
Received 21 November 2022, accepted 11 December 2022, date of publication 15 December 2022,
date of current version 21 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3229892

Design of Novel Hardware Architecture for Fully
Homomorphic Encryption Algorithms in FPGA
for Real-Time Data in Cloud Computing
SAGARIKA BEHERA , (Member, IEEE), AND JHANSI RANI PRATHURI , (Member, IEEE)
CMR Institute of Technology, Bengaluru, Karnataka 560037, India

Corresponding author: Sagarika Behera (sagarika.b@cmrit.ac.in)

ABSTRACT In the cloud computing environment, the data is encrypted using a variety of cryptographic
techniques before being sent to the cloud. But in this method, if someone wants to do some operation on
the ciphertext, then the client needs to share the secret key to decrypt the ciphertext. So, there is a chance of
data leakage. Now more research is being carried out on a fully homomorphic encryption scheme (FHE) to
maintain the privacy and secrecy of user’s data in the cloud environment. Calculations can be performed on
the ciphertext in this encryption technique without the need for decryption. The user will use a private key
to decode the result into plain text format. But this method takes more time if it is implemented in software.
So, it is not feasible to implement FHE on real-time data. To overcome these difficulties, we have developed
a new hardware architecture for Brakerski, Vaikuntanathan (BV) fully homomorphic encryption scheme
using Field Programmable Gate Array (FPGA). In this work, we have carried out an extensive simulation of
the proposed design in MATLAB, and Python to validate the encryption and decryption algorithm. Further,
we have simulated the design architecture of the BV scheme in the Questasim simulator and implemented
it in an Intel FPGA using the Quartus tool. In this research work, we found that the proposed architecture
takes 0.33 sec for key generation, 0.851 sec for encryption, and 72us for decryption when it is implemented
using 32 butter-fly-based Number Theoretic Transfer (NTT) and consumes less FPGA hardware resources.

INDEX TERMS Cloud computing, FHE, FPGA, learning with error (LWE), number theoretic
transfer (NTT).

I. INTRODUCTION
There is an increase in demand and use of cloud comput-
ing for various applications. In today’s digital era, cloud
computing has a crucial role in storing data in the cloud
and executing various operations on that data. To ensure
data security in a cloud computing environment, data is
encrypted using various cryptographic algorithms before it is
stored in the cloud environment. The hardness of all these
popular public key cryptographic (PKC) systems is based
on the discrete logarithms problem and integer factorization.
These challenges are difficult for conventional computers to
break the key, but they are simple for quantum computers
to solve. As reported in the literature, quantum computing

The associate editor coordinating the review of this manuscript and

approving it for publication was Agostino Forestiero .

can solve the factoring problem using Shor’s algorithm [35].
There is a need for a new type of cryptographic algorithm
or mathematical problem which is difficult for quantum
computers to solve and thus it will be secure.

Other kinds of PKC systems that are resistant to quantum
fluctuations and not easily broken by quantum computers
exist. A few examples include code-based, lattice-based,
isogeny-based, hash-based, and multivariate systems. Other
standard bodies are evaluating and looking for efficient
algorithms from these families. Learning With Errors (LWE)
fully homomorphic encryption scheme [1], [2], [3], [4], [5] is
a lattice-based cryptographic scheme.

Computing operations can be made on the encrypted data
using a fully homomorphic encryption scheme (FHE)without
first having to decrypt it. More researchers are working in
this developing field of study and are showing interest in

131406
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-6109-2832
https://orcid.org/0000-0002-4180-0341
https://orcid.org/0000-0002-3025-7689

S. Behera, J. R. Prathuri: Design of Novel Hardware Architecture for Fully Homomorphic Encryption Algorithms in FPGA

this area because it is a feasible solution for cloud security.
When cloud users store data in a third-party server, the safety
and privacy of personal data are of large concern. In the
FHE method, there is no need to share the secret key with
a third-party. Craig Gentry in the year 2009, proposed the
lattice-based FHE explained in his Ph.D. thesis [6]. Since
then, many cryptographers and researchers [1], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25] are working on this to enhance FHE
performance. There are some interesting applications of FHE
in various fields given in the paper [26], [27], [28], [36].

Homomorphic encryption schemes have been imple-
mented practically in software and hardware. But software
implementation is very slow in practical scenarios. So,
implementing FHE in real-time speed becomes the main
limiting factor. We demonstrate the FPGA implementation of
the LWE-based BV FHE algorithm [1] in this study.

A. RELEVANT WORK
We are going to present some instances where homomorphic
encryption algorithms are implemented in software, Graphics
Processing Unit (GPU), FPGA, and the time taken to execute
it. On a large machine with a number theory library (NTL)
as the underlying software, it takes more than 36 hours to
assess a full circuit using a leveled homomorphic encryption
that can analyze an Advanced Encryption Standard (AES)-
128 circuit [29]. In another scenario using Single Instruction,
Multiple Data (SIMD) technique to evaluate 54 blocks it takes
40 minutes for each block. In that paper authors also claimed
that evaluating 720 blocks takes two and a half days.

The first hardware implementation of FHE over integers
on the XILINX Virtex-7 FPGA platform [30]. The speed
was improved by a factor of 52.42 compared to the
software implementation. A 768K-bit multiplier architectural
concept is suggested. When compared to the NVIDIA
C2050 Graphics Processing Unit, which has 448 cores
working at 1.15 GHz, the Stratix-V FPGA’s 64K-point finite-
field fast Fourier transform (FFT) processor is twice as
fast at 100 MHz. The Brakerski, Gentry, Vaikuntanathan
(BGV) scheme which is based on the Ring Learning with
Error (RLWE) concept is implemented in FPGA [31]. The
proposed architecture to improve performance and reduce
computational latency is tested on a Virtex UltraScale FPGA
platform running at 150MHz. According to the authors,
their design architecture for homomorphic encryption and
decryption was 4.60 × 9.49x quicker than the optimized
software implementation on an Intel i7 CPU running at
3.1GHz, resulting in a throughput improvement of 1.03 ×
4.64x above the hardware implementation of BGV.

A design architecture is proposed to improve the com-
putational power of Fan-Vercauteren (FV) homomorphic
encryption scheme on a heterogeneous platform Arm with
FPGA [32], It is evaluated on a single Xilinx Zynq
Ultra-Scale withMPSoCZCU102 EvaluationKit. In compar-
ison to the software implementation of the FV method on an
Intel i5 processor operating at 1.8GHz, the authors claimed
that their technique provided a 13x speedup at 200MHZ.

Lopez-Alt, Tromer, and Vaikuntanathan (LTV) based some-
what homomorphic encryption (SWHE) schemes [33] were
implemented on Xilinx Virtex 7. This multiplied a large
polynomial in 6.25 milliseconds, which is 102 times quicker
than the software implementation.

The authors of the paper [36] claimed that they have
proposed an FPGA-based accelerator for bootstrap FHE. The
evaluation was performed on Xilinx Alveo U280 FPGA. It is
applied to train a logistic regression model on encrypted data.

