use compromised switches rather than compromised
hosts. The lack of security in the SDN design makes
it possible for attackers to compromise switches, either
by exploiting some vulnerability on the switch or by
modifying the switch configuration by physically accessing
it. According to the author, [27], an attacker can modify the
switch configuration and flow tables if they compromise the
OpenFlow switch. For flow table modification, the attacker
can add, modify, or remove flow entries from the flow tables
of the compromised switch. However, the attacker cannot
perform other actions on the compromised switch, such as
changing the way the switch processes the control messages

130238 VOLUME 10, 2022

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

received from the controller. We assume that the attacker only
has remote read and write privileges on the flow tables in the
compromised switches.

To illustrate the attack, we assume that S2 is a compro-
mised switch, as shown in Figure 5 (b). In this scenario, the
attacker creates a non-existent fake link between S1 and S3.
The attacker simply implements three actions on the flow
table of compromised switch S2. The first is to remove the
flow rule that instructs the received LLDP packets from any
port to be sent to the controller. The second is to add a flow
rule instructing the switch S2 to forward the received LLDP
packet from switch S1 via port P2 to port P3. The third action
is to add a flow table rule to instruct the received LLDP packet
from S3 via port P3 to be forwarded to port P2. As a result of
the flow table modification by these three actions, the attacker
can mislead the controller by wrongly discovering a direct
link connecting switch S1 via P2 to switch S3 via P2.

To prove the applicability of the attack implementation,
we considered the attack impact on the routing function
on the application layer of the SDN design. We installed a
multipath routing application on top of the RYU controller.
The application is responsible for finding available routes to
the destination in the network topology and calculating the
cost of each discovered route [28]. As shown in Figure 6,
without an attack, the application finds one path to connect
S1 to S3 via S2. After the attack implementation, the attacker
successfully adds a fake link to the topology database. The
routing application selects the fabricated link because it has
fewer hops to the destination. Thus, traffic is directed through
the fake link.

FIGURE 6. Routing application before and after the attack.

Suppose that multiple switches are connected to a com-
promised switch. In this case, removing the flow rule that
instructs the switch to send the received LLDP packet to
the controller can cause the removal of all the switch links
connected to the compromised switch. An attacker can solve
this problem by modifying the priority of the flow rule to
be less than the flow rules that are used to forward the
received LLDP packet to the egress ports. As a result, the
compromised switch can create a fabricated link between
two normal switches without affecting other links with other
switches.

C. LLDP FLOODING ATTACK
An LLDP flooding attack is used to flood the controller with
a massive amount of fake crafted LLDP packets generated
by compromised hosts. The attacker aims to exhaust the

controller resources and consume the bandwidth of the
channel that connects the switches to the controller.

To illustrate the attack, we assume that there is at least
one compromised host in the topology used to flood the
controller with fake LLDP packets. The attacker uses packet
crafting tools such as Scapy [29] to create fabricated LLDP
packets. The attacker sends a massive number of LLDP
packets (e.g., 50,000 packets per second). The controller is
required to parse every received LLDP packet to extract vital
information used for building a topology view. As a result,
the controller’s resources are rapidly consumed, affecting the
genuine packet service rate. Furthermore, the bandwidth of
the control channel is consumed because of malicious traffic.

D. IMPACT ANALYSIS OF LFAs ON SDN LAYERS
Each layer of the SDN architecture is negatively affected by
the LFAs. The impact of the attack on the application layer
appears through a variety of topology-dependent services, for
instance, routing, load balancing and topology-based slicing
applications. For example, the routing application requires
information regarding the network topology to calculate the
shortest path to route the network traffic to its destination.
Therefore, the poisoning of topology information by creating
fake links can lead to route network traffic to a malicious
route. In addition, this affects the legitimate shortest path
towards the destination.

The impact of the attack on the control layer is reflected
by targeting controller functionality to compute and create
an abstract of the network topology. The control layer
is the core part of the SDN technology. Misleading the
control layer to obtain and maintain the network status and
topology information affects the supplementing application
layer due to the false information. As a result, false topology
information deceives the decisions of the application layer
services, as discussed previously.

The infrastructure layer, which consists of switches that
support the OpenFlow protocol, is responsible for processing
and forwarding the traffic from the source to the destination.
In addition, OpenFlow switches rely on SDN controllers for
traffic forwarding decisions. While the attacker successfully
maintains a fake link, switches direct traffic to fake links
based on the flow rules installed by the controller. This leads
to communication failures and poor switch performance.

IV. REQUIREMENT SPECIFICATIONS
Based on the threat analysis above, the following gives the
requirements for the design of LINK-GUARD.

A. FUNCTIONAL REQUIREMENTS
As mentioned earlier, the novel method should be able to
detect fake links created in the network. There are three
different ways through which fake links may be created or the
attacks may be mounted. To detect or thwart these attacks,
the novel method should satisfy the following functional
requirements.

(FR1) It should be able to detect the fake links created by
LLDP injection attacks.

VOLUME 10, 2022 130239

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

(FR2) It should be able to distinguish between the links
created by relaying normal LLDP packets between a pair of
SDN switches and the links created by relaying normal LLDP
packets by a pair of compromised hosts.

(FR3) It should be able to prevent compromised switches
from creating a fake link by forwarding normal LLDP packets
between connected SDN switches.

B. SECURITY REQUIREMENTS
(SR1) It should be more resilient to LLDP flooding attacks.

C. PERFORMANCE REQUIREMENTS
(PR1) The bandwidth consumed should be as low as
possible.

(PR2) The computational cost incurred should be as low
as possible.

(PR3) The time required to verify the legitimacy of a new
link should be as short as possible.

V. EXISTING SOLUTIONS AND ANALYSIS
There have been numerous studies that address various
security aspects of SDN. However, only a few studies
have addressed the security of SDN topology discovery
mechanisms. A recent study [30] provided a systematic
security analysis of state-of-the-art countermeasures against
topology attacks and their vulnerabilities. The following
paragraphs comprehensively review the existing studies that
have proposed security solutions to the topology discovery
process in SDN. In addition, we have exploited the weak-
nesses of each proposed approach.

The concept of an LFAs was introduced by Hong et al.
[7]. The authors designed a defence mechanism called
TopoGuard, which assumes that adversaries can control one
or more hosts, implying that the controller and switches
are trustworthy. TopoGuard is an OpenFlow-based SDN
controller extension which uses port classification and LLDP
authentication to prevent LFAs. The controller categorised
switch ports as a HOST, a SWITCH, or ANY, based on the
first packet received from the port. Therefore, the controller
stops sending LLDP packets to any port classified as a HOST.
In addition, TopoGuard adds an optional TLV Hash-based
Message Authentication Code (HMAC) to authenticate
LLDP packets, thus ensuring packet integrity and origin.
However, their proposed method computes HMAC using a
static secret key, which is vulnerable to relay-type LFAs.
Furthermore, the LLDP flooding attack was ignored in this
solution.

Alharbi et al. [11], [31] proposed using an HMAC with
a dynamic key attached to each LLDP packet to provide
integrity and authentication. However, this approach requires
the controller to track the keys used in each discovery round.
Furthermore, it adds 8% to the CPU overhead. Nevertheless,
this study does not address relay-type LFAs. On the other
hand, [24] proposed a statistical analysis of link latencies
to detect LLDP relay attacks by measuring the link latency
of receiving LLDP packets. However, an attack cannot be

detected if an attacker relays the LLDP packet at a high speed
as low as 100 milliseconds [32].

