
Received 10 November 2022, accepted 11 December 2022, date of publication 15 December 2022,
date of current version 21 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3229864

Human–Robot Labeling Framework to Construct
Multitype Real-World Datasets
AHMED ELSHARKAWY AND MUN SANG KIM , (Member, IEEE)
Center for Healthcare Robotics, School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea

Corresponding author: Mun Sang Kim (munsang@gist.ac.kr)

This work was supported in part by the Ministry of Trade, Industry and Energy of Korea under Grant 20003762; in part by the Open AI
Dataset Project (AI-Hub, South Korea), in 2022; and in part by the Gwangju Institute of Science and Technology (GIST) Research Project
Grant funded by the GIST, in 2022.

ABSTRACT The rapid development of deep learning object detection models opens great chances to build
novel robotics applications. Nevertheless, several flaws are observed when deploying state-of-art object
detection models with robots in a real-world environment, attributable to the discrepancy between the robots’
actual observed environments and training data. In this study, we propose a labeling framework that enables
a human to guide a robot in creating multitype datasets for objects in the robot’s surroundings. Our labeling
framework ensures no usage of labeling tools (e.g., software) but a direct hand-free gesture-based interaction
between humans and robots. Using our labeling framework, we can enormously reduce the effort and time
required to collect and label two-dimensional and three-dimensional data. Our system was implemented
using a single RGB-D sensor to interact with a mobile robot, position feature points for labeling, and track
the mobile robot’s movement. Several robot operating system nodes were designed to allow a compact
structure for our labeling framework. We assessed different components in our framework, demonstrating
its effectiveness in generating quality real-world labeled data for color images and point clouds. It also
reveals how our framework could be used in solving object detection problems for mobile robots. Moreover,
to evaluate our system considering human factors, we conducted a user study, where participants compared
our framework and conventional labeling methods. The results show several significant enhancements for
the usability factors and confirm our framework’s suitability to help a regular user build custom knowledge
for mobile robots effortlessly.

INDEX TERMS Annotation tool, human–robot interaction, object detection, computer vision.

I. INTRODUCTION
The development of robot platforms that interact naturally
with their surroundings has been a significant area of robotics
research for decades. Thus, enabling robots to detect objects
precisely near their reach is necessary to perform different
tasks. The recent advancements in designing deep learning
models have boosted the performance of object detection [1].
Unlike the superior performance of the state-of-the-art deep
learning models to detect objects in a controlled environment,
there is poor performance in a cluttered environment where
objects of various sizes and shapes exist [2]. The nature
of databases used in training the deep learning models is a

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

fundamental cause of this contrast in performance [3], [4].
Using mobile service robots indoors (e.g., in homes, hospi-
tals, and offices) requires training object detection models
relative to items in each space. Reflecting on how items
exist in a real-human environment must be considered when
creating a dataset that best represents a robot’s application
situation (e.g., a mobile robot may approach an item from
different viewpoints inside a cluttered environment) [5], [6].
Personalizing a detected item or connecting the detected item
to a specific location in space (e.g., detecting a backpack
that belongs to Yaseen or finding a glucometer that is usually
placed in a medical cabinet) reflects a deep awareness of the
robot’s surroundings [7]. Finding publicly available datasets
that serve this more profound knowledge is rare. Several
publicly accessible datasets do not satisfy the previous

131166 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-1522-5064
https://orcid.org/0000-0002-6050-6594
https://orcid.org/0000-0003-0261-4068

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

criteria, although they provide large datasets for general train-
ing classes.

The procedure to create an accurately labeled dataset com-
prises two main parts: the collection of raw data (e.g., color
images, and point clouds) and the preparation of the collected
data for training. Assuming quality raw data are collected,
the tedious data preparation task requires careful handling,
considering that data preparation takes up to 80% of every
data science project’s time [8], [9]. Issues such as equal class
representation, quality labeling, data reduction, and cleans-
ing are essential when preparing training data to receive a
decent result from the deep learning models. Because data
annotation is a crucial component of data preparation, many
annotation tools have been developed to assist annotators
in producing higher-quality work. However, existing tools
necessitate human labor, are inaccurate when an inexperi-
enced annotator is involved, and require a long working
time [10]. Performing the same annotation task for two-
dimensional (2D) data on three-dimensional (3D) data (e.g.,
point clouds) significantly increases task complexity [11].

Therefore, it is essential to think of a solution to eliminate
the influence of training datasets that do not help a robot
accurately detect objects in actual operation space and design
an intuitive labeling method that helps users acquire and label
2D and 3D data effortlessly. We set a five-step guideline to
search for possible solutions.

1) Reduce the burden of using labeling tools;
2) Equalize the effort to label 2D and 3D data;
3) User convenience must be considered;
4) A user can customize datasets to allow a robot to per-

ceive an in-depth knowledge of an environment;
5) The resultant labeled data must be quality and reflect

the operational environment settings of the robot.
As indoor service robots are exposed to a limited set of

objects, exploring the possibility of teaching the robots about
their working environment is a viable idea. Therefore, in this
study, we design a labeling framework that teaches robots
about objects in their working space by elaborating on the
collaboration between a human and a mobile robot to cus-
tomize the training datasets to optimally benefit the mobile
robot’s application situation.

For our labeling framework, we used a mobile robot
equipped with an RGB-D camera, where we could track
the camera pose using a simultaneous localization and map-
ping (SLAM) algorithm. The initial phase of our labeling
framework starts with using the MediaPipe machine learning
pipeline [12] to provide the fundamental 2D tracking for hand
landmarks. Then, the 2D tracking information is transformed
into a 3D position for the hand landmarks represented in
the color camera frame. Afterward, the user can use dual
hands directly to input six 3D feature points representing
the approximate dimension of the object of interest. Notably,
the user only needs to engage with the object of interest
once and is not required to employ an input device, either
wearable or handheld. Moreover, the user does not have
to use any graphical user interface throughout the process.

After delivering the feature points, we reflect the pose of
the formed virtual bounding box by tracking the camera
pose. Once the mobile robot reports a stop situation between
movements, we simultaneously save the relative labeled color
images, labeled point clouds, and label-related information
files. This framework is designed to achieve minimal human
intervention in the labeling process. Moreover, the structure
of our custom-created datasets addresses several flaws in the
publicly available datasets targeting applications of mobile
robots.

The major contributions of this study can be summarized
as follows.

• We proposed a labeling framework that mainly serves
mobile robots to solve problems related to object detec-
tion in a real-human environment by filling the gap
between training data and real-world settings.

• The labeling framework creates a direct collabora-
tion between humans and mobile robots to accomplish
the labeling process. This framework ensures minimal
human intervention as it does not require the user to use
software or physical tools to create or refine labels.

• To the best of our knowledge, this is the first real-time
labeling framework that simultaneously creates mul-
tipurpose training datasets that depict the real-world
mobile robot’s application situation. Thus, the gener-
ated datasets could be processed to train various deep-
learning models.

The remainder of this article is organized as follows.
In Section II, we present related work. Section III describes
the various design aspects of our labeling framework.
Section IV shows the experimental setups and evaluation for
different parts of the labeling framework; this section also
includes a user study by inviting human participants to use
and evaluate the designed framework. Section V presents the
discussion, highlighting study outcomes. Finally, Section VI
concludes this study and presents future work.

II. RELATED WORKS
In this section, we show the alternatives of real-world training
data. Then, we present annotation tools for labeling color
images and point clouds.

A. ALTERNATIVES OF REAL-WORLD DATA
The availability of quality annotated data is usually a key-
stone to developing deep learning models. Considering the
cost-effectiveness when preparing training data, synthetic
data are well-known substitution candidates for real-world
data [13], [14]. Rendering pipelines, fusion models, and
genetic algorithm networks can all be used to generate
synthetic data. Synthetic data are helpful if real-world data
collection is impossible or when associated with security or
privacy issues. However, using synthetic data requires the
availability of graphically accurate representations of real-
world situations. Moreover, synthetic data are subject to
misrepresentation or incompleteness [15], [16] and require

VOLUME 10, 2022 131167

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

expert human time and effort in designing and rendering.
To overcome these limitations, efforts to increase the realism
of synthetic data have successfully boosted the deep learning
model performance [17], [18], [19]. Nevertheless, increasing
the realism of synthetic data is a costly process.