B. OUR CONTRIBUTION
We have proposed a novel design architecture in the
paper [34] to implement LWE FHE in FPGA. In this paper,
we have carried out extensive simulations in MATLAB, and
python to validate the algorithms. The new design archi-
tecture for FPGA implementation is simulated in questasim
software and implementation in the quartus FPGA tool. The
speed of execution and the hardware resource utilization
have been tabulated. In our investigation, it was found that
lattice-based FHE algorithms are mathematically similar and
the major computation is the polynomial multiplier. Designed
with Intel Agilex FPGA (10 nanometers) with large numbers
of digital signal processing (DSP) multipliers, the speed
performance of 250 MHz is archived for encryption and
decryption algorithms. By using large numbers of butter-fly,
the long-length plain text has been encrypted and decrypted
in the order of microseconds. A large number of butterflies
is recommended for Cloud Computing which demands huge
data encryption and faster speed of execution. Similarly,
on the other hand, our architecture with a smaller number
of butter-fly is tailored for IoT applications that demand
less data for encryption and decryption. For IoT kind of
data, a lesser number of butter-fly and even smaller density
FPGA can be used. For example, for 512 lengths of a
polynomial using 1 butter-fly and 32 butter-fly takes 8.8us
and 0.6us respectively. The throughput performance of 15x
with 32 parallel butter-fly compared to a single butter-
fly. So, it is found that 32 butter-fly-based solutions can
be used for homomorphic encryption operations in cloud
computing.

Outline of the paper. The paper is structured as follows.
Section II introduced lattice theory, BV schemes, and number
theoretic transform. Section III covers the proposed novel
architecture including the details of the digital logic block
used. In section IV, the simulation is set up with parameters,
and results of MATLAB, python, and questasim are included.
This section also includes results and discussions. Finally, the
paper is concluded in section V.

II. THEORETICAL BACKGROUND
A. LATTICE THEORY
The lattice theory forms the basis of the fully homomorphic
encryption system. Lattice problems are NP-hard problems.
The encryption methods based on the lattice principle are
challenging for quantum computers to crack. The terms
associated with lattice theory will be discussed in this
section.

VOLUME 10, 2022 131407

S. Behera, J. R. Prathuri: Design of Novel Hardware Architecture for Fully Homomorphic Encryption Algorithms in FPGA

FIGURE 1. Two 2-dimensional lattices in the Euclidean plane.

1) DEFINITION 1 (LATTICE L)
A lattice L of Rn is a discrete subgroup of Rn by definition.
Where Rn and Zn are sets of real numbers and integers
respectively. Here integer lattices are considered i.e., L ⊆ Zn.
A lattice is any correctly spaced grid of points that extends
into the infinite. In Fig.1, two different, 2-dimensional lattices
are shown.

2) DEFINITION 2 (BASIS)
A basis B of L is an ordered set

B = (b1, b2, ..., bn)

such that L = L(B) = B · Zn =
∑n

1 cibi : ci ∈ Z .
Here bi is a column vector. Any point in the grid that makes

up the lattice can be recreated using a basis, which is a set of
vectors. One thing to keep in mind is that each lattice does
not have a single basis. In actuality, it is built on several
foundations. Some bases are deemed’’ good,’’ while others
are labeled’’ bad.’’ A basis is a fundamental finite object
that can be stored in a computer’s memory as opposed to an
infinite grid of dots. The vectors (b1, b2) are two bases of the
lattice shown in Fig. 2.

3) DEFINITION 3 (SHORTEST VECTOR PROBLEM) (SVP)
Finding a nonzero vector v in lattice L from a given basis.
Fig.2 shows an SVP. The basis vector is in blue and the
shortest vector is in red.

4) DEFINITION 4 (CLOSEST VECTOR PROBLEM)
Determining the vector v in lattice L that is closest to the
target. The closest vector problem is depicted in Fig.3 with
the basis represented in blue, the external vector in green, and
the closest vector in red.

FIGURE 2. Shortest Vector Problem.

B. SHORT INTEGER SOLUTION AND LWE PROBLEM
1) DEFINITION 5 (SHORT INTEGER SOLUTION)
In lattice-based cryptography constructions, the short integer
solution (SIS) and ring-SIS problems are two typical

FIGURE 3. Closest Vector Problem.

difficulties. Problems that are challenging to solve in a
random sampling of cases are known as average-case prob-
lems. Worst-case complexity is insufficient for cryptography
applications, and we must ensure that cryptographic con-
structions are difficult based on the average case complexity.
Mathematically it is represented as SISn,q,m,β . Where n is the
no. of equations or height of the matrix. q is the finite field of
work. m is the no. of variables. β is the short vector length.

Given a matrix A ∈ Zn×mq is an n × m matrix with entries
in Zq that consists of m uniformly random vectors ai ∈ Znq ,
search for a nonzero vector r ∈ Zm such that Ar = 0 mod q
(over Znq) and ‖r‖ ≤ β Where A = (−→a1 ,

−→a2 , . . . ,
−→am)

2) DEFINITION 6 (LEARNING WITH ERROR PROBLEM)
The LWE problem states that s ∈ Znq is a secret vector from
a set of linear equations on ’s’ and the goal is to recover the
secret vector ’s’ as specified in [2]. We can find the value
of ’s’ in polynomial time from ’n’ equations using Gaussian
elimination if there is no error. The different parameters and
the LWE problem statement is explained below. Let n ≥ 1, q
≥ 2 is the modulus, a vector s ∈ Znq , and an error probability
distribution χ on Zq. Let As,x be the probability distribution
on Znq × Zq by choosing a uniform random vector a ∈ Znq
and an error vector e ∈ Znq and gives the output as (a, 〈a, s〉+
e) mod q.

3) DEFINITION 7 (MAXIMUM LIKELIHOOD ALGORITHM)
One way of solving the LWE problem is by the maximum
likelihood algorithm. Assume ’q’ is polynomial and the
distribution of error is normal. Approximately after ’n’
number of equations, we can demonstrate that the ’s’ which
satisfies approximately all the equations is the correct one.

C. BV FHE SCHEME
We will briefly discuss the BV FHE scheme. This scheme
was put forward by Z. Brakerski, V. Vaikuntanathan [1] in
the year 2011. In this paper, this scheme is implemented
using FPGA. This scheme is established on the LWE
presumption. The security of this technique is based on
the worst-case difficulty of solving conventional lattice
problems. They have introduced two methods to obtain
an SWHE and then convert SWHE into FHE. The first
step is the re-linearization technique and the second step is
dimension-modulus reduction technique. These two methods
are explained below.

1) RE-LINEARIZATION TECHNIQUE
Considering the LWE premise, this technique is utilized to
generate an SWHE. Encrypting a message bit m ∈ {0, 1}

131408 VOLUME 10, 2022

S. Behera, J. R. Prathuri: Design of Novel Hardware Architecture for Fully Homomorphic Encryption Algorithms in FPGA

using secret key s ∈ Znq , a random vector a ∈ Znq , error/noise
’e’ is selected and ’c’ is the output ciphertext, given in (1).

c = (a, b = 〈a, s〉 + 2e+ m) ∈ Znq × Zq (1)

In the encryption process, two masks are used. One is
the hidden mask 〈a, s〉 and the other one is the even mask
2e. During the decryption process, these two masks do not
interfere with each other. First, we can recompute 〈a, s〉 and
subtract it from ’b’, the result will be 2e+m (mod q). Since the
noise e� q, then 2e+m (mod q) = 2e+m. Now to remove
the even mask we can calculate (2e + m) mod 2. Below is a
detailed explanation of the decryption algorithm, from which
we can learn about the homomorphic characteristics of the
BV scheme. A ciphertext (a, b) has been given and a linear
function fa,b : Znq → Zq is defined in (2).

fa,b(x) = b− 〈a, x〉(mod q) = b−
n∑
i=1

a[i].x[i] ∈ Zq (2)

where x = (x[1], x[2], . . . , x[n]) denotes the variables, and
(a, b) are the coefficients of the linear equation. Now it is
evident that evaluating this function on the secret key ’s’ and
then obtaining the modulo 2 of the result is all that is required
to decrypt the ciphertext (a, b).