Alimohammadifar et al. [33] proposed a Stealthy Probing-
based Verification (SPV) defence to detect link fabrication
attacks. The SPV sends probing packets that are indistin-
guishable from standard packets toward the switches to find
potential fake links. While most of the studies assumed that
the switch could be trusted, this study claimed to work even
if a few switches were compromised. However, this approach
may result in bandwidth consumption and scalability issues
in large-scale networks.

Skowyra et al. [34] proposed an improved version of
TopoGuard, called TopoGuard+. In addition, two new
attacks were introduced: port probing and port amnesia.
Port Amnesia Attack (PAA) refers to a technique that
enables an attacker to reset the port’s behavioural profiling.
Consequently, defences that use port profiling (such as
host, switch, or any) based on the first seen packet are
vulnerable to PAA. Thus, it opens up the system to LFAs.
Therefore, TopoGuard+ includes a Link Latency Inspector
(LLI) module, which is used to differentiate between genuine
and fake switch links. In addition, it resists the PAA. LLI
measures the switch-internal link latency during all LLDP
propagations and flags anomalies that could indicate a forged
link. A similar approach was proposed by Wang et al. [35].
However, in the study by [30], the author discovered an
attack that allowed for the removal of genuine links between
switches, taking advantage of how LLI works. In addition,
the method used to measure link latency is not scalable for
large-scale networks and unsuitable for low-rate networks.

Furthermore, the authors of [12] proposed an Efficient and
Secure Link Discovery Scheme (ESLD). The ESLD only
generates and sends LLDP packets to the non-host ports.
Thus, it reduces the number of LLDP Packet-Out messages
that are unnecessary for topology discovery. In addition,
ESLD uses a time-marked HMAC (tHMAC) verification
technique to prevent LFAs. However, the port classification
approach is based on profiling the behaviour of a given port,
that is vulnerable to PAA. As a result, the system is open to
LFAs.

Researchers [13] have presented a Secure and Efficient
Topology Discovery Protocol (sOFTDP) that shifts a part of
the link discovery to the SDN switch. The topology discovery
mechanism is performed only when there is a link-state
change in the network. Thus, the sOFTDP eliminates the
possibility of LLDP flooding attack packets by removing
periodic LLDP packet broadcasts. In addition, the content of
the LLDP packets is encrypted with hash values to prevent
further spoofing attacks and controller fingerprinting. Despite
these advantages, the study has not been assessed in a large
network environment. In addition, it does not resist LLDP
relay-type attacks when the attacker changes the state of the
port before launching the attack.

Nehra et al. [8], [10] showed that most SDN controllers
lack security mechanisms to protect against LFAs (e.g.,
poison, replay, and flooding attacks). In addition, the authors
proposed a lightweight, efficient, and secure approach called

130240 VOLUME 10, 2022

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

TABLE 1. Comparative table of the existing security solutions to link discovery in SDN.(3: satisfy the requirement, 7: not satisfy the requirement).

Secure and Lightweight Link Discovery Protocol (SLDP).
For link discovery, the SLDP employs a new packet structure
that uses minimal frame features by removing unnecessary
fields from the standard LLDP frame. In addition, the SLDP
creates an eligible port list and only sends SLDP packets
to eligible ports to avoid attacks. However, the SLDP is
vulnerable to PAA, which leads to an LLDP relay-type LFA.

Chou et al. [32] proposed a Correlation-based Topology
Anomaly Detection mechanism (CTAD). CTAD uses Spear-
man’s rank correlation to analyse the time difference between
each LLDP packet round-trip delay in order to determine
the existence of relay-type link fabrication attacks. Also,
a dynamic authentication key in the LLDP frame is used
to prevent LLDP injection attacks. Moreover, a counting
mechanism is used to calculate the number of LLDP packets
received at each port in each topology discovery cycle to
detect LLDP flooding attacks. However, CTAD requires
sendingmany LLDP packets over the network to calculate the
correlation coefficient. Thus, it causes bandwidth consump-
tion and scalability issues in large enterprise networks.

Huang et al. [36] developed a lightweight and efficient
SDN topology verification scheme called TrustTopo. The
scheme uses a chaotic model and dynamic password
generation to ensure the unforgeability and integrity of
links. However, this scheme is not suitable for low latency
networks. In addition, the password generation method
causes scalability issues.

Jia et al. [37] introduced the Lightweight Automatic
Discovery Protocol (LADP) to discover the network topol-
ogy. The controller generates a random number added to
the AUTH TLV of the LDAP frame, which is used for
authorisation to pass the controller. Also, the controller
creates a blocked ports list to avoid forwarding the LADP
frames to non-switch ports. On the other hand, a meter table
is used to prevent flooding attacks. However, suppose that an
attacker launches the attack directly after resting port states
(e.g., port amnesia attack). In that case, their approach does
not counter LLDP relay-type LFA.

Sonali et al. [26] proposed a simple defence mechanism
that detects host and switch-based LFAs using active ports.

This mechanism is based on monitoring the active ports on
every switch. An active port connected to multiple links
simultaneously is considered to be a fake link. However,
an attacker can forge an LLDP packet.

Hauser et al. [38] proposed a novel secure link discovery
mechanism called P4-MACsec. This automated deployment
mechanism provisions IEEE 802.1AE (MACsec) on the
detected links between P4 switches. By encrypting payloads
and sequence numbers, P4-MACsec enhances LLDP. How-
ever, the authentication-based mechanisms could not defend
against the LLDP relay-type LFAs.

Kumar et al. [39] proposed a novel defence method against
relay-based poisoning attacks called the Topology Validator.
The defence solution is based on monitoring the number
of port status messages received by the controller after
administratively turning down the link port. For example,
suppose the controller does not receive two status messages
from either switch of a discovered link after shutting down
one of the link ports. In this case, it would consider the
newly discovered link to be a fake link because receiving
one port status means the port is a host port. However,
this solution is designed under the assumption that the
switches and controller are trustworthy and only hosts may
be compromised. Also, this solution will cause the removal
of normal links in the hybrid SDN.

Overall, the existing security solutions for SDN topology
discovery have limitations in coping with host-based and
switch-based LFAs. Based on the above-mentioned related
research, most studies assume that only hosts may be
compromised. However, this assumption is untrue; a switch
may be compromised. Moreover, a compromised switch can
poison the network topology view.

Approaches that use the HMAC with a dynamic key for
LLDP packet authentication have non-negligible processing
overhead and time consumption for the controller. In large-
scale networkswith tens of thousands of active ports, the SDN
controller is required to generate an LLDP packet for each
active port with a unique hash value in every discovery round.

On the other hand, approaches that use the LLDP packet
propagation delay to measure link latency are unsuitable for

VOLUME 10, 2022 130241

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

FIGURE 7. LINK-GUARD architecture.

large-scale and low-rate networks. Increasing the scale of the
SDN networks increases the link latency measurement errors.
Because adding more switches will increase the controllers’
overhead, leading to a longer delay in processing LLDP
packets.

Table 1 compares existing security solutions based on
the requirements specified in section IV. As seen from the
table, none of the existing solutions satisfies all requirements.
Overall, none of these studies shows an effective and scalable
security solution for both host-based and switch-based LFAs.
This study proposes an effective and scalable security solu-
tion called LINK-GUARD. The proposed solution attempts
to cover the limitations mentioned above. The authors assume
that both hosts and switches may be compromised.

