
Received 6 December 2022, accepted 11 December 2022, date of publication 15 December 2022,
date of current version 21 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3229696

MGDGAN: Multiple Generator and Discriminator
Generative Adversarial Networks for Solving
Stochastic Partial Differential Equations
SUNGHA CHO AND MINSEOK CHOI
Department of Mathematics, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea

Corresponding author: Minseok Choi (mchoi@postech.ac.kr)

This work was supported by the National Research Foundation of Korea under Grant NRF-2021R1C1C1007875.

ABSTRACT We propose novel structures of generator and discriminator in physics-informed gener-
ative adversarial networks called multiple-generator-and-discriminator generative adversarial networks
(MGDGANs), that are designed to solve stochastic partial differential equations (SPDEs). MGDGANs
for SPDEs consist of three steps: a generator that samples a solution to the SPDEs, a physics-informed
operator that enforces the governing equation, and a discriminator that distinguishes between samples from
the generator and training samples. Inspired by the polynomial chaos, we represent the solution by the inner
product of functions in spatial and random variables, and model each function by a separate generator.
We show that the proposed multiple generator structure offers huge computational savings in training and
prediction. If multiple stochastic processes exist in the system, then a distinct discriminator is used for each of
them. We show that the loss function obtained by these distinct discriminators provides an equivalent metric
to the Wasserstein distance loss by a single discriminator, and provide numerical examples to demonstrate
that these multiple discriminators enhance the training accuracy. Numerical examples are demonstrated to
verify that the proposed model is efficient in computation and memory; the model reduces computing time
by more than a factor of 10 and relative l2 error by about one-third in the SPDE example.

INDEX TERMS Computational modeling, deep learning, generative adversarial networks, physics-informed
deep generative models, uncertainty quantification.

I. INTRODUCTION
Stochastic partial differential equations (SPDEs) are used
in a large range of fields, for example, weather forecast-
ing [1], [2], chemical reaction flow [3], oceanographic
modeling [4], and drone communications [5], [6]. Given data
from a problem, SPDEs capture uncertainties of missing
data of the solutions. However, solving SPDEs requires
significant computational resources because the parameters
are stochastic processes that necessitate numerous random
variables to approximate them. In general, the solutions
require a number of polynomial basis terms that increases
exponentially as the stochastic dimension increases; this
‘‘curse of dimensionality’’ in uncertainty quantification is a

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudipta Roy .

long-standing problem that greatly increases the computation
time. Numerous methods have been devised to alleviate this
problem, including sparse grids and ANOVA decomposi-
tions [7], [8], but these methods only reduce the order of the
number of basis terms and do not solve the problem.

Neural networks (NNs) have shown the potential to
overcome the curse of dimensionality [9]. NN models
have made breakthroughs in many applications such as
object detection [10], Covid-19 diagnosis [11], speech
recognition [12], natural language processing [13], image
generation [14], recommendation systems [15], cosmolog-
ical simulation [16], robot systems [17], and anomaly
detection [18]. Many attempts have been made to solve
deterministic partial differential equations (PDEs) by using
deep neural networks (DNNs) [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28]. For this purpose, [20] and [21]

130908
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-8343-5250
https://orcid.org/0000-0002-7245-0823
https://orcid.org/0000-0001-5161-9311

S. Cho, M. Choi: MGDGANs for Solving SPDEs

used convolutional neural network (CNN) architectures,
with [20] presenting Legendre polynomial expansion to
train coefficients, and [21] using an autoregressive model to
design time-dependent PDE solvers. To learn the differential
equation solvers, [23] used Fourier neural operators, and [24]
used deep operator networks. [29] and [28] discretized spatial
derivatives using DNNs and learned PDEs by using the
structures of finite difference and finite volumemethods. [25]
assigned differential operators to the NNs by using automatic
differentiation; this model is called a physics-informed neural
network (PINN).

Since these DNN models cannot capture the uncertainty
of the solutions, probabilistic models have been devel-
oped. Under the assumption that we know the samples
of input-output pair ((x, ξ), k(x, ξ)) of a stochastic process
k , where x is a spatial variable, and ξ is a random
variable, [30] and [31] used NN surrogate N (x, ξ) to find
the solution of SPDEs. In contrast, many generative models
have been applied to solve data-driven SPDEs [32], [33], [34],
[35], [36], [37], [38]. The models learn PDE solutions from
data samples of stochastic processes and are widely appli-
cable in both forward and inverse problems. [33] and [35]
used Bayesian NNs to learn the solutions (forward problem)
and parameters (inverse problem) of PDEs. [37] applied
dynamically orthogonal and bi-orthogonal conditions to NNs
to calculate the quantity of interests of the solutions. [32]
and [38] used normalizing flow models to solve SPDE
problems. [34] and [36] used GANs to solve SPDEs; [34]
predicted future distribution of solutions from the present
distribution, and [36] performed automatic differentiation
to solve high-dimensional SPDEs and the method is called
physics-informed GAN (PI-GAN).

In this work, we propose multiple-generator-and-
discriminator generative adversarial networks (MGDGANs)
that effectively solve SPDE problems. The method uses
GANs as in [36] and consists of a generating step, a physics-
informed step, and a discriminating step. The generating
step generates solutions by using generator networks, the
physics-informed step computes the governing equation
by automatic differentiation, and the discriminating step
compares the computed values with training data by using
discriminator networks. Inspired by the polynomial chaos,
we represent the solution by the inner product of the functions
in spatial and random variables, and each of these functions
is modeled by separate generators. If multiple stochastic
processes exist in the system, each is discriminated by
distinct discriminators. The proposed multiple generator
structure offers huge computational savings in the training
and prediction, and the loss function obtained by these
multiple discriminators provides an equivalent metric to
the Wasserstein distance loss by a single discriminator.
Numerical examples will be demonstrated to verify that the
proposed model is efficient in computation and memory, and
increases the training accuracy.
Main contributions: The main contributions of this work

are summarized as follows.

• Uncertainty Quantification: The proposed model
based on GANs is able to capture the uncertainty of the
solution to SPDEs.

• Fast computing time: The proposed multiple generator
structure offers huge computational savings in training
and prediction.

• Memory efficiency: The memory usage is dramatically
reduced by eliminating unnecessary repetition of spatial
and random variables via multiple generator structures.

• Better accuracy: The proposed multiple discriminator
structure decreases the generalization error.

The rest of the paper is organized as follows. Section II
reviews GANs and physics-informed GANs. Section III
proposes the multiple generator (MG) and multiple discrim-
inator (MD) models, elucidates why the MG has a lower
computational cost than the single generator (SG) model,
and proves the equivalence of the MD with the single
discriminator (SD) model. Section IV provides numerical
examples of learning stochastic processes and solving
SPDEs. Section V summarizes the paper and presents some
remaining challenges.