At present, robots equipped with cutting-edge sensing
apparatus can create a digital replica of the real environment
[20], [21]. As real-world collected training data produces
excellent detection results, optimizing datasets to match what
robots see in the real environment is beneficial. Besides, using
synthesized data could be useful in several cases. However,
if human–robot collaboration can successfully acquire and
annotate real-world data, it must be considered a potential
channel to train robots for their specific applications. To this
extent, we seek to eliminate inaccuracy due to differences
between training and real-world data using situation-specific
collected and labeled data to prepare training datasets.

B. ANNOTATION TOOLS
Notably, the number of annotation tools for 2D images is
increasing [22]. To facilitate the labeling task, some tools
provide the ability to load an artificial intelligent (AI) model
[23] (e.g., COCO SSD [24]) so it can identify and set initial
labels for objects in an image. This feature is helpful, but
the identified object must have a predefined class in the
dataset used to train the AI model. Nevertheless, initial iden-
tifications are provided; a human user must double-check the
accuracy of the given labels, if any, and then resume labeling
the remaining objects in the scene. In general, the annotation
of color images is manageable due to the available tools’
maturity and ease of handling.

Although numerous annotation tools exist to label color
images, there are not as many generic options available to
annotate point clouds. Further, a prominent portion of 3D
annotation tools are designed to label LiDAR-collected data
to train models for autonomous driving [25], [26], [27].
Nguyen et al. [28] presented an interactive 3D–2D tool for
segmenting and annotating data collected using an RGB-D
sensor. This tool, like Wong et al.’s [29] annotating tool,
works to annotate real-world data. The data must be col-
lected beforehand for both annotation tools. Besides, the user
must be familiar with using each tool’s functions. As point
cloud manipulation is necessary to place an appropriate 3D
bounding box, it is less intuitive to perform such a task on
a 2D screen. In [30], a virtual reality tool was developed
to annotate point cloud data in a virtual 3D environment.
When annotating 3D data in a 3D environment, the user is
more immersed, but additional hardware (e.g., controllers
and head-mounted display) adds to the system’s complexity.
All previously mentioned custom-built 3D annotation tools
follow the conventional annotation pipeline in their design.
That pipeline starts with collecting the raw data or utilizing
the publicly available datasets and then performing filtering
or reconstruction if needed. To accelerate the annotation pro-
cess, some tools provide semiautomatic labeling functions
that indeed demand human intervention to check the label’s

validity. Lastly, the user should learn the functions provided
by each annotation tool, spending a fair amount of time
learning and placing the labels. This whole effort of design-
ing annotation tools is valuable but requires expert users’
presence to guarantee the annotation success. Therefore, the
techniques available to label point clouds still need to be
sufficiently mature to provide an intuitive labeling experience
and simplify the complexity of handling 3D data.

An alternative solution to avoid data labeling complex-
ity is requesting the services of commercial companies like
BasicAI [31], Scale [32], and Playment AI data solutions
[33]. Outsourcing data labeling to commercial companies
speeds up the time for big-scale projects. However, doing
so is expensive and risks labeling accuracy when less-skilled
employees are engaged. Moreover, a crucial flaw when using
cloud-based annotation tools is the lack of security when
annotating sensitive information.

Consider a mobile robot trying to detect its surroundings.
Some objects may not be represented as classes in the dataset
used to train the AI model employed by the robot, or they
may have representation classes, but their shapes and sizes are
unique. In such a case, the robot’s operator needs to add new
classes to the dataset. The operator should follow the earlier-
mentioned annotation pipeline selecting one or more anno-
tation tools that will consume considerable time and effort.
Alternative techniques should be developed to meet the same
task without adhering to the conventional labeling pipeline,
exploiting the robot’s presence. Thus, Gregorio et al. [34]
demonstrated a semiautomatic labeling technique facilitat-
ing interaction between a human and an arm robot. This
technique aims to label data acquired from real-world set-
tings for a robot application domain. Despite the low effort
they achieved in collecting industrial and daily-living related
datasets for small objects, their system’s user should hold
a labeling tool and interact with software for label refine-
ment. Moreover, the proposed technique can work with small
objects that can fit under a robot arm’s workspace but cannot
serve the same purpose for larger objects placed far from the
robot arm. In addition, this technique facilitates the labeling
for 2D data (color images) only.

Targeting most of the stated drawbacks, we design our
labeling framework by exploring the difficulties facing avail-
able annotating tools and trying to resolve them. Thus, our
labeling framework delivers a mobile robot with the anno-
tated 2D and 3D data for their real operation environment by
involving both the user and robot in the labeling loop.

III. SYSTEM DESIGN
In this section, we describe several components of our label-
ing framework. The implementation comprises three stages:
the initial labeling stage, the camera tracking stage for itera-
tive labeling, and the dataset-construction stage for 2D- and
3D-labeled data.

A. HARDWARE AND OPERATING SYSTEM
In this study, we used the Turtlebot3 waffle-pi robot [35]
to represent a basic form of a mobile robot. The robot is

131168 VOLUME 10, 2022

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

FIGURE 1. Mobile robot platform equipped with an RGB-D camera.

equipped with a Microsoft Azure Kinect camera [36] to
stream color and depth images and a touch screen to provide
a user with visual feedback (Fig. 1). The mobile robot is
a modified version of the one we previously used in [37].
The operating system for the central processing unit (CPU)
was Ubuntu 18.04LTSwith the robot operating system (ROS)
melodic environment. All supportive drivers and ROS pack-
ages were installed on the CPU.

B. INITIAL LABELING STAGE
This stage presents how a human user interacts with the
mobile robot to assign feature points. The process of render-
ing the label bounding box is also illustrated in this stage.

1) INTERACTION INPUT MODALITIES AND 3D TRACKING OF
THE FEATURE POINT
At this point, the robot faces both the user and object.
The Microsoft Azure Kinect camera detects and tracks
the landmarks on the user’s two hands. We used the
fundamental features of the MediaPipe machine learning
pipeline for detecting and tracking the user’s hand landmarks.
We accessed the tracking landmarks for two hands and cre-
ated a hand gesture identifier algorithm so the user could pass
commands and information to the robot. According to the
flowchart in Fig. 2, the user can use the right hand to make the
primary gesture (e.g., pointing, canceling, and start scanning)
and the left hand to perform a confirmation gesture, which
is a closed palm gesture. The system performs the primary
gesture-related operation after the confirmation gesture is
detected (Fig. 3). This dual hand gesture identifier algorithm
makes it easy for the user to communicate with the robot.

Because our primary goal is to label objects in their real
3D environment, it was essential to store the 3D information
of the hand landmarks (e.g., capture the 3D coordinate of the
index fingertip point). This goal was achievable by tracking
a designated hand landmark in a color image to find the
pixel coordinates and then searching for the corresponding
depth information of that landmark. Then, the two pieces
of information were transformed into a 3D coordinate for
the target landmark represented in a selectable coordinate

FIGURE 2. Dual hand gesture identifier algorithm.

FIGURE 3. Detecting hand gestures in various orientations and tracking
index fingertip 3D position.

frame (e.g., color camera or depth camera coordinate frames;
Fig. 3).

Using our framework, the user registers several feature
points for an object to create its label. Each feature point
is a 3D position coordinate of the user’s right hand index
fingertip. Feature points are used to generate a virtual cuboid
bounding box around the object of interest.

To input the label name, the user can speak the object
name into the Azure Kinect camera’s microphone, and if
needed, he/she can add information such as to whom this
object belongs and where it is usually seen or placed. As a
standard for our work, we followed this sequence: the user
speaks the word ‘‘start’’ to enable the registration of the label
name and then speaks the object name (e.g., Multimeter).
If the user needs to add information about the object owner,
he/she says ‘‘space’’ as a separate word and then registers the

VOLUME 10, 2022 131169

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

owner’s name (e.g., Park). Finally, to register the usual place
to store or see the object, the user speaks the word ‘‘space’’
followed by the location name (e.g., Room 104). At any time,
the user can terminate the registration for the label name by
speaking the word ‘‘end.’’