VI. LINK-GUARD ARCHITECTURE
A. OVERVIEW
LINK-GUARD is a security solution framework for the
three types of LFAs. The attacks are (Attack 1) LLDP
injection attacks using compromised hosts, (Attack 2) host-
based and switch-based LLDP relay attacks, and (Attack
3) LLDP flooding attacks using compromised hosts. This
framework provides a detection method for each type of
attack. For attack 1 detection, we used the Bidirectional
Link Verification (BLV) method based on two-way link
direction verification. For attack 2 detection, we used the
Link Latency Measurement (LLM) method with a statistical
analysis technique to detect outliers in the data distribution
of links latency. For attack 3 detection, we used the Per-port
LLDP Packet Counter (PLPC) method, which is based on
counting the number of LLDP packets received from each
port in each discovery round. In addition, LINK-GUARD
provides a mitigation method in the case of a detected fake
link, which is based on port blocking.

The LINK-GUARD framework was implemented as an
extension of the topology discovery service in the RYU
controller. The LINK-GUARD architecture is comprised of
two major modules and seven submodules, as shown in
Figure 7. The modules are the link verification module and
link latency measurement module. In the following section,
we explain each module and submodules.

B. LINK VERIFICATION MODULE
The Link Verification (LV) module classifies newly dis-
covered links as either normal or fake. The LV has two
submodules, a bidirectional link verifier and an outlier
detector. The details of each submodule are discussed below.

The Bidirectional Link Verifier (BLV) module examines
newly detected links to confirm the existence of a bidi-
rectional link connection. The BLV module performs two
sequential tasks: new link detection and bidirectional link
verification.

The first task is to detect new links added to the network.
The BLV follows three steps to discover new links in a
network. The first step is intercepting a Packet-In message
sent from OpenFlow switches that contain an LLDP packet.
The second step disassembles the Packet-In message and
extracts the link information. The link information is formed
by combining the chassis ID and the ingress port of the
Packet-In message with the chassis ID and port ID TLVs of
the LLDP packet payload. The final step is to match the link
information with the existing links information stored in the
database. If that link information does not match any existing
links, is considered a new unidirectional link. Upon detecting
a unidirectional link, BLV moves to the second task.

The second task is bidirectional link verification. A bidi-
rectional link is constructed by receiving a two-way LLDP

130242 VOLUME 10, 2022

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

Algorithm 1 BLV Algorithm
1: Input:M (Incoming LLDP packet)
2: Procedure Link Validation (new links)
3: Src_dp, Src_port, Dst_dp, Dst_port←−

EXTRACT(M)
4: Link_ID = (Src_dp, Src_port, Dst_dp, Dst_port)
5: ReverseLink = (Dst_dp, Dst_port, Src_dp,

Src_port)
6: If Link_ID or Reverse_Link in Verified_Links:
7: Return
8: Else if Link ID or Reverse Link in Blocked Links

then
9: Return
10: Else if Link_ID in Unidirectional_links then
11: If Reverse Link in Unidirectional links then
12: Rasie ‘‘Bidirectional link detected’’
13: Flowlnstaller(Link_lD)
14: Else
15: Rasie ‘‘Unidirectional link detected’’
16: Rasie ‘‘Checking for reverse link’’
17: Wait(timeout)
18: If Link_ID in Unidirectional_links and

Reverse_Link not in
Unidirectional_links then

19: Rasie "Timeout exceeded for checking
Bidirectional link’’

20: Rasie " ATTENTION! Abnormal link’’
21: Port_Blocker(Dst_dp, Dst_port)
22: Else
23: Unidirectional_links←− ADD(Link_lD)

packet. Based on the unidirectional link information of
the new link, the BLV waits for the LLDP packet, which
represents reverse link information. If the model discovers a
bidirectional link, then it communicates with the link latency
measurement module to validate this link. Otherwise, after a
time-out, this unidirectional link is considered an attempt at
an LLDP injection attack using a single compromised host.
As a result, BLV interacts with the port blocker module to
block the port and send a notification for further investigation.
Algorithm 1 formally illustrates the BLV module.

The outlier detector module classifies a given link latency
value for a bidirectional link as an outlier or as normal.
This module receives the link latency value from the latency
calculator module. The link latency value is considered to
be an outlier if it deviates from other latency values. This
module uses a univariate outlier detection method called
boxplot [40]. The boxplot computes the first quartile (Q1),
median, third quartile (Q3), maximum, and interquartile
range (IQR) of the link latency data distribution. If the given
link latency is greater than Q3+3*IQR, it is considered an
outlier. In addition, this module report links information to
the port blocker module if the link latency is classified as an
outlier. If it is not classified as an outlier, a link is added to
the topology database.

C. LINK LATENCY MEASUREMENT MODULE
The link latency measurement (LLM) module is responsible
for generating, sending and collecting probe packets to/from
OpenFlow switches. This module has three submodules: a
flow installer, a probe packet sender, and a latency calculator.
The details of each submodule are discussed below.

The flow installer module is used to construct and send the
flow rules to the targeted switches. These rules are used to
forward the probe packets between the two switches ports of
the detected bidirectional link. It also sends probe packets
back to the controller. The flow rules are injected into the
source and destination switches. The source switch is a
switch that receives a probe packet from the controller. The
destination switch is the switch that sends the probe packets
back to the controller. The controller randomly selects the
source and destination switches.

There are two types of generated flow rules: group table
and match-action rules. The group table rules are designed to
execute two separate lists of actions. Each action list is called
a bucket. The first bucket contains one action: forward the
received probe packet to the controller. The second bucket
contains two actions: decreasing the Time To Live (TTL)
value of the probe packet by one and forwarding the packet
back to the incoming port. The group table rule is installed in
every OpenFlow switch in the network.

On the other hand, the match-action rules are used to
forward probe packets between a source and destination
switch. Two matching-action rules exist. The first rule is
installed in the source switch to forward the probe packet
to the destination switch. The second rule is installed in the
destination switch to forward probe packets to the group
table. Figure 8 summarises the rules installed in the source
and destination switches.

The probe packet sender module is responsible for
generating and sending probe packets. More specifically,
this module generates an Internet Control Message Protocol
(ICMP) packet and sends it to the source switch of the
new bidirectional link. The controller predefines the TTL
field of the ICMP packet header to limit the number of
probe packets used to measure link latency. The probe packet
Maximum Transmission Unit (MTU) equals 1,500 bytes.
After installing the flow rules, this module is triggered to
generate and sends a single ICMP probe packet to the source
switch.

The latency calculator module is responsible for collecting
the probe packets and calculating the link latency of the
bidirectional link. This module employs the following steps
to calculate the link latency. Initially, it records a timestamp
for every probe packet received from the destination switch.
Then, it subtracts the current link delay between the controller
and destination switch from the recorded timestamp. The
results are stored in a list. These two steps are repeated for
all of the received probe packets. After receiving all the probe
packets, the time difference between the recorded timestamps
is calculated. Finally, the median of the stored time difference
of the timestamps is calculated to produce the link latency
of the bidirectional link. The link latency is reported to the

VOLUME 10, 2022 130243

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

FIGURE 8. Group table and match-action rules installation.

Algorithm 2 Link Latency Calculation Algorithm
1: Input: P (ProbePacket), TTL (Time-To-Live value),

Ed (Egress switch link delay)
2: Procedure LinkLatencyMeasurment(Bidirectional

new link)
3: Initial values: x = l,y = 0
4: While true do
5: edelay←− current link latency between controller

and destination switch Ed
6: tprobe←− record probe packet receiving time
7: ldelay←− tprobe - edelay
8: ProbeDelayList←− ADD(ldelay)
9: If length(ProbeDelayList) == TTL then
10: For i in (TTL-1) do
11: di = ProbeDelayList [value index (x)

- value index (y)]
12: TotalDelaysList ←− ADD(Jz)
13: If length(TotalDelaysList == (TTL -1)

then
14: LinkLatency= median (TotalDelaysList)
15: Return LinkLatency
16: x+ =l
17: y+ =l

outlier detector module for further analysis. Algorithm 2
shows the process of the link latency calculation.