2) HOMOMORPHIC ADDITION
Let c1 and c2 be two ciphertexts. The addition of these
two ciphertexts is equivalent to the addition of two linear
functions. The result will be another linear function. It is
presented in (3).

f(a+c,b+d)(x) = fa,b(x) + fc,d (x) (3)

The resultant ciphertext will be (a+ c, b+ d).

3) HOMOMORPHIC MULTIPLICATION
Multiplication of two ciphertexts c1 and c2 can be represented
by (4).

fa,b(x).fc,d (x) = (b−
∑

a[i]x[i]).(d −
∑

c[i]x[i])

= h0 +
∑

hi.x[i]+
∑

hi,j.x[i]x[j] (4)

The result will be a polynomial of degree 2 with variables
x = (x[1], x[2], . . . , x[n]) and coefficients will be hi,j which
can be computed from (a, b) and (c, d). Now the size of the
ciphertext increased from n + 1 to n2/2. To reduce the size
of ciphertext, the re-linearization technique has been applied.
With another new secret key ’t’, all of the linear and quadratic
terms under secret keys have been published in this technique.
The new form of the linear equation is shown in (5).

bi,j = 〈ai,j, t〉 + 2ei,j + s[i].s[j] ≈ 〈ai,j, t〉 + s[i].s[j] (5)

Equation (6) shows the approximate representation of the
homomorphic multiplication linear equation using the new
secret key ’t’.

h0 +
∑

hi(bi − 〈ai, t〉)+
∑
i,j

hi,j.(bi,j − 〈ai,j, t〉) (6)

This resulting ciphertext has maximum n + 1 coefficients in
the linear equation.When it will be decrypted using the secret
key ’t’, it will give P.Q i.e multiplication of two plaintexts.
In this way, it can perform only one multiplication. It can
perform L levels of multiplication using a chain of L secret
keys.

4) POLYNOMIAL MULTIPLICATION AND NUMBER
THEORETIC TRANSFORM
As per the discussion in subsection II-C3, one of the
fundamental operations in the BV scheme is the multi-
plication of two large polynomials. Here we will discuss
the Number Theoretic Transform (NTT) method which is
used for the multiplication of two large polynomials. It is a
generalization method of Discrete Fourier Transform (DFT)
to a finite field. NTT allows to perform fast convolutions
on large integers without any round-off error. This convo-
lution is very much useful for the multiplication of large
polynomials.

Suppose p(x) is the polynomial with a degree less than ’n’
and given in (7).

p = (p[0], p[1], . . . , p[n− 1]) ∈ Znq (7)

Let ω be a primitive nth root of unity in Zq as shown in (8).

ωn ≡ 1 mod q (8)

The forward transform or the n-point NTT of p(x) is given
in (9) for i=0,1,. . . ,n-1.

Pi =
n−1∑
j=0

p[j]ωij(mod q) (9)

The (10) can be used to determine the n-point Inverse NTT
(INTT) for i=0,1,. . . ,n-1.

pi = n−1
n−1∑
j=0

P[j]ω−ij(mod q) (10)

III. FPGA ARCHITECTURE FOR THE BV FHE METHOD
This section includes the proposed hardware architecture to
accelerate the BV FHE scheme.

In the BV FHE scheme, most of the operations are
performed on the long polynomials. From these operations,
polynomial additions and multiplications are the most
important operations. The polynomial multiplication takes
more time (O(n2)) in real-time data. Software implementation
takes more time, so there are research areas to evolve new
architecture to implement in programmable hardware such as
FPGA to meet the timing need. Here, we have developed a
new hardware architecture to accelerate the time of execution
in programmable hardware. In the following sections, the
new techniques for key generation, encryption, decryption,
evaluation of encrypted data, NTT, INTT for polynomial
operations, and the hardware design architecture for various
blocks have been covered.

VOLUME 10, 2022 131409

S. Behera, J. R. Prathuri: Design of Novel Hardware Architecture for Fully Homomorphic Encryption Algorithms in FPGA

FIGURE 4. FPGA-Based Design Architecture for BV FHE Scheme.

A. NOVEL HARDWARE ARCHITECTURE AND DIGITAL
TECHNIQUES
Digital techniques for novel FPGA implementation of the
overall architecture of our proposed method are presented in
this section. Fig.4 shows the FPGA-based design architecture
for the LWE-based BV fully homomorphic encryption
scheme. The overall block diagram is divided into three sub-
blocks, key generator, encryption, and decryption blocks.
The circuit-level design of each block is given in subsequent
subsections. The secret vector ’s’ and small value of
noise/error ’e’ are generated by the Noise sampler block. This
error ’e’ is shifted left by 1 bit to get the value of 2e. The
public key ’A’ is generated randomly by the Pseudo-Random
Number Generator (PRNG) block. The value of ’A’ and
secret vector ’s’ is multiplied by a polynomial multiplier and
the output is added with ’2e’ by a polynomial adder. The
modular reduction is applied to the result to get the value of
(As+2e)mod q. This value is stored in ’b’. We got the public
key as (A, b) and the secret vector ’s’ as output from the key
generator block.

In the encryption block, the noise sampler generates
sample values of 0 and 1 and is stored in ’r’. The polynomial
multiplier multiplies the transpose of ’A’ with ’r’ and
modular reduction applied on the result to get the value of v,
where v = (Atr) mod q. Transpose of b is multiplied with
r and message m is added with it using a polynomial adder.
Modular reduction is applied to the result to get the value of
’w’, where w = (btr + m) mod q. The ciphertext c = (v,w).
The decryption block decrypts the ciphertext ’c’ to get back

the plain text ’m’. The polynomial multiplier multiplies ’v’
and secret vector ’s’. Modular reduction is applied to the
result and this value is subtracted from ’w’ by a polynomial
subtractor. So, to get the value of the plaintext ’m’, the

TABLE 1. m-Sequence Primitive Polynomial.

decryption block performs the operation m = ((w − vs)
mod q) mod 2. Algorithms for all these operations are
given in the next section.

B. PSEUDO-RANDOM NUMBER GENERATOR
Here we have used m-sequence code to generate PRNG.
To generate such sequence ’m’ no. of Linear Feedback Shift
Registers (LFSR) are used. Table 1 shows the primitive
polynomial or generator polynomial which is used to generate
m-sequence.

Here we are generating a pseudo-random number of
lengths 512. The primitive polynomial used for it is
p9 + p4 + 1.
Fig. 5 shows the detailed circuit diagram to generate

512 bits PRNG. Here we have used 9 no. of LFSR to generate
512 bits of pseudo-random numbers.

131410 VOLUME 10, 2022

S. Behera, J. R. Prathuri: Design of Novel Hardware Architecture for Fully Homomorphic Encryption Algorithms in FPGA

FIGURE 5. Pseudo-Random Number Generator Circuit (512 bits).

FIGURE 6. Secret Key Generation Block using 9-bit PRNG.

Further, the LFSR has a load option (LD0 to LD8) and
by set bit, any arbitrary polynomial can be loaded into the
register. It enhances the capability of the PNRG for key
generation for applications such as the BV homomorphic
encryption scheme.

