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ABSTRACT In the modern-day era of technology, a paradigm shift has been witnessed in the areas involving
applications of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL). Specifically,
Deep Neural Networks (DNNs) have emerged as a popular field of interest in most Al applications such as
computer vision, image and video processing, robotics, etc. In the context of developed digital technologies
and the availability of authentic data and data handling infrastructure, DNNs have been a credible choice
for solving more complex real-life problems. The performance and accuracy of a DNN is a way better than
human intelligence in certain situations. However, it is noteworthy that the DNN is computationally too
cumbersome in terms of the resources and time to handle these computations. Furthermore, general-purpose
architectures like CPUs have issues in handling such computationally intensive algorithms. Therefore, a lot
of interest and efforts have been invested by the research fraternity in specialized hardware architectures
such as Graphics Processing Unit (GPU), Field Programmable Gate Array (FPGA), Application Specific
Integrated Circuit (ASIC), and Coarse Grained Reconfigurable Array (CGRA) in the context of effective
implementation of computationally intensive algorithms. This paper brings forward the various research
works on the development and deployment of DNNs using the aforementioned specialized hardware
architectures and embedded Al accelerators. The review discusses the detailed description of the specialized
hardware-based accelerators used in the training and/or inference of DNN. A comparative study based on
factors like power, area, and throughput, is also made on the various accelerators discussed. Finally, future
research and development directions, such as future trends in DNN implementation on specialized hardware
accelerators, are discussed. This review article is intended to guide hardware architects to accelerate and
improve the effectiveness of deep learning research.

INDEX TERMS Machine learning, field programmable gate array (FPGA), deep neural networks (DNN),
deep learning (DL), application specific integrated circuits (ASIC), artificial intelligence (AI), central
processing unit (CPU), graphics processing unit (GPU), hardware accelerators.

I. INTRODUCTION
Deep neural networks (DNNs), also known as deep learning,
are a subset of the Artificial Intelligence (Al) discipline. The
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term Al was coined in 1956 by John McCarthy, who defined
it as “the science and engineering of making intelligent
machines”. Machine learning is a broad topic of artificial
intelligence that was first defined by Arthur Samuel in
1959 as the study of how computers may learn without being
explicitly programmed. Machine Learning uses traditional
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techniques to perform tasks like classification, regression,
and clustering. Deep learning is a subfield of machine
learning that uses a multi-layered algorithm structure known
as a neural network, which was developed mostly between
2006 and 2010. The relationship between deep learning,
machine learning, and Al is illustrated in Fig. 1.

Artificial Intelligence
The science and engineering of
making intelligent systems

Machine Learning
The field of study that gives
computers the ability to learn

without being explicitly programmed

Deep Learning
A technique to perform machine
learning algorithms inspired by
human brain’s own network of
neurons.

FIGURE 1. Al vs. Machine Learning vs. Deep Learning.

Nowadays, DNNs are used in many modern Al appli-
cations, including bioinformatics [60], natural language
processing [147], image restoration [185], speech recogni-
tion [34], computer vision [194], machine translation [36],
healthcare [43], finance [221], robotics [94], visual art
processing [193], etc. Furthermore, the recent applications
of DNN include aerospace and defence, automated driving,
recommendation systems, and industrial automation [71],
[86], [101], [215]. DNNSs are also useful in a variety of appli-
cations, such as news aggregation and fraud detection [124],
virtual assistants [61], chatbots [35], and customer relation-
ship management systems [203]. In addition, DNNs have also
been used to diagnose Covid-19 by classifying it based on
different lung and chest imaging modalities [40].

DNNs contain many layers, and each layer is capable of
detecting features at different levels. For instance, in pattern
recognition, where the input is available in pixel form, the
first layer of DNN extracts minor details of the image, such as
curves and edges. The outputs of this first layer act as inputs
to the second layer. The second layer extracts the image’s
primary details, such as squares and semi-circles. The outputs
of the second layer act as inputs to the third layer. The third
layer extracts the part of objects. Furthermore, the subsequent
layer uses the previous layer’s output and extracts more
aspects of the objects. As the number of layers increases,
the DNN extracts increasingly complicated features and
complete objects [73]. DNNs provide superior accuracy and
performance at the cost of high computational complexity.
For instance, AlexNet [130] takes 1.4 Giga Operations Per
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Second (GOPS) to process a single image of size 224 x224
with a top-1 accuracy of 61%, while ResNet-152 [108] takes
22.6 GOPS with a top-1 accuracy of 79.3%. DNN’s superior
accuracy and performance are due to its capacity to extract
more complex high-level features, such as objects and facial
structures, from raw input data.

DNNs are computationally expensive and need lots
of computational resources and memory for training and
inference. CPUs inherently support a limited number of
parallel workloads, though they can context switch with
hyper-threading. They are not sequential in nature. CPUs may
have more resources than their counter architectures (like
GPUs or FPGAs). CPUs have a limited number of registers
to support concurrent threads. But they may have higher
cache sizes, larger branch control logic, and higher on-chip
bandwidth than GPUs. However, the limited number of cores
on the CPU limits its ability to process large amounts of data
in parallel, which is required for DNN acceleration. Although
CPUs dominate the IoT industry in DNN inference on low-
power edge devices, they struggle to realize complex DNNs.
Therefore, specialized hardware designs are required for the
acceleration of DNNs. DNNs can be implemented using
customized hardware accelerators instead of a CPU. The
heterogeneous computing platforms viz. Field Programmable
Gate Array (FPGA), Application-Specific Integrated Circuits
(ASIC), and Graphical Processing Units (GPU) are widely
used to accelerate DNNs. The specialized hardware-based
DNN accelerators can be categorized into two classes:
the first class of accelerators efficiently implements the
computational primitives, such as convolutional operations,
fully connected operations, etc., for the DNNs [85], [175] and
the second class of DNN accelerators efficiently optimize the
data movement and memory access [56], [177]. These two
generations of specialized hardware-based DNN accelerators
improve the speed and energy efficiency of running DNNS.
There are two ways to improve the performance of the
DNN acceleration. The first method is optimizing the
DNN algorithm, and the second is optimizing the hardware
architecture. Therefore, we need to co-design the algorithm
and the hardware to achieve superior performance.

Because of their high throughput and memory band-
width, GPUs are one of the most often employed hard-
ware accelerators for improving inference and training
processes in DNNs [218]. In floating-point matrix-based
calculations, GPU-based hardware accelerators are extremely
efficient [205]. GPU-based hardware accelerators, on the
other hand, consume a lot of power. ASIC and FPGA-
based hardware accelerators have limited computational and
memory resources compared to GPU-based accelerators.
Nevertheless, they can achieve a moderate performance level
while using less energy [153]. ASIC-based DNN accelerators
provide superior performance compared to GPU and FPGA
counterparts at the cost of reconfigurability. However, ASIC-
based accelerators have some limitations, including the high
cost of development, long time to market, inflexibility,
etc [77], [103]. FPGA-based accelerators can be used as
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an alternative to ASIC-based accelerators, and they can
provide superior performance at an affordable cost with
reconfigurability and low power dissipation [213]. FPGA,
ASIC, and GPU-based Al accelerators have been the subject
of numerous research [97], [150], [154], [155], [158], [210].
This survey, however, also looks at various embedded Al
accelerators for DNN acceleration.

This survey supplements the existing work and contributes
towards providing the complete background on DNN accel-
eration using various specialized hardware architectures. The
contributions of this survey can be summarized as follows:

1) The survey discusses the various research works carried
out on the development and deployment of DNN using
FPGA-based accelerators.

2) The survey covers the work done in ASIC-based Al
accelerators in the last decade, from 2012 to 2022.

3) The survey describes the various GPU-based DNN
accelerators.

4) The survey provides a comprehensive overview of
CGRA-based accelerators for DNN implementation.

5) The survey covers the research works carried out on the
implementation of DNNs on edge using embedded Al
accelerators.

6) The survey provides a comparative study of existing
hardware architectures: FPGAs, GPUs, ASICs, and
embedded Al accelerators.

7) The survey highlights the future research trends in
DNN acceleration on specialized hardware architec-
tures, including FPGA, ASIC, GPU, CGRA, and Edge
Al accelerators.

A. SCOPE OF THE SURVEY

This paper focuses on research trends in FPGA, ASIC, and
GPU-based accelerators for implementing DNNs. We have
also briefly discussed the current trends in Arm-based
machine learning processors and embedded edge Al accel-
erators. The review categorizes the FPGA-based accelerator
into three categories and briefly discusses the key features
of the accelerators, including the frameworks available. The
three categories include accelerators for a specific application
such as speech recognition, object detection, natural language
processing, etc., accelerators for a specific algorithm such
as CNN, RNN, etc., and accelerator frameworks with
hardware templates. Furthermore, ASIC-based accelerators
are categorized into three types: ALU-based accelerators,
dataflow-based accelerators, and sparsity-based accelera-
tors. A comparative study of these hardware accelerators
based on performance metrics like power, throughput, and
area has been presented. The review also focuses on the
mapping frameworks available for these accelerators and
briefly discusses the implementation details. In addition, the
recent research contributions in Arm-based machine learning
processors, a few embedded Al hardware accelerators, and
CGRA-based accelerators are discussed and compared in
terms of their cores, performance, power, availability of Soft-
ware Development Kits (SDKs), and supported frameworks.
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This survey is different and unique with respect to many exist-
ing papers in this area in the following ways. Few studies [44],
[97], [126], [154], [210] focused only on the developments
of FPGA-based accelerators. Few other studies [55], [136],
[150], [158] have presented the details of ASIC-based
accelerators. Some research reviews [48], [200], [201] have
explored both FPGA and ASIC-based accelerators. Very
limited studies [178], [201] have dealt with the progress
of GPU-based accelerators. On the other hand, studies on
embedded AI and CGRA-based accelerators haven’t been
explored much. Many of these reviews do not mention the
compiler/mapping frameworks and SDKs available for these
accelerators, making it difficult for someone to choose the
appropriate accelerator. This review, therefore, aims to bring
a comprehensive study of all the aforementioned hardware
accelerators in the context of the implementation of DNNs.
Furthermore, this survey uniquely classifies the FPGA-
and ASIC-based accelerators and briefly discusses the key
architectural features and the available compiler or mapping
frameworks. Accelerators for each category are summarized
and compared. A comprehensive survey of GPU-based
accelerators by Nvidia is also presented. The need for edge
Al computing is emphasized and state-of-the-art embedded
Al accelerators, including Arm-based accelerators, are also
discussed and compared. This survey also briefly discusses
the recent developments in tinyML. Table 1 compares this
survey paper with recently published review articles on DNN
implementation using specialized hardware architectures.
Researchers in the fields of artificial intelligence, system
design, and hardware architecture are expected to benefit
from this survey.