The event sequence of the LLM module is illustrated in
Figure 9. To understand this in more detail, note that we use
three network entities, a controller C0 and two switches, S1
and S2. There is a vertical timeline for each network entity.

Initially, controller C0 starts serving before switches,
S1 and S2. After controller C0 establishes a successful
connection with switches S1 and S2, it sends the group
table rule to both switches. Then, each of the switches
installs the group table rule. Next, C0 generates and sends
LLDP packets in PACKET_OUT to all the active ports of
S1 and S2. Upon receiving the PACKET_OUT messages,
S1 and S2 resolve the LLDP packets and send them to the
designated ports. After S2 receives the LLDP packet from S1,
it sends it to C0 as a PACKET_IN message. Similarly,
S1 sends an LLDP packet received from S2 to C0 as a
PACKET_IN message. After C0 receives PACKET_IN from
S1 and S2, it creates a bidirectional link between S1 and
S2 without adding it to the topology database. C0 randomly
selects the source and destination switch of the bidirectional
link. Therefore, we denote S1 as the source switch and
S2 as the destination switch. Next, C0 generates and sends
match-action flow entries to S1 and S2 as FLOW_MOD
PACKET_OUTmessages. Then, each of the switches installs
a match-action flow entry. After installation, C0 generates
a single ICMP packet with a custom TTL count (e.g., 10).
Then, C0 sends the ICMP packet as PACKET_OUT to the
source switch S1 port. S1 unwraps the ICMP packet from
the PACKET_OUT message. Then, S1 sends the ICMP
packet to destination switch S2. S2 mirrors the ICMP packet
and sends one copy to C0 as a PACKET_IN. The TTL
of the second copy of the ICMP packet is decreased and
forwarded to S1. The probe packet bounces between S1
and S2 until the TTL count equals zero. Then the packet
is discarded. Next, C0 records the ICMP packet’s received
time. After receiving all the probe packets (ICMP), C0
calculates the time difference between the received time
for all ICMP packets. C0 then calculates the median of
the recorded time differences to obtain the link latency.
The event sequence diagram surrounding area, denoted by
a rectangle, depicts the repeatedly executed instructions.
This process is repeated N times, where N is equal to the
TTL count.

Other essential modules in the LINK-GUARD framework
include flood detectors and a port blocker. A flood detector
module is used to detect LLDP flooding attacks. This module
monitors and records the number of LLDP packets received
from each port during each discovery cycle. In this matter,
we can determine whether any port suffers from an LLDP
flooding attack in real-time. By default, the controller sends
a single LLDP packet to each active port in every discovery
cycle. Thus, relaying more than one packet in each discovery
cycle from a specific port to the controller is considered
abnormal behaviour. It is detected as a flooding attack
from the second packet received by the controller in the
same discovery cycle from the same port. Furthermore,
this module communicates with the port blocker module
to block the attack sources and notify the controller for

130244 VOLUME 10, 2022

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

FIGURE 9. LLM sequence.

Algorithm 3 Detect Flooding Attacks Algorithm
1: Input:M (Incoming LLDP packet)
2: Procedure FloodingAttackDetect
3: Dstdp, Dst_port←− EXTRACT(M)
4: PortID = (Dst dp, Dst_port)
5: If PortID in PortIDList then
6: PortBlocker(PortlD)
7: else
8: PortIDList←− ADD(PortlD)
9: On every n second do
10: PortIDList = empty # reseting the list

more investigation. Algorithm 3 is used to detect the LLDP
flooding attacks.

On the other hand, the port blocker module is used to
block detected fake links from the attack source. This module
receives fake link information from the bidirectional link

verifier, the outlier detector and the flood detector modules.
In addition, this module constructs and sends flow limitation
rules to designated switches to block fake links.

VII. EXPERIMENT SETUP
To evaluate the effectiveness and performance of
LINK-GUARD against the LFAs discussed in Section III,
we implement the experiment in a simulated OpenFlow net-
work environment. The emulated testbed uses Mininet [41]
as a network emulator and Open Vswitches [42] to simulate
realistic OpenFlow switches. We use Wireshark [43] to
capture network traffic. The RYU controller [44] is used
to communicate with Open Vswitches. Unlike other SDN
controllers such as OpenDaylight and Floodlight, RYU has
been developed as an open-source and well-documented
controller. The network topologies are built via Mininet,
which runs on a virtual machine with an Ubuntu 18.04 sys-
tem created by the VMware Workstation. Scapy [29],
a Python-based interactive packet manipulation package,

VOLUME 10, 2022 130245

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

FIGURE 10. Experimental network topology.

is used to build our attack code and perform packet crafting
because of its advanced and robust networking capabilities.
Table 2 lists the details of the experimental environment for
LINK-GUARD.

TABLE 2. Experimental environment for LINK-GUARD.

VIII. SECURITY ANALYSIS
LINK-GUARD revokes the detected fake link before adding
it to the topology database of the controller, to prevent poison-
ing the overall view of the network topology. Furthermore,
it prevents the attack source, compromised hosts, or switches
from relaunching the attack. We evaluate the effectiveness of
LINK-GUARD against four types of LFAs scenarios:
• LLDP injection attack scenario
• LLDP relay attack using compromised hosts scenario
• LLDP relay attack using compromised switch scenario
• LLDP flooding attack scenario
The experimental network topology used to evaluate the

effectiveness of LINK-GUARD in resisting the four attack
scenarios is illustrated in Figure 10. The data plane of the
experimental network mainly consists of eight switches. All
inter-switch links and the links that connect hosts to switches
have a 1 Gbps link speed with a 1 millisecond (ms) link delay.

A. LLDP INJECTION ATTACK SCENARIO
In this scenario, an attacker host (i.e., H2) forges an LLDP
packet and injects it into an attached OpenFlow switch S2.
For instance, the chassis ID and Port ID of the forged
LLDPDU packet are filled with switch S8 and port 3 details,

FIGURE 11. Detection of LLDP injection attacks.

respectively. Then, the fake packet is sent to port 3 of switch
S2 via compromised host H2. In this case, the attacker
can create a unidirectional link (DPID: S8, portID: 3 →
DPID: S2, portID: 3), as shown in Figure 10. However, when
the LINK-GUARD discovers a new unidirectional link by
receiving a one-way LLDP packet, it will not proceed to the
verification mechanism until it receives a two-way LLDP
packet which represents the bidirectional link.

When using a single compromised host to inject forged
LLDP packets, an attacker can only create a unidirectional
link. Therefore, after a timeout (e.g., one second), the uni-
directional link is considered fake. As a result, the controller
blocks the port of the fake link, as shown by the RYU console
output in Figure 11.
We consider the case where an attacker uses two com-

promised hosts (i.e., H2 and H3) to inject fake LLDP
packets in order to create a bidirectional link. In this case,
LINK-GUARD moves to a link verification mechanism by
measuring the link latency before adding it to the topology
database. This mechanism requires a real link connection
between the two discovered ports. In this case, there is no real
connection betweenH2 andH3 (i.e., an out-of-band channel).
Therefore, the probe packets used to measure link latency
will not be able to reach the controller. The newly discovered
bidirectional link is considered fake if the controller does not
receive the probe packets. The procedure after that is to block
both ports of the fake link by sending a traffic limitation rule
to both switches.