C. SECRET KEY (S) GENERATION BLOCK USING 9-BIT
PRNG
The secret key generation block is implemented as follows.
There is a 9-bit shift register and the output x9 is connected
to 512×1 RAMwhich is addressed by a 9-bit counter called a
Secret Key(s) Address Counter. In our experimental set up we
have taken secret vectors of length 512× 1 bits. Fig. 6 shows
the block diagram to generate this secret key using 9 LFSRs.

D. PUBLIC KEY (A) GENERATION BLOCK USING 4096-BIT
PRNG
To perform hardware simulation of encryption in the BV
scheme, we have taken public key ’A’ of length 4612 bits.
Fig. 7 shows a block diagram to generate 4096 bits (212)
of pseudo-random numbers. Which approximates 4612 bits.
The input to the adder shows how the bits are rotated and
shifted. The adder output is serially loaded into a 4096 × 1
RAM which is addressed by a 12 bits counter to generate
the public key ’A’. The same hardware is also instantiated
to generate Noise/Error(e) as depicted in Fig. 8.

FIGURE 7. Public Key Generation Block using 4096-bit PRNG.

FIGURE 8. Noise Generation Block using 4096-bit PRNG.

FIGURE 9. Architecture Diagram for NTT Transformation.

E. NOISE/ERROR (E) GENERATION BLOCK USING
4096-BIT PRNG
The size of the error vector or noise vector ’e’ is 4612 bits in
our experimental setup. Fig. 8 shows the block diagram for
generating 4096 bits of the pseudo-random number. It can be
repeated to generate 4612 bits.

F. ARCHITECTURE DIAGRAM FOR NTT TRANSFORMATION
Fig. 9 shows a pipelined architecture for Number Theoretic
Transform. As shown in the figure, the complete data path
is divided into 3 blocks. The blocks are Dual-Port Memory,
Butterfly Unit, and Bit Reverse block. In the Dual port
memory, input data is stored temporarily. It maintains the
polynomial’s ’n’ coefficients. This Dual port memory helps in
reading and writing concurrently. Which helps in the pipeline
structure of our proposed architecture.

VOLUME 10, 2022 131411

S. Behera, J. R. Prathuri: Design of Novel Hardware Architecture for Fully Homomorphic Encryption Algorithms in FPGA

FIGURE 10. Dataflow diagram for NTT-based Multiplier.

The upper data path and lower data path of the butterfly
unit correspond to the two input and output data buses of this
dual port memory. In a cycle, it can support two reads and
two write operations. The butterfly unit performs modular
addition and modular multiplication. The Dual port memory
receives the output of the Butterfly unit as input to perform
the subsequent Butterfly computation. Since input values
are in natural order but the index of NTT values is in bit
reverse order, at the end bit reverse block performs bit reverse
operation to reverse the bits of NTT operation output.

G. DATAFLOW DIAGRAM FOR NTT-BASED MULTIPLIER
The data flow diagram for the NTT-based Multiplier is
shown in Fig. 10. P1 and P2 are two polynomials. The
Modular operation was applied to these two polynomials
before finding the number theoretic transformation. Two
polynomials are multiplied by scalar multiplication and
inverse number theoretic transformation is applied to it to get
the multiplication result. A Modular operation is applied to it
to get the final result.

H. ALGORITHM
In this section, we have presented Regev’s LWE algorithm,
and BV FHE scheme’s key generation, encryption, decryp-
tion, and evaluation algorithm. The public key pair (A, b)
is generated using the key generation algorithm. Using this
public key, encryption of plain text message ’m’ is performed.
The encryption algorithm produces ciphertext as its result.
It contains two values, ’v’, and ’w’. Each ciphertext has a
level tag ’l’ attached to it, which shows the multiplicative
depth. This is used during the evaluation process. For the first
ciphertext, this value will be 0, it gets incremented for each
encryption process.

For the polynomial multiplication, the Number Theoretic
Transform algorithm and Inverse NTT algorithm are given
below.

The Learning with Error algorithm presented by Oded
Regev [2] is as hard as a lattice problem which is
used in most of the homomorphic encryption schemes for
cryptosystems. Most of the cryptographic algorithms which
are based on the lattice-based system use either LWE or
RLWE. In algorithm 1, we have presented Regev’s LWE
algorithm. The concept of the LWE algorithm is explained
in subsection II-B2.
In the BV scheme, to generate the public key pair (A, b),

learning with error concept is used. The secret key ’s’ is
generated by a pseudo-random number generator. The key
generation algorithm is presented in algorithm 2.

The encryption algorithm given in algorithm 3 is used to
encrypt the plain text message ’m’ in the BV scheme. It’ll give

Algorithm 1 Algorithm for RegevLWE
Input: n, q,m, s, χ
Output: A ← Zm×nq Initialization: Let n, q,m are positive

integers ∈ N. Where q ≥ 2 is an odd modulus and s is a
secret vector, s ∈ Znq, χ is a probability distribution on
Zq, an error vector e ∈ Zq

1: s← Znq
2: e← χ

3: b← (〈A, s〉 + e) mod q
4: return A, b

Algorithm 2 Algorithm for Key Generation
Input: n, q,m, sL , χ
Output: A← Zm×nq

Initialization: Here the parameters n, q,m, χ have the
same meaning as in Algorithm 1. L ∈ N is an upper
bound on the maximum multiplicative depth and each
level is associated with a secret vector sl , where l ∈ [L].
All the L + 1 vectors s0, s1, . . . , sL ← Znq

1: e← χn

2: for i := 0 to L do
3: b← (〈A, si〉 + 2e) mod q
4: end for
5: return public key (A, b)

Algorithm 3 Algorithm for Encryption
Input: A, b,m, r
Output: Cipher text c← (v,w)

Initialization: The messagem ∈ GF(2) will be encrypted
using the public key (A, b), and a sample vector r ←
{0, 1}m. For the first ciphertext, the level tag l will be 0.

1: v← (AT .r)
2: w← (bT .r + m)
3: return ciphertext c← ((v,w), l)

the ciphertext as output which consists of a pair (v,w) and a
level tag ’l’ for each ciphertext. Which is required during the
evaluation process on the ciphertext. Generation of ’v’ and
’w’ for plain text ’m’, using the public key pair (A, b) given
below.

Performing evaluation operations like addition and multi-
plication on the encrypted data without decryption is the main
aim of a homomorphic encryption scheme. These evaluation
processes are explained in subsection II-C and algorithm 4
shows the steps of the evaluation process.

The decryption algorithm given in algorithm 5 is the last
step to get back the plain text from the ciphertext. After
performing the evaluation operation on the ciphertext, the
result will be in encrypted form. The user will decrypt the
result using secret key ’s’ to get back the result in the form
of plain text. To remove the even mask, mod 2 operation
performed.

Polynomial multiplication is required during key gen-
eration, encryption, decryption, and evaluation operation.