II. REVIEW OF GANs AND PI-GANs
A. GENERATIVE ADVERSARIAL NETWORKS
1) VANILLA GAN
GANs are generative models that aim to approximate an
unknown distribution Pr of given data points [39]. A GAN
model is composed of two NNs: a generator Gθ and a
discriminator Dρ . The generator takes a noise random
variable z from a known distribution Pz such as Gaussian
and returns a sample that follows the pushforward measure
Pg = Pz(G−1θ). The discriminator takes a sample x and
returns the probability that x comes from Pr . The goal of
the discriminator is to perfectly distinguish the samples of
given data (real samples) from the samples generated by the
generator (fake samples). In contrast, the generator is trained
to deceive the discriminator to induce it to recognize Gθ (z)
as a real sample. The following two-player game summarizes
this process:

min
θ

max
ρ

Ex∼Pr [logDρ(x)]+ Ez∼Pz [log(1− Dρ(Gθ (z)))].

(1)

At the Nash equilibrium of the two-player game, the
distributions of real and fake samples coincide, i.e., Pr = Pg.
In practice, we start with N real samples {xi}Ni=1 of the data
and use Gθ to generate the corresponding N fake samples
{Gθ (zi)}Ni=1, and perform Monte Carlo approximation to
construct a loss function

1
N

N∑
i=1

[logDρ(xi)+ log(1− Dρ(Gθ (zi)))]. (2)

The discriminator and generator are trained by gradient
ascent and gradient descent, respectively.

VOLUME 10, 2022 130909

S. Cho, M. Choi: MGDGANs for Solving SPDEs

2) WASSERSTEIN GANs
GANs can suffer from pathological problems such as mode
collapse and gradient vanishing, which severely degrade
the generator quality; several enhanced models have been
developed to address this problem. This section briefly
reviews one variant, the Wasserstein generative adversarial
network (WGAN) [40]. To this end, we first introduce the
Wasserstein distance

W (Pr ,Pg) = inf
γ∈0(Pr ,Pg)

E(x,y)∼γ [‖x − y‖], (3)

where0(Pr ,Pg) is a set of all joint distributionswithmarginal
distributions Pr and Pg.W (Pr ,Pg) is also known as the earth
mover’s distance because it represents the ‘minimum change’
fromPr toPg. Direct computation of theWasserstein distance
is intractable in general, and the Kantorovich-Rubinstein
duality is used instead:

W (Pr ,Pg) = sup
‖f ‖L≤1

Ex∼Pr [f (x)]− Ex∼Pg [f (x)], (4)

where the supremum is attained on the set of Lipschitz
functions with the Lipschitz constant ‖f ‖L bounded by 1.
Substituting f with an NN Dρ and maximizing the equation
with respect to the parameter ρ, we consider the following
problem:

max
ρ

L(ρ, θ) = Ex∼Pr [Dρ(x)]− Ez∼Pz [Dρ(Gθ (x))]. (5)

The optimal value L(ρ∗, θ) is an approximated Wasserstein
distance, i.e., L(ρ∗, θ) ≈ W (Pr ,Pg). We solve minθ L(ρ∗, θ)
to obtain the optimal generator Gθ . A two-player game
summarizes this procedure:

min
θ

max
ρ

L(ρ, θ) = Ex∼Pr [Dρ(x)]− Ez∼Pz [Dρ(Gθ (z))]

≈
1
N

N∑
i=1

[Dρ(xi)− Dρ(Gθ (zi)], (6)

where the Monte Carlo estimator is used for the last
approximation. We call Dρ the discriminator and Gθ the
generator.

3) SPECTRAL NORMALIZATION
One of the difficulties with WGAN is that the discriminator
network Dρ must satisfy the Lipschitz condition ‖Dρ‖L ≤
1. We accomplish this goal by spectral normalization, which
directly normalizes the Lipschitz constant ‖Dρ‖L by using
the spectral norm ‖A‖2 = maxx 6=0(‖Ax‖2/‖x‖2) of a matrix
A [41]. Specifically, an NN consists of sequential evaluations
of affine functions ai(x) = Wix and a nonlinear activation
function σ (z), where the bias is omitted for simplicity. As a
result, the Lipschitz norm of an NN Dρ(x) = (aL ◦σ ◦aL−1 ◦
· · · ◦ σ ◦ a1)(x) is bounded by the product of Lipschitz norms
of the components:

‖Dρ‖L ≤ ‖aL‖L‖σ‖L · · · ‖σ‖L‖a1‖L . (7)

Use of a Lipschitz activation function (‖σ‖L ≤ 1) such as
σ (x) = tanh(x) or ReLU (x) yields

‖Dρ‖L ≤
L∏
i=1

‖ai‖L . (8)

Moreover, the Lipschitz norm of the affine function ai(x) =
Wix is equal to the spectral norm ‖Wi‖2 of the matrix
Wi. Therefore, normalizing the discriminator by the product
of spectral norms of all the matrices yields a Lipschitz
discriminator:

Dρ∏L
i=1 ‖Wi‖2

, (9)

this procedure is called spectral normalization. From now on,
we use the WGAN with spectral normalization for the losses
and denote the spectral normalized discriminator as Dρ .

B. PHYSICS-INFORMED GANs
In this section, we introduce PI-GANs for use in solving
SPDEs.

1) PROBLEM DESCRIPTION
Consider stochastic processes k(x;ω), f (x;ω), and b(x;ω)
with a spatial variable x ∈ Rdx in a domain D and a
random event ω from a probability space (�,F ,P). We solve
the following form of SPDEs that include the stochastic
processes:

L(k(x;ω), u(x;ω), x) = f (x;ω), x ∈ D, ω ∈ �,
B(u(x;ω), x) = b(x;ω), x ∈ ∂D, ω ∈ �, (10)

where L is a differential operator, and B is a boundary
operator.