To reduce potential counterattacks by replicating LLMs
using ICMP packets, we guide the controller to follow
three steps for newly discovered bidirectional links. In the

130246 VOLUME 10, 2022

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

first step, the controller randomly selects the source and
destination switches in order to reduce the chance of knowing
which switch is responsible for sending ICMP packets to the
controller. The second step is to use a random number for
the total number of ICMP packets that the controller must
collect to measure the link latency rather than a fixed number
of packets. The final step is to check the FlowRemoved
message received from the source and destination switches.
The FlowRemoved message is sent to the controller via
the switch when the flow entry is removed from a flow
table. Both switches send a FlowRemoved message to the
controller containing the packet count that utilises this rule.
The controller checks the packet count and must match this
with the number of packets that were selected before starting
the LLM process. For instance, if the controller selects
10 probe packets that are used to measure link latency, then
the FlowRemoved message sent from the destination switch
to the controller must have a packet count equal to 10. The
FlowRemoved message sent from the source switch must
have a packet count equal to 9. If there is a mismatch in one
of the packet counts in either message the controller raises an
alarm for a potential counterattack.

B. LLDP RELAY ATTACK USING COMPROMISED HOSTS
SCENARIO
In this scenario, an attacker aims to create a fake link by
relaying the received LLDP packets between hosts H2 and
H3, as shown in Figure 10. The two malicious hosts can use
either an out-of-band or an in-band communication channel
to forward LLDP packets.

We assume that the attacker is not only capable of relaying
LLDP packets but also relaying the probe packets that are
used to measure link latency for newly discovered links over
an out-of-band wireless channel. As the first step to creating
a bidirectional link, the attacker must relay LLDP packets in
both directions. Otherwise, the link will be classified as fake.
Furthermore, the controller must receive a selected number
of samples to measure the link latency; this is the next step
to classifying the link as benign or malicious. We assume
that relaying probe packets (ICMP packets) over an out-of-
band channel may create an abnormal increase in switch link
latency if extra devices or channels are involved in relaying
the probe packets. Therefore, after successfully calculating
the link latency of a newly discovered link, we use a univariate
outlier detection technique to detect outliers.

The univariate outlier detection technique is used to detect
outliers from the distribution of values in a single feature
space (i.e., link latency). The distribution of the one-way
latency of the probe packets determines which univariate
outlier detectionmethod ismost suitable for detecting outliers
in the data distribution. The most common techniques are the
Z-score [45], Tukey’s boxplot [40], and adjusted boxplot [46].

In this experiment, we collect the link latency for four
different network scales, which have 8, 20, 85, and 127 virtual
switches, respectively. We use the Kernel Density Estimation
(KDE) to visualise the link latency distribution, as shown
in Figure 12. We observe that the distribution of the data

FIGURE 12. Overall RTT distribution of 8, 20, 85, and 127 switches.

is symmetric (normal distribution) with a light skew to the
right-hand side of the distribution. Therefore, the Z-score is
unsuitable for all of the network scales because it assumes that
the data conform to a normal distribution [47]. The adjusted
boxplot method, on the other hand, is used for moderately
to extremely skewed data distribution. Thus, we use Tukey’s
boxplot to detect outliers because it does not assume that
the data conform to a normal distribution and it is suited to
moderately asymmetric distributions.

Tukey’s boxplot detects outliers based on the interquartile
range and it is used to obtain upper and lower bounds. If the
data are outside the boundary, they are considered outliers.
In other words, if the link latency lies above three times
the interquartile range (IQR), the link is rejected (fake link).
Otherwise, the link is normal and it is added to the topology
database.

To evaluate the effectiveness of LINK-GUARD against
out-of-band relay attacks, we configure an out-of-band link
between two compromised hosts (H2 and H3) with five
milliseconds latency. We measure the latency of all nine
links with out-of-band fake links. We also measure the
latency threshold for each discovered link in the topology,
as shown in Figure 13. Overall, the latency of all the normal
links is approximately one millisecond. By contrast, the fake
link over the out-of-band channel is seven milliseconds,
which is above the threshold of normal links. The result
shows that LINK-GUARD successfully allocates the fake
link (S8-P3<->S2-P3), as shown by the RYU console output
in Figure 14.
Additionally, we measure the effectiveness of

LINK-GUARD against in-band LLDP relay attacks. We con-
duct the attack by controlling the two compromised hosts
(H2 and H3). We install a Scapy code that is executable
in both compromised hosts. Each code is responsible for
two main tasks. The first task involves listening to and
relaying LLDP packets. For instance, the host H2 sniffs
LLDP packets incoming from the connected interface to the
OpenFlow switch. When receiving an LLDP packet, host
H2 encapsulates the LLDP packet within the UDP packet as

VOLUME 10, 2022 130247

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

FIGURE 13. The threshold distribution with links latency.

FIGURE 14. Alert from LINK-GUARD for detecting out-of-band fake links.

a payload. Then, it sends the UDP packet to host H3 over
a UDP client/server connection. When host H3 receives a
UDP packet, it extracts the LLDP packet and relays it to
an incoming port. Similarly, host H3 sniffs and relays LLDP
packets to host H2 to create a bidirectional link.

The second task involves sniffing and relaying the probe
packets (ICMP packets). Both compromised hosts listen to
probe packets because the source and destination switch
selections are random. In our experiment, the controller
selects switch S2 as the source switch and S8 as the
destination switch. The controller sends an ICMP packet
to port P3 of switch S2. After host H2 receives the ICMP
packet, it encapsulates it in a UDP packet and sends it
to host H3. Subsequently, H3 extracts the ICMP packet
from the received UDP packet and sends it to port P3
of switch S8. However, an ICMP packet with 1500 bytes
encapsulated in a UDP packet causes packet fragmentation.
Packet fragmentation involves breaking the packet into
smaller pieces when the packet is larger than the network
MTU (usually approximately 1,500 bytes). Therefore, switch
S8 sends an ICMP packet with a size smaller than 1500 bytes
to the controller. As shown by the RYU console output
in Figure 15, LINK-GUARD can successfully detect probe
packets that do not match the original probe packet size. This
packet size mismatch is considered to be an in-band relay
attack.

FIGURE 15. Alert from LINK-GUARD for detecting in-band fake link.

C. LLDP RELAY ATTACK USING COMPROMISED SWITCH
SCENARIO
In this scenario, the attacker aims to create a fake link by
relaying LLDP packets over a compromised switch. The
attacker hijacks switch S5 and installs the malicious flow
table rules, as shown in Figure 10. An attacker forwards the
LLDP packets from switch S3 to switch S6 without sending
them to the controller, in order to create a fake link between
switches S3 and S6. Likewise, the LLDP packets from switch
S6 are sent directly to S3, resulting in a fake bidirectional link
between switches S3 and S6.

However, in the attack scenario above, the attacker does not
block the LLDP packets sent from the controller to switch S5
ports (i.e., P1 and P2). Therefore, LINK-GUARD can detect
two unidirectional links: link (S5,P1-S3,P4) and (S5, P2-S6,
P2). Due to the lack of reverse link information for both links,
the unidirectional link ports are blocked, as shown by the
RYU console output in Figure 16.

FIGURE 16. Alert from LINK-GUARD for detecting the unidirectional link
with compromised switch.

We assume that an attacker is able to drop the controller
LLDP packets sent to the compromised switch ports (i.e., P1
and P2 of switch S5). For example, an attacker can use a
command-line firewall utility program to block egress traffic,
such as an iptables command-line firewall [48]. Thus, the
attacker hides the existing connected links from switches
S5 to S3 and S6. At the same time, the controller forms a
bidirectional link between switch S3 and S6, as shown by the
flowmanager [48] tool in Figure 17.

FIGURE 17. Topology view of RYU controller after the attack.