131412 VOLUME 10, 2022

S. Behera, J. R. Prathuri: Design of Novel Hardware Architecture for Fully Homomorphic Encryption Algorithms in FPGA

Algorithm 4 Algorithm for Evaluation
Input: The cipher-texts c1, c2, c3, . . . , ct where ci =

((vi,wi), l)
Output: Resultant output in form of ciphertext

Initialization: Operations on the cipher-texts
1: for i = 1 to t do
2: Homomorphic Addition: Ci = ((

∑
i vi,

∑
i wi), l)

3: end for
4: Find the Homomorphic multiplication of two cipher texts
c1 and c2

5: Let c1 = (v1,w1) and c2 = (v2,w2) then cmul = c1.c2 =
(v1.v2, v1.w2 + w1.v2,w1.w2)

6: return cmul ← ((vmul,wmul), l + 1)

Algorithm 5 Algorithm for Decryption
Input: c, sL
Output: Plain text m← {0, 1}∗

Initialisation: The ciphertext c ← ((v,w), l) and the
secret vector sL

1: for i = 0 to L do
2: m[i]← ((w− 〈v, si〉) mod q) mod 2
3: end for
4: return Plain text m

If it is implemented using the school book multiplication
method, then it will take more time. In our paper, the
main aim is to reduce the time for all these operations.
So that it can be implemented on real-time data in a cloud
computing environment. We have used the number theoretic
transfer method for polynomial multiplication. The concept
of NTT has been explained in subsection II-C4 and the
NTT algorithm and inverse NTT algorithm are given in
algorithms 6 and 7.

Algorithm 6 Algorithm for Number Theoretic Transform
Input: n, x
Output: Output Vector y

Initialization: An input vector x of length n which
contains nonnegative integers

1: Working ModulusM = max(x)+ 1
2: Select k , such thatN = kn+1 andN is prime andN ≥ M

3: Calculate the prime factor of N − 1
4: Calculate the generator g
5: Such that aN−1/primefactor ∼= 1(mod N)
6: Calculate ω ≡ gk (mod N)
7: Calculate the output vector y
8: for i = 0 to n− 1 do do
9: for j = 0 to n− 1 do

10: y[i] =
∑
x[j]ωij(mod N)

11: end for
12: end for
13: return Output Vector y

Algorithm 7 Algorithm for Inverse Number Theoretic
Transform
Input: n, y,M ,N , k
Output: Output Vector x

Initialization: An input vector y of length n which
contains nonnegative integers. Use the same value of
N,M,k which are used in NTT.

1: Let Q= ω−1 in (mod N)
2: for i = 0 to n− 1 do do
3: for j = 0 to n− 1 do
4: P[i] ∗ n =

∑
y[j]Qij(mod N)

5: end for
6: end for
7: Let d= n−1 in (mod N)
8: for i = 0 to n− 1 do do
9: x[i] = P[i] ∗ d(mod N)

10: end for
11: return Output Vector x

IV. SIMULATION, IMPLEMENTATION, RESULTS, AND
DISCUSSION
A. DESIGN PARAMETERS FOR SIMULATION OF
ALGORITHM
We have proposed hardware simulation of key generation,
encryption, and decryption of the BV scheme in our work.
Table 2 shows the different parameters for our experimental
setup and its size.

TABLE 2. Values of the Parameter.

B. MATLAB/WWWWW/PYTHON SIMULATION AND
DESIGN FLOW DIAGRAM FOR FPGA
In this section, the FPGA design flow and the pseudo
number generation for the public key, secret key, and noise
generation requirement of the algorithm as mentioned in
sections III-B, III-C, and III-D are explained.

Fig.11 shows the flow diagram for the design of the BV
FHE scheme using FPGA. It is divided into different sub-
modules. In Table 2 the values of all the parameters for our
design specification are given. First, we checked our design
entry using MATLAB and Python code. We implemented the
key generation using a pseudo-random number generator in
VHDL. Further, we simulated the design using the Questasim

VOLUME 10, 2022 131413

S. Behera, J. R. Prathuri: Design of Novel Hardware Architecture for Fully Homomorphic Encryption Algorithms in FPGA

FIGURE 11. Design Flow diagram for FPGA.

simulator. Test vectors generated in MATLAB/Python are
used to validate the encryption and decryption operations.
Subsequently, the design was implemented using the Quratus
place and route tool of Intel. The modular design architecture
was implemented considering the logic utilizations, speed,
and throughput performance, and design parameters are
tabulated in Table 3.

C. ENCRYPTION, DECRYPTION, AND EVALUATION RESULT
Initially, we implemented and tested our method using
MATLAB and Python code. The results are shown here. Here
the degree of the polynomial is 512(29) and the ciphertext
modulus is 512(29). Two plain texts are PT1=120 and
PT2=150 The corresponding ciphertexts are:

Ciphertext CT1(120) is:
v: [158 430 224 316 465 433 279 58 384 157 329 254 393

56 47 65 394 292 429 11 504 368 163 22 146 370 368 208
165 52 415 203 60 109 85 64 4 441 178 288 308 309 168 203
362 363 96 235 365 410 323 304 18 332 386 110 323 140
382 175 161 250 251 43 436 437 371 334 314 85 5 229 272
410 163 441 93 484 204 196 143 242 122 258 372 253 327
225 212 241 58 31 203 421 483 306 353 259 116 340 490 52
161 256 61 507 104 65 289 30 224 330 491 180 139 255 146
177 203 333 143 497 461 333 290 475 436 49 323 125 0 101
98 95 324 59 488 331 316 284 379 471 0 277 5 257 116 442
469 133 285 14 433 505 32 12 343 418 187 506 137 349 203
9 192 74 461 478 217 392 349 100 253 453 432 257 66 8 200
95 338 126 217 296 146 440 280 181 95 455 217 349 500
493 93 507 318 147 163 208 397 27 493 413 430 487 207
305 446 118 266 262 348 406 228 357 480 145 246 452 90
507 345 230 486 11 263 151 103 505 250 158 161 345 325
159 324 343 173 503 344 511 237 151 75 168 22 370 116 415
190 366 115 480 426 272 158 159 343 499 390 79 206 69 97
497 339 63 142 154 313 347 406 492 382 387 280 312 311
397 352 264 389 468 211 499 184 141 245 259 159 182 293
104 444 146 81 133 246 476 207 251 126 508 89 422 17 482
250 78 109 47 251 258 424 54 95 312 211 362 323 114 207

41 101 141 489 246 46 466 193 464 152 342 383 370 110 42
426 444 357 252 410 303 44 68 248 155 220 3 181 384 495
268 322 132 471 38 8 159 307 244 401 95 84 308 450 216 36
482 446 107 62 167 499 235 214 276 225 412 432 153 395
177 314 3 92 382 248 319 209 486 214 0 388 147 47 68 381
112 396 168 105 139 78 21 422 312 98 493 361 427 82 140
51 381 473 261 82 152 242 207 159 275 301 141 142 38 462
262 215 422 385 281 219 466 343 390 325 302 207 165 225
134 209 198 309 293 311 238 209 236 36 397 177 488 505
200 189 209 297 367 250 349 361 138 496 309 356 83 186
431 451 279 473 225 366 152 326 453 473 113 371 391 291
17 262 299 60 406 376 190 252 216 94 247 59 15 260 135
105 334 166 291 37 383 129 265 117 25 76 138]