B. ORGANIZATION

This paper is organized as follows: Section II provides a brief
overview of neural networks and DNNs, including the basic
architecture of hardware for DNN acceleration. Section III
describes various architectures implemented on the FPGA
platform for DNN acceleration. Section IV describes various
ASIC-based accelerator architectures for DNN acceleration.
Section V shows a detailed review of GPU-based accelerators
for the acceleration of DNN. Section VI discusses various
CGRA-based accelerator architectures for DNN acceleration.
Section VII discusses in detail the embedded edge Al
accelerators for DNN acceleration. Section VIII provides
the comparisons between the various hardware architectures
used for the DNN acceleration. Section IX provides the
future research directions of various hardware architectures
for DNN acceleration. Finally, the conclusion of this review
is presented in Section X.

Il. BACKGROUND

A. NEURAL NETWORKS

A Neural Network (NN) is a computational model inspired by
biological neural networks. It is also known as an Artificial
Neural Network (ANN). An ANN comprises hundreds or
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TABLE 1. Comparison among state-of-the-art surveys.

thousands of interconnected artificial neurons, also called
processing units. Three or more interconnected layers are
formed by these neurons. The input neurons are in the first
layer. The input neurons receive external signals and pass
them on to the subsequent layers, which eventually provide
the final output data to the final output layer. The intermediate
layers in the ANN are called as hidden layers. Fig. 2 depicts
the architecture of a typical NN, which includes an input
layer, an output layer, and two hidden layers.

[ J

()

Output layer

o0 00

\

( )

Input layer Hidden layers

FIGURE 2. An architecture of NN.

In NN shown in Fig. 3, the input layer contains n inputs
(x1,x2,...,x,). The following layer (hidden layer) gets all
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Scope
Paper Year Summary FPGA-based | ASIC-based | GPU-based | Embedded Al | CGRA-based Sparce L
Frameworks | Dataflow Tiny ML | Applications
DNN

Provided a comprehensive survey of various techniques to

Sze et al. [200] 2017 v X X X v v v LS v
efficiently process deep neural networks on hardware.
Provided a comprehensive survey for the acceleration of neural

‘Wang et al. [210] 2018 | networks on FPGA and also discussed about advantages and v X X X 4 X X X v
disadvantages of FPGA-based accelerators
Provided a comprehensive review of FPGA-based neural

Guo et al. [97] 2019 v X X X v X v X v
network inference accelerators.

. d the techniques and f; for the accelerati

Blaiech et al. [44] 2019 v X X X v X X LS v

of deep learning algorithms on FPGA.
) Provided detailed survey of techniques for implementing and

Mittal et al. [154] 2020 v X X X v v v LS v
optimizing CNN algorithms on FPGA.
Summarized the recent advances in DNN accelerator, and also

Chen et al. [55] 2020 X X X X X v v LS v
provided the future trends of DNN accelerators.
Provided a comp, survey of state-of-the-art

Capra et al. [48] 2020 ; v 4 X X v v 4 X X
architectures for DNN acceleration.
Provided a detailed survey of energy-efficient DNN processing

Lee et al. [136] 2021 | on hardware and also summarized the key techniques of X X X X X v 4 X X
energy-efficient DNN training on ASICs

" Provided a systematic review of ASIC, FPGA, and GPU-based

Talib et al. [201] 2021 v v X X v LS X LS LS
accelerators for Al and ML tools.
Summarized the current commercial accelerators that have been

Reuther et al. [178] 2021 X v X X X v X LS v
publicly announced with peak performance and power numbers.

_ - Provided a compi ive review of i iques

Machupalli et al. [150] 2022 X X X X v v v X v

used in the existing DNN accelerators
. Provided a comprehensive survey of CNN accelerator

Moolchandani et al. [158] | 2022 X X X X X v v X X
architectures on custom hardware.
Provided a detailed review of recent advancements in the area
of DNN ion on ialized hardware architect such

This survey 2022 v v v v v v v v v
as FPGA, ASIC, and GPU. Discussed the recent developments
in Al for edge and tinyML.

n inputs from the input layer and generates the output y.
These inputs are multiplied by the weight coefficients
(w1, w2, ..., w,) and combined together with a bias value b
for each neuron. A non-linear function o (.), also called as
an activation function, is then used to calculate the neuron’s
output, see Eq. (1). In this scenario, the activation function
causes a neuron to produce an output only if the input to
it exceeds a specified threshold value. Common non-linear
functions used in NN are Sigmoid, Rectified Linear Unit
(ReLU), and Hyperbolic tangent. The graphical model and
mathematical representation of artificial neuron is shown
in Fig. 3 and Eq. (1), respectively.

N
y=0()_ x[nlwln] + b) o))

n=1

I

wy

w
Ty 2 > Yy

| b

Wp,

Tn

FIGURE 3. A single ANN neuron with its elements (inputs, weights, bias,
summer, activation function, and output).

In neural networks, weights are initialized with some
random values. However, during the training process, all

131791
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these weights get updated iteratively to predict the correct
output. The weights are updated using the cost function,
which is nothing more than the mean square error. The
mathematical representation of mean square error is shown
in Eq. (2). Here, MSE is mean squared error, n represents the
number of input data points, y; and y; are true and predicted
outputs, respectively. Once the neural network is trained,
it may be used for classification problems.

1
MSE = — % (i = i) 2

i=1

B. DEEP NEURAL NETWORK (DNN)

The Deep Neural Network (DNN) is a type of neural network
that has more than three hidden layers and is well-suited to
complicated tasks [37]. In today’s DNN, the typical number
of layers used ranges from five to over a thousand. A DNN
with N hidden layers is shown in Fig. 4. In DNNs, the model
and its parameters are learned through an extensive training
process.

Neuron

outputs

Input layer

Layer] ——-—- LayerN

Hidden layers

FIGURE 4. DNN with N hidden layers [157].

Training and inference are the two critical phases in
accelerating a task using DNN. Specific tasks such as object
detection, and pattern recognition etc. are part of the training,
in which the DNN is taught to perform such specific tasks
using available data. The known data is supplied to DNN
throughout the training process, allowing the network to
predict what the data represents. As a result, the prediction
error is used to adjust the weights of the neurons. The weights
are adjusted till the predictions are made with a considerable
degree of accuracy. Backpropagation is a popular method for
updating weights, as mentioned before in the training phase.
DNN is ready to make predictions on fresh and unknown
data once it has been fully trained. This stage is known
as inference, and it involves testing the trained model with
completely new and unknown data.

There are four types of deep learning approaches: super-
vised, unsupervised, reinforcement, and semi-supervised
learning. The labeled data is used in supervised learning to
train or model the network. The labeled data indicates that
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some input data has already been matched to the correct
output. Unsupervised learning is another learning technique
in which the network/model is trained using unlabeled data.
The trained network generates the clusters or structures in
the unlabeled data. Semi-supervised learning uses partially
labeled data sets and it falls in between supervised and
unsupervised learning approaches. Finally, reinforcement
learning is a type of training that rewards positive behaviours
while punishes undesirable ones. Reinforcement learning is
bound to learn from its previous experience. The pictorial rep-
resentation of the aforementioned deep learning approaches
is shown in Fig. 5.

Input data
(labeled)

Input data
(unlabeled)

Input data
(states & actions)

Reinforcement
Learning

Supervised
Learning

output l output

(mapping)

Unsupervised
Learning

Error

Critic output  Critic

(classes) (state/action)

FIGURE 5. Deep learning approaches.

C. CONVOLUTIONAL NEURAL NETWORK (CNN)
Convolutional neural networks (CNNs) are a type of neural
network which have been widely used for image recognition
tasks. CNN is made up of several stages, each of which
is referred to as a layer. Each layer extracts a feature
from the data it receives. The identifying features get more
sophisticated or complex as we proceed. CNN structure was
first proposed by Fukushima in 1988 [87]. As shown in Fig. 6,
a CNN consists of four layers: convolution, fully connected
layer, pooling layer, and Rectified Linear Unit (ReLU) layer.
Optionally, CNN might also have non-traditional layers
such as dilated convolution layer [114] and deconvolution
layer [52]. The CNN’s overall design may be divided into two
sections: feature learning and classification. Each layer of the
CNN gets data from the layer before it as input and delivers
its output to the following layer as input during the feature
learning phase. The feature learning phase includes three
types of layers: convolution, RELU, and pooling. At each
node of the convolution layer, convolution operations on the
input nodes detect features from the input feature maps. The
output of the feature extraction phase’s final layer is delivered
to a fully connected network known as the classification layer.
The following sections discuss each type of layer in the CNN
in brief.

1) CONVOLUTION LAYER

The convolution layer is also known as the feature extraction
layer since it extracts the features of images. The inputs
and outputs of the convolution layer are defined as feature
maps (FMs) which are organized in two-dimensional grids.
The FM from the previous layers of the convolution layer is
convolved with the filter coefficients. More than one input
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FIGURE 6. CNN architecture (adopted from [181]).

feature map can be paired with each output feature map. In a
2-D convolution operation between an input image matrix x
(size R x C) and a filter f (size W x L), the convolution
layer performs point-wise multiplication and addition of the
corresponding pixels. The filter size is often smaller than the
input matrix size. The filter multiplies the input matrix with
the W x L sized block, accumulates the result, slides to the
next block of the input matrix, and repeats the operation.
The input matrix is processed one block at a time until
it has processed all of the image’s R x C elements. The
2-D convolution operation is given in Eq. (3) where y(r, ¢)
signifies one output pixel in the output matrix y, with each
pixel’s coordinates expressed as (r, ¢). The iterators over the
filter’s length (L) and width (W) are [ and w, respectively,
in Eq. (3). Finally, the resulting feature maps apply non-linear
activation functions such as sigmoid, hyperbolic tangent,
or rectified linear units.

W—-1L-1

yr,c) = Z Zf(w, Dx(r+w— {gJ e+l — EJ)

w=0 1=0
3)

2) POOLING LAYER

The pooling layer shrinks the spatial dimensions of the input
image after convolution, thereby reducing the computation
and number of parameters in the network. Pooling layers
are also known as subsampling layers. In CNN, the pooling
layer is used between two convolution layers. The MAX
operation is used to resize each slice of the input image
spatially, on which the pooling layers operate individually.
A pooling layer with filters of size 2 x 2 is found in many CNN
topologies. Over the four samples in the filter, the pooling
operation, which is nothing but the MAX operation, is done.
The operation yielding the maximum value is retained while
discarding the other values [123]. It is noteworthy that
additional operations like MIN operation and AVG operation
can also be used in the pooling layer, particularly in some
CNNs [197]. The MAX and AVG pooling operations for the
filters of size 2 x 2 are shown in Fig. 7.