LINK-GUARD detects a bidirectional link between
switches S3 and S6 via ports P4 and P2, respectively, based
on the attack scenario above. Then, a probe packet (ICMP)
is sent to the source switch’s designated port (i.e., S3, P4).
Next, the ICMP packet is forwarded through switch S5 to
destination switch S6. The ICMP packet’s TTL value is
decreased because there are two different network subnets,

130248 VOLUME 10, 2022

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

which are considered one-hop counts. Consequently, the TTL
value is decreased twice, once by switch S5 and once by
destination switch S6. Overall, the number of ICMP packets
sent from the destination switch to the controller is less than
the number of packets required to measure link latency. As a
result, the link is considered fake.

D. LLDP FLOODING ATTACK SCENARIO
In this attack scenario, the attacker intends to flood the
controller with numerous LLDP packets to overload the
controller bandwidth and consume the controller’s CPU
cycles. To simulate the attack, we use host H1 to flood the
controller with a large number of LLDP packets (50,000
packets per second) in a 30-second attack using the TCPrelay
tool [49]. If the controller receives more than one LLDP
packet from a specific port in each discovery cycle, this is
considered abnormal behaviour.

Compared with CTAD [32] in Figure 18, the result
indicates that LINK-GUARD can detect an attack with fewer
LLDP packets, which takes less time to block the port from
which the attack originates. Furthermore, the controller may
request the flow statistics of the blocked port to verify the
packet count for further investigation.

FIGURE 18. Evidence for LLDP flooding attack detection.

IX. PERFORMANCE EVALUATION
In this section, the performance of LINK-GUARD is
evaluated in terms of the link validation delay, resource
consumption (CPU processing and memory consumption),
and detection rate. We consider four different network
topologies to evaluate the performance of LINK-GUARD,
which is sufficiently large to justify our validation. Table 3
lists the topologies with the number of switches, links, and
ports.

TABLE 3. Topologies and key parameters.

A. LINK VALIDATION DELAY
The link validation delay is the time required to verify the
legitimacy of the new link. We measured the time from
the unidirectional link discovery until the link classification
decision. The link availability time depends mainly on the
number of probe packets used to calculate link latency.
We use 10 ICMP probe packets for this experiment to
measure the link latency.

FIGURE 19. Link validation delay.

Figure 19 illustrates the average delay of link validation
over four network scales: 8, 20, 85 and 127 switches.
The result is compared with the same latency measurement
method used in [32] and [34], denoted by the OFDP. It can
be seen from the graph that the average delay of OFDP
using 8 switches is around 5 seconds. The delay increases
to 9.5 seconds for 20 switches, and it increases rapidly to
78 seconds for the 85 switches. However, the link delay for
127 switches decreases to 65.4 seconds because the number
of active ports in this network is less than the 85 switch
network, as shown in Table 2. On the other hand, the
link validation delay created by LINK-GUARD is around
26 milliseconds for both the 8 and 20 switches network.
The link delay increases slightly to 30 milliseconds for
85 switches and it remains constant over the 127 switch
network.

Overall, LINK-GUARD creates a time overhead similar to
real-time behaviour, making it a more scalable solution for
dynamic and large SDN networks.

B. RESOURCE CONSUMPTION
We measure the controller resource consumption (CPU and
memory usage) of LINK-GUARD, and the results are com-
pared with those of RYU-OFDP (without LINK-GUARD).
To measure the CPU and memory usage, we utilise the
top command in the Linux shell. We evaluate the resource
consumption over four network scales, with 8, 20, 85 and
127 switches, respectively.

Figure 20 depicts the average CPU consumption for detect-
ing and validating all the links in the network topology. The
average percentage consumption of RYU-OFDP is around
1.1%, 1.2%, 1.4%, and 1.5% for 8, 20, 85 and 127 switches,
respectively. With the integration of LINK-GUARD, the
average CPU usage overhead for 8 switches is 1.4%, reaching

VOLUME 10, 2022 130249

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

2.1% with 127 switches, which is a 0.6% increase compared
to RYU-OFDP with the same network scale. Thus, the CPU
consumption of LINK-GUARD is considered reasonable.

FIGURE 20. CPU usage.

Figure 21 is a line graph depicting the average amount of
memory consumed by the controller (with and without the
integration of LINK-GUARD), including link discovery and
validation. LINK-GUARD’s average memory consumption
across all network scales is 129646.3 Kilobytes. With regard
to the RYU-OFDP memory consumption, the average is
88809.4Kilobytes. Overall, there is a nearly constant increase
in LINK-GUARD’s memory consumption for every network
scale, compared with RYU-OFDP.

FIGURE 21. Memory usage.

C. DETECTION RATE
This section presents an experiment to examine the detection
rate of LINK-GUARD for relay-type LFAs. We use a
network topology with 127 switches, which is considered a
large network size for this type of evaluation. The network
topology contains 126 links, 20 of which are configured as
fake links, distributed randomly over the network. We use the
link Traffic Control (TC) parameter provided by Mininet to
set the internal switch link latency to different delay times to
emulate fake links.

To measure the switch-internal link latency using OFDP,
the controller injects timestamps into every LLDP packet
during the link discovery procedure. Once the controller
has received the LLDP packets, it extracts the timestamps

and computes the LLDP propagation delay. In addition, the
controller sends echo messages to measure the control link
latency (delay between an SDN controller and a switch) for
both the source and destination switches. The same method
was used in [32] and [34]. For LINK-GUARD and OFDP,
we compute the median of ten probed latency.

FIGURE 22. Detection rate.

The line chart in Figure 22 illustrates the detection rate
results for LINK-GUARD and the OFDP. As we can see
from the results, LINK-GUARD can detect fake links at high
speeds as low as 6 ms. On the other hand, OFDP is able to
detect fake links at speeds as low as 25 ms. Overall, the LLM
method used by LINK-GUARD is considered amore scalable
solution for large and low-rate SDN networks.

X. LIMITATIONS AND FUTURE WORK
This section discusses LINK-GUARD limitations and high-
lights possible future work to improve LINK-GUARD.

A number of approaches have been proposed for link
discoveries in SDN networks. A recent study [50] has
divided the proposed approaches into three categories:
the LLDP-based Link State Discovery approach; the Tree
Exploration Link State Discovery approach; and the Layer-2
based Link State Discovery approach.

The LLDP-based Link State Discovery approach is based
on neighbour discoveries. Neighbouring switches discover
their network links via the exchanges of point-to-point LLDP
packets. With is approach, the controller sends a LLDP
packet to each active port, or to each switch on the network.
Each switch, upon the receipt of an LLDP packet which is
typically relayed from its neighbouring switch, forwards the
packet back to the SDN controller. In the Tree Exploration
Link State Discovery approach, network links are discovered
by using a tree exploration method. With this method, the
controller only sends a single probe packet to a single switch
which then floods the network, thus discovering the topology
in the whole network. With the Layer-2 based Link State
Discovery approach, network switches are structured into a
hierarchical structure. Link discovery packets are transmitted
by the controller to the switches based on this structure.
The collected link related data are aggregated by designed

130250 VOLUME 10, 2022

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

switches at each hierarchical level before being forwarded to
the controller.

LINK-GUARD requires link information on the two-way
direction of the link in order to form a bidirectional link.
Bidirectional link information is one of the requirements
to verify the legitimacy of the new link. LINK-GUARD
can be applied to the LLDP-based Link State Discovery
approach because it provides bidirectional link information
in every discovery cycle. However, the Tree Exploration Link
State Discovery and Layer-2 based Link State Discovery
approaches provide only one-way direction link information
(unidirectional link) to the controller in every discovery cycle.
Thus, LINK-GUARD can not be applied to these approaches,
which we consider as future work.