We can input the object’s label name during the initial
labeling stage using the Microsoft Azure speech recogni-
tion application programming interface (API) [38], [39]. The
reason we selected the Microsoft Azure API is its superior
performance compared with other speech recognition APIs
(e.g., Google API, and Amazon API). We have previously
accomplished an exhaustive analysis of the use of cloud-
based speech recognition APIs to select the best for inte-
gration with a home-developed sentence-level visual–speech
recognition deep learning model [29], [30].

2) RENDERING INITIAL 3D BOUNDING BOX
The user interacts with the object of interest by assigning
six feature points to the physical object’s body. To assign
a feature point, the user makes a pointing gesture with the
right hand, placing the index fingertip above the desired
point to register its coordinates. Four of the six points are
mandatory for cuboid drawing (P0, P1, P2, and P3), and the
other two are auxiliary points (Aux1 andAux2) to enhance the
accuracy of the virtual bounding box (Fig. 4). The mandatory
feature points are placed over the object’s corners, whereas
the auxiliary points are placed between points P1 and P2.
To ensure the cleanness of registered feature points and

the accuracy of the generated bounding box, we performed
a check procedure comprising two steps.

1) We saved 20 records for each input feature point to
search for and discard possible outliers. Then, the aver-
age value was calculated for the remaining position
coordinates. This step aims to purify the depth val-
ues because they are more likely to show inaccurate
measurements.

2) Assuming that frame {B} origin point is located at
the center of the generated bounding box and frame
{C} represents the color camera coordinates frame,
we double-check the relative orientation between
frames {B} and {C}. Thus, we calculated the angle
between the X-axis of frame {C} and the vector formed
between points P1 and P2. Similarly, we repeated the
process to find the angle between X-axis of frame
{C} and the vector formed between Aux1 and Aux2.
We compared the two resultant angles and allowed a
tolerance of 3◦. When the difference was less than the
tolerance margin, we accepted the measurements and
calculated the average value between the two angles.
Otherwise, we rejected themeasurements and asked the
user to re-enter the feature points.

Notably, asking the user to re-enter feature points was
uncommon during operation. However, it was necessary to
include the check steps to guarantee the quality of the feature
points.

FIGURE 4. Positions to assign feature points and coordinate frames.

After accepting the feature points’ quality, we could deter-
mine the dimensions of the cuboid shape bounding box,
as in (1). These dimensions are a close representation of the
object of interest’s actual dimensions if it is depicted as a
cuboid. Referring to ‘‘(2),’’ we can calculate frame {B} origin
point’s coordinates (BO−X , BO−Y , BO−Z) relative to the color
camera frame {C}. The origin point’s coordinates represent
the relative displacement between the two frames, as in (3).
The rotation of the generated bounding box relative to the
camera frame {C} can be driven as in (4). Finally, the pose
of frame {B} relative to frame {C} is a combination of the
linear displacement and rotation components following (5).

Bounding box length(L) = |P1P2|

Bounding box width(W) = |P2P3|

Bounding box height (H) = |P0P1| (1)

BO−X = (P0X + P3X)/2

BO−Y = (P0Y+(
P1Y + P2Y + P3Y + Aux1Y + Aux2Y

5
))/2

BO−Z = (P0Z + P3Z)/2 (2)

Relative displacement
(
D{C}
{B}

)

=

BO−X
BO−Y
BO−Z
1

 (3)

Relative orientation
(
R{C}
{B}

)
=

[(
P2−P1
L

)′ ((P3−P2
w

)
×

(
P2−P1
L

))′ (P3−P2
w

)′
0 0 0

]
(4)

Relative pose transformation matrix
(
T{C}
{B}

)
=

[
R{C}
{B} D{C}

{B}

]
(5)

We hypothesize that the two coordinate frames have
aligned axes. Thus, the matrix (BBO) of the virtual bounding
box points’ coordinates at the origin of frame {C} can be
defined as in (6). Then, the transformation matrix is applied
to all previous points’ coordinates to find the actual initial
points’ coordinates matrix (BBA) representing the actual
pose of the bounding box (7). This process guarantees the

131170 VOLUME 10, 2022

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

FIGURE 5. Visual SLAM parameter tuning: (a) Mapping performance for
the mobile robot moving in a rectangle path with RTAB-Map SLAM
default parameter settings. (b) Mapping performance after tunning
RTAB-Map SLAM parameter.

generation of a uniform cuboid bounding box.

Bounding box pointsat originof {C}(BBO)

=

−L/2 H/2 −W/2 1
−L/2 −H/2 −W/2 1
L/2 −H/2 −W/2 1
L/2 −H/2 W/2 1
−L/2 −H/2 W/2 1
L/2 H/2 −W/2 1
L/2 H/2 W/2 1
−L/2 H/2 W/2 1

′

(6)

Bounding box points‘‘actual/initial’’ relative to {C}(BBA)

= T{C}
{B}.BBO (7)

C. LOCALIZING THE CAMERA MOVEMENT AND
ITERATIVE LABELING
After the user has finished the initial labeling task, the mobile
robot moves, acquiring new data for the object of interest
from multiple viewpoints. Robot movement to perform rela-
beling requires a tracking method for the camera or robot.
For our implementation, we adopted the RTAB-Map SLAM
algorithm [42]. Information from theMicrosoft Azure Kinect
RGB-D camera is fed to the SLAM algorithm. We assumed
that the mobile robot equipped with the RGB-D camera
accomplished a quality mapping process for the working
environment beforehand. Thus, we had a quality-colored
point cloud for the environment where the robot would oper-
ate. As RTAB-Map SLAMworks for various applications and
sensory inputs, it is highly recommended to tune the algo-
rithm parameters to fit the best use case [43]. Fig. 5 reflects
the impact of good tunning when the mobile robot moved in
a rectangle path.

For our system, the origin of the created map is the world
frame {O}. The ROS topic ‘‘\rtabmap_localization_pose’’
report the camera-base frame {CB} relative pose to the world
frame {O}. The camera-based frame {CB} is attached rigidly
to the camera body and has a fixed and known displace-
ment and orientation relative to the color camera frame {C}.
Therefore, it is straightforward to calculate the transformation
matrix between the color camera frame and the camera-based
frame. The change in the pose between two locations can

be calculated by finding the pose difference reported by the
ROS topic ‘‘\rtabmap_localization_pose’’ for each location.
As such, we can alternatively change any spatial point’s rep-
resentation between previously mentioned coordinate frames
when needed.

Relabeling or iterative labeling is an autonomous process
associated with mobile robot movement. The camera pose
difference relative to the world frame is used to update the
bounding box’s pose. To trigger the iterative labeling process,
the user makes the ‘‘start scan gesture’’ after accomplishing
the initial labeling. Considering how the camera is mounted
over the mobile robot and assuming that the robot is moving
over a flat ground indoors, the orientation of the camera body
is possible only around the camera frame’s Y-axis. Moreover,
the displacement in the vertical direction is invisible. Thus,
the pose difference is a 3D vector comprising two displace-
ments (1dX and 1dZ) over the camera frame’s X-axis and
Z-axis, respectively, and one rotation (1angle) around the
Y-axis, keeping in mind that the camera’s initial pose is
the one during the initial labeling stage. Therefore, the pose
difference is calculated by finding the difference between the
current and initial poses whenever the mobile robot moves.

The pose difference transformation matrix (Posedifference)
can be calculated as the product of the rotation difference
matrix (Rdifference) and the displacement difference matrix
(Ddifference), as in (8). The (posedifference) transformation
matrix is used to find the updated bounding box points’
coordinates (BBU), referring to (9). Following these steps,
we can relabel the object of interest whenever the mobile
robot changes its location.