3) RECTIFIED LINEAR UNIT (ReLU) LAYER

In a CNN network, the ReLU layer is usually employed after
the convolution and fully connected layers. The ReLU layer
is generally used after the convolution and fully connected
layers in the CNN network. By substituting all the negative
valued outputs with 0, it introduces non-linearity into the
CNN. Because of its computational simplicity, sparsity, and
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2 x 2 pooling, stride 2

1124 ,
MAX pooling

4
SI6(6]8 618 4115
2113 121||9 31|21 2 (|12
L1211} 7

FIGURE 7. Various forms of pooling.

AVG pooling

ability to converge faster than other activation functions like
hyperbolic tangent and sigmoid [72], [197], ReLU [160] has
gained a lot of traction in recent years. The mathematical
representation of ReLU is shown in Eq. (4). Some popular
extensions of ReLU, for instance, exponential LU [64],
parametric ReLLU [107], and leaky ReLU [149] are also being
used in CNNs for improved performance and accuracy.

f(x) = max(0, x) “4)

4) FULLY CONNECTED LAYER

Fully connected layers do the final classification in the CNN
network after multiple convolutions, ReLU, and pooling
layers. Weights, biases, and neurons are all part of the fully
connected layer. All input and output neurons are connected
in the fully connected layer. A CNN network typically has
one or more fully connected layers. The final output of CNN
comes from the last fully connected layer, often known as
the classification layer. The fully connected layer in the CNN
contains a large number of inputs and outputs. Therefore, it is
challenging to implement fully connected layer operations on
hardware platforms with limited resources.

5) DECONVOLUTION LAYER

To increase the size of the feature map, a deconvolu-
tion layer, also known as a transposed convolution layer,
is employed [52]. Upsampling (inserting zeros in the feature
map) and then convolving the upsampled feature maps with
the kernel coefficients are used to accomplish this.

6) DILATED CONVOLUTION LAYER

The filter coefficients are up-sampled and convolved with the
input image in a dilated convolution layer to capture a broader
receptive field [114]. Image segmentation, for example,
uses it to capture the larger global context in each output
pixel.

With millions of weight coefficients, CNNs are extremely
complex. They are computationally expensive and necessitate
a significant amount of memory to store the input, output
feature maps, and weight coefficients, causing CPUs to
underperform. To boost the performance of the CNN,
specific hardware accelerators are used. As a result, different
techniques for implementing CNNs efficiently on hardware
platforms must be explored in order to reduce resource and
memory requirements.
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D. HARDWARE ARCHITECTURES FOR DNN
ACCELERATION

DNNs have been increasingly popular in recent years,
allowing for their development and deployment on a variety
of hardware platforms. These hardware platforms are of
various types, right from general-purpose architectures such
as CPUs and GPUs, programmable architectures (FPGAs)
to special-purpose chips (ASICs). In many DNN models,
multiply-accumulate (MAC) operations are the most impor-
tant computations, and they can be easily parallelized. Since
these MAC operations can be executed in parallel, hardware
architectures that enable parallel operations are required to
process DNNs. To achieve superior performance, highly
parallel computing models, encompassing both spatial and
temporal computing architectures, are often employed for
DNN acceleration. The spatial and temporal architectures
have a similar computational structure, with a set of
Processing Elements (PEs). However, processing units can
have internal control in a spatial architecture, whereas control
in a temporal architecture is centralized, as shown in Fig. 8.
Each PE can have a register file (RF) to store data in spatial
architecture; however, PEs do not have the memory capacity
in a temporal architecture. The PEs can also be connected to
exchange data in spatial computing designs. To summarize,
the PEs in the temporal architectures contain only Arithmetic
and Logic Units (ALUs). The PEs consist of ALU as a
computation unit, RF to store the data, and a control unit in
spatial architectures.

Spatial Architecture

Temporal Architecture

FIGURE 8. Spatial and temporal architectures.

1) TEMPORAL ARCHITECTURES

The temporal architectures exploit parallelism by support-
ing a variety of techniques, such as Single Instruction
Multiple Threads (SIMT) or Single Instruction Multiple
Data (SIMD). The temporal computing architectures appear
mostly in CPUs and GPUs. In temporal designs, ALUs can
only access data from the memory hierarchy and cannot
communicate directly with one another. The memory (i.e.,
register file) and control are shared by all ALUs in the
temporal architecture. In temporal architectures like CPUs
or GPUs, all the convolution or fully connected operations
are mapped to matrix multiplication. CPU cores are the
least employed among the several temporal architectures
for DNN training and inference. CPUs contain a small
number of processing cores, ranging from one to ten. As a
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result, only a small number of processes can be performed
in parallel, limiting throughput. GPUs are commonly used
to train and infer DNNs. They have thousands of cores
to run highly parallel algorithms efficiently, for instance,
matrix multiplication. Throughput is enhanced by lowering
the number of multiplications in both CPUs and GPUs. There
are software libraries that optimize matrix multiplication
for GPUs (e.g., cuBLAS, cuDNN [59], etc.) and CPUs
(e.g., Intel MKL [2], OpenBLAS, etc.). Another well-
known technique to reduce the matrix multiplications is Fast
Fourier Transform (FFT) [80], [151]. Furthermore, several
techniques, such as Winogra’s algorithm [132] and Strassen’s
algorithm [67], are used to reduce the matrix multiplications
and thereby reduce the resource and memory requirements.

2) SPATIAL ARCHITECTURES

In spatial architectures, each ALU can have its own local
memory and control logic. The local memory is also
referred to as the register file. The development and deploy-
ment of DNNs on Field-Programmable-Gate-Arrays (FPGA)
and Application-Specific-Integrated-Circuits (ASIC) comes
under the category of spatial architectures. FPGAs are less
expensive and have a faster time to market than ASICs, and
the design flow is simpler. However, FPGAs are less energy-
efficient and consume more power than ASICs since FPGAs,
unlike ASICs, contain a significant chip area dedicated to
reconfigurability. ASICs, on the other hand, are mainly
designed for a particular application and cannot support
reconfigurability. The design flow of ASICs is more complex
than FPGAs [46]. ASIC chips are expensive, but they are
highly optimized and energy-efficient and provide superior
performance than FPGAs. Memory accesses are the real
bottleneck in DNN computations; therefore, off-chip DRAM
accesses must be minimized, as they have a high energy
cost and delay. The memory accesses (off-chip) can be
reduced by reusing data stored in smaller, quicker, and
low-energy memories. In spatial computing architectures,
weight stationary, row stationary, output stationary, and other
specialized processing dataflows can be designed to improve
data reuse from memories in the memory hierarchy and
reduce energy dissipation. At each level of the memory
hierarchy, the dataflow defines what data is read and when it is
processed. In spatial architectures, dataflows can be classified
as follows:

a: WEIGHT STATIONARY (WS)

In weight stationary dataflow, the weights are kept fixed
and are stored in the register files of the PEs, whereas the
inputs and partial sums are distributed across the PEs. Weight
stationary dataflow maximizes filter and convolutional reuse
of weights. Weight stationary dataflow examples are found
in [168], [182], [195], and [50].

b: OUTPUT STATIONARY (0S)
Each partial sum is held fixed in a PE in the output stationary
dataflow, and accumulation is done until the final total is
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obtained. In the meantime, the PEs’ weights and inputs are
dispersed in a variety of ways. The convolutional reuse is
maximized with output stationary dataflow. This dataflow
reduces the amount of energy used while writing and reading
partial sums. Output stationary dataflow examples are found
in [98] and [169].

c: ROW STATIONARY (RS)

The operations of a row of convolution are mapped to the
same PE in row stationary dataflow, and the weights are kept
stationary inside the register file of the PEs. Row stationary
dataflow maximizes the convolutional reuse of input feature
maps, weights, and partial sums. Row stationary dataflow
examples are found in [53] and [57].

d: NO LOCAL REUSE (NLR)

In no local reuse dataflow, nothing is stationary inside
the PEs, and it is used to reduce the accelerator area by
eliminating the register file from PEs. No local reuse dataflow
examples are found in [56] and [222].

All PEs in the spatial architectures can be connected in one
of two ways: 1-D systolic or 2-D systolic. The PEs in a 1-D
systolic architecture are arranged in one dimension, allowing
systolic data flow, but the PEs in a 2-D systolic architecture
are arranged in two dimensions and can receive data from
both vertical and horizontal directions. Similarly, all PEs can
be connected in temporal architectures in one of two ways:
1-D array or 2-D array. Data is received from the global buffer
by the PEs in a 1-D array architecture, which are arrayed in
one dimension. A 2-D array architecture has PEs that are
arrayed in two dimensions and receive data only from the
global buffer.

E. ROOFLINE MODEL

The roofline model is basically a visual performance
model intended for floating point computations and mul-
ticore architectures [212]. The roofline model relates peak
performance provided by the hardware platform and off-
chip memory traffic with system performance. For a
given compute-to-communication (CTC) ratio, the maximum
attainable performance is the minimum of (1) peak com-
putational performance and (2) peak memory performance.
Here, the CTC ratio, also called operational intensity, means
operations per byte of DRAM traffic. Eq. (5) formulates
the attainable performance of an application on a specific
hardware platform.

Attainable Performance
Peak Floating Point Performance

n 5
Peak Memory Bandwidth x CTC ratio ©)

= mi

The roofline model is illustrated in Fig. 9. Algorithm
2 inFig. 9 has a better CTC ratio than Algorithm 1.
As a result, Algorithm 2 performs better than Algorithm
1 because it effectively utilizes all of the hardware com-
putation resources. In contrast, Algorithm 1 under-utilizes
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hardware computation resources due to inefficient off-chip
communication.
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FIGURE 9. Roofline model, adopted from [222].

lIl. FPGA-BASED ACCELERATORS

The FPGA-based neural network accelerators are increas-
ingly favored over CPUs because of their higher effi-
ciency [164]. FPGA supports parallelism and accelerates the
computations by mapping them to the parallel hardware;
i.e., multiple DNN structures are executing in parallel on
FPGA. FPGA-based accelerators deliver up to several orders
of magnitude speedup compared to the baseline CPU [85].
FPGAs give designers the freedom to implement only the
required logic in the hardware based on the target application.
FPGA-based DNN accelerator architectures mainly contain
a host computer and an FPGA part to implement DNN
algorithms.

In this section, we would like to review FPGA-based
DNN accelerators, which can be broadly categorized into
three types: accelerators for a specific application, such
as speech recognition, object detection, natural language
processing, etc., accelerators for a specific algorithm, such as
CNN, RNN, etc., and accelerator frameworks with hardware
templates. For the first two categories, the design complexity
of the accelerator is low, whereas the design complexity is
relatively high for the final category.