LINK-GUARD uses the link latency of probe packets to
detect LLDP relay attacks and to identify any fake link.
If the latency is sufficiently low, LINK-GUARD may not
be able to detect such attacks and any resulting fake link.
For example, if the attacks is mounted on two compromised
hosts, and if the probe packets used can be relayed at a
high speed over an out-of-band channel or if the attacks are
mounted on a compromised switch and if this switch is in
the same broadcast domain as the target switches, then the
resulting latency can be or less than 5 ms. In such cases,
LINK-GUARD may not detect the fake links.

LINK-GUARD is designed under the assumption that all
the network media and devices have similar transmission
capabilities. In a heterogeneous SDN network, where net-
work media and devices may have different transmission
capabilities, LINK-GUARD may not be able to detect all
the fake links that are created through relay-type link
fabrication attacks. This is because if network media ad
devices have different transmission capabilities, there will be
multiple correct latency baselines. As part of our future work,
we will extend the design to support the heterogeneous SDN
networks.

Finally, the design of LINK-GUARD assumes that the
network controller is trustworthy, and attacks are only
mounted via host and switch compromises. It is obvious that
the controller may also be compromised. Our future will
also cover what if attacks are mounted via compromising
network controllers. For example, an attacker may compro-
mise a network controller and send false topology data to
topology-dependents services run at the application layer via
the controller. Detecting any trust breach between the control
layer and the application layer is also an open issue.

XI. CONCLUSION
Topology discovery in SDN is an essential service for
topology-aware applications. In this study, we implement and
evaluate LFAs over different current mainstream controllers.
As a result, we find that each controller is vulnerable to
at least one type of LFA. We propose LINK-GUARD to
improve the security of the topology discovery mechanism.
LINK-GUARD presents a simple and effective detection
method for LLDP injection attacks based on bidirectional link
verification. In addition, a novel link latency measurement

method with a statistical analysis technique is used to detect
both host and switch-based LLDP relay attacks. LLDP
flooding attack detection is based on counting the number
of LLDP packets received from each port in each discovery
round. We evaluate the effectiveness of LINK-GUARD
under different attack scenarios. In addition, we evaluate the
performance of LINK-GUARD through different network
scales. The results show that LINK-GUARD effectively
secures topology discovery against host-based and switch-
based LFAs. In addition, the mechanism used to measure link
latency is considered a scalable solution for dynamic, large
and low-rate SDN networks.

REFERENCES
[1] B. A. A. Nunes,M.Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,

‘‘A survey of software-defined networking: Past, present, and future of
programmable networks,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 3,
pp. 1617–1634, 3rd Quart., 2014.

[2] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, ‘‘Software-defined networking:
A comprehensive survey,’’ Proc. IEEE, vol. 103, no. 1, pp. 14–76,
Dec. 2014.

[3] P. Goransson, C. Black, and T. Culver, Software Defined Networks: A
Comprehensive Approach. Burlington, MA, USA: Morgan Kaufmann,
2016.

[4] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, and L. Singh,
‘‘B4: Experience with a globally-deployed software defined wan,’’ ACM
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3–14, 2013.

[5] S. Khan, A. Gani, A. A. Wahab, M. Guizani, and M. K. Khan, ‘‘Topology
discovery in software defined networks: Threats, taxonomy, and state-
of-the-art,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 303–324,
1st Quart., 2017.

[6] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, ‘‘Efficient topology
discovery in OpenFlow-based software defined networks,’’ Comput.
Commun., vol. 77, pp. 52–61, Mar. 2016.

[7] S. Hong, L. Xu, H. Wang, and G. Gu, ‘‘Poisoning network visibility in
software-defined networks: New attacks and countermeasures,’’ in Proc.
Netw. Distrib. Syst. Secur. Symp., 2015, pp. 635–640.

[8] A. Nehra, M. Tripathi, M. S. Gaur, R. B. Battula, and C. Lal, ‘‘TILAK: A
token-based prevention approach for topology discovery threats in SDN,’’
Int. J. Commun. Syst., vol. 32, no. 17, pp. 1–26, 2019.

[9] R. Wazirali, R. Ahmad, and S. Alhiyari, ‘‘SDN-OpenFlow topology
discovery: An overview of performance issues,’’ Appl. Sci., vol. 11, no. 15,
p. 6999, Jul. 2021.

[10] A. Nehra, M. Tripathi, M. S. Gaur, R. B. Battula, and C. Lal, ‘‘SLDP:
A secure and lightweight link discovery protocol for software defined
networking,’’ Comput. Netw., vol. 150, pp. 102–116, Feb. 2019.

[11] T. Alharbi, M. Portmann, and F. Pakzad, ‘‘The (in)security of topology
discovery in software defined networks,’’ in Proc. IEEE 40th Conf. Local
Comput. Netw. (LCN), Oct. 2015, pp. 502–505.

[12] X. Zhao, L. Yao, andG.Wu, ‘‘ESLD:An efficient and secure link discovery
scheme for software-defined networking,’’ Int. J. Commun. Syst., vol. 31,
no. 10, pp. 1–18, Jul. 2018.

[13] A. Azzouni, R. Boutaba, N. T.M. Trang, andG. Pujolle, ‘‘SOFTDP: Secure
and efficient OpenFlow topology discovery protocol,’’ in Proc. IEEE/IFIP
Netw. Operations Manage. Symp. (NOMS), Apr. 2018, pp. 1–7.

[14] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, ‘‘Are we ready for SDN? Implemen-
tation challenges for software-defined networks,’’ IEEE Commun. Mag.,
vol. 51, no. 7, pp. 36–43, Jul. 2013.

[15] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, ‘‘A survey on
software-defined networking,’’ IEEE Commun. Surveys Tuts., vol. 17,
no. 1, pp. 27–51, 1st 2014.

[16] S. Scott-Hayward, S. Natarajan, and S. Sezer, ‘‘A survey of security in
software defined networks,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 623–654, 1st Quart., 2016.

[17] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, ‘‘SDN controllers:
A comparative study,’’ in Proc. 18th Medit. Electrotechnical Conf.
(MELECON), Apr. 2016, pp. 1–6.

VOLUME 10, 2022 130251

I. A. Salti, N. Zhang: LINK-GUARD: An Effective and Scalable Security Framework for Link Discovery in SDN Networks

[18] M. Karakus and A. Durresi, ‘‘A survey: Control plane scalability issues
and approaches in software-defined networking (SDN),’’ Comput. Netw.,
vol. 112, pp. 279–293, Jan. 2016.

[19] Open Networking Foundation. Accessed: Jun. 11, 2022. [Online]. Avail-
able: https://opennetworking.org/

[20] I. Alsmadi and D. Xu, ‘‘Security of software defined networks:
A survey,’’ Comput. Secur., vol. 53, pp. 79–108, Sep. 2015, doi:
10.1016/j.cose.2015.05.006.

[21] J. Flathagen and O. I. Bentstuen, ‘‘Proxy-based optimization of topology
discovery in software defined networks,’’ in Proc. Int. Conf. Military
Commun. Inf. Syst. (ICMCIS), 2019, pp. 1–5.

[22] J. Wang, Y. Tan, and J. Liu, ‘‘Topology poisoning attacks and counter-
measures in SDN-enabled vehicular networks,’’ in Proc. IEEE Global
Commun. Conf., Jan. 2020, pp. 1–6.

[23] Tcpdump. Accessed: Jan. 18, 2022. [Online]. Available: https://www.
tcpdump.org/manpages/tcpdump.1.html

[24] D. Smyth, S. McSweeney, D. O’Shea, and V. Cionca, ‘‘Detecting link
fabrication attacks in software-defined networks,’’ in Proc. 26th Int. Conf.
Comput. Commun. Netw. (ICCCN), Jul. 2017, pp. 1–8.