In this paper, we consider forward problems: solve u(x;ω)
given data snapshots of stochastic processes k, f , and b:

{k (i) = (k(xk,1;ωi), · · · , k(xk,mk ;ωi))}Ni=1,

{f (i) = (f (x f ,1;ωi), · · · , f (x f ,mf ;ωi))}Ni=1,

{b(i) = (b(xb,1;ωi), · · · , b(xb,mb;ωi))}Ni=1, (11)

and we quantify the accuracy of the model by using the
mean and standard deviation of the approximated solution
Gu(x, z) ≈ u(x;ω) obtained by the Monte Carlo method:

µ(x) ≈
1
N

N∑
i=1

Gu(x, zi),

σ (x) ≈

√√√√ 1
N

N∑
i=1

Gu(x, zi)2 − µ(x)2. (12)

2) APPLY GANs TO SPDEs
We briefly introduce PI-GANs to solve SPDE problems and
refer to [36] for details. To learn a stochastic process k(x, ω)
with data snapshot samples (k(x1, ωi), · · · , k(xm, ωi)),
we use a generatorGkθ (x, z) that takes both the spatial variable

130910 VOLUME 10, 2022

S. Cho, M. Choi: MGDGANs for Solving SPDEs

x and the noise random variable z as inputs, and we have the
training data and the generated samples:

k (i) = (k(x1, ωi), · · · , k(xm, ωi))

k̃ (i)θ = (k̃(x1, zi), · · · , k̃(xm, zi))

= (Gkθ (x
1, zi), · · · ,Gkθ (x

m, zi)). (13)

We train the discriminator and the generator by solving the
following WGAN problem:

min
θ

max
ρ

1
N

N∑
i=1

[Dρ(k (i))− Dρ(k̃
(i)
θ)]. (14)

This process is equivalent to learning a distribution of
a random vector (k(x1, ω), · · · , k(xm, ω)) in Rm, but the
spatial variable x enables generalization of Gkθ (x, z) for
any x in the domain. Generating N snapshots with m
sensors {(Gkθ (x

1, zi), · · · ,Gkθ (x
m, zi)}Ni=1 requires mN NN

evaluations; hence the computational cost is O(mN). We call
this a single generator (SG) model.

Bearing this in mind, we now demonstrate how to solve
the SPDE problems of the form (10), given training samples
in (11). First, we generate samples of k by using generator
k̃(x, z) = Gkθk (x, z) and samples of u by using generator
ũ(x, z) = Guθu (x, z). The differential operator L and the
boundary operator B are applied to Gk and Gu in aid of the
automatic differentiation:

L̂θu (x, z) = L(k̃(x, z), ũ(x, z), x),
B̂θu (x, z) = B(ũ(x, z), x). (15)

According to the governing equations, the distribution
of L̂θu (x, z) should be identical to that of f . There-
fore, we compare the generated samples {f̃ (i)θu =

(L̂θu (x f ,1, zi), · · · , L̂θu (x f ,mf , zi))}Ni=1 to the training samples
{f (i) = (f (x f ,1, ωi), · · · , (x f ,mf , ωi))}Ni=1, and perform a
similar procedure for the boundary operator B. In summary,
the resulting samples are generated as follows:

k̃ (i)θk = (Gkθk (x
k,1, zi), · · · ,Gkθk (x

k,mk , zi)) ∈ Rmk ,

f̃ (i)θu = (L̂θu (x f ,1, zi), · · · , L̂θu (x f ,mf , zi)) ∈ Rmf ,

b̃(i)θu = (B̂θu (xb,1, zi), · · · , B̂θu (xb,mb , zi)) ∈ Rmb , (16)

and the following WGAN problem trains the generators Gk

and Gu:

min
θk ,θu

max
ρ

1
N

N∑
i=1

[Dρ(k (i), f (i), b(i))− Dρ(k̃
(i)
θk
, f̃ (i)θu , b̃

(i)
θu
)].

(17)

After the training, Gu satisfies L(Gk (x, z),Gu(x, z), x) ≈
f (x, ω) and B(Gu(x, z), x) ≈ b(x, ω), and hence Gu is an
approximated solution. In this case, we match the whole joint
distribution of (k, f , b) by using a single discriminator Dρ .
We call this a single discriminator (SD) model. Note that the
PI-GAN [36] employed a single generator and discriminator.

FIGURE 1. Comparison of the SG model and the proposed MG model.
x denotes the spatial variable, and z is the noise random variable.

III. METHODS
In this section, we propose our methods: the multiple
generator (MG) and the multiple discriminator (MG) models.
The MG is a structure of generator for deterministic and
random inputs, whereas theMD is a structure of discriminator
for multiple stochastic processes.

A. MULTIPLE GENERATOR MODEL
TheMGmodel is motivated by the polynomial chaos [42] and
is composed of two NNs of output dimension p that separate
the spatial variable x and the noise random variable z:

Gx(x) = (G1,x(x), · · · ,Gp,x(x)),

Gz(z) = (G1,z(z), · · · ,Gp,z(z)). (18)

The model output is an inner product of Gx and Gz:

G(x, z) = Gx(x) · Gz(z)

=

p∑
i=1

Gi,x(x)Gi,z(z). (19)

We call Gz(z) the ‘basis network’ and Gx(x) the ‘coefficient
network’. The schematic of the SG and MG models is in
Fig. 1. TheMGmodel also has been used in [43]; however, the
paper focused primarily on meta-learning of historical data
by using GANs and deep operator networks and not on the
efficiency of the MG model.

We consider the computational complexity and mem-
ory efficiency of the MG model. To generate N data
snapshots with m sensors, the SG calculates {G(xj, zi) :
i = 1, · · · ,N , j = 1, · · · ,m}, and hence requires
mN network evaluations. In contrast, the MG evaluates
m networks {Gx(xj) : j = 1 · · · ,m} and N networks

VOLUME 10, 2022 130911

S. Cho, M. Choi: MGDGANs for Solving SPDEs

TABLE 1. Per-layer complexity of the single generator (SG) and the
multiple generator (MG) models.

{Gz(zi) : i = 1 · · · ,N } separately, and performs an inner
product Gx(xj) · Gz(zi) for each (i, j). The computational
complexity of the two models is summarized in Table 1.
The computational complexity of each hidden layer is larger
than that of the inner products, provided that the hidden
layer width d is bigger than the output dimension p of the
MG model; this constraint is true for general neural network
structures. The inner products are performed simultaneously
by one matrix product, whereas hidden layer calculation is
performed several times. Therefore, the total complexity of
the SG is larger than that of the MG.

The computational memory can also be analyzed in
the same manner: the SG saves all mN network outputs
G(xj, zi), i = 1, · · · ,N , j = 1, · · · ,m, whereas the MG
savesm+N valuesGx(x1), · · · ,Gx(xm),Gz(z1), · · · ,Gz(zN)
and their inner products. Each hidden layer contains mNd
elements for the SG and (m+N)d elements for the MG, and
the inner product output of the MG consists of mN elements.
Therefore, the SG requires much more memory than the MG.

B. MULTIPLE DISCRIMINATOR MODEL
Instead of using a loss function with a single discriminator
as in (17), we propose the MD model that applies distinct
discriminators Dk ,Df , and Db to different stochastic pro-
cesses k, f , and b, respectively. The MD model sums the
discriminator values to obtain the loss function:

1
N

N∑
i=1

[Dk (k (i))− Dk (k̃ (i))+ Df (f (i))− Df (f̃ (i))

+Db(b(i))− Db(b̃(i))]. (20)

The structures of the SD and MD models are presented in
Fig. 2.