A. ACCELERATORS FOR A SPECIFIC APPLICATION

There exists many FPGA-hardware accelerators for specific
applications. Designing a custom accelerator for a given
application is a good fit for the problem and has a low
design complexity. Han et al. [102] proposed the FPGA-based
accelerator named efficient speech recognition engine (ESE)
to implement the LSTM algorithm for speech recognition.
Load-balanced sensing pruning method is used in the
proposed design to compress the LSTM model. The proposed
accelerator uses a framework named Kaldi to implement
LSTM algorithm for speech recognition. The ESE has a
performance of 282 GOPS and is implemented in a Xilinx
XCKUO060 FPGA running at 200 MHz. The implementation
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of speech recognition algorithms using FPGA-based acceler-
ators is also presented in several earlier studies [62], [112],
[137], [199].

Wang et al. [209] proposed a reconfigurable YOLOv3
FPGA hardware accelerator for object detection. In this
context, YOLOV3 (You Only Look Once, Version 3) is a real-
time object detection algorithm that detects specific objects in
images or videos. The proposed accelerator is built using the
ARM + FPGA architecture. Experiment results show that the
FPGA-based YOLOvV3 accelerator consumes less energy and
achieves higher throughput than the GPU counterpart. The
proposed accelerator is compatible with several frameworks,
such as Tensorflow, Caffe, PyTorch, etc. The proposed
accelerator is implemented on Xilinx ZCU104 running at a
frequency of 300 MHz. Several previous works [82], [148],
[161] also used the FPGA to implement object detection
algorithms.

Hamza et al. [125] proposed the FPGA-based acceler-
ator named NPE to efficiently implement various Natural
Language Processing (NLP) models. NPE provides a single
framework for processing arbitrarily complex nonlinear func-
tions with software-like programmability. NPE consumes 4 x
and 6x less power than CPU and GPU. NPE is implemented
on the Xilinx Zynq Z-7100 FPGA running at a frequency
of 200 MHz.

Serkan et al. [184] developed an FPGA-based CNN accel-
erator to classify malaria disease cells. The proposed acceler-
ator is implemented on Xilinx Zynq-7000 FPGA running at
a frequency of 168 MHz. The proposed accelerator achieves
an accuracy of 94.76%. Zhu et al. [228] proposed an FPGA-
based accelerator to recognize liver dynamic CT images.
Xiong et al. [217] developed an FPGA-based CNN accel-
erator to improve the automatic segmentation of 3D brain
tumors. FPGA-based accelerators are also used to implement
various applications such as autonomous driving [105], [129],
image classification [45], [70], fraud detection [128], cancer
detection [186], etc. Table 2 summarizes the reviewed FPGA-
based accelerators for specific applications.

B. ACCELERATORS FOR A SPECIFIC ALGORITHM

A prominent topic of research in the realm of accelerators is
the use of FPGA-based accelerators for a particular neural
network algorithm. Since the accelerator is intended to
address a specific problem, its operation typically requires
minimal adjustments to a few parameters to operate effec-
tively. Cloutier et al. [65] proposed a hardware accelerator,
referred to as Virtual Image Processor (VIP) to implement
the CNNs. The Altera EPF81500 FPGA platform is used
to implement the proposed design. VIP primarily consists
of Processing Elements (PEs) connected by a 2-D systolic
architecture and supports the SIMD paradigm. VIP is
designed to perform the following vector and matrix oper-
ations: matrix multiplication, matrix-vector multiplication,
scalar multiplication, matrix addition, matrix-vector addition,
vector addition, 1-D convolution, 2-D convolution, etc. The
host computer is used to provide the configuration data to
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the FPGA board, which is connected through Peripheral
Component Interconnect (PCI) interface. VIP uses the low
accuracy arithmetic because of the limitations of resources on
Altera EPF81500 FPGA. Fortunately, recent FPGAs contains
large numbers of computing units and memory resources and
allow fast CNN implementations. FPGA implementations
of DNNs mainly focused on accelerating the convolution
operations, which are reported in [38] and [49].

Farabet et al. [85] presented ConvNet Processor (CNP):
an FPGA-based accelerator to implement the CNNs. CNP
uses dedicated hardware convolver for the data processing
and also uses soft-processor for controlling. CNP is designed
on the Virtex4 SX35 FPGA and also equipped with external
memory to store the input and filter coefficients. CNP
consists of Vector Arithmetic and Logic Units (VALU), one
of the main components in the architecture that implements
the CNN operations viz. 2-D convolutions, sub-sampling, and
non-linear activation functions. The implementation of 2-D
convolution, represented using Eq. (6), is shown in Fig. 10 for
K = 3,i.e.3 x 3 kernel. In Eq. (6), x;; is the data in the input
plane, wy,;, is the weight value in K x K kernel, y;; is the partial
sum, z;; is the result in the output plane, and W is the width of
the input image. At each clock cycle, the convolution module
performs k2 multiply-accumulate operations simultaneously.
CNP uses the First In First Out (FIFO) buffers between the
external memory and FPGA to provides the continuous flow
of data in both directions. CNP uses the 32-bit soft processor
that provides the macro instructions, generally higher level
instructions than most traditional processors, to the VALU for
implementing the basic CNN operations. CNP has a compiler
that converts network implementations with Torch directly
into CNP instructions. The proposed architecture has been
used to implement the face detection system.
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FIGURE 10. 2-D convolution module for 3 x 3 kernel, adopted from [85].

Sankaradas et al. [182] presented a massively parallel
co-processor for accelerating CNNs. This co-processor is
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TABLE 2. Summary of FPGA-based accelerators for specific application.

Application %1:)1: FPGA Device ggg‘;ncy Year
Speech recognition [112] CNN Fudan Micro - 2022
Object detection [209] CNN Xilinx ZCU104 300 2021
Natural Language Processing [125]  CNN Xilinx Zynq Z-7100 200 2021
Liver CT image recognition [228] CNN - - 2021
Image classification [45] CNN Xilinx xc7vx980t 225 2021
Fraud detection [128] CNN Xilinx Zynq 7000 - 2021
Brain tumor segmentation [217] CNN Xilinx Alveo U280 - 2021
Object detection [148] CNN Intel Arria 10 GX1150 240 2020
Object detection [161] CNN Xilinx VC707 200 2019
Malaria disease cell detection [184] CNN Xilinx Zyng-7000 168 2019
Autonomous driving [105] DNN Xilinx Ultra96 - 2019
Object detection [82] CNN Xilinx ZC706 100 2018
Autonomous driving [129] CNN Xilinx Zynq 7020 100 2018
Image classification [70] CNN Xilinx ZC702 100 2018
Speech recognition [102] LSTM Xilinx XCKU060 200 2017
Cancer detection [186] MLPNN  Xilinx XC5VLXS0TFFT1136 - 2016
Speech recognition [137] LSTM Xilinx XC7Z045 100 2016
Speech recognition [199] - Altera DE2-115 50 2015
Speech recognition [62] - Xilinx ML402 100 2010

designed using the Virtex5 LX330T FPGA platform and
four DDR2 (Double Data Rate 2) memory banks totalling
1 GB. The proposed co-processor mainly consists of clusters
of Vector Processing Elements (VPE) connected in parallel.
Each cluster consists of 2-D convolver units, sub-samplers,
Look-Up Tables (LUT) and performs convolution, pooling,
and non-linear functions. The co-processor is coupled with
DDR2 memory banks to store the intermediate data. Each
VPE in the proposed co-processor exploits parallelism by
supporting SIMD stream. The primitive 2-D convolver of
the proposed design is shown in Fig. 11. It contains k x k
convolution units along with k> + k VPEs, and the
final column of VPEs is used to add partial results. The
coprocessor operates in collaboration with a host, which can
control the coprocessor through an Application Programming
Interface (API). The proposed design uses low precision
data representation to improve the throughput and memory
bandwidth. The proposed architecture has been used to
implement the full face recognition application using CNN
with four convolution layers. The proposed accelerator
can not be used to realize the full CNNs, which contain
convolution and fully connected layers. Graf et al. [93] used
a similar approach to accelerate the Support Vector Machines
(SVM) and the proposed design contains VPEs instead of
VPE clusters. But the accelerator proposed in [93] provides
low performance while accelerating DNNs compared to the
co-processor proposed in [182].

A programmable parallel accelerator called MAPLE is
presented in [47] to accelerate the several learning and
classification algorithms such as Support Vector Machine
(SVM), K_means, CNN, etc. MAPLE contains hundreds
of simple PEs arranged in a 2-D grid fashion as shown
in Fig. 12 MAPLE can be used to perform vector and
matrix operations in parallel. In MAPLE, each PE has
local storage to perform the computations efficiently. Each
PE has two operands; one operand comes from its local
storage, and another operand comes from the PE on its left,
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FIGURE 11. 2-D convolver unit of CNN co-processor, adopted from [182].

see Fig. 12. Furthermore, the output of each PE is connected
to the PE on its right. The PEs are arranged as clusters,
where each cluster has a separate off-chip memory block
that creates independent data streams for memory-processor
computations. MAPLE processing core can be organized as
H clusters, and each cluster contains M PEs. So, the total
number of PEs in MAPLE core equals H x M. MAPLE
also uses smart memory banks to process the intermediate
data and to perform secondary reduction operations such
as, aggregation, finding minimum or maximum, and array
ranking. Authors developed a tool to map the applications
on the MAPLE. For the given input matrices and reduction
functions, the tool generates the assembly code needed to
program MAPLE. The authors created a C+4 simulator
that estimates how long MAPLE will take to execute from
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the input assembly code and an architectural configuration
file that details the processor layout and off-chip memory
architecture. MAPLE processor is connected to the host
computer through Peripheral Component Interconnect (PCI).
MAPLE is implemented on Xilinx Virtex 5 SX240T FPGA
with 512 PEs organized as 2 cores, 32 chains per core,
and 8 PEs per chain. The experimental results show that
MAPLE with 512 PEs is 1.5 to 10 times faster than a quad-
core Xeon processor with a clock frequency of 2.5 GHz
despite running at 125 MHz.
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FIGURE 12. MAPLE's processing core architecture, adopted from [47].

Chakradhar et al. [51] presented a dynamically reconfig-
urable architecture for CNNs on Virtex 5 FPGA platform.
The proposed system consists of a dynamically configurable
CNN (DC-CNN) processing core and three bank memory
sub-system. The DC-CNN processing core continuously
communicates with the host computer that executes the main
application. In the proposed accelerator, the host computer
transfers the complete CNN structure and input images to the
co-processor. The DC-CNN processing core, responsible for
executing CNN applications, mainly contains computational
units (2-D convolvers), subsampling, and non-linearity units,
adders, input and output switches, as shown in Fig. 13.
The co-processor uses the three bank memory sub-system to
store input images, kernels, and intermediate data. The DC-
CNN uses the Torch7 [66] software for CNN implementa-
tion. The proposed dynamically reconfigurable architecture
supports ““inter-output” and ‘“‘intra-output” parallelism. The
performance of the proposed dynamically reconfigurable
architecture with 20 convolvers, 128-bit memory port width is
4 to 8 times faster than CNP presented in [85]. The proposed
architecture can be used to accelerate CNN with only three
convolutional layers. The proposed accelerator is not capable
of realizing the full CNNs, which contain convolution and
fully connected layers.