Posedifference
= Rdifference.Ddifference

=

cos(1angle) 0 sin(1angle) 0

0 1 0 0
− sin(1angle) 0 cos(1angle) 0

0 0 0 1

·

1 0 0 1dX
0 1 0 0
0 0 1 1dZ
0 0 0 1

 (8)

Bounding box pointsupdate(BBU)

= Posedifference.BBA (9)

If the mobile robot travels over a non-flat surface, it is
possible to monitor the six-dimensional change in orienta-
tions and displacements. Thus, the displacement in the ver-
tical direction and the rotation around the camera frame’s
X-axis and Z-axis should be monitored and included in the
calculations.

D. DATASET AUTOMATIC CONSTRUCTION
A notable feature of our labeling framework is its ability
to construct labeled colored image and point cloud datasets
simultaneously. We designed multidata types storing proce-
dure utilizing the bounding box 3D information availability

VOLUME 10, 2022 131171

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

FIGURE 6. Custom-built ROS node design tree to register 3D feature points, render the initial bounding box’s pose, update the bounding box’s pose, and
save the object dataset automatically.

throughout the labeling process. As described before,
we input the feature points and render both the initial and
updated bounding box in the 3D domain. Our system uses the
depth maps and color images provided by the Azure Kinect
camera to create point clouds using the RTAB-Map SLAM
algorithm. Thus, we can allocate the rendered bounding box
in a native 3D environment like the point cloud. During
the process, we monitored the live feed of the point cloud
message by subscribing to the relative ROS topic. Whenever
the mobile robot reports a motion halt, we work to save the
point cloud scenewith the corresponding updated coordinates
of the bounding box for labeling.

The point cloud saving is associated with the stop event
to ensure that the lag in the SLAM’s tracking algorithm does
not affect the labeling quality. We can save an entire point
cloud scene or only the cropped point cloud area containing
the object of interest. To set the cropped point cloud volume,
we used the ‘‘CropBox’’ filter provided by the point cloud
library [44]. The ‘‘CropBox’’ filter was used in a ROS node
receiving fixed and variable parameters. The fixed parame-
ters are the object’s length (L), height (H), and width (W),
whereas the variable parameter is the bounding box updated
pose. A roslaunch API node was designed to regulate the
cropping and saving of the labeled point clouds and color
images, using the robot’s motion halt as a trigger event.
We transformed the updated bounding box’s 3D coordinates
to its corresponding 2D pixel coordinates to label the color
images with a 2D bounding box.

At each saving event, we stored extra information such as
the relative pose of the object to the world frame, the 3D
and 2D coordinates of the labeling bounding box, and the
approximate physical dimension of the object. We saved this
information along with its digital correspondent labeled color
images in.’’png’’ format and labeled point clouds in.’’ply’’
format. Constructing our datasets as such allows their adop-
tion for training various deep learningmodels. For example, if
we need to train the Yolo model family [45], minor postpro-
cessing steps are required to export the required annotation
format, keeping in mind that the collected datasets entirely
comprise real-world data that well-depict the appearance
change of each included class in 2D and 3D.

The design of ROS nodes for automatic saving and the
entire design tree for several predescribed operations inside
our labeling framework is shown in Fig. 6.

IV. EXPERIMENT AND SYSTEM EVALUATION
In this study, we propose a labeling framework to solve
practical object detection problems encountered by mobile
robots. Our framework involves humans for the initial stage
of the labeling loop, whereas mobile robots handle the rest
of the operation. It was essential to assess each frame-
work component because they all contribute to the system’s
performance and usability. We started by evaluating the
performance of the hand gesture identifier as the essential
channel to communicate with the mobile robot. Afterward,
we assess the 3D pointing accuracy, showing its influence to

131172 VOLUME 10, 2022

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

TABLE 1. Hand gesture identifier’s performance.

determine the initial bounding box accuracy and the object’s
approximate physical dimensions. Next, we test the accu-
racy of camera tracking, which allows the iterative label-
ing task and multipurpose training data collection. Finally,
we checked our labeling framework’s different usability
aspects against a publicly available labeling tool by inviting
human participants.

A. ACCURACY OF HAND GESTURE IDENTIFIER AND INPUT
OF LABEL NAME
A user of our labeling framework can input the labeling
data through visual and auditory channels. Visual input
controls registering or canceling of feature points and trig-
gers the event to collect data autonomously. To input the
visual information, we communicate with the mobile robot
using a set of hand gestures. In this section, we first assess
hand gesture performance. Then, we show how a user can
pass several auditory information layers (e.g., object name,
to whom this object belongs, and object location) in the label
name.

We observed the hand gesture identifier’s performance
while placing 41 labels. Two people with different hand
sizes and skin tones collaborated to accomplish this task.
We passed the six feature points for each label using a point-
ing gesture, where each input gesture was combined with
a confirmation gesture (left hand’s closed palm). In a few
labeling trials, we tried to cancel some registered feature
points using the canceling gesture, which should also be
combined with the confirmation gesture. After a complete
labeling trial, we tested the ‘‘start scanning’’ gesture once.
Table 1 shows the hand gesture identifier’s performance by
counting the misclassified gesture attempts.

Table 1 indicates the superior performance in discrim-
inating between different hand gestures. Our application
demands a small set of hand gestures that may be expanded
if needed. So far, the hand gesture identifier is an efficient
technique to pass commands to the mobile robot considering
the application demand.

Aside from evaluating the hand gesture, we experienced a
loss of hand tracking sometimes during the operation. Two
minor precautions a user should follow to address this issue
are as follows: 1) the distance between the user and camera
should not exceed 2 m, as we set the Azure Kinect camera
to work in the narrow field-of-view unbinned mode for the
depth camera and with 1280 × 720 resolution for the color
camera [46]; 2) the user should keep his hands in clear view
facing the camera so tracking can be resumed.

TABLE 2. Examples of label names recognized by Microsoft Azure
speech-to-text service.

TABLE 3. 3D positioning accuracy.

Moving to the auditory input, a user can stand in front of
the mobile robot and register the label name. To display how
we designed to register the label name, Table 2 lists some
examples. Our purpose is not to evaluate the Microsoft Azure
speech-to-text service but to demonstrate howwe can use this
robust tool to register a detailed descriptive label name. That
brings a new extent to the mobile robot’s awareness when
discovering its surroundings.

B. 3D POINTING PERFORMANCE
The bounding box’s placement depends on how precise the
feature point positions are. When a user intends to register
a spatial point as a feature point, the index fingertip should
be placed over that point. Thus, we assessed the accuracy
of positioning the index fingertip by finding the relative
positioning ground truth values.

We tested our framework’s labeling performance against
eight objects of diverse sizes and colors by positioning them
at various distances from the camera (Fig. 7). For the first
object in Fig. 7(a), the ground truth positions of the first
four feature points were recorded relative to the color camera
frame. While assigning each feature point, a direct calculated
‘‘raw’’ 3D representation of the user’s index fingertip posi-
tion was saved for comparison with the ground truth values.
In addition, each feature point’s correlated coordinates on
the rendered cuboid bounding box were saved for the same
purpose. We repeated this process five times to check for
performance consistency. Theoretically, there should be no
difference between the direct assigned 3D coordinates and
their correlated values in the rendered bounding box. How-
ever, this is not the case, as we reprocessed all feature points
and examined them for possible faulty values to generate the
most unified and sensible 3D bounding box. Table 3 displays
the two cases’ average error values for each coordinate axis.