The loss function (20) also induces a metric between
(k, f , b) and (k̃, f̃ , b̃), and if k, f , and b are independent, the
metric is equivalent to the Wasserstein distance induced by
the SD model loss (17).
Theorem 1: The loss function (17) corresponds to the

Wasserstein distance LSD = W((k, f , b), (k̃, f̃ , b̃)), and
the loss function (20) corresponds to LMD = W(k, k̃) +
W(f , f̃) +W(b, b̃). If k, f , and b are independent, then the
topologies induced by LSD and LMD are equivalent.

Proof: See Appendix V. �
The SD model minimizes the Wasserstein distance

W((k, f , b), (k̃, f̃ , b̃)) to train the joint distribution of
(k, f , b), whereas the MD model minimizes the distance
W(k, k̃) + W(f , f̃) + W(b, b̃) to train each distribution
separately. If k, f , and b are independent, the distance
W(k, k̃) + W(f , f̃) + W(b, b̃) removes the redundancy of

FIGURE 2. Comparison of the SD and the MD model.

learning the independence in (k̃, f̃ , b̃) and effectively trains
each process such that the resulting model becomes more
accurate than the SD model. These assertions will be verified
numerically in Section IV.

C. ALGORITHM

Algorithm 1MGDGAN to Solve the Forward Problem (10)
Require: Multiple discriminators with parameter ρ, mul-

tiple generators with parameter θ , learning rate lD, lG,
training data k, f , and b.

1: Spectral normalizes the discriminators as in (9).
2: Generate the generator samples k̃ and ũ by using (19) and

compute f̃ and b̃ in (15) by automatic differentiations.
3: Compute the loss function L with the multiple discrimi-

nators in (20).
4: Update the discriminators ρ ← RMSprop(ρ − lD∇L)
5: Spectral normalizes the discriminators.
6: Compute the loss function L following 2-3.
7: Update generators, θ ← RMSprop(θ − lG∇L).
8: Repeat 2-7 until convergence.

The overall procedure for solving SPDEs by MGDGAN
is summarized in Algorithm 1. We repeat the discriminator
update (steps 2-5) and the generator update (steps 6-7) until
convergence, and physics-informed operation is implemented
when computing f̃ and b̃ by automatic differentiation in step
2. We used the RMSprop optimizer to update parameters: the
WGAN training becomes unstable when using a momentum

130912 VOLUME 10, 2022

S. Cho, M. Choi: MGDGANs for Solving SPDEs

FIGURE 3. Schematic structure of Algorithm 1. The first part uses multiple generators to generate k̃ and ũ, the second part applies
physics-informed operators to generate f̃ and b̃, and the last part uses the multiple discriminators to compute loss values.

based optimizer such as Adam, whereas the RMSprop
optimizer performs well in nonstationary problems [40]. The
schematic structure corresponding to the algorithm is drawn
in Fig. 3; we use the same basis network for k̃ and ũ to
reflect that the stochastic processes k and u belong to the same
probability space.

D. IMPROVING NN TRAINING
1) MASKING
To increase the generator quality, we apply a mask to the
basis network to construct the ‘stacked neural network’ in
the DeepOnet framework [44]. To this end, we perform
elementwise multiplication of a block diagonal matrix M to
the weight parametersW ∈ Rm×n

M =

M1 0 0 · · · 0
0 M2 0 · · · 0

0 0
. . . · · · 0
...

0 0 0 · · · Mr

 , (21)

where all the elements of the block matrix Mi are 1.
More precisely, consider ã(x) = (M � W)x, where � is
elementwise multiplication and, x is an input of the affine
layer, thenM �W represents the block diagonal elements of
W , and the output becomes

ã(x) =

W1 0 0 · · · 0
0 W2 0 · · · 0

0 0
. . . · · · 0
...

0 0 0 · · · Wr

 x, (22)

where Wi is the same size as Mi. Let Wi ∈ Rmi×ni and
x = [Ex1, · · · , Exr]T , where Exi ∈ Rni , then we have the stacked
neural network outputs

ã(x) =

W1Ex1
...

Wr Exr

 . (23)

2) FOURIER EMBEDDINGS
In our context, realizations of the stochastic processes are
high-frequency functions, and according to the frequency
principle [45] and the neural tangent kernel theory [46],
the high-frequency functions are difficult to train if the
eigenvalues of the neural tangent kernel operator dramatically
decrease; this phenomenon is known as spectral bias.

To solve this problem, we use Fourier embeddings to
learn the Gaussian process with high-frequency samples;
the method adds a non-trainable layer to the input of the
NNs [47]:

[sin(Bx), cos(Bx)], (24)

where B is a weight sampled from N (0, hbI) with hyper-
parameter hb, and the sin and cos functions are performed
elementwisely. The non-trainable matrix B is used to relieve
the effect of the spectral bias. The choice of hyperparameter
hb is crucial because it determines the overall frequency of
the NNs. The effect of hb will be demonstrated in the results
section.

IV. NUMERICAL RESULTS
This section demonstrates examples of stochastic processes
and elliptic SPDE problems. To verify the computational
efficiency of the MG model over the SG model, we measure

VOLUME 10, 2022 130913

S. Cho, M. Choi: MGDGANs for Solving SPDEs

FIGURE 4. Reference sample paths for the Gaussian processes with
various correlation lengths.

computation times TSG for the SG model and TMG for the
MG model with various numbers m of sensors and N of
snapshots. To measure accuracy, we compare the means and
standard deviations of the model to those of the reference
solution. Hyperparameters of the examples are summarized
in Appendix V-B.

A. GAUSSIAN PROCESS
Consider a Gaussian process k(x;ω) ∼ GP(µ,C) with

µ(x) = sin(πx),

C(x, y) = σ 2 exp
(
−
|x − y|2

2l2

)
, x, y ∈ [−1, 1], (25)

where σ = 0.3, and l ∈ {1, 0.2, 0.1}. The frequency of the
sample paths increases as l decreases because the correlation
among random samples k(x;ω) decreases as the value of l
decreases (Fig. 4). We apply the Fourier embedding for the
cases of l = 0.2 and l = 0.1 to mitigate the frequency
principle in III-D2.

1) l = 1.0
We compare the SG with the MG for approximating the
Gaussian process (25) with l = 1.0 in Fig. 5. As presented
in Fig. 5(a), (b), the MG is at least ten times as fast as
the SG, and the computational savings of the MG over
the SG become more significant as m or N increases.
TMG is almost constant, whereas TSG is linearly increasing.
In Fig. 5(c), the accuracies for the MG and the SG are
comparable. Both models successfully reconstructed the
reference solution in Fig. 5(d), (e), and (f), which are the
mean and standard deviation, covariance, and eigenvalues of
the Gaussian process, respectively.