A CNN accelerator, referred to as NeuFlow is proposed
in [84]. NeuFlow is implemented on a Xilinx Virtex 6 FPGA
platform. NeuFlow contains a 2-D grid of Processing Tiles
(PTs), as shown in Fig. 14. A PT contains a bank of
processing operators where an operator can be anything from
memory (FIFO) to an arithmetic operator. All the operators
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FIGURE 13. DC-CNN co-processor architecture, adopted from [51].

are connected to a local data line using reconfigurable routes.
A multiplexer connects the local data line to a global data
line by which a PT is connected to the four neighbouring
PTs. Data is transferred from the off-chip memory to the tiles
using a Smart Direct Memory Access Module (Smart DMA).
The control unit configures each tile for the computation
and connections between the tiles. Data streams from the
Smart DMA are processed in tiles, and the results are passed
to the neighbouring tiles, or back to the Smart DMA. This
2-D grid can be used to perform arbitrary computations
on streams of data and plain unary operations to complex
nested operations. Using FIFOs input/output flow can be
managed, and operators can easily be cascaded and connected
across tiles. The NeuFlow accelerator uses a compiler named
luaFlow to process CNNs. The luaFlow compiler converts
high-level data flow graph representations of deep learning
algorithms in the Torch5 environment into machine code
for NeuFlow. The proposed accelerator has been used to
implement a real-time street scene parser.

Peeman et al. [169] presented a memory-centric design
method for CNN accelerator. The proposed memory-centric
accelerator is implemented on a Virtex 6 FPGA board.
This accelerator minimizes the bandwidth requirements by
exploiting the data reuse in complex access patterns. The
memory-centric accelerator uses the loop transformation and
Block RAM (BRAM)-based multi-bank on-chip buffers to
maximize the efficiency of on-chip memories for better data
locality. The memory-centric accelerator uses SIMD type
of PEs to accelerate the convolutional layers. The proposed
accelerator design mainly focused on the maximization of the
reuse of on-chip data. The proposed accelerator is connected
to a MicroBlaze host processor and is communicated through
Fast Simplex Link (FSL) connections. Vivado HLS tool is
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FIGURE 14. 2-D grid of Processing Tiles (PTs) in NeuFlow architecture,
adopted from [84].

used to map the CNNs on the proposed accelerator, which
enables the user to use the high-level accelerator description
in C and to use HLS directives to specify the hardware
configuration. The performance of the proposed accelerator
will be improved with the use of the DMA controller.

In [171], an accelerator for DNNs is introduced, and it
is implemented on the Xilinx Kintex 7 FPGA platform.
It is built using a set of Neural Processing Units (NPUs),
see Fig. 15. The number of NPUs in the proposed design
depends on the available FPGA resources. NPUs are mainly
used to compute the majority of operations (multiplications
and additions) in parallel. A multiply and accumulate (MAC)
unit and control logic are the essential components of each
NPU. The proposed accelerator utilizes the available FPGA
resources efficiently by using pipelined architecture, time
division multiplexing (TDM) processing scheme, and page-
mirror algorithm. In the proposed accelerator, NPUs get
the inputs from the host computer through the Ethernet
interface, and weight coefficients are fetched from page
mirror memory. The serializer sends the output of NPUs to
the activation function blocks. For each sample, the proposed
accelerator requires a long time to transfer the appropriate
weight coefficient from the host computer to the accelerator
core.

A scalable and low-power accelerator referred to as neural
network next (nn-X) is presented in [91] to accelerate the
DNNs. The nn-X accelerator mainly contains a co-processor,
a host processor, and external memory as shown in Fig. 16.
The host processor controls the input and configuration
data transfer to the coprocessor, parses the DNN, and
converts it into instructions for the coprocessor. The co-
processor mainly contains an array of processing elements
called collections, configuration bus, and memory router.
The collections in the nn-X accelerator are mainly composed
of convolution engines, pooling modules, and non-linear
operators and are used to perform the most common CNN
operations, such as convolution, sub-sampling, and activation
functions. The memory router in the nn-X accelerator is
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FIGURE 15. NPU-based neural network accelerator architecture, adopted
from [171].

used to transfer the data between the processing elements
and the external memory, which provides independent data
streams. The proposed architecture uses the weight stationary
dataflow to improve energy efficiency. The nn-X accelerator
is implemented using the Xilinx ZC706 platform, which has a
dual ARM Cortex-A9 processor, Xilinx Zynq XC7Z045 chip,
and 1 GB DDR3 memory. The experimental results show that
the nn-X can achieve a peak performance of 240 GOPS.
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programmable logic
controller

external
memory

ARM
processors
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coprocessor bus  32-bit off-chip bus  64-bit on-chip bus 32/64 bit on-chip bus 32-bit config bus

FIGURE 16. Architecture of nn-X system, adopted from [91].

Zhang et.al. [222] proposed a roofline-based model [212]
to implement CNNs on FPGAs. The authors analyzed the
throughput and required bandwidth for a given CNN design
using various optimization techniques, such as loop tiling
and loop transformation. With the help of the roofline
model, they identified the solutions with the best performance
and lowest FPGA resource requirement. This roofline-based
model optimizes both the memory accesses as well as
computations in the convolutional layers. The accelerator
design is implemented with the Vivado HLS tool, which
enables the accelerator implementation in C language.
The proposed accelerator achieves a maximum throughput
of 61.62 GFLOPS (Giga Floating-point Operations Per
Second).
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Implementing DNN in embedded devices is tough due
to resource and power constraints. In this regard, authors
in [172] have developed novel FPGA-based accelerators for
implementing trained and fully connected DNNs. Since it
is difficult to map a DNN with a large number of neurons
and corresponding weights, directly onto an FPGA, the
authors in [172] used a time division multiplexing scheme.
Batch processing is used in the proposed architecture,
which distributes different weights over many input samples.
In addition, the suggested accelerator employs a pipelined
architecture to make the most of the FPGA resources while
staying within power and resource limits. The concept
of pruning has also been incorporated into the proposed
architecture to reduce data transfer from the external memory
to the accelerator [173]. Both Batch processing and weight
pruning can enhance the throughput of DNN accelerators.

Qiu et al. [177] proposed FPGA based CNN accelerator,
which will efficiently accelerate all the layers of CNN,
including the fully connected layers. The proposed acceler-
ator improves bandwidth and resource usage by employing
a dynamic-precision data quantization method and a unique
design of the convolver hardware module. The proposed
accelerator applies singular value decomposition (SVD) on
weight coefficients to minimize the memory footprint at the
fully connected layer. The convolver hardware module can
be used for both convolutional and fully connected layers
to reduce resource consumption. The adder tree, convolver
complex, non-linearity, max-pooling, bias shift, and data shift
are the main elements of the convolver hardware module,
as shown in Fig. 17. Convolutions and fully connected layer
operations are both performed using the convolver complex
module. The max pooling action is carried out using the max-
pooling module. CNN’s non-linearity function is calculated
using the non-linearity module. The convolver complex
module generates partial sums, which are added by the adder
tree. Finally, for dynamic quantization, bias shift and data
shift modules are used. The proposed accelerator supports the
Caffe deep learning framework. The proposed accelerator has
been implemented on the Xilinx Zynq platform.
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FIGURE 17. Convolver architecture, adopted from [177].

Controller

Wang et al. [208] proposed a scalable design called Deep
Learning Accelerator Unit (DLAU) for accelerating deep
learning algorithms. DLAU utilizes the tiling technique to
produce a scalable architecture. The proposed accelerator
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mainly contains modules such as DMA, embedded processor,
DLAU, and DDR3 memory controller as shown in Fig. 18.
The DLAU module mainly contains three processing units,
viz. Partial Sum Accumulation Unit (PSAU), Tiled Matrix
Multiplication Unit (TMMU), and Activation Function
Acceleration Unit (AFAU). TMMU is used to perform
multiplication operations and also generate partial sums.
PSAU is used to add the partial sums derived from TMMU.
Finally, AFAU is used to perform the non-linear activation
functions, for instance, the sigmoid function. The DLAU
module reads the tiled input data through the DDR3 memory.
The embedded processor provides the programming interface
to the users and communicates with DLAU via JTAG-UART.
The proposed architecture is implemented on Xilinx Zynq
Zedboard with ARM Cortex-A9 processors operating at
667 MHz.

Control Bus (AXI-Lite

FIGURE 18. DLAU accelerator architecture, adopted from [208].

Lian et al. [140] proposed a block-floating-point (BFP)
arithmetic-based CNN accelerator for DNN inference. The
proposed accelerator mainly contains three elements: Pro-
cessing Array (PEA), on-chip buffer, and external memory,
as shown in Fig. 19. The onboard DDR3 modules receive
input data and network parameters from the host computer
via PCIe3.0 x 8. Conv PEA performs the convolutional
operations, and FC PEA performs the fully connected
layer operations. The proposed accelerator uses 8-bit and
16-bit formats to represent the feature maps and modal
parameters (activations and weights), which can reduce
off-chip bandwidth and memory compared to the 32-bit
floating point counterpart with only a tiny accuracy loss.
The accelerator design is implemented with the Vivado
HLS tool, and the proposed BFP arithmetic is conducted
on the Caffe [119] scheme. The proposed accelerator is
implemented on the Xilinx VC709 evaluation board, running
at a frequency of 200 MHz, and achieves a throughput of
760.83 GOP/s.

Xiao et al. [216] presented the DNN accelerator architec-
ture specially designed for the sparse and compressed DNN
models. The proposed DNN accelerator mainly contains
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FIGURE 19. Block diagram of BFP arithmetic-based CNN accelerator,
adopted from [140].

a PE array, RLC encoder, controller, and on-chip buffers,
as shown in Fig. 20. In the proposed DNN accelerator, all
the weights and non-linear activation functions are kept in
Run-length Coding (RLC) compressed form and are stored in
off-chip DRAM memory. The PE array contains 64 PEs and
performs the multiply-accumulate (MAC) operations of the
fully connected layer. The proposed accelerator uses a novel
circuit-level processing scheme to process the sparse data
directly in the compressed domain without decompressing,
which leads to improvement in efficiency and performance.
The circuit-level process scheme used in this architecture is
dataflow independent, and thus, applies to both CNN and
fully connected layers. In this architecture, a new dataflow
is proposed to facilitate the reuse of input activations across
the fully connected layers, which leads to exploits parallelism
and maximizes the utilization of PEs. In this work, the Xilinx
Vivado HLS toolchain is used to convert C code to RTL
implementation, and then Xilinx SDSoC is used to compile
the source code to generate the bit stream. The proposed
architecture is implemented on the Xilinx Virtex-7 FPGA
platform and achieves the performance of 1.34 GOP/s.
Ahmed et al. [81] proposed an FPGA-based Low Power
CNN (LP-CNN) accelerator based on GoogLeNet CNN. The
proposed accelerator uses quantization and weight pruning
techniques to reduce memory size. The LP-CNN accelerator
is a time-sharing processor designed to process the CNN
model layer by layer, and it enables pipelining. The proposed
accelerator only uses the on-chip memory to store the
activations and weights instead of offline DRAM memory.
Moreover, the proposed architecture replaces multiplication
operations with shifting operations and uses no DSP units.
The LP-CNN accelerator is implemented in Verilog RTL,
and the Vivado power analyzer has been used to calculate
the power. The experimental results show that the LP-CNN
accelerator provides 49.5 and 7.8 times power improvement
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FIGURE 20. DNN accelerator architecture proposed in [216], adopted
from [216].

over the Intel Core-17 and NVidia GTX 1080Ti, respectively.
The proposed accelerator has been implemented on the
Virtex-7 FPGA running at a frequency of 200 MHz.