We selected the first object in Fig. 7(a) for this test as it
was located far from the camera, and the height values of the
assigned feature points showed the lowest consistency. How-
ever, after the reprocessing for all assigned feature points,

VOLUME 10, 2022 131173

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

FIGURE 7. Positioning accuracy and initial labeling for different objects in
various situations: (a) ‘‘Object 1: Study table,’’ labeling relatively large
objects placed far from the mobile robot, (b, c, and d) ‘‘Object 2:
Humidifier, Object 3: Battery charger, and Object 4: Sensors set,’’ labeling
small objects with different color tones placed near the mobile robot,
(e) ‘‘Object 5: Storage box,’’ labeling short-height and dark-colored
objects placed far from the mobile robot, (f) ‘‘Object 6: Helium gas
container,’’ labeling far placed object entangled with another object,
(g) ‘‘Object 7: Toolbox,’’ labeling a non-fully cuboid object entangled with
another object, and (h) ‘‘Object 8: Tea pack,’’ labeling tiny and far placed
object.

the average pointing accuracy became less than 1.5 cm for
all axes. The achieved pointing accuracy allows the user to
label any object with trust for the labeling outcome. In Fig. 7,
we display the rendered bounding box in the color images and
point clouds for eight objects. The tight fit of bounding boxes
for all objects reflects the enhanced positioning accuracy. The
eighth object in Fig. 7(h) represents a relatively small object
(5.8 × 5.6 × 7.2 cm3) placed far from the camera (almost
2 m away). It is usually difficult to place an accurate 3D label
in this case. However, our labeling framework makes it pos-
sible and precise. We tested the same for dark-body objects,
entangled objects, and objects that are not entirely modeled as
cuboids. For all cases, our labeling framework facilitated the
allocation of a high-quality bounding box that did not require
further modifications or correction. A demonstration video of
labeling the same objects in Fig. 7 and other geometry objects
‘‘non-cuboid objects’’ can be watched [47].

Finally, to confirm the accurate 3D pointing of our frame-
work, we assessed the generated object’s dimensions by com-
paring themwith the object’s actual dimensions. Fig. 8 shows
the box plot of the dimension errors for the eight objects.

From Fig. 8, the maximum dimension error does not
exceed 2 cm. The highest dimension error appears for the
objects’ width and is recorded for ‘‘Object 1: Study table.’’
When labeling ‘‘Object 1,’’ we passed the feature point P3
as the most distant point from the camera with a depth value
of 2.4 m. Considering the degradation of depth accuracy for
the far registered point, we can understand the reason for
registering the highest width error for ‘‘Object 1.’’

For most length and width values, the generated dimen-
sions were greater than the actual ones, indicating that the

FIGURE 8. Box plot of dimensions’ error.

actual length and width of the object of interest can be
completely contained within the rendered bounding box.
However, the height values for the rendered bounding boxes
were marginally less than the actual objects’ heights in most
cases. When assigning feature points using our fingertip,
we often have difficulty locating the lower feature point.
This human limitation adds a fractional error to the height
values. In general, the calculated dimensions well-represent
the actual objects’ dimensions. This analysis helped us under-
stand how the initial labeling functions vary in diverse situa-
tions and will lead to some enhancements, as we illustrate in
the next section.

C. CAMERA TRACKING AND LABELING
FRAMEWORK OUTPUT
Tracking camera movement facilitates the relabeling oper-
ation when the mobile robot moves around. We track the
variation in displacement and rotation to update the bounding
box pose whenever the mobile robot moves. To track the
RGB-D camera and the mobile robot pose, we used visual
SLAM (RTAP-Map SLAM). We designed an evaluation pro-
cedure to test the tracking performance accuracy with visual
SLAM. Proper tuning for mapping and tracking parameters
combined with precise mapping for the working environment
is required before testing the tracking performance.

We performed this experiment in a workspace of
2.2× 2.7 m2 (Fig. 9). Mapping this space starts from a known
location representing the origin of the world coordinate {O}.
The locations where the mobile robot should stop were pre-
planned to evaluate the tracking performance of visual SLAM
(i.e., 1st location, 2nd location, up to 8th location). The ground
truth variation values of linear displacements (1dX and1dZ)
and rotation (1angle) are known for all locations.

We positioned an object to be labeled inside the workspace.
Then, feature points were assigned to perform the ini-
tial labeling. At this instant, the location where the robot
was standing was considered the first location where ini-
tial labeling information should be saved. The ‘‘start scan-
ning’’ gesture was then made to trigger the mobile robot’s
movement. Afterward, the robot was positioned precisely

131174 VOLUME 10, 2022

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

FIGURE 9. Schematic of the workspace and the planned locations for the
mobile robot’s movement.

for each upcoming location to ensure the correctness of the
ground truth values of 1dx, 1dz, and 1angle. The actual
values of linear displacements and rotation were stored by
subscribing to the ROS topic ‘‘\rtabmap_localization_pose.’’
This entire process was repeated for five iterations, and
the localization results were almost identical for each
iteration.

Fig.10(a) displays the box plot for visual SLAM local-
ization accuracy by measuring the error value between the
ground truth displacements and angle variations and the
actual ones. The effect on localization accuracy when using
the default SLAM setting and tunned setting is shown in
Fig.10(b)–(d).

With tunned SLAM’s parameters (Fig. 10(a)), the aver-
age displacement error over the X-axis and Z-axis were
3.36 and 3.93 cm, respectively, whereas the average error
for the angle variation around the Y-axis was 0.68◦. The
localization accuracy was the lowest at the 6th location; we
marked the error values with a black circle for this location in
Fig. 10(b)–(d). Except for this case, the tracking for rotation
angle was excellent for all other locations and recorded values
less than 1◦. Therefore, it was possible to perform relabeling
following (9). Employing these outcomes, we set a specific
solution to treat this few-centimeter inaccuracy for the linear
displacements by adding offset values to the length and width
of the object’s bounding box. Similarly, a minimal offset
could be added to the height direction to compensate for a
human limitation when assigning corners or hard-to-reach
points.

FIGURE 10. Assessing visual SLAM (RTAP-Map SLAM) tracking accuracy
and the effect of tunning SLAM’s parameters: (a) box plot to show SLAM
localization accuracy, (b) effect of tunning SLAM’s parameters for the
tracking robot linear displacement over X-axis, (c) effect of tunning
SLAM’s parameters for the tracking robot linear displacement over Z-axis,
and (d) effect of tunning SLAM’s parameters for the tracking robot angle
variation around Y-axis.

The iterative labeling process for color images and point
clouds with active visual SLAM tracking running in the
background is shown in Fig. 11. The resultant 2D bounding
box ‘‘green color’’ properly contains the object of interest
in the color image. In addition, the 3D bounding box ‘‘blue
color’’ fully contains the point cloud segment of the object of
interest.

Finally, each stop for the mobile robot is combined with
a saving process for the labeled color image, labeled point
cloud, and label-related information file. The label-related
information file includes the object’s relative pose to the
world frame, the object’s physical dimensions, and the coor-
dinates of the bounding boxes for the color image and point
cloud. The media file in [47] shows the iterative labeling
process and the dataset’s automatic saving for several objects.

D. USER STUDY
1) DEMOGRAPHICS AND PROCEDURE
We invited six participants (four males and two females)
to perform our experiment. The participants’ age ranged
from 19 to 34 years old (Mean = 29.17; SD = 4.81). They
were graduate and postgraduate students with diverse tech-
nical backgrounds (engineering, biomedical, physics, etc.),
and all of them had experience using PC and working with
different software. None of them have tried labeling data for
training before. The participants did not report any mobil-
ity or vision problems (e.g., problems using their hands or
watching).

As a preparation step for this test, eight colored images
and a similar number of correspondent point cloud scenes
were gathered beforehand (Fig. 12). We tried to reflect
an actual scene where some laboratory equipment stands
side by side. In the shown sequence of images and point

VOLUME 10, 2022 131175

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

FIGURE 11. Iterative labeling for color images and point clouds.

clouds, we were interested in labeling the middle object ‘‘the
power supply.’’ The collected data were distributed to all
participants to label the object using two freely available
annotation software for labeling colored images [23] and
point clouds [48]. We chose these two software as represen-
tatives for their respective categories because they both have
a simple user interface and are easy to learn. The partici-
pants were also asked to label that object using our labeling
framework (Fig. 13). This part aims to test the difference
between the two methods, considering various human fac-
tors (e.g., task accomplishment time, usability evaluation,
workload assessment, and general usage observation and
comments).