w: [61 173 226 205 382 129 235 245 489 54 61 106 152
462 445 373 429 358 112 369 257 364 430 491 34 384 221
111 354 442 481 255 139 284 105 112 409 134 72 212 258
339 474 305 139 355 383 159 326 250 102 47 207 15 82 5
278 48 2 472 472 439 71 15 420 418 224 434 163 284 73 258
326 154 71 342 38 83 140 64 427 383 90 98 90 173 463 463
372 340 217 91 115 216 470 464 299 274 378 127 206 110
416 411 410 354 510 335 265 420 463 465 491 455 180 349
477 191 231 291 286 473 130 428 237 508 270 123 97 420
47 361 221 490 380 297 511 395 390 309 243 35 161 291
216 259 381 346 113 403 425 503 285 136 122 63 481 154
346 505 276 274 354 275 495 345 105 148 17 18 267 286
49 304 25 327 323 386 189 253 73 252 332 293 239 152 138
10 287 316 9 299 371 147 203 349 363 293 116 411 413 345
497 359 67 336 335 127 278 354 258 418 235 341 428 231
497 498 44 395 482 124 360 260 97 428 273 206 115 293
309 252 261 430 316 331 97 479 473 258 283 266 126 269
99 413 17 182 354 364 312 74 239 453 406 139 384 465 275
236 99 53 416 432 217 306 65 32 493 231 291 211 201 504
164 127 115 150 73 251 107 29 234 292 325 346 420 201
29 288 271 198 69 415 431 360 18 431 98 108 114 162 488
51 208 469 420 388 455 255 488 73 503 140 63 337 331 153
347 234 192 124 39 38 260 265 227 157 114 173 201 293 173
265 31 496 25 418 485 315 506 183 152 329 42 433 505 64
291 91 214 371 314 124 265 398 144 268 407 398 496 117
42 148 34 19 337 142 478 92 134 377 279 309 149 33 278
200 507 227 450 206 341 132 385 77 18 488 407 431 389
205 240 305 186 214 101 221 176 499 172 230 172 495 497
120 121 432 236 346 187 41 122 127 205 68 331 37 220 284
333 329 282 342 491 493 459 471 482 252 498 323 113 496
205 251 28 121 291 305 311 13 266 71 134 296 43 38 349
18 179 387 474 414 280 334 86 137 271 22 364 190 97 248
492 272 138 163 400 284 96 228 373 204 65 426 264 503 46
188 324 482 466 372 467 482 110 128 277 442 134 358 47
40 295 315 62 88 385 308 66 181 73 167 508 382 181 213
487 192 310 487]

Ciphertext CT2(150) is:
v: [168 39 494 412 101 196 289 161 382 490 196 413 338

68 29 455 205 165 467 439 190 35 455 466 285 270 134 279
243 171 452 143 190 368 124 66 288 105 11 183 495 93 224
86 239 510 242 248 504 244 234 225 488 20 275 288 270
142 487 443 484 48 194 343 332 279 25 308 355 339 386
200 418 369 373 313 253 351 244 468 83 142 355 107 129
15 272 372 260 144 447 393 59 145 1 81 135 119 26 429 334

131414 VOLUME 10, 2022

S. Behera, J. R. Prathuri: Design of Novel Hardware Architecture for Fully Homomorphic Encryption Algorithms in FPGA

9 383 26 111 447 316 281 493 268 177 50 23 485 227 408
345 409 112 59 308 203 413 65 395 380 222 188 223 444 458
472 220 251 286 225 485 482 164 454 307 92 145 207 117
279 458 227 321 102 278 338 25 353 467 366 211 224 239
254 84 336 25 94 350 425 157 337 235 162 3 68 221 481 241
305 209 174 312 70 312 131 306 324 331 129 155 160 306
462 67 328 252 460 335 417 102 143 355 361 505 290 267
493 389 367 270 352 304 160 70 181 67 200 150 213 294 107
99 156 84 317 46 374 505 454 245 249 185 222 450 75 423
403 303 223 511 440 208 366 260 11 48 122 264 75 362 129
451 176 383 420 197 496 324 155 86 83 460 0 78 493 456
467 349 460 69 118 470 242 393 389 235 495 486 360 380
265 405 437 262 311 357 134 148 47 226 110 195 272 507
62 127 62 129 354 343 66 334 140 297 122 346 491 303 433
282 484 317 419 124 70 188 11 19 47 54 483 493 74 3 434
141 207 35 411 392 403 494 317 464 490 97 22 17 277 471
131 306 500 244 389 125 79 263 17 5 295 111 508 167 198
473 229 64 223 210 501 337 388 37 419 127 506 406 364 30
338 447 406 63 257 450 492 200 318 256 418 326 190 333
269 486 165 398 504 510 369 137 508 186 179 325 288 238
88 209 432 258 302 285 207 108 143 398 93 376 287 176
293 441 231 166 187 213 68 116 453 198 298 482 96 286
315 144 18 202 364 388 359 507 354 76 93 46 235 142 48
329 70 466 283 14 282 129 352 2 328 42 248 190 446 52 198
379 3 348 110 424 317 103 176 118 123 184 12 182 88 258
413 423 404 45 238 200 394 164 58 464 317 478 511 24 167
473 191 431 440 86 373 37 257 59 411 166 165 502 70 141
213 250 333 274 96 473 383 212 250 497 484 408 168]

w: [231 141 395 117 162 302 387 472 333 337 25 15 473
266 446 242 136 90 314 4 18 10 165 254 461 36 344 315 159
72 107 321 37 487 253 267 14 111 354 138 313 437 349 150
485 96 20 87 325 2 40 57 205 397 455 288 398 386 201 494
385 474 250 123 121 482 297 44 510 2 507 452 141 304 77
391 415 231 178 363 488 279 169 133 219 184 229 236 263
213 389 127 104 452 165 427 98 357 117 279 216 351 399
239 132 400 15 467 88 354 189 511 162 247 15 56 167 206
53 263 147 220 163 310 92 134 105 418 75 374 148 415 385
480 145 25 349 231 445 245 487 256 114 484 201 2 231 35
11 65 32 373 336 236 236 311 111 396 280 217 381 357 419
394 13 248 143 60 43 31 384 147 467 395 258 374 299 267
459 172 196 123 120 196 48 397 344 499 101 45 222 21 232
402 364 283 330 69 472 217 417 186 38 395 215 336 471
378 284 40 56 261 357 293 335 460 42 130 274 166 149 231
213 240 138 439 163 424 223 406 147 480 214 46 459 462
120 130 393 322 211 388 407 127 244 77 394 453 106 281
178 454 208 461 499 42 473 237 276 226 287 435 52 197
265 137 375 390 448 258 61 499 404 139 445 423 355 44
123 240 171 286 321 135 442 57 414 31 253 436 266 29 232
155 258 375 360 481 316 164 407 227 98 389 249 401 73
509 472 138 282 466 494 279 420 229 287 321 104 352 488
222 6 304 208 393 76 212 66 24 511 49 109 324 386 473 157
265 83 44 59 277 315 2711 253 145 94 298 52 262 489 275
284 370 417 162 105 89 263 222 45 210 62 476 287 223 261
62 66 322 184 357 276 66 245 246 331 319 418 349 132 443
96 211 102 11 15 44 428 248 264 83 116 121 279 344 488
411 413 221 289 223 325 89 164 138 498 387 323 504 215
444 75 237 98 361 169 146 206 451 365 236 368 21 87 71

FIGURE 12. Pseudo-Random Number Generator (VHDL
Simulator-Questasim).

FIGURE 13. Pseudo-Random Number Generator for 512 bits (MATLAB)).

FIGURE 14. Secret Key Generation (VHDL Simulator-Questasim).

184 203 481 255 262 13 234 418 416 454 105 488 413 384
311 477 160 270 99 181 420 48 266 349 383 153 471 429
375 314 231 355 468 400 361 369 198 361 274 368 443 255
35 137 420 406 469 222 151 80 154 446 288 49 307 484 335
446 46 360 402 140 173 149 258 385 50 89 365 354 5 86 40
303 167 420 447 35 121 497 330 94 69 477 302]

Decrypted Result: CT3(CT1+ 4) : 124
Decrypted Result: CT4(CT2 ∗ 20) : 252
Decrypted Result: CT5(CT1+ 4+ 20 ∗ CT2) : 120

D. SIMULATION RESULTS
Fig. 12 shows the simulation result of the Pseudo-Random
Number Generator for 512 bits using VHDL
Simulator-Questasim.