The low-power, energy-efficient FPGA-based accelerator
is presented in [116] to accelerate the LeNet CNNs. The
proposed accelerator uses 8-bit, 16-bit, and 32-bit fixed point
formats to represent the weights, activations, and biases,
respectively. The proposed accelerator supports pipelining
and implements LeNet with the minimal resources possible
without affecting the throughput. This work uses the Xilinx
Vitis HLS tool to convert the C++ code to RTL implementa-
tion. The proposed accelerator is implemented on the Nexys
DDR 4 FPGA evaluation board and achieves a throughput of
14K images/sec while using just 628 mW of power.

An FPGA-based dynamically reconfigurable architecture
is presented in [117] to accelerate neural networks. Dynamic
Partial Reconfiguration (DPR) is used in the proposed
accelerator to realize different types of neural network
architectures. Dynamic Partial Reconfiguration (DPR) allows
the proposed architecture to switch between networks and
applications without sacrificing precision or throughput.
The proposed accelerator mainly contains a PE array and
configurable switches, as shown in Fig. 21. PE is a high-
level generic block that can implement the layers of a neural
network accelerator and has three predefined interfaces: data
interface, I/O interface, and memory interface. DPR allows
each PE to implement many functionalities with the same
hardware. Any PE can communicate with any other PE, CPU,
or I/O port of the FPGA through configurable switches. The
hard/soft processor controls all PE connections using the
memory interface. This work uses the Xilinx Vitis HLS tool to
convert the C++ code to RTL implementation. The proposed
accelerator is implemented on the Xilinx Zynq 7020 FPGA
board.

Gowda et al. [92] proposed an FPGA-based reconfig-
urable convolutional neural network (RCNN) accelerator.
Unlike the existing structures, the RCNN accelerator con-
tains configuration registers to reconfigure the architecture
according to the configuration instructions stored in the
Double Data Rate (DDR), as shown in Fig. 22. The image

131801



IEEE Access

P. Dhilleswararao et al.: Efficient Hardware Architectures for Accelerating Deep Neural Networks: Survey

AXI STREAM (DATA INTERFACE)
<—>  AXI4 (MEMORY INTERFACE)

<—> GPIO (/O INTERFACE)

AXI STREAM SWITCH

v
X

1/0 MUX

AXI
LITE
CROSSBAR

HARD/SOFT
PROCESSOR

FPGA

‘ GPIOs }«

FIGURE 21. Accelerator architecture proposed in [117], adopted
from [117].

and weight buffers are updated with input feature maps and
weights. The PE arrays perform the convolution operations,
whereas the special function buffer performs pooling, Batch
Normalization (BN), and activation functions. The proposed
accelerator uses the SOW (sparse optimization of weight) and
CO (convolutional optimization) optimizations to reduce the
sizes of weights and feature maps, respectively, which also
minimizes the number of hardware resources needed. The
proposed accelerator uses 16-bit, 8-bit, and 4-bit fixed point
formats to represent the feature maps, convolution (CONV)
layer weights, and fully connected (FC) layer weights,
respectively. This work uses the Xilinx Vivado HLS toolchain
to convert C++ code to RTL implementation. The proposed
accelerator is implemented on Xilinx Zynq 7020 FPGA
board.

Table 3 summarizes the reviewed FPGA-based accelera-
tors for a specific algorithm. The year the accelerator was
introduced, the deep learning model used, the FPGA platform
used, the precision used for input feature maps and weights,
the clock frequency, the number of resources available in
terms of DSPs, LUTs, BRAMs, and FFs, the percentage of
resources utilized, the performance in GOPS, and finally, the
power efficiency (GOPS/W) are all listed for each accelerator.
Fig. 23 shows the power efficiency and throughput of various
FPGA-based accelerators listed in Table 3.

C. ACCELERATOR FRAMEWORKS WITH HARDWARE
TEMPLATES

Several frameworks for mapping AI models onto FPGAs
have been developed in recent years. Venieris et al. [206]
developed a framework called fpgaConvNet to map CNNs
on FPGAs. The fpgaConvNet framework employs the
synchronous dataflow (SDF) paradigm to capture the CNN
workloads. The processing flow of fpgaConvNet is shown
in Fig. 24. Firstly, the Deep Learning expert uses a domain-
specific language to provide a high-level description of a
ConvNet architecture as well as information on the target
FPGA-based platform as inputs. The ConvNet description is
passed through a DSL (Domain-Specific Language) proces-
sor, which parses the input script and populates the ConvNet’s
semantic model as a Directed Acyclic Graph (DAG), and also
extracts platform-specific resource constraints. The ConvNet
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DAG is converted into an SDF hardware intermediate
format, which corresponds to an utterly parallel hardware
implementation. After several transformations on ConvNet’s
SDF hardware model, the design space is searched, and
this procedure provides a set of hardware mappings of
the ConvNet onto the specific FPGA-based platform. The
fpgaConvNet front-end parser can examine models written
in the Caffe and Torch machine-learning libraries. This
framework accomplishes efficient design space explorations
through graph segmentation, reconfiguration, folding, and
weight reloading. This framework can be used to map small
CNN models, for instance, LeNet-5 on FPGAs.

Wang et al. [211] developed a design automation tool
referred to as DeepBurning that contains a library of building
blocks that mimic the behavior of typical neural network
components. The general design flow of the DeepBurning
framework is shown in Fig. 25. The DeepBurning Neural
Network Generator (NN-Gen) takes a model descriptive
script ( Caffe-compatible script) as input, which describes a
high-level view of network topology and layer definition. The
DeepBurning NN-Gen also takes user-specified constraints
such as area and power as input. DeepBurning NN-Gen
consists of a hardware generator and compiler that generate
the control flow and data layout based on the user’s
specifications. The DeepBurning automation tool’s hardware
generator builds a neural network architecture for a given
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TABLE 3. Summary of FPGA-based accelerators for specific algorithm.

Frequency . LUT Type Resources Resource Utilization Performance ~ Power Efficiency
Accelerator Name Year DNN Type FPGA Platform Precision
(MHz) (# inputs) BRAMs LUTs FFs DSPs  BRAMs LUTs FFs DSPs (GOPS) (GOPS/W)
VIP [65] 1996 CNN Altera EPF81500 16 fixed point 4 N/A 1500 1,500 N/A N/A N/A N/A
CNP [85] 2009 LeNet-5 Virtex4 SX35 200 16-bit fixed point 4 192 30720 30720 192 N/A 90% 90% 28% 525 0.35
Parallel coprocessor for CNN [182] 2009 CNN Virtex5 LX330T 115 16-bit fixed point 6 324 207360 207360 192 0.93% 17% 19.05%  55.73% 6.74 0.61
MAPLE [47] 2010 CNN Virtex5 SX240T 125 fixed point 6 516 149760 149760 1056 N/A 7 N/A
DC-CNN [51] 2010 CNN Virtex5 SX240T 120 48-bit fixed point 6 516 149760 149760 1056 N/A 16 114
NeuFlow [84] 2011 CNN Virtex6 VLX240T 200 16-bit fixed point 6 416 150720 301440 768 N/A 147 14.7
Memory- Centric Accelerator [169] 2013 CNN Virtex6 VLX240T 150 fixed point 6 416 150720 301440 768 45.50% 1.10% N/A 6% 17 N/A
NPU based Accelerator [171] 2014 DNN Xilinx Kintex 7 N/A float point 6 1590 254200 508400 1540 N/A N/A N/A
nn-X [91] 2014 CNN Zynq XCTZ045 142 16-bit fixed point 4 545 218600 437200 900 N/A 23.18 29
Roofline based Accelerator [222] 2015 AlexNet Virtex7 VX485T 100 32-bit float point 4 2060 303600 607200 2800 50% 61.30%  33.87% 80% 61.62 331
Embedded FPGA Accelerator [177] 2016 VGG-16 Zynq XC7Z045 150 16-bit fixed point 4 545 218600 437200 900 86.70%  83.50%  29.20%  89.20% 136.97 14.22
DNN Acceleration using 2016 DNN Zyng-7000 100 16-bit fixed point 6 280 53200 106400 220 N/A N/A N/A
Batch Processing [172]
DLAU [208] 2017 DNN Zynq XC7Z020 200 48-bit float point 6 280 53200 106400 220 12.50%  68.40%  26.60%  75.90% N/A N/A
DNN Acceleration using Batch 2018 DNN ZedBoard 100 16-bit fixed point 6 280 53,200 106,400 220 N/A 4.48 N/A
Processing and Pruning [173]
BFP arithmetic-based 2019 VGG-16 Xilinx VC709 200 8-bit BFP (feature maps) 6 1470 433200 866400 3600 62.1% 53.5% 16.3% 28.5% 760.83 82.88
Accelerator [140] 16-bit BFP (weights and activations)
Accelerator for Space DNN [216] 2021 AlexNet/ Xilinx Virtex7 200 16-bit fixed point 6 1470 433200 866400 3600 N/A 1.34 53.14
VGG-16
LP-CNN [81] 2021 GoogLeNet Virtex-7 VC709 200 12-bit fixed point 6 1470 433200 866400 3600 T7% 94% 10% 0% 129.2 327
Energy-efficient CNN Accelerator [116] 2021 LeNet Xilinx Artix XC7A100T 125 8-bit fixed point (weights) 6 135 63400 126800 240 21.48% 25.16% 13.93% 50% N/A N/A
16-bit fixed point (activations)
32-bit fixed point (biases)
Dynamically Reconfigurable Architecture [117] 2022 CNN, SNN Xilinx Zyngq 7020 200 N/A 6 280 53200 106400 220 N/A N/A N/A
RCNN Accelerator [92] 2022 AlexNet Xilinx Zynq 7020 200 16-bit fixed point (feature maps) 6 280 53200 106400 220 N/A N/A N/A
VGG-16 8-bit fixed point (CONV layer weights)
VGG-19 4-bit fixed point (FC layer weights)
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FIGURE 23. Power efficiency and throughput of FPGA-based accelerators listed in Table 3.

network structure by selecting and instantiating blocks from
the library with the required interconnections. DeepBurning
supports a wide range of NN models and simplifies the
design flow of NN-based accelerators for machine learning
applications.