We designed a counterbalanced within-group experiment
to reduce the learning effect by making participants try the
two methods and shuffling the starting order. Half of the par-
ticipants started using our labeling framework, whereas the
other half started using the labeling software. In the transition
between the two methods, all participants were asked to take
a break for 10 min.

2) METHOD 1: LABELING USING FREELY
AVAILABLE SOFTWARE
We explained the experiment procedure and briefly described
the software functionality that participants would use before
allowing them to listen to extra explanations using available
YouTube videos for each software. Then, we allowed all
participants to experience each software for approximately
10 min (e.g., practicing labeling the official example point
cloud provided by [48]). That procedure starts with deliver-
ing the previously collected data shown in Fig. 12, so each
participant can use the labeling software to place 2D and 3D
bounding boxes properly.

FIGURE 12. Data delivered to participant for labeling using software.

FIGURE 13. Participants passing labeling names and feature points using
our labeling framework.

3) METHOD 2: LABELING USING OUR FRAMEWORK
In the beginning, all participants were introduced to the hard-
ware used for our labeling framework. For the next 10 min,
we instructed them about the technique to pass feature points
and how to register the label name. Then, we asked each
participant to speak the label name and place the six feature
points (Fig. 13). The participants observed the created initial
2D and 3D labels throughout the screen installed over the
mobile robot. Afterward, the participants watched the remain-
ing automatic procedure to relabel and save for the ‘‘power
supply’’ dataset.

4) QUALITATIVE AND QUANTITATIVE ANALYSES
At the start of the experiment, all participants provided their
personal information by answering preliminary questions
through a predesigned survey. While participants were trying
each method, we noted any difficulties using the labeling
method, wrote down participants’ verbal comments, and
recorded the time taken by each participant to accomplish
the labeling task. After the participants tried the two label-
ing methods, they were asked to fill out a system usability
scale (SUS) [49] to evaluate their usability experience sepa-
rately for each method. Then, they continued filling out the
National Aeronautics and Space Administration Task Load
Index (NASA-TLX) [50] to measure the perceived workload
relative to each method.

131176 VOLUME 10, 2022

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

Labeling difficulties and participants’ verbal com-
ments, all participants were observed in the learning phase
and while doing labeling tasks. In the learning phase of using
the first method (freely available software), there were no
comments from the participants. Few participants watched
the learning videos multiple times to adapt to the software
tools. When the participants started labeling the provided
data shown in Fig. 12, they decently performed the color
image labeling. However, two participants did not care about
the label’s quality but focused more on performing fast.
The missing label of one image was repeated by two other
participants.

The story was different when the participants started
labeling the point cloud data; almost all participants found
it challenging to place the 3D bound box. None of them
performed this task completely. It was difficult to label while
manipulating the point cloud and avoiding occlusion with
other objects surrounding the object of interest. Although
the point cloud labeling software provides the labeling tool
intuitively, some participants asked to watch the learning
videos again, as they thought they had missed some informa-
tion. Three participants avoided labeling the object directly;
instead, they created a dummy general cuboid shape bound-
ing box and manipulated it to fit the dimensions of the object
of interest. Some participants commented, ‘‘After I labeled
two point clouds, I feel too bored to continue the process’’
and ‘‘Keep manipulating the point cloud to fit the bounding
box makes me feel tired.’’

The participants reported no issues in the learning phase for
the second method (our labeling framework). However, in the
practicing phase, they were a bit confused about the dura-
tion of closing the left hand palm to make the confirmation
gesture. All of them adapted to performing the confirmation
gesture after a few minutes of learning. This observation was
important for us as it guided us to use some visual indicator
for showing the counting down when using the confirmation
gesture. In the primary process of labeling the object of
interest, all participants had no trouble entering the six feature
points. Only one participant experienced non-solid fitting of
the bounding box, as he pointed to the wrong locations on the
object of interest. Overall, the success rate for our method
to precisely label the object of interest in color images and
point clouds is no comparison with the labeling software,
particularly when working with point clouds. All participants
reported satisfaction watching the resultant automatic and
simultaneous labeled color images and point clouds dur-
ing the iterative labeling phase. One participant commented,
‘‘Using hand gestures to label an object was fun and easy;
I have to memorize the hand gesture, but once I do, labeling
objects is not an effort anymore.’’

Labeling task accomplishment time, we measured the
time taken by all participants from the time they started the
main labeling task to the time they decided to stop. When
using the first method, the average times taken by all partic-
ipants to label the color images and point clouds were 4 and
27 min, respectively. Although they took a long time to label

FIGURE 14. Average SUS scores.

the point clouds, the label quality was sometimes inaccurate
or wrong. These times are the average time to label only a set
of eight color images and point clouds. The time taken will
increase if the amount of data to be labeled is larger.

Moreover, when calculating the average time to accom-
plish the labeling task using our labeling framework,
we found it to be 36s,keeping in mind that most color images
and point clouds have accurate labels. In this case, the time to
label eight color images and point clouds is the same, even if
it was demanded to label a larger data size. The user does not
have to invest more time in labeling, as the automated agent
will accomplish the remaining job (e.g., the mobile robot in
our case).

The results demonstrated above can be observed through-
out the outcomes of standard qualitative tests such as SUS
and NASA-TLX.

Usability test: subjective usability was compared and
identified on how easy and efficient the use of our labeling
framework in contrast to the labeling software using SUS.
The SUS was evaluated on a scale of 0 to 100 in increments
of 10 with five steps anchored with ‘‘Strongly Disagree’’ to
‘‘Strongly Agree.’’ SUS percentage scores were described in
[49]; scores greater than 71 points indicate that the system is
acceptable.

The one-way repeated measure ANOVA test indicates
a significant difference (F (1, 11) = 129.500, p <.000)
in SUS. The score for the labeling framework was higher
(Mean = 92.08, SD = 7.31) than the score of the labeling
software (Mean = 20.83, SD = 13.47) (Fig. 14). This result
does not mean that the usability of the labeling software
is extremely bad itself, but it indicates that the usability
of the labeling software was low relative to our labeling
framework (Fig. 14).

For the workload test, the perceived workload was mea-
sured by NASA-TLX, a subjective workload tool to deter-
mine an overall workload rating, which measures the level
of six factors (mental demand, physical demand, temporal
demand, effort, performance, and frustration). Each factor is
evaluated on a scale of 0 to 100 [50].

VOLUME 10, 2022 131177

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

FIGURE 15. NASA-TLX workload scores for trying the two labeling
methods.

TheANOVA test shows a significant difference in the over-
all NASA-TLX workload between our labeling framework
and the labeling software (F (1,11) = 48.517, p < 0.000).
The perceived workload was higher while using the labeling
software (Mean= 70.83, SD= 19.37) than using our labeling
framework (Mean = 14.81, SD = 3.57) (Fig. 15).

V. DISCUSSION
Our labeling framework delivers an intuitive interaction
between humans and mobile robots. The simple hand gesture
was effective to pass the essential labeling information. The
hand gesture identifier was assessed quantitatively, showing
an excellent performance. Besides, the qualitative assessment
reflects the easiness to use this input modality. Combining
two hands for passing the gesture, one to perform the main
gesture and the other for confirmation, was praised by the
participants as it gives them the control not to enter data
unintentionally. The participants reported no issues learning
this communication method.

We proved a high accuracy for positioning spatial points
and performing the initial labeling task. The variety of objects
we can label in practical environments increases our confi-
dence in using our system. There was a significant difference
for all participants in how easy and intuitive our labeling
framework generates the labels compared with conventional
methods. Our original plan was to invite more participants;
however, the similarities of the collected data in the small
sample were convincing enough that increasing the sample
would not change the final output.

For the iterative labeling, we observed functioning but not
solidly fitted labels such as the one generated from the initial
labeling stage in Fig. 7. This behavior results from the loss in
tracking performance, which could be enhanced by improv-
ing the tracking method. Developing a novel tracking method
or using expensive tracking equipment is not the focus of this
study. However, our primary goal is to demonstrate the visible
and complete labeling framework to assist mobile robots
in overcoming the difficulties associated with object detec-
tion in a real-world scenario. That framework removes the
discrepancy between training data and actual environmental

scenes and elevates the burden of using a specialized tool
for labeling 2D or complex 3D data. This study demands
reducing the time and effort required to generate in-house
annotated data. Further, our framework generates multitype-
labeled datasets suitable for training models that perform
diverse duties.We believe our labeling framework couldwork
as a practical, real-time, and efficient acquiring tool to prepare
effortless training datasets employed by mobile robots.