2) l = 0.2
We apply Fourier embeddings to the generators to deal
with high-frequency components that occur due to low
correlation length. For the SG model, the method is used
for the spatial variable x: [sin(Bx), cos(Bx)], B ∼ N (0, I),
whereas for the MG model, the method is applied to both the

spatial and random variables x and z: [sin(Bxx), cos(Bxx)],
[sin(Bzz), cos(Bzz)], Bx ,Bz ∼ N (0, I).

The results are presented in Fig. 6. In Fig. 6(a) and (b),
the MG has a significantly smaller computational cost than
the SG. As m or N increases, TMG remains flat, whereas
TSG grows linearly with respect to m or N . Fig. 6(d-f)
demonstrate that both models successfully reconstruct the
reference solutions, with comparable errors in Fig. 6(c).

3) l = 0.1
For l = 0.1, the frequency of the sample paths is higher
than for l = 0.2, and the choice of hyperparameter hb in the
Fourier embedding (24) is more important than the case of
l = 0.2. We first compare the SG with the MG for hb = 3,
and then further explore the effect of the Fourier embedding
hyperparameter hb ∈ {1, 3, 10, 20, 30} for the MG model.
The comparison of the MG with the SG for hb = 3 is

demonstrated in Fig. 7. In Fig. 7(a) and (b), TMG is at
least 30 times smaller than TSG, and the difference becomes
more significant as m or N increases. Both models have
similar accuracy in Fig. 7(c) and reconstructed the reference
solution well in Fig. 7(d-f). The errors of the MG for various
Fourier embedding hyperparameters hb ∈ {1, 3, 4, 20, 30}
are presented in Fig. 8. The accuracy increases as hb increases
but the model is degenerated for hb greater than 20, i.e., when
the frequency of themodel exceeds the frequency of the target
Gaussian process. Therefore, hb must be chosen carefully.

B. STOCHASTIC ELLIPTIC EQUATION WITH TWO SPATIAL
DIMENSION
We consider a two-dimensional stochastic elliptic equation.
The PDE has various applications, such as modeling electri-
cal potential in conductive materials and flow of a fluid in
porous media in the exploitation of oil and gas [48]:

−∇ · [k(x, y;ω)∇u(x, y;ω)] = f (x, y;ω), (x, y) ∈ D,
u(x, y) = 0, (x, y) ∈ ∂D. (26)

where D = (−1, 1)× (−1, 1) and

k(x, y;ω) = exp(k̂(x, y;ω))+
1
2
,

k̂(x;ω) ∼ GP(µ,C),

µ(x, y) = sin(πx) sin(πy),

C((x, y), (x ′, y′)) = σ 2 exp(−
‖(x, y)− (x ′, y′)‖22

2l2
),

f (x, y) = 20 sin(πx) sin(πy). (27)

The diffusivity coefficient k is assumed to be a Gaussian
process, with the exponential function applied to ensure
the positiveness of k; the forcing term f is a deterministic
function.

We split the second-order elliptic equation into two first-
order SPDEs:

k(x, y;ω)∇u(x, y;ω) = −τ (x, y;ω), (x, y) ∈ D,
∇ · τ (x, y;ω) = f (x, y;ω), (x, y) ∈ ∂D. (28)

130914 VOLUME 10, 2022

S. Cho, M. Choi: MGDGANs for Solving SPDEs

FIGURE 5. Learning Gaussian process with l = 1.0. Computational time TSG and TMG with (a) N = 4000, m ∈ {50, 100, 150, 200} and
(b) m = 200, N ∈ {1000, 2000, 3000, 4000}. (c) Errors of the mean and standard deviation. (d) Mean and one-standard-deviation band
(e) Covariance (f) Eigenvalue of the covariance function.

FIGURE 6. Learning Gaussian process with l = 0.2.

VOLUME 10, 2022 130915

S. Cho, M. Choi: MGDGANs for Solving SPDEs

FIGURE 7. Learning Gaussian process with l = 0.1.

FIGURE 8. Errors of the MG model for different Fourier embedding
hyperparameters hb ∈ {1, 3, 5, 20, 30} when learning Gaussian process
l=0.1.

An additional variable τ = (τ1, τ2) ∈ R2 is introduced to
reduce the order of derivatives computed in the loss function,
and hence we have four generators for k, u, τ1, and τ2:

Gk (x, y, z) = Gkx (x, y) · Gz(z),

Gu(x, y, z) = (1− x2)(1− y2)Gux(x, y) · Gz(z),

Gτ1 (x, y, z) = Gτ1x (x, y) · Gz(z),

Gτ2 (x, y, z) = Gτ2x (x, y) · Gz(z), (29)

where Gkx ,G
u
x ,G

τ1
x , and G

τ2
x are coefficient networks and Gz

is a basis network (Fig. 3). All generators share the same basis
network Gz(z), and the solution generator Gu has a function
(1− x2)(1− y2) to enforce the boundary condition.

FIGURE 9. Computation times TSG and TMG for (left)
N = 4000, m ∈ {25, 49, 100, 196} and (right)
m = 196, N ∈ {1000, 2000, 3000, 4000}.

1) RESULTS
We compare SG-SD, MG-SD, and the proposed MGD
models for the correlation length l = 1.0. The first two
models use a single discriminator D(k, τ, f), and the third
model uses multiple discriminators Dk (k),Dτ (τ), and Df (f).
Computation times TSG and TMG are plotted in Fig. 9. TMG

is at least ten times as fast as TSG, and the difference increases
when m or N increases. Note that TMG is almost constant,
whereas TSG grows rapidly with respect to m or N . The mean
of the solution and its relative l2 error are shown in the top
rows of Fig. 10 and Table 2, respectively, where all three
models agree well with the reference solution. The standard
deviation of the solution and its relative l2 error are presented
in the bottom rows of Fig. 10 and Table 2, respectively, where

130916 VOLUME 10, 2022

S. Cho, M. Choi: MGDGANs for Solving SPDEs

FIGURE 10. Mean (top) and standard deviation (bottom) of the solution for the elliptic SPDE. Columns from left to right: reference
solution, SG-SD, MG-SD, and MGD (proposed).

TABLE 2. Errors of the means and standard deviations of the elliptic
SPDE.

FIGURE 11. The mean and standard deviation plots at x = 0.5 for
solutions to the elliptic SPDE problem.

the proposed MGD model reduces the error by one-third
compared to the SG-SD model. In particular, we plot the
mean and standard deviation of the solution at x = 0.5 in
Fig. 11. It clearly shows that the proposed model MGD
achieves the best standard deviation while the means of all
three models agree well with that of the reference solution.