Fig. 13 shows the simulation result of the Pseudo-Random
Number Generator for 512 bits using MATLAB. The correct-
ness of PRNG is validated by comparing the MATLAB and
the VHDL simulator data.

Fig. 14 shows the RTL view of the PRNG block
implementation to show the actual circuit can be simulated
and implemented. The secret key is generated and stored in

VOLUME 10, 2022 131415

S. Behera, J. R. Prathuri: Design of Novel Hardware Architecture for Fully Homomorphic Encryption Algorithms in FPGA

FIGURE 15. Secret Key Address Counter (VHDL Simulator-Questasim).

FIGURE 16. Secret Key Memory Controller (VHDL Simulator-Questasim).

FIGURE 17. NTT Simulation (VHDL Simulator-Questasim).

memory which is block RAM of FPGA. The Fig. 15 and
Fig. 16 shows the RTL view of the Pseudo-Random Number
Generator and Secret Key Memory Controller.

Based on the above key generation block we have
generated the secret key, public key, and random noise block
of the algorithm as per Fig. 4.

The simulation of the polynomial multiplier using NTT
and INTT in VHDL and Questasim simulation is validated
with MATLAB results. The NTT output result is depicted in
Fig. 17.

The entire FHE design as per the block diagram is
implemented in intel Agilex FPGA and the logic utilization
and speed performance have been tabulated. The performance
bottleneck is the NTT block. Therefore, we have made a

FIGURE 18. Waveform Window (VHDL Simulator-Questasim).

TABLE 3. Synthesis Result for Core NTT.

generic architecture which can be implemented with the
various number of butter-fly which is the key processing
element (PE). If the numbers of butter-fly are more, the speed
of execution is better but the hardware resources consumed
by the circuit are more. Further, the speed of the algorithm
depends on the maximum clock frequency achievable in
the device family. Towards the above requirement, we have
carried out the implementation of NTT and logic utilization
and frequency (Fmax) achievable by the device. Table 3
shows the implementation results of the NTT algorithm in
FPGA.

The polynomial multiplier has been implemented with
NTT schemes as per Fig. 10 and the numbers of cycles and
times of execution are tabulated in Table 4.

E. TIME REQUIRED FOR KEY GENERATION, ENCRYPTION,
AND DECRYPTION
According to Fig. 4 and Table 2, the number of polynomial
multiplications with the corresponding dimensions for key

131416 VOLUME 10, 2022

S. Behera, J. R. Prathuri: Design of Novel Hardware Architecture for Fully Homomorphic Encryption Algorithms in FPGA

TABLE 4. Performance analysis for NTT-based Polynomial Multiplication.

TABLE 5. Time Taken for different operations without NTT and with NTT.

generation, encryption, and decryption is given in Table 5.
Here * represents convolution and x denotes multiplication,
m1 is the next nearest value which is 213 = 8192. So,
for the computation of time, we have taken 32 butter-fly-
based NTTs. As shown in Table 5, the total time required
for key generation, encryption, and decryption without NTT
for m=4612 and n=512 is 53.53 seconds. But when it is
implemented using 32 butter-fly-based NTTs, the total time
required for m=8192 and n=512 is 1.18 second. So, the NTT
based system is almost 45 times faster than the hardware
system which is implemented without NTT.

F. DISCUSSIONS
In our investigation, it was found that lattice-based FHE
algorithms are mathematically similar and the major com-

putation is the polynomial multiplier. Due to the advent of
modern FPGAs such as agilex FPGA (10 nanometer) with
large numbers of DSPmultipliers. The F(max) of 250MHz is
archived for encryption and decryption algorithms. By using
large numbers of butter-fly, the long-length plain text may be
encrypted and operation of the encrypted text can be carried
out. A large number of butterflies is recommended for Cloud
Computing which demands huge data encryption and faster
speed of execution. Similarly, another hand our architecture
with a smaller number of butter-fly can be tailored for
IoT applications that demand less data for encryption and
decryption and it can be done in moderate time. For, IoT
kind of data a lesser number of butter-fly and even smaller
FPGAs can be used. For example, for 512 lengths of a
polynomial using 1 butter-fly and 32 butter-fly takes 8.8us
and 0.6us respectively. The throughput performance of 15x
with 32 parallel butter-fly compared to a single butter-fly. So,
it is found that 32 butter-fly-based solutions can be used for
homomorphic encryption operations in cloud computing.

V. CONCLUSION AND FUTURE WORK
We have developed a new hardware architecture for the
BV FHE scheme using FPGA. In this work, we have
carried out an extensive simulation of the proposed design
in MATLAB, and Python to validate the encryption and
decryption algorithm. Further, we have simulated the design
architecture of the BV scheme in the Questasim simulator
and implemented it in an Intel FPGA using the Quartus tool.
In this research work, we found that the proposed architecture
indeed takes less time to execute and consumes less FPGA
hardware resources. In addition, we have designed a very
generic architecture and it can accommodate the change in
length of the polynomial for efficient execution time and to
use optimal hardware resources available in FPGA. Though
we have implemented it in Intel Agilex FPGA, the same
design can be extended to any FPGA family.

REFERENCES
[1] Z. Brakerski and V. Vaikuntanathan, ‘‘Efficient fully homomorphic

encryption from (standard) LWE,’’ SIAM J. Comput., vol. 43, no. 2,
pp. 831–871, 2014.

[2] O. Regev, ‘‘The learning with errors problem,’’ Invited Surv. CCC, vol. 7,
no. 30, p. 11, 2010.

[3] V. Lyubashevsky, C. Peikert, and O. Regev, ‘‘On ideal lattices and learning
with errors over rings,’’ J. ACM (JACM), vol. 60, no. 6, pp. 1–35, 2013.

[4] C. Gentry, A. Sahai, and B.Waters, ‘‘Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-
based,’’ in Proc. Annu. Cryptol. Conf. Cham, Switzerland: Springer, 2013,
pp. 75–92.

[5] Z. Brakerski and V. Vaikuntanathan, ‘‘Lattice-based FHE as secure as
PKE,’’ in Proc. 5th Conf. Innov. Theor. Comput. Sci., Jan. 2014, pp. 1–12.

[6] C. Gentry, ‘‘A fully homomorphic encryption scheme,’’ Ph.D. thesis,
Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, 2009. [Online].
Available: crypto.stanford.edu/craig

[7] N. P. Smart and F. Vercauteren, ‘‘Fully homomorphic encryption with
relatively small key and ciphertext sizes,’’ in Public Key Cryptography—
PKC 2010. Berlin, Germany: Springer, 2010, pp. 420–443.

[8] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and
A. Yun, ‘‘Batch fully homomorphic encryption over the integers,’’ in Proc.
Annu. Int. Conf. Theory Appl. Cryptograph. Techn., Cham, Switzerland:
Springer, 2013, pp. 315–335.

VOLUME 10, 2022 131417

S. Behera, J. R. Prathuri: Design of Novel Hardware Architecture for Fully Homomorphic Encryption Algorithms in FPGA

[9] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, ‘‘Fully
homomorphic encryption over the integers,’’ in Advances in Cryptology
EUROCRYPT 2010. Berlin, Germany: Springer, 2010, pp. 24–43.