A framework referred to as DNNWeaver is presented
in [187] that generates bitstream and host code to implement
DNNs on various FPGA boards. DNNWeaver employs
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Caffe as its programming interface. DNNWeaver consists of
three software components: translator, design weaver, and
integrator. The translator transforms the Caffe specification
of a DNN into a macro data flow graph. Design weaver
accepts macro data flow graph as an input and generates
a synthesizable Verilog implementation of the accelerator
code. The integrator adds the memory interface code to
the accelerator code. DNNWeaver generates accelerator
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FIGURE 25. Design flow of DeepBurning framework, adopted from [211].

code from a series of scalable and customizable hand-
optimized template designs, resulting in high performance
and efficiency.

Guan et al. [95] proposed a framework called Field Pro-
grammable DNN (FP-DNN) to accelerate DNNs efficiently
on FPGAs. FP-DNN Framework is shown in Fig. 26. The
model description is generated by TensorFlow and is fed
into a Symbolic Compiler. The compiler generates a C++
program and an FPGA programming bit stream for model
inference, executed by the host and device, respectively.
Model mapper examines the model description, extracts the
target model’s topological structure and operations, and sends
the hardware kernel schedule and configuration to the code
generators. Software generator generates the host code in
C++ using the kernel scheduling. The host code is compiled
using a commercial C4+ compiler to create host programs.
Hardware generator creates device codes by instantiating
RTL-HLS hybrid templates based on kernel configuration.
The hardware code is compiled using commercial synthesis
tools to generate the programming files for the hardware
implementation. With a high-performance computing engine
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and well-designed communication-optimized algorithms,
FP-DNN performs model inference for DNNs.
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FIGURE 26. FP-DNN framework, adopted from [95].

DRAM

Umuroglu et al. [204] proposed FINN, a framework that
maps trained Binarized Neural Networks (BNNs) onto
an FPGA. FINN generates a synthesizable C4+ network
description of a flexible heterogeneous streaming architec-
ture. The architecture mainly contains pipelined compute
engines that communicate via on-chip data streams. Each
BNN layer has been implemented using dedicated compute
engines with 1-bit values for FMs and weights. To evaluate
FINN, the authors implemented CNV, a convolutional
network topology inspired by BinaryNet [68] and VGG-
16 [192], on a Xilinx Zyng-7000 FPGA board running
at 200 MHz to accelerate BNN inference.

Guo et al. [96] proposed a flexible and programmable
CNN accelerator, referred to as Angle-Eye, together with the
compilation tool and the data quantization scheme. The data
quantization scheme can be used to reduce the bit-width down
to 8-bit with insignificant accuracy loss. The compilation tool
is responsible for mapping a given CNN model efficiently
onto the hardware architecture. The proposed accelerator
supports the acceleration of various CNNs on different FPGA
platforms. The overall architecture of the Angel-Eye is shown
in Fig. 27. Angle-Eye accelerator mainly consists of a PE
array, controller, on-chip buffer, and external memory. The
PE array is used to perform the convolution operations,
and it supports three levels of parallelism: input channel
parallelism, kernel-level parallelism, and output channel
parallelism. The on-chip buffer can isolate the PE array
from external memory, allowing simultaneous convolution
and data I/O operations. All network parameters and the
results of each layer can be saved to external memory. The
controller is responsible for receiving, decoding, and issuing
instructions to the other three components and monitoring
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each component’s work status. Angle-Eye accelerator is
implemented on the Zynq XC7Z045 platform.
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FIGURE 27. Angel-Eye accelerator architecture, adopted from [96].

Zhang et al. [223] proposed a software/hardware co-design
library called Caffeine to accelerate CNNs efficiently on
FPGAs. The authors developed a uniform convolutional
matrix-multiplication representation for both convolutional
and fully connected layers. Caffeine synthesizes Caffe
models comprising convolutional layers and fully connected
layers for FPGAs. The Caffeine framework effectively
handles weights and biases reconfiguration in off-chip
DRAM to maximize the underlying memory bandwidth
utilization. The authors integrated the Caffeine with a deep
learning framework Caffe and implemented AlexNet and
VGG networks on multiple FPGA platforms, viz., Xilinx
KUO060 FPGA board, and Virtex7 690t FPGA board. Caffeine
achieved better energy efficiency than 12-core CPU and GPU
by 43.5 x and 1.5 X, respectively.

Ghaffari et al. [90] developed a general framework called
CNN2Gate, which allows mapping CNN models on FPGAs
with automated design space exploration. The CNN2Gate
overall architecture consists of an Open Neural Network
eXchange (ONNX) format parser, a design-space exploration
module, and leverages automated high-level synthesis is
shown in Fig. 28. CNN2gate can parse CNN models using
ONNX parser from several popular high-level machine
learning libraries, such as Caffe2, Keras, TensorFlow, etc.
The computation flow of network layers and their weights
and biases are retrieved in CNN2Gate, and a fixed-point
quantization is used. To undertake design space exploration
for deeply pipeline OpenCL kernels of CNN, the authors used
time-limited reinforcement learning.

Xilinx Vitis Al [32] is a framework for implementing
deep learning inference on Xilinx FPGAs and SoCs. It uses
an Intellectual Property (IP) core called the Deep Learning
Processor Unit (DPU) to implement ample essential functions
of deep learning on FPGAs, see Fig. 29. Xilinx Inc. released
the DPU, a programmable engine designed for DNNs. Xilinx
Vitis Al framework enables the compression of DNN models
without sacrificing accuracy and compiling DNN models
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FIGURE 28. CNN2Gate, adopted from [90].

into DPU instruction code before deploying them to the
target DPU platform. For efficient DNNs implementations,
the Xilinx DPU offers a tailored and scalable overlay with
ISA architecture. Xilinx Vitis Al framework supports various
frameworks such as Caffe, PyTorch, TensorFlow, etc., and
efficiently implements deep learning tasks, CNN, and RNN,
see Fig. 29. The internal architecture of the DPU contains
an Instruction Unit (IU), a Compute Array (CA), and a
Global Memory Pool (GMP). The 1U fetches the DPU
instructions associated with the model, decodes it, and drives
the PEs present in compute array. It also manages the
data/instructions transfer among the PEs and the memory.
The GMP acts as buffer for the input and output data as
well as intermediate output from the DPU, resulting in high
throughput [113]. The DPU can be configured to meet the
requirements of a specific CNN architecture, and the Vitis
Al stack contains all the necessary libraries to generate the
instructions for the DPU. The development flow is described
in Fig. 29, where a trained model is compiled using the Vitis
Al compiler. The Vitis Al tools provide a model quantizer
to reduce the precision of weights without losing accuracy.
An Xmodel file is generated by the Vitis Compiler consisting
of domain-specific instructions for the DPU unit, which are
used to configure the DPU. During inference, a Python script
running on the PS acts as the interface, and it is responsible
for transferring the data from the on-chip memory to the
DPU memory buffers. Examples of CNNs that have been
implemented using DPU include, but are not limited to, VGG,
ResNet, GooglLeNet, YOLO, SSD, MobileNet, and FPN.
Table 4 summarizes the reviewed FPGA-based accelerator
frameworks for the implementation of DNNss.
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TABLE 4. Summary of FPGA-based accelerator frameworks.

Framework Name Year  DNN Type Interface

Xilinx Vitis Al [32] 2022 CNN, RNN Caffe, PyTorch, TensorFlow,
CNN2Gate [90] 2020  Alexnet, VGG-16 Caffe2, Keras, TensorFlow
Caffeine [223] 2019  Alexnet, VGG-16  Caffe

Angle-Eye [96] 2018  VGG-16 Caffe

FP-DNN [95] 2017  VGG-19, Res-152  TensorFlow

FINN [204] 2017 CNV Caffe

DNNWeaver [187] 2016  LeNet, Siamese Caffe

DeepBurning [211] 2016  Alexnet, NiN Caffe

fpgaConvNet [206] 2016 CNN Caffe, Torch

IV. ASIC BASED ACCELERATORS
Application Specific Integrated Circuit (ASIC) is a powerful
platform to accelerate the DNNs. ASICs are customized
chips designed for a specific application. They are smaller
in size, consume less power, and provide higher speeds,
making them suitable solutions for DNN acceleration [76].
ASIC based hardware accelerators have limited computing
resources, memory resources, and I/O bandwidths compared
with GPU based accelerators, but they can achieve moderate
performance and consume less power [165]. Furthermore,
ASIC exhibits the best computation speed and energy effi-
ciency than GPU and FPGA at the cost of reconfigurability.
Many researchers are focused on building custom ASICs for
accelerating CNNs inference workloads to achieve the best
performance and energy efficiency. In this section, we would
like to review the recent ASIC-based DNN accelerators.
There are three broad types of ASIC-based DNN accel-
erators depending on how the architecture has been opti-
mized/designed: ALU (Arithmetic Logical Unit), Dataflow,
and Sparsity-based accelerators. The main building block,
the MAC unit (or an array of MAC units), in ALU-
based accelerators is modified to have ample computational
resources and flexibility to obtain the best performance with
varying bit accuracy. In dataflow-based accelerators, the
activations, weights, and partial sums are managed to reduce
the energy needed to move data within the chip and achieve
high arithmetic intensity. In Sparsity-based accelerators, the
unstructured sparse data is handled in such a way that the
matrix multiplication units (2-D array of MAC units) can
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prevent zero multiplications. The following sections provide
a comprehensive overview of ALU, Dataflow, and Sparsity-
based accelerators.

A. ALU BASED ACCELERATORS

NeuFlow is the ASIC based CNN accelerator presented
in [170] to accelerate the NNs and other ML algorithms. The
architecture of the proposed accelerator is the same as the
accelerator discussed in [84] and shown in Fig. 14, but is
implemented using IBM 45 nm Silicon-On-Insulator (SOI)
process. The NeuFlow accelerator uses a compiler named
luaFlow to process CNNs. The luaFlow compiler converts
high-level data flow graph representations of deep learning
algorithms in the Torch5 environment into machine code for
Neuflow. The proposed architecture provides higher power
efficiency and is suitable for vision-based applications, such
as autonomous vehicle navigation, driving assistance, etc.
The proposed architecture achieves the maximum throughput
of 320 GOPS with a power consumption of 0.6 W; in
contrast, the NeuFlow architecture implemented on Xilinx
Virtex6 FPGA presented in [84] has a maximum throughput
of 16 GOPS with power consumption of 10 W.