[25] V. Shah, R. Patel, and R. Nayak, ‘‘Short range inter-satellite link for data
transfer and ranging using IEEE802.11n,’’ Int. J. Comput. Appl., vol. 164,
no. 1, pp. 23–25, Apr. 2017.

[26] S. S. Baidya and R. Hewett, ‘‘Link discovery attacks in software-defined
networks: Topology poisoning and impact analysis,’’ J. Commun., vol. 15,
no. 8, pp. 596–606, 2020.

[27] M. Antikainen, T. Aura, andM. Särelä, ‘‘Spook in your network: Attacking
an SDNwith a compromised openflow switch,’’ in Proc. 19th Nordic Conf.
(NordSec), Tromsø, Norway. Cham, Switzerland: Springer, Oct. 2014,
pp. 229–244. [Online]. Available: https://link.springer.com/chapter/
10.1007/978-3-319-11599-3_14

[28] W. M. Syahidillah. Multipath Routing SDN Controller.
Accessed: Jan. 18, 2022. [Online]. Available: https://github.com/
wildan2711/multipath

[29] Scapy. Accessed: Jan. 18, 2022. [Online]. Available: https://scapy.net/
[30] E. Marin, N. Bucciol, and M. Conti, ‘‘An in-depth look into SDN topology

discovery mechanisms: Novel attacks and practical countermeasures,’’ in
Proc. ACMSIGSACConf. Comput. Commun. Secur., 2019, pp. 1101–1114.

[31] T. Alharbi, M. Portmann, and F. Pakzad, ‘‘The (in)security of topology
discovery in OpenFlow-based software defined network,’’ Int. J. Netw.
Secur. Appl., vol. 10, no. 3, pp. 1–16, May 2018.

[32] L. D. Chou, C. C. Liu, M. S. Lai, K. C. Chiu, H. H. Tu, S. Su, C. L. Lai,
C. K. Yen, and W. H. Tsai, ‘‘Behavior anomaly detection in SDN control
plane: A case study of topology discovery attacks,’’ in Proc. Int. Conf. Inf.
Commun. Technol. Converg. (ICTC), 2020, pp. 357–362.

[33] A. Alimohammadifar, S. Majumdar, T. Madi, Y. Jarraya, M. Pourzandi,
L.Wang, andM. Debbabi, ‘‘Stealthy probing-based verification (SPV): An
active approach to defending software defined networks against topology
poisoning attacks,’’ in Proc. Eur. Symp. Res. Comput. Secur., vol. 11099,
2018, pp. 463–484.

[34] R. Skowyra, L. Xu, G. Gu, V. Dedhia, T. Hobson, H. Okhravi, and
J. Landry, ‘‘Effective topology tampering attacks and defenses in Software-
Defined networks,’’ in Proc. 48th Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw. (DSN), Jun. 2018, pp. 374–385.

[35] X. Wang, N. Gao, L. Zhang, Z. Liu, and L. Wang, ‘‘Novel MITM attacks
on security protocols in SDN: A feasibility study,’’ in Proc. 18th Int. Conf.
Inf. Commun. Secur. (ICICS), Singapore, in Lecture Notes in Computer
Science: Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics, vol. 9977. Cham, Switzerland: Springer, Nov./Dec. 2016,
pp. 455–465. [Online]. Available: https://www.semanticscholar.org/paper/
Novel-MITM-Attacks-on-Security-Protocols-in-SDN%3A-A-Wang-
Gao/890f1e8155f2e63506edde3542de129860256ebf

[36] X. Huang, P. Shi, Y. Liu, and F. Xu, ‘‘Towards trusted and effi-
cient SDN topology discovery: A lightweight topology verification
scheme,’’ Comput. Netw., vol. 170, Apr. 2020, Art. no. 107119, doi:
10.1016/j.comnet.2020.107119.

[37] Y. Jia, L. Xu, Y. Yang, and X. Zhang, ‘‘Lightweight automatic discovery
protocol for OpenFlow-based software defined networking,’’ IEEE Com-
mun. Lett., vol. 24, no. 2, pp. 312–315, Feb. 2020.

[38] F. Hauser, M. Schmidt, M. Haberle, and M. Menth, ‘‘P4-MACsec:
Dynamic topology monitoring and data layer protection with MACsec in
P4-based SDN,’’ IEEE Access, vol. 8, pp. 58845–58858, 2020. [Online].
Available: https://ieeexplore.ieee.org/document/9044731/

[39] A. Kuamr and S. Shuka, ‘‘Topology validator—Defense against topology
poisoning attack SDN,’’ in Quality, Reliability, Security and Robustness
in Heterogeneous Systems (Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering),
vol. 402, X. Yuan, W. Bao, X. Yi, and N. H. Tran, Eds. Cham, Switzerland:
Springer, 2021.

[40] J. W. Tukey, Exploratory Data Analysis, vol. 2. Reading, MA, USA:
Addison-Wesley, 1977. [Online]. Available: https://www.google.co.uk/
books/edition/Exploratory_Data_Analysis/UT9dAAAAIAAJ?hl=en&
gbpv=0&bsq=J.W.%20Tukey,%20Exploratory%20Data%20Analysis,%
20vol.%202.%20Reading

[41] Mininet. Accessed: Jan. 18, 2022. [Online]. Available: http://mininet.org/
[42] Open Vswitch. Accessed: Jan. 18, 2022. [Online]. Available: https://www.

openvswitch.org/
[43] Wireshark. Accessed: Jan. 18, 2022. [Online]. Available: https://www.

wireshark.org/
[44] RYU SDN Framework. Accessed: Jun. 11, 2022. [Online]. Available:

https://ryu-sdn.org/
[45] R. Peck, Introduction to Statistics and Data Analysis. Pacific Grove, CA,

USA: Duxbury, 2001.
[46] M. Hubert and E. Vandervieren, ‘‘An adjusted boxplot for skewed

distributions,’’Comput. Statist. Data Anal., vol. 52, no. 12, pp. 5186–5201,
2008.

[47] X. Yang,W. Zhou, N. Shu, and H. Zhang, ‘‘A fast and efficient local outlier
detection in data streams,’’ in Proc. Int. Conf. Image, Video Signal Process.
(IVSP), 2019, pp. 111–116.

[48] Iptables. Accessed: Jan. 18, 2022. [Online]. Available: https://linux.
die.net/man/8/iptables

[49] Tcpreplay. Accessed: Jan. 18, 2022. [Online]. Available: https://tcpreplay.
appneta.com/wiki/overview.html

[50] M. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey, ‘‘Toward adaptive
and scalable OpenFlow-SDNflow control: A survey,’’ IEEE Access, vol. 7,
pp. 107346–107379, 2019.

ISMAIL AL SALTI received the B.Sc. degree
(Hons.) in computer networking from the Univer-
sity of Technology and Applied Sciences (UTAS),
Oman, and the M.Sc. degree (Hons.) in computer
networking technology from Northumbria Uni-
versity, U.K. He is currently pursuing the Ph.D.
degree in software-defined networking (SDN)
security with The University of Manchester, U.K.
His research interests include software-defined
networks, information security, and network
security.

NING ZHANG received the B.Sc. degree (Hons.)
in electronic engineering from Dalian Maritime
University, China, and the Ph.D. degree in
electronic engineering from the University of
Kent, U.K. Since 2000, she has been with the
Department of Computer Science, The University
of Manchester, U.K., where she is currently a
Senior Lecturer. Her research interests include
security and privacy in networked and distributed
systems, such as ubiquitous computing, electronic

commerce, wireless sensor networks, and cloud computing with a focus on
security protocol designs, risk-based authentication and access control, and
trust management.

130252 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.comnet.2020.107119