[10] D. Stehle and R. Steinfeld, ‘‘Faster fully homomorphic encryption,’’ Centre
Adv. Comput., Algorithms Cryptogr., Dept. Comput., Macquarie Univ.,
Sydney, NSW, Australia, Tech. Rep. 2010/299, 2010. [Online]. Available:
https://ia.cr/2010/299

[11] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘Leveled) fully homo-
morphic encryption without bootstrapping,’’ ACM Trans. Comput. Theory,
vol. 6, no. 3, pp. 1–36, 2014.

[12] J. Fan and F. Vercauteren, ‘‘Somewhat practical fully homomorphic
encryption,’’ Cryptol. ePrint Arch., Tech. Rep. 2012/144, 2012. [Online].
Available: http://eprint.iacr.org/2012/144

[13] Z. Brakerski and V. Vaikuntanathan, ‘‘Fully homomorphic encryption from
ring-LWE and security for key dependent messages,’’ in Proc. Annu.
Cryptol. Conf. Cham, Switzerland: Springer, 2011, pp. 505–524.

[14] O. Regev, On Lattices, Learning With Errors, Random Linear Codes,
and Cryptography, vol. 56, no. 6. New York, NY, USA: Association for
Computing Machinery, Sep. 2009, doi: 10.1145/1568318.1568324.

[15] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, ‘‘Fully homomor-
phic encryption over the integers with shorter public keys,’’ in Advances in
CryptologyCRYPTO2011. Berlin, Germany: Springer, 2011, pp. 487–504.

[16] M. Alkharji, H. Liu, and C. Washington, ‘‘Homomorphic encryption
algorithms and schemes for secure computations in the cloud,’’ in Proc.
Int. Conf. Secure Comput. Technol., 2016, p. 19.

[17] C. Gentry and S. Halevi, ‘‘Implementing gentry’s fully-homomorphic
encryption scheme,’’ in Proc. Annu. Int. Conf. Theory Appl. Cryptograph.
Techn. Cham, Switzerland: Springer, 2011, pp. 129–148.

[18] C. Gentry and S. Halevi, ‘‘Fully homomorphic encryption without
squashing using depth-3 arithmetic circuits,’’ in Proc. IEEE 52nd Annu.
Symp. Found. Comput. Sci., Oct. 2011, pp. 107–109.

[19] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’ in
Proc. 41st Annu. ACM Symp. Symp. Theory Comput. (STOC), 2009,
pp. 169–178.

[20] M. Naehrig, K. Lauter, and V. Vaikuntanathan, ‘‘Can homomorphic
encryption be practical?’’ in Proc. 3rd ACM Workshop Cloud Comput.
Secur. Workshop (CCSW), 2011, pp. 113–124.

[21] C. Gentry, S. Halevi, and N. P. Smart, ‘‘Better bootstrapping in fully
homomorphic encryption,’’ in Proc. Int. Workshop Public Key Cryptogr.
Cham, Switzerland: Springer, 2012, pp. 1–16.

[22] V. Vaikuntanathan, ‘‘Computing blindfolded: New developments in fully
homomorphic encryption,’’ in Proc. IEEE 52nd Annu. Symp. Found.
Comput. Sci., Oct. 2011, pp. 5–16.

[23] M. Tebaa, S. E. Hajji, and A. E. Ghazi, ‘‘Homomorphic encryption method
applied to cloud computing,’’ in Proc. Nat. Days Netw. Secur. Syst.,
Apr. 2012, pp. 86–89.

[24] D. J. Wu, ‘‘Fully homomorphic encryption: Cryptography’s holy grail,’’
XRDS, Crossroads, ACM Mag. Students, vol. 21, no. 3, pp. 24–29,
Mar. 2015.

[25] Y. Yang, S. Zhang, J. Yang, J. Li, and Z. Li, ‘‘Targeted fully homomorphic
encryption based on a double decryption algorithm for polynomials,’’
Tsinghua Sci. Technol., vol. 19, no. 5, pp. 478–485, Oct. 2014.

[26] M. Kim, Y. Song, and J. H. Cheon, ‘‘Secure searching of biomarkers
through hybrid homomorphic encryption scheme,’’ BMC Med. Genomics,
vol. 10, no. S2, pp. 69–76, Jul. 2017.

[27] X. Yi, M. Kaosar, M. Golam, R. Paulet, and E. Bertino, ‘‘Single-database
private information retrieval from fully homomorphic encryption,’’ IEEE
Trans. Knowl. Data Eng., vol. 25, no. 5, pp. 1125–1134, May 2013.

[28] S. Behera and J. R. Prathuri, ‘‘Application of homomorphic encryption
in machine learning,’’ in Proc. 2nd PhD Colloq. Ethically Driven Innov.
Technol. Soc. (PhD EDITS), Nov. 2020, pp. 1–2.

[29] C. Gentry, S. Halevi, and N. P. Smart, ‘‘Homomorphic evaluation of the
AES circuit,’’ in Proc. Annu. Cryptol. Conf. Cham, Switzerland: Springer,
2012, pp. 850–867.

[30] X. Cao, C.Moore,M.O’Neill, E. O’Sullivan, andN.Hanley, ‘‘Accelerating
fully homomorphic encryption over the integers with super-size hardware
multiplier and modular reduction,’’ IACR Cryptol. ePrint Arch., vol. 2013,
p. 616, 2013.

[31] Y. Su, B. Yang, C. Yang, and L. Tian, ‘‘FPGA-based hardware accelerator
for leveled ring-LWE fully homomorphic encryption,’’ IEEE Access,
vol. 8, pp. 168008–168025, 2020.

[32] S. S. Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
‘‘FPGA-based high-performance parallel architecture for homomorphic
computing on encrypted data,’’ in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2019, pp. 387–398.

[33] E. Oztürk, Y. Doröz, B. Sunar, and E. Savaş, ‘‘Accelerating somewhat
homomorphic evaluation using FPGAs,’’ IACR Cryptol. ePrint Arch.,
vol. 2015, p. 294, 2015.

[34] S. Behera and J. R. Prathuri, ‘‘FPGA-based design architecture for fast
LWE fully homomorphic encryption,’’ in Cyber Security and Digital
Forensics. Cham, Switzerland: Springer, 2022, pp. 575–584.

[35] P. W. Shor, ‘‘Algorithms for quantum computation: Discrete logarithms
and factoring,’’ in Proc. 35th Annu. Symp. Found. Comput. Sci., Nov. 1994,
pp. 124–134.

[36] R. Agrawal, L. de Castro, G. Yang, C. Juvekar, R. Yazicigil,
A. Chandrakasan, V. Vaikuntanathan, and A. Joshi, ‘‘FAB: An FPGA-
based accelerator for bootstrappable fully homomorphic encryption,’’
2022, arXiv:2207.11872.

SAGARIKA BEHERA (Member, IEEE) received
the B.E. degree in computer science and engi-
neering from the Veer Surendra Sai University
of Technology (VSSUT), Burla, Odisha, India,
in 2001, and the M.Tech. degree in computer
science and engineering from VTU, Karnataka,
India, in 2009, where she is currently pursuing the
Ph.D. degree. She is a Research Scholar with the
CMR Institute of Technology, Bengaluru, VTU.
Her research interest includes data security in
cloud computing.

JHANSI RANI PRATHURI (Member, IEEE)
received the Ph.D. degree in computer science
from the University of Hyderabad, India. Her
research interests include information security and
privacy, cryptography, big data, machine learning,
cloud computing, and algorithms.

131418 VOLUME 10, 2022

http://dx.doi.org/10.1145/1568318.1568324