V. CONCLUSION
We have proposed multiple generators and discriminators
in GANs to solve stochastic partial differential equations.
We construct two neural networks as generators to encode

the functions in the spatial and random variables separately,
and then merge them together to compute the solution,
which offers huge computational savings in the graining and
prediction over the SG model for comparable accuracy. The
model is also memory-efficient and has strong scalability.
We show that the multiple discriminator model provides
an equivalent metric to the single discriminator model.
We test MGDGANs on stochastic processes and stochastic
partial differential equations and show that MGDGANs can
achieve small generalization errors by employing multiple
discriminators and can reduce computing time by more than
a factor of 10 by employing multiple generators.

More work is required to fully appreciate the proposed
method, especially for the time-dependent stochastic prob-
lems, which we aim to carry out an extensive investigation
in our future works. We can also employ other network
architectures for the generators and discriminators, such as
convolutional neural networks, which may improve further
the accuracy of the proposed method.

The limitations of the proposed method are as follows:
first, we do not understand the training dynamics of GANs
theoretically yet. The training process involves simultaneous
learning of several objective functions taking into account
the governing equation and the boundary conditions. The
problem of multi-object optimization may bring pathological
problems such as a discrepancy in the convergence speed of
the different objectives. There have been few results on the
training dynamics for PINNs based on neural tangent kernel
but the training dynamics of GANs is yet to be developed.
Second, it is difficult to find the optimal output dimension
of the basis and coefficient network. A large dimension may
increase computation cost whereas a small dimension may

VOLUME 10, 2022 130917

S. Cho, M. Choi: MGDGANs for Solving SPDEs

reduce the accuracy of the training results. Third, there have
not been any results on the convergence theory of GANs.
We believe that addressing these challenges will improve
our understanding of physics-informed GANs for uncertainty
quantification and help to develop state-of-the-art models in
computational science and engineering.

APPENDIX A EQUIVALENCE OF THE SD LOSS AND THE
MD LOSS
A. NOTATIONS
Given probability measures p and q, we define the following
set related to the Wasserstein distances

0(p, q) = {γ (x, y) :
∫
γ (x, y)dy = p,

∫
γ (x, y)dx = q}.

(30)

Let X1,X2,Y1, and Y2 be random vectors that follow the
distributions p1, p2, q1, and q2, respectively, and η(p1, q1)
and η(p2, q2) be the joint distributions of (p1, q1) and (p2, q2),
respectively. We define

00 = 0(η(p1, q1), η(p2, q2)),

0X = 0(p1, p2),

0Y = 0(q1, q2), (31)

then the Wasserstein distances are

L0 = inf
γ0∈00

Eγ0 [‖(X1,Y1)− (X2,Y2)‖],

Lx = inf
γx∈0X

Eγx [‖X1 − X2‖],

Ly = inf
γy∈0Y

Eγy [‖Y1 − Y2‖]. (32)

Remark 1: WGAN loss D(x1, y1) − D(x2, y2) minimizes
L0 and WGAN loss with MD D(x1)−D(x2)+D(y1)−D(y2)
minimizes Lx + Ly.

B. MAIN THEOREM
Theorem 2: The function Lx + Ly from the (32) is indeed

a metric. Under the assumption that X1 is independent of Y1,
and X2 is independent of Y2, the topology induced by Lx +
Ly is equivalent to that of the Wasserstein distance L0. More
precisely, the following inequalities hold:

Lx + Ly ≥ L0 ≥
1
2
(Lx + Ly). (33)

Proof: Since Wasserstein distance is a metric, Lx and
Ly are metrics and a sum of two metrics is also a metric.
• L0 ≥

1
2 (Lx + Ly)

Let γ0 ∈ 00, define

γx(x1, x2) =
∫
γ0(x1, y1, x2, y2)dy1dy2,

γy(y1, y2) =
∫
γ0(x1, y1, x2, y2)dx1dx2. (34)

By the definition of 00, we have∫
γxdx1 =

∫
γ0dx1dy1dy2 =

∫
η(p2, q2)dy2 = p2,

TABLE 3. Sample size.

TABLE 4. Generator size, FE represents Fourier embedding.

∫
γxdx2 =

∫
γ0dx2dy2dy1 =

∫
η(p1, q1)dy1 = p1, (35)

and γx ∈ 0X . Similarly γy ∈ 0Y . Now

Eγ0‖(X1,Y1)− (X2,Y2)‖

=

∫
‖(x1, y1)− (x2, y2)‖γ0dx1dy1dx2dy2

≥

∫
1
2
(‖x1 − x2‖ + ‖y1 − y2‖)γ0dx1dy1dx2dy2

=
1
2
(
∫
‖x1 − x2‖γ0dy1dy2dx1dx2

+

∫
‖y1 − y2‖γ0dx1dx2dy1dy2)

=
1
2
(
∫
‖x1 − x2‖γxdx1dx2 +

∫
‖y1 − y2‖γydy1dy2)

=
1
2
(Eγx‖X1 − X2‖ + Eγy‖Y1 − Y2‖)

≥
1
2
(Lx + Ly). (36)

Since γ0 is arbitrary, we have L0 ≥ (Lx + Ly)/2.
Remark 2: The result can be extended to the pairs of n

random vectors (Z1
1 , · · · ,Z

n
1) and (Z1

2 , · · · ,Z
n
2), with the

inequality constant 1/n instead of 1/2. Note that this part
does not require the independence of Z1

i and Z
2
i .

• Lx + Ly ≥ L0

Let γx ∈ 0X , γy ∈ 0Y , then from the independence condition
of Xi and Yi, we get∫

γx(x1, x2)γy(y1, y2)dx2dy2 =
∫
γxdx2

∫
γydy2

= p1q1
= η(p1, q1),∫

γx(x1, x2)γy(y1, y2)dx1dy1 =
∫
γxdx1

∫
γydy1

= p2q2
= η(p2, q2). (37)

130918 VOLUME 10, 2022

S. Cho, M. Choi: MGDGANs for Solving SPDEs

TABLE 5. Discriminator size.