The fact that the entire framework relies on a single sens-
ing device (i.e., the RGB-D camera) simplifies the design.
Notably, this sensory input is installed over a mobile robot;
thus, a massive upgrade to our framework could be achieved
by incorporating other possible robots’ sensory inputs.

Instead of relying on pretrained deep learning models,
a robot’s owner can guide the robot to understand the sur-
roundings in a better way. For example, suppose a robot is
operating in an indoor space and fails to recognize some
objects. In that case, the robot can be guided to label the
objects using our simple interactive technique, generating a
dataset for each object, and later training the model with the
newly collected data. Another technique to use this frame-
work is to use it as the only channel to collect the training
data; this could be a long process to label all objects in the
surrounding space. However, this generates a full real-world
dataset for objects with their actual dimensions and multi-
viewpoint appearance. The impact of such labeled data is
strong on how robots perceive and interact with their sur-
roundings. The idea of training amodel with big data is attrac-
tive and successful, but what if the indoor used robots are
exposed to a limited set of objects? In this case, ensuring that
the training data reflects the actual input scenes for the robots
will contribute to solving several problems. Then, state-of-
art deep learning models (e.g., 2D and 3D object detection
and 3D pose estimators) could be used with mobile robots
not only in a controlled environment but also in real-human
environments and show high detection and estimation rates.

VI. CONCLUSION AND FUTURE WORK
In this study, we present the full design and detailed assess-
ment of a labeling framework that serves field mobile robots.
Our presented framework includes a single sensory input
device, basic form of a mobile robot, and custom-designed
ROS nodes. The design of our framework guarantees no
usage of software or physical tools to label or refine the
labeled data from the end user. In addition, it allows the end
user to use intuitive communication channels to pass com-
mands to the robot. The assessment of our framework shows
strong practical and user acceptance evidence for its effective-
ness. Our labeling framework contributes to the mobile robot
field by providing an efficient human-robot collaborative
method to acquire and label real-world multitype training
data on demand. Thus, it helps accelerate the integration and
spread of mobile robots into various human service sectors.
Indeed, we believe that trainingmobile robots with real-world
data can ingrain a realistic awareness and better interactions
with their surroundings.

131178 VOLUME 10, 2022

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

For future work, we will designmore solid camera tracking
techniques using sensory data available within the mobile
robot platform or, if needed, incorporate a global positioning
technique. In addition, we will enlarge our collected mul-
titype datasets by collecting data for diverse objects. The
collected datasets will be used to train diverse state-of-art
deep learning models to prove their quality. Although we
demonstrated the possibility of labeling non-cuboid shape
geometries in the demo video [47], we are planning to expand
our concept to label any geometry intuitively while main-
taining the user hands-free and eliminating the use of any
graphical user interface.

ACKNOWLEDGMENT
The authors would like to thankAyaAtaya and Sanghun Jeon,
for their help with editing and experiments.

REFERENCES
[1] S. Hoque, M. Y. Arafat, S. Xu, A. Maiti, and Y. Wei, ‘‘A comprehensive

review on 3D object detection and 6D pose estimation with deep learning,’’
IEEE Access, vol. 9, pp. 143746–143770, 2021.

[2] J. Sandino, F. Vanegas, F. Maire, P. Caccetta, C. Sanderson, and
F. Gonzalez, ‘‘UAV framework for autonomous onboard navigation and
people/object detection in cluttered indoor environments,’’ Remote Sens.,
vol. 12, pp. 1–31, Oct. 2020.

[3] J.Ma, Y. Ushiku, andM. Sagara, ‘‘The effect of improving annotation qual-
ity on object detection datasets: A preliminary study,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2022, pp. 4850–4859.

[4] L. Wang, R. Li, J. Sun, X. Liu, L. Zhao, H. S. Seah, C. K. Quah, and
B. Tandianus, ‘‘Multi-view fusion-based 3D object detection for robot
indoor scene perception,’’ Sensors, vol. 19, no. 19, p. 4092, Sep. 2019.

[5] G. Baruch, Z. Chen, A. Dehghan, T. Dimry, Y. Feigin, P. Fu, T. Gebauer,
B. Joffe, D. Kurz, A. Schwartz, and E. Shulman, ‘‘ARKitScenes: A diverse
real-world dataset for 3D indoor scene understanding usingmobile RGB-D
data,’’ 2021, arXiv:2111.08897.

[6] M. Suchi, T. Patten, D. Fischinger, and M. Vincze, ‘‘EasyLabel: A semi-
automatic pixel-wise object annotation tool for creating robotic RGB-
D datasets,’’ in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 6678–6684.

[7] J. Cartucho, R. Ventura, and M. Veloso, ‘‘Robust object recognition
through symbiotic deep learning in mobile robots,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 2336–2341, 2018.

[8] A. Munappy, J. Bosch, H. H. Olsson, A. Arpteg, and B. Brinne, ‘‘Data
management challenges for deep learning,’’ in Proc. 45th Euromicro Conf.
Softw. Eng. Adv. Appl. (SEAA), Aug. 2019, pp. 140–147.

[9] J. Brownlee, ‘‘Data preparation for machine learning,’’ Tech. Rep., 2022.
[10] P. Wspanialy, J. Brooks, and M. Moussa, ‘‘An image labeling tool and

agricultural dataset for deep learning,’’ 2020, arXiv:2004.03351.
[11] Q. Meng, W. Wang, T. Zhou, J. Shen, L. V. Gool, and D. Dai, ‘‘Weakly

supervised 3D object detection from lidar point cloud,’’ in Proc. Eur. Conf.
Comput. Vis., 2020, pp. 515–531, 2020.

[12] MediaPipe Hands. Accessed: Sep. 18, 2022. [Online]. Available:
https://google.github.io/mediapipe/solutions/hands.html

[13] S. Hinterstoisser, O. Pauly, H. Heibel, M. Martina, and M. Bokeloh,
‘‘An annotation saved is an annotation earned: Using fully synthetic train-
ing for object detection,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
Workshop (ICCVW), Oct. 2019, pp. 2787–2796.

[14] A. Dehban, J. Borrego, R. Figueiredo, P. Moreno, A. Bernardino, and
J. Santos-Victor, ‘‘The impact of domain randomization on object detec-
tion: A case study on parametric shapes and synthetic textures,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019, pp. 2593–2600.

[15] B. Kiefer, D. Ott, and A. Zell, ‘‘Leveraging synthetic data in object detec-
tion on unmanned aerial vehicles,’’ 2021, arXiv:2112.12252.

[16] F. E. Nowruzi, P. Kapoor, D. Kolhatkar, F. Al Hassanat, R. Laganiere,
and J. Rebut, ‘‘How much real data do we actually need: Analyz-
ing object detection performance using synthetic and real data,’’ 2019,
arXiv:1907.07061.

[17] A. Tsirikoglou, J. Kronander, M. Wrenninge, and J. Unger, ‘‘Procedural
modeling and physically based rendering for synthetic data generation in
automotive applications,’’ 2017, arXiv:1710.06270.

[18] M.Wrenninge and J. Unger, ‘‘Synscapes: A photorealistic synthetic dataset
for street scene parsing,’’ 2018, arXiv:1810.08705.

[19] Y. Movshovitz-Attias, T. Kanade, and Y. Sheikh, ‘‘How useful is photo-
realistic rendering for visual learning,’’ in Proc. Eur. Conf. Comput. Vis.
Cham, Switzerland: Springer, 2016, pp. 202–217.

[20] Z. Zhao and X. Chen, ‘‘Building 3D semantic maps for mobile robots
using RGB-D camera,’’ Intell. Service Robot., vol. 9, no. 4, pp. 297–309,
Oct. 2016.