Therefore, γ0 := γxγy ∈ 00. Now

Eγx [‖X1 − X2‖]+ Eγy [‖Y1 − Y2‖]

=

∫
‖x1 − x2‖γxdx1dx2 +

∫
‖y1 − y2‖γydy1dy2

=

∫
‖x1 − x2‖γxγydx1dx2dy1dy2

+

∫
‖y1 − y2‖γxγydx1dx2dy1dy2

=

∫
(‖x1 − x2‖ + ‖y1 − y2‖)γ0dx1dx2dy1dy2

≥

∫
‖(x1, y1)− (x2, y2)‖γ0dx1dx2dy1dy2

= Eγ0‖(X1,Y1)− (X2,Y2)‖

≥ L0. (38)

Since γx and γy are arbitrary, Lx + Ly ≥ L0. �

APPENDIX B HYPERPARAMETER SETTINGS
We used the RMSprop optimizer with (α, β) = (2 ·
10−4, 0.99) for the discriminators and (α, β) = (5 ·
10−5, 0.99) for the generators, following the two time-scale
update rule (TTUR) [49]. For examples considering the
Gaussian process, tanh activation is used for the generators,
and rectified linear unit (ReLU) activation is used for the
discriminators: tanh is one of the most common activation
functions in the PINN framework because we expect a
smooth approximation for the solutions. Smoothness is not
necessary for discriminators; thus, we use the ReLU because
of its fast evaluation speed. For examples considering the
SPDE, we used the sine activation function for the generators
due to its well-behaved derivative representations [50] and
ReLU activation for the discriminators.

Hyperparameters of samples are listed in Table 3. To check
the model’s generalizability, the resolutions of the test
samples are higher than those of the training samples.

Hyperparameters of generators are listed in Table 4.
We choose layer width and depth such that the SG and theMG
models have comparable numbers of parameters and noise
dimension dz to capture 99% of the energy of the reference
covariance function. The coefficient and the basis networks
have the same depth and width.

Hyperparameters of discriminators are listed in Table 5.
Each GP example only contains one stochastic process
and does not require the MD structure. In the MD, all
discriminators have the same layer depth and width.

REFERENCES
[1] D. Crommelin and B. Khouider, ‘‘Stochastic and statistical methods

in climate, atmosphere, and ocean science,’’ in Proc. BAMS, 2015,
pp. 1377–1386.

[2] H. Mena and L. Pfurtscheller, ‘‘An efficient SPDE approach for el Niño,’’
Appl. Math. Comput., vol. 352, pp. 146–156, Jul. 2019.

[3] M. Reagan, H. Najm, B. Debusschere, O. L. Maître, O. Knio, and
R. Ghanem, ‘‘Spectral stochastic uncertainty quantification in chemical
systems,’’ Combust. Theor. Moel., vol. 8, no. 3, p. 607, 2004.

[4] A. M. Stuart, ‘‘Inverse problems: A Bayesian perspective,’’ Acta Numer.,
vol. 19, pp. 451–559, May 2010.

[5] E. A. Affum, S. A. Ajagbe, K. A. Boateng, M. O. Adigun, and E. Addo,
‘‘Response analysis of varied Q-power values of cosine distribution in
spatial correlation,’’ in Proc. IEEE Int. Symp. Antennas Propag. USNC-
URSI Radio Sci. Meeting (AP-S/URSI), Jul. 2022, pp. 2070–2071.

[6] E. A. Affum, M. O. Adigun, K. A. Boateng, S. A. Ajagbe, and
E. Addo, ‘‘Enhancing UAV communication performance: Analysis using
interference based geometry stochastic model and successive interference
cancellation,’’ in Proc. ICCSA. Cham, Switzerland: Springer, 2022,
pp. 232–245.

[7] H.-J. Bungartz and M. Griebel, ‘‘Sparse grids,’’ Acta Numer., vol. 13,
pp. 147–269, May 2004.

[8] H. Rabitz, Ö. F. Aliş, J. Shorter, and K. Shim, ‘‘Efficient input—Output
model representations,’’ Comput. Phys. Commun., vol. 117, nos. 1–2,
pp. 11–20, Mar. 1999.

[9] J. Han, E. JentzenWeinan, and A. Jentzen, ‘‘Solving high-dimensional
partial differential equations using deep learning,’’ Proc. Nat. Acad. Sci.
USA, vol. 115, no. 34, pp. 8505–8510, 2018.

[10] S. A. Ajagbe, O. A. Oki, M. A. Oladipupo, and A. Nwanakwaugwum,
‘‘Investigating the efficiency of deep learning models in bioinspired object
detection,’’ in Proc. ICECET, 2022, pp. 1–6.

[11] Y. H. Bhosale and K. S. Patnaik, ‘‘Application of deep learning techniques
in diagnosis of Covid-19 (coronavirus): A systematic review,’’ Neural
Process. Lett., vol. 54, pp. 1–53, Sep. 2022.

[12] L. Deng, G. Hinton, and B. Kingsbury, ‘‘New types of deep neural network
learning for speech recognition and related applications: An overview,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., May 2013,
pp. 8599–8603.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[14] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[15] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, ‘‘Neural
collaborative filtering,’’ in Proc. 26th Int. Conf. World Wide Web (WWW),
2017, pp. 173–182.

[16] M. Mustafa, D. Bard, W. Bhimji, Z. Lukić, R. Al-Rfou, and
J. M. Kratochvil, ‘‘CosmoGAN: Creating high-fidelity weak lensing
convergence maps using generative adversarial networks,’’ Comput.
Astrophys. Cosmol., vol. 6, no. 1, pp. 1–13, Dec. 2019.

[17] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra, ‘‘Habitat:
A platform for embodied AI research,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 9338–9346.

[18] T. Schlegl, P. Seeböck, S.M.Waldstein, U. Schmidt-Erfurth, and G. Langs,
‘‘Unsupervised anomaly detection with generative adversarial networks to
guide marker discovery,’’ in Proc. ICIPMI. Cham, Switzerland: Springer,
2017, pp. 146–157.

[19] J. Berg andK. Nyström, ‘‘A unified deep artificial neural network approach
to partial differential equations in complex geometries,’’ Neurocomputing,
vol. 317, pp. 28–41, Nov. 2018.

[20] B. Chudomelka, Y. Hong, H. Kim, and J. Park, ‘‘Deep neural network for
solving differential equations motivated by Legendre-Galerkin approxima-
tion,’’ 2020, arXiv:2010.12975.

[21] N. Geneva and N. Zabaras, ‘‘Modeling the dynamics of PDE systems with
physics-constrained deep auto-regressive networks,’’ J. Comput. Phys.,
vol. 403, Feb. 2020, Art. no. 109056.

[22] I. E. Lagaris, A. Likas, and D. I. Fotiadis, ‘‘Artificial neural networks for
solving ordinary and partial differential equations,’’ IEEE Trans. Neural
Netw., vol. 9, no. 5, pp. 987–1000, Sep. 1998.

[23] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart,
and A. Anandkumar, ‘‘Fourier neural operator for parametric partial
differential equations,’’ 2020, arXiv:2010.08895.

VOLUME 10, 2022 130919

S. Cho, M. Choi: MGDGANs for Solving SPDEs

[24] L. Lu, P. Jin, and G. E. Karniadakis, ‘‘DeepONet: Learning nonlinear
operators for identifying differential equations based on the universal
approximation theorem of operators,’’ 2019, arXiv:1910.03193.

[25] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,’’ J. Comput.
Phys., vol. 378, pp. 686–707, Feb. 2019.

[26] J. Sirignano and K. Spiliopoulos, ‘‘DGM: A deep learning algorithm
for solving partial differential equations,’’ J. Comput. Phys., vol. 375,
pp. 1339–1364, Dec. 2018.

[27] E. Weinan and B. Yu, ‘‘The deep Ritz method: A deep learning-based
numerical algorithm for solving variational problems,’’ Commun. Math.
Statist., vol. 6, no. 1, pp. 1–12, 2018.

[28] J. Zhuang, D. Kochkov, Y. Bar-Sinai, M. P. Brenner, and S. Hoyer,
‘‘Learned discretizations for passive scalar advection in a two-dimensional
turbulent flow,’’Phys. Rev. Fluids, vol. 6, no. 6, Jun. 2021, Art. no. 064605.

[29] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, ‘‘Learning data-
driven discretizations for partial differential equations,’’ Proc. Nat. Acad.
Sci. USA, vol. 116, no. 31, pp. 15344–15349, 2019.

[30] M. Amin Nabian and H. Meidani, ‘‘A deep neural network surro-
gate for high-dimensional random partial differential equations,’’ 2018,
arXiv:1806.02957.

[31] R. K. Tripathy and I. Bilionis, ‘‘Deep UQ: Learning deep neural network
surrogate models for high dimensional uncertainty quantification,’’ J.
Comput. Phys., vol. 375, pp. 565–588, Dec. 2018.

[32] L. Guo, H. Wu, and T. Zhou, ‘‘Normalizing field flows: Solving forward
and inverse stochastic differential equations using physics-informed flow
models,’’ J. Comput. Phys., vol. 461, Jul. 2022, Art. no. 111202.

[33] J. Jung and M. Choi, ‘‘Bayesian deep learning framework for uncertainty
quantification in high dimensions,’’ 2022, arXiv:2210.11737.

[34] L. Yang, C. Daskalakis, and G. E. Karniadakis, ‘‘Generative ensemble
regression: Learning particle dynamics from observations of ensembles
with physics-informed deep generative models,’’ SIAM J. Sci. Comput.,
vol. 44, no. 1, pp. B80–B99, Feb. 2022.

[35] L. Yang, X. Meng, and G. E. Karniadakis, ‘‘B-PINNs: Bayesian physics-
informed neural networks for forward and inverse PDE problems with
noisy data,’’ J. Comput. Phys., vol. 425, Jan. 2021, Art. no. 109913.

[36] L. Yang, D. Zhang, and G. E. Karniadakis, ‘‘Physics-informed generative
adversarial networks for stochastic differential equations,’’ SIAM J. Sci.
Comput., vol. 42, no. 1, pp. A292–A317, Jan. 2020.

[37] D. Zhang, L. Guo, and G. E. Karniadakis, ‘‘Learning in modal space:
Solving time-dependent stochastic PDEs using physics-informed neural
networks,’’ SIAM J. Sci. Comput., vol. 42, no. 2, pp. A639–A665,
Jan. 2020.

[38] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, ‘‘Physics-
constrained deep learning for high-dimensional surrogate modeling and
uncertainty quantification without labeled data,’’ J. Comput. Phys.,
vol. 394, pp. 56–81, Oct. 2019.

[39] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 27, 2014, pp. 139–144.

[40] M. Arjovsky, S. Chintala, and L. Bottou, ‘‘Wasserstein generative
adversarial networks,’’ in Proc. ICML, 2017, pp. 214–223.

[41] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, ‘‘Spectral normaliza-
tion for generative adversarial networks,’’ 2018, arXiv:1802.05957.

[42] D. Xiu, ‘‘Generalized polynomial chaos,’’ in Numerical Methods for
Stochastic Computations: A Spectral Method Approach. Princeton, NJ,
USA: Princeton Univ. Press, 2010, doi: 10.1515/9781400835348.

[43] X. Meng, L. Yang, Z. Mao, J. del Águila Ferrandis, and G. E. Karniadakis,
‘‘Learning functional priors and posteriors from data and physics,’’
J. Comput. Phys., vol. 457, May 2022, Art. no. 111073.

[44] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, ‘‘Learning
nonlinear operators via DeepONet based on the universal approximation
theorem of operators,’’ Nature Mach. Intell., vol. 3, no. 3, pp. 218–229,
Mar. 2021.

[45] Z.-Q. John Xu, Y. Zhang, T. Luo, Y. Xiao, and Z. Ma, ‘‘Frequency
principle: Fourier analysis sheds light on deep neural networks,’’ 2019,
arXiv:1901.06523.

[46] S. Wang, X. Yu, and P. Perdikaris, ‘‘When and why PINNs fail to train:
A neural tangent kernel perspective,’’ J. Comput. Phys., vol. 449, Jan. 2022,
Art. no. 110768.

[47] M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan,
U. Singhal, R. Ramamoorthi, J. Barron, and R. Ng, ‘‘Fourier features let
networks learn high frequency functions in low dimensional domains,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 7537–7547.

[48] M. K. Hubbert, ‘‘Darcy’s law and the field equations of the flow
of underground fluids,’’ Trans. AIME, vol. 207, no. 1, pp. 222–239,
Dec. 1956.

[49] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
‘‘GANs trained by a two time-scale update rule converge to a local Nash
equilibrium,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30, Nov. 2017,
pp. 1–12.

[50] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein,
‘‘Implicit neural representations with periodic activation functions,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 7462–7473.

SUNGHA CHO received the B.S. degree in math-
ematics from the Pohang University of Science
and Technology, Pohang, South Korea, in 2015,
where he is currently pursuing the Ph.D. degree
in mathematics. His research interests include
uncertainty quantification of the nonlinear systems
and deep learning.

MINSEOK CHOI received the B.S. degree in
mechanical engineering and mathematics and the
M.S. degree in mechanical engineering from
Seoul National University, Seoul, South Korea, in
2002 and 2007, respectively, and the Ph.D. degree
in applied mathematics from Brown University,
Providence, USA, in 2014. He was a Postdoctoral
Researcher with Princeton University, USA, until
2017. He is currently an Assistant Professor in
mathematics at the Pohang University of Science

and Technology (POSTECH), South Korea. His research interests include
physics-informed machine learning, uncertainty quantification, and related
areas of applied mathematics.

130920 VOLUME 10, 2022

http://dx.doi.org/10.1515/9781400835348