[21] Y. Qin, T. Mei, Z. Gao, Z. Lin, W. Song, and X. Zhao, ‘‘RGB-D SLAM
in dynamic environments with multilevel semantic mapping,’’ J. Intell.
Robotic Syst., vol. 105, no. 4, pp. 1–18, Aug. 2022.

[22] B. Pande, K. Padamwar, S. Bhattacharya, S. Roshan, and M. Bhamare,
‘‘A review of image annotation tools for object detection,’’ in Proc. Int.
Conf. Appl. Artif. Intell. Comput. (ICAAIC), May 2022, pp. 976–982.

[23] Make Sense Annotation Tool. Accessed: Oct. 5, 2022. [Online]. Available:
https://www.makesense.ai/

[24] Object Detection (COCO-SSD). Accessed: Oct. 5, 2022. [Online].
Available: https://github.com/tensorflow/tfjs-models/blob/master/coco-
ssd/README.md

[25] M. Ibrahim, N. Akhtar, M. Wise, and A. Mian, ‘‘Annotation tool and urban
dataset for 3D point cloud semantic segmentation,’’ IEEE Access, vol. 9,
pp. 35984–35996, 2021.

[26] H. A. Arief, M. Arief, G. Zhang, Z. Liu, M. Bhat, U. G. Indahl, H. Tveite,
andD. Zhao, ‘‘SAnE: Smart annotation and evaluation tools for point cloud
data,’’ IEEE Access, vol. 8, pp. 131848–131858, 2020.

[27] E. Barnefske and H. Sternberg, ‘‘Evaluating the quality of semantic seg-
mented 3D point clouds,’’ Remote Sens., vol. 14, no. 3, p. 446, Jan. 2022.

[28] D. T. Nguyen, B.-S. Hua, L.-F. Yu, and S.-K. Yeung, ‘‘A robust
3D-2D interactive tool for scene segmentation and annotation,’’ 2016,
arXiv:1610.05883.

[29] Y.-S. Wong, H.-K. Chu, and N. J. Mitra, ‘‘SmartAnnotator an interac-
tive tool for annotating indoor RGBD images,’’ Comput. Graph. Forum,
vol. 34, no. 2, pp. 447–457, 2015.

[30] F. Wirth, J. Quehl, J. Ota, and C. Stiller, ‘‘PointAtMe: Efficient 3D point
cloud labeling in virtual reality,’’ in Proc. IEEE Intell. Vehicles Symp. (IV),
Jun. 2019, pp. 1693–1698.

[31] BasicIA. Quickly Annotate With Powerful Multi-Sensory Labeling Tools.
Accessed: Nov. 1, 2022. [Online]. Available: https://www.basic.ai/

[32] Scale. Better Data Leads to More Performant Models. Accessed:
Nov. 1, 2022. [Online]. Available: https://scale.com/

[33] Playment AI Data Solutions. Creating and Enhancing the World’s Data
to Enable Better AI Via Human Intelligence. Accessed: Nov. 1, 2022.
[Online]. Available: https://www.telusinternational.com/solutions/ai-data-
solutions?INTCMP=ti_playment

[34] D. D. Gregorio, A. Tonioni, G. Palli, and L. D. Stefano, ‘‘Semiautomatic
labeling for deep learning in robotics,’’ IEEE Trans. Autom. Sci. Eng.,
vol. 17, no. 2, pp. 611–620, Apr. 2020.

[35] Turtlebot3 Waffle Pi. Accessed: Sep. 10, 2022. [Online]. Available:
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

[36] Microsoft Azure Kinect Camera. Accessed: Sep. 12, 2022. [Online].
Available: https://learn.microsoft.com/en-us/azure/Kinect-dk/hardware-
specification

[37] A. Elsharkawy, K. Naheem, D. Koo, and M. S. Kim, ‘‘A UWB-driven self-
actuated projector platform for interactive augmented reality applications,’’
Appl. Sci., vol. 11, no. 6, p. 2871, Mar. 2021.

[38] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke,
‘‘The Microsoft 2017 conversational speech recognition system,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2018,
pp. 5934–5938.

[39] Microsoft Azure Speech Service Documentation. Accessed: Oct. 19, 2022.
[Online]. Available: https://learn.microsoft.com/en-us/azure/cognitive-
services/Speech-Service/

[40] S. Jeon, A. Elsharkawy, and M. S. Kim, ‘‘Lipreading architecture based on
multiple convolutional neural networks for sentence-level visual speech
recognition,’’ Sensors, vol. 22, no. 1, p. 72, Dec. 2021.

[41] S. Jeon and M. S. Kim, ‘‘End-to-end lip-reading open cloud-based speech
architecture,’’ Sensors, vol. 22, no. 8, p. 2938, Apr. 2022.

[42] Simultaneous Localization and Mapping Algorithm, RTAB-Map
SLAM. Accessed: Oct. 21, 2022. [Online]. Available: http://introlab.
github.io/rtabmap/

VOLUME 10, 2022 131179

A. Elsharkawy, M. S. Kim: Human–Robot Labeling Framework to Construct Multitype Real-World Datasets

[43] RTAB-Map SLAMParameters Tunning. Accessed: Oct. 21, 2022. [Online].
Available: https://github.com/introlab/rtabmap/wiki/Change-parameters

[44] CropBox Filter in Point Cloud Library. Accessed: Oct. 2, 2022.
[Online]. Available: https://pointclouds.org/documentation/classpcl_1_1_
crop_box_3_01pcl_1_1_p_c_l_point_cloud2_01_4.html

[45] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 7263–7271.

[46] Azure Kinect DK Hardware Specifications. Accessed: Oct. 5, 2022.
[Online]. Available: https://learn.microsoft.com/en-us/azure/Kinect-
dk/hardware-specification

[47] Demonstration Video, Human-Robot Labeling Framework to Construct
Multitype Real World Datasets. Accessed: Nov. 10, 2022. [Online]. Avail-
able: https://youtu.be/kiD6TQ8tVAk

[48] C. Sager, P. Zschech, and N. Kuhl, ‘‘LabelCloud: A lightweight labeling
tool for domain-agnostic 3D object detection in point clouds,’’ Comput.-
Aided Des. Appl., vol. 19, no. 6, pp. 1191–1206, Mar. 2022.

[49] A. Bangor, P. Kortum, and J. Miller, ‘‘Determining what individual SUS
scores mean: Adding an adjective rating scale,’’ J. Usability Stud., vol. 4,
no. 3, pp. 114–123, 2009.

[50] G. S. Hart and E. LowellStaveland, ‘‘Development of NASA-TLX (task
load index): Results of empirical and theoretical research,’’ Adv. Psychol.,
vol. 52, pp. 139–183, Apr. 1998.

AHMED ELSHARKAWY received the B.S.
degree in electronic engineering from Menoufia
University, Egypt, in 2012, and the M.S. degree
in mechatronics engineering from the Gwangju
Institute of Science and Technology, South Korea,
in 2017, where he is currently pursuing the Ph.D.
degree. His current research interests include
ground mobile and flying robots navigation and
control, human–computer interaction, haptics,
UWB-based indoor localization systems, and
artificial intelligence.

MUN SANG KIM (Member, IEEE) received
the B.S. and M.S. degrees in mechanical engi-
neering from Seoul National University, Seoul,
South Korea, in 1980 and 1982, respectively, and
the Dr.-Ing. degree in robotics from the Technical
University of Berlin, Berlin, Germany, in 1987.
From 1987 to 2016, he was a Research Scientist
at the Korea Institute of Science and Technology,
Seoul. He led the Advanced Robotics Research
Center, in 2000, where he became the Director of

the ‘‘Intelligent Robot—The Frontier 21 Program,’’ in October 2003, which
is one of the most challenging research programs in South Korea. He is
currently a Professor with the School of Integrated Technology, Gwangju
Institute of Science and Technology. His current research interests include
healthcare robotics, UWB-based indoor localization systems, and culture
technology.

131180 VOLUME 10, 2022