Chen et al. [53] proposed the ASIC-based hardware
accelerator, also called DianNao, to accelerate the large-
scale CNNs and DNNs. The proposed architecture provides
the quick and energy-efficient execution of the inference
of large-scale CNNs and DNNs. The architecture contains
the Neural Functional Unit (NFU), buffers, and control
processor (CP), see Fig. 30. The NFU module is used to
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perform the computations needed to determine the output
of the neuron in the fashion, i.e., in the first stage, NFU
performs the multiplication of input neuron values with
weight coefficients. In the second stage, NFU accumulates
these products using the adder trees. In the third stage,
NFU calculates the activation functions. Buffers are used
to store the input/output neuron values and weights. The
proposed architecture contains three buffers viz., an input
buffer to store the input neuron values (NBin), an output
buffer to store the output neuron values (NBout), and a third
buffer to store the weights (SB). Different computational
operators are invoked in each stage depending on the type
of the layer (convolution, activation function, pooling, etc.)
For architecture exploration, the author developed a C++
simulator that evaluates execution time and serves as a speci-
fication for the Verilog implementation. The Verilog version
of the accelerator is synthesized using Synopsys’ design
compiler, and the generated design is placed and routed
by Synopsys’ ICC compiler. The design is simulated using
Synopsys’ VCS, while PrimeTime PX is used to determine
the power. The proposed architecture was implemented using
65 nm CMOS technology. The experimental results show that
DianNao achieves an average performance of 452 GOPS with
485 mW of power consumption. The proposed accelerator
has scalability issues due to the bandwidth constraints of the
memory system. The DaDianNao accelerator [54] and [146]
are extensions of the DianNao accelerator [53]. DaDianNao
has enough on-chip memory to hold all of CNN’s weights.
DabDianNao also uses 16-bit fixed-point representation in the
inference process like DianNao. However, it is implemented
using 28 nm CMOS technology. The design compiler synthe-
sizes the Verilog version of the DaDianNao accelerator, and
the ICC compiler is used to generate the layout. The energy,
area, and critical path are obtained after the layout. The design
is simulated using VCS, while PrimeTime PX is used to
determine the power. The proposed architecture uses eEDRAM
to store all the data related to a CNN, i.e., input feature
maps, weight kernels, output kernels, etc. The DaDianNao
accelerator gives better performance while accelerating the
CNNs, but provides moderate to low performance while
accelerating large-scale CNNs.

Liu et al. [141] proposed the machine learning accel-
erator referred to as PuDianNao, that supports multiple
machine learning scenarios (e.g., regression, classification,
and clustering) as well as many machine learning techniques,
including k-means, k-nearest neighbors, linear regression,
classification tree, naive bayes, support vector machine, and
DNNs. The PuDianNao mainly contains various Functional
Units (FUs) and three types of data buffers: ColdBuf,
HotBuf, and OutputBuf, an instruction buffer (InstBuf),
and a DMA, and a control module, see Fig. 31. The FU
contains a Machine Learning Functional Unit (MLU) and
an Arithmetic Logic Unit (ALU). The MLU can be used
to perform several computational primitives, including dot
product, counting, sorting, distance calculations, non-linear
functions, for instance, sigmoid and so on. The ALU has an
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FIGURE 30. DianNao accelerator architecture, adopted from [53].

adder, divider, multiplier, and converters for the 16-bit float
to 32-bit float and 32-bit float to 16-bit float. It may also
be used to compute estimates using the Taylor expansion of
log (1-x). HotBuf (8 KB) and ColdBuf (16 KB) store the
input data with short and longer reuse distances, respectively.
OutputBuf (8 KB) is used to store the output data or
intermediate results. The authors implemented an in-house
C simulator of PuDianNao; it acts as a specification for the
Verilog implementation and also measures the performance
of PuDianNao on large-scale datasets. The design compiler
synthesizes the design, and the ICC compiler is used to
generate the layout. The energy, area, and critical path are
obtained after the layout. The design is simulated using
Synopsys VCS, and PrimeTime PX is used to determine
the power using the Value Change Dump (VCD) file. The
proposed architecture has been implemented using TSMC
65 nm CMOS technology.

)

\ Control Module \

DMA

FIGURE 31. PuDianNao accelerator architecture, adopted from [141].

Du et al. [78] proposed a CNN accelerator referred
to as ShiDianNao to improve the energy efficiency and
scalability of DianNao [53] design discussed above. The
ShiDianNao accelerator does not access the main memory
while executing a CNN and achieves more energy efficiency
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compared to DianNao. The design is implemented in Verilog
and synthesized by the design compiler, and IC compiler
is used to place and route the synthesized design. The
energy cost of DRAM accesses is calculated using CACTI
6.0 [159]. The ShiDianNao accelerator will not support
the acceleration of large-scale CNNs. The ShiDianNao
accelerator is implemented using 65 nm CMOS technology.
DianNao [53], DaDianNao [54], [146], PuDianNao [141],
and ShiDianNao [78] are not built utilizing reconfigurable
hardware, hence they cannot be adapted to changing
application demands such as NN sizes.

Lu et al. [145] proposed a flexible dataflow architecture
called FlexFlow to accelerate the CNNs, exploiting all kinds
of parallelisms viz., inter-kernel, intra-kernel, and inter-
output on a two-dimensional array of PEs. FlexFlow has
additional interconnections between on-chip memories and
PEs, which provides the flexibility to fetch any neuron
from any feature map. The proposed accelerator minimizes
the interconnections between the PEs at the cost of energy
because of data movement from on-chip memory to PEs.
In FlexFlow, all the PEs are operated in parallel, therefore,
helping in improving the overall throughput. The proposed
architecture has high scalability and supports different sizes
of CNNs with stable resource utilization. FlexFlow only
implements CNNs and is confined to within a layer rather
than across layers. The design is simulated, synthesized,
placed & routed using Synopsys’ tools. The FlexFlow
accelerator is implemented using TSMC 65 nm technology.

Hardik et al. [188] developed a bit-level dynamically
composable architecture called Bit Fusion for accelerating
DNNs. Bit fusion mainly consists of an array of bit-level
computation elements, called BitBricks, that dynamically
fuse to match the bit width of individual DNN layers and
execute DNN operations with the required bit width, without
any loss of accuracy. Furthermore, Bit Fusion supports
the multiplication of 2, 4, 8, and 16 bits spatially. Bit
Fusion decomposes a 16-bit multiplication into multiple
2-bit multiplications to achieve the flexibility to efficiently
map various layers of CNN with different bit widths and
minimize the computation and the communication with no
loss of accuracy. Bit Fusion architecture comes with an
Instruction Set Architecture (ISA) that minimizes the data
transfer and maximizes the parallelism in computations.
The proposed design is implemented in Verilog and is
synthesized using the Design Compiler, which estimates
the area, frequency, and power. The proposed accelerator
architecture is implemented on 45 nm CMOS technology. Bit
Fusion accelerator achieves 5.1x energy saving and 3.9x
speedup over Eyeriss accelerator.

Shin et al. [190] proposed Deep Neural Processing Unit
(DNPU) architecture to process CNNs and Recurrent Neural
Networks (RNNs). DNPU is a SIMD MAC-based CNN/RNN
accelerator that uses dynamic precision control to minimize
kernel data size. DNPU consists of a convolutional layer
processor (CP), a fully connected and RNN-LSTM layer
processor (FRP), and a RISC controller. CP performs
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convolutional operations, and FRP performs matrix multipli-
cation operations. DNPU is the first CNN/RNN accelerator
with the highest energy efficiency of 8.1 TOPS/W on 65 nm
CMOS technology. DNPU has some limitations; for instance,
its area limits the number of processing elements (PEs)
for convolutional layers (CL) and recurrent layers (CL).
As a result, performance was sub-optimal in cases that just
required CLs or RLs. Furthermore, DNPU only supports
a limited number of weight-bit precisions, such as 4 bits,
8 bits, or 16 bits. Lee et al. [133] proposed the Unified
Neural Processing Unit (UNPU) architecture to process
CNNs and RNNs. UNPU contains a bit-serial MAC unit
to perform the required computations. UNPU supports CLs,
RLs, and fully connected layers (FCLs) with fully-variable
weight bit-precision from 1 to 16 bits. UNPU achieves an
energy efficiency of 3.08, 11.6, and 50.6 TOPS/W for the
case of 16-bit, 4-bit, and 1-bit weights, respectively. UNPU
achieves 1.43 x higher energy efficiency than the DNPU for
convolutional layers with 4-bit weights.

B. DATAFLOW BASED ACCELERATOR

The accelerators based on dataflow put a special emphasis on
data management to minimize off-chip memory reads/writes.
When it is feasible, reusing parameters between layers can
enhance dataflow. For instance, in a convolutional layer, both
activations and weights can be reused. In a fully connected
layer, each neuron has a unique set of weights; as a result,
weights cannot be reused, but input data may. In order to
minimize data movement between a computing unit and
higher-level memory, the reusable parameters are kept in
local registers.

Cavigelli et al. [50] proposed the Origami CNN accel-
erator, which is scalable to different network sizes. The
proposed architecture uses the Weight Stationary (WS)
dataflow to improve energy efficiency during the acceleration
process. WS dataflow minimizes energy consumption by
maximizing the access of weight coefficients. WS dataflow
used in the Origami maximizes the convolution and filter
reuse of weights. The proposed accelerator was implemented
using UMC 65nm CMOS technology and having a core
area of 3.09 mm?. The proposed CNN accelerator can
achieve a throughput of 274 GOPS and a power efficiency
of 369 GOPS/W with an external memory bandwidth of
525 MB/S full-duplex. The proposed architecture is only used
to perform the convolution operation and is unsuitable for
implementing the fully connected layer operations.

Eyeriss [56] is an ASIC based CNN accelerator that
uses a row-stationary (RS) dataflow that minimizes data
movement energy consumption on a spatial computing
architecture. RS dataflow is adaptable to various CNN shapes
and minimizes energy consumption by reusing the filter
coefficients and input feature maps. The proposed accelerator
mainly contains a 12 x 14 PE array, feature map compression
units, and a 108 KB global buffer; ReLU as shown in Fig. 32.
The global buffer enables the reuse of loaded data from off-
chip DRAM and the generated results by PEs and is also
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responsible for returning the final results to the off-chip
DRAM. In the Eyeriss accelerator, the PEs are connected
via a Network on Chip (NoC). The NoC used in Eyeriss
only supports multi-cast. The authors proposed an analysis
framework for calculating the energy efficiency of various
CNN data flows under the same hardware constraints. The
proposed accelerator is implemented using 65nm CMOS
technology.
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' PE Array
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FIGURE 32. Eyeriss DNN accelerator, adopted from [56].

Chen et al. [57] proposed a DNN accelerator architecture
referred to as Eyeriss v2 to accelerate compact and sparse
DNNs. Like Eyeriss [56], Eyeriss v2 is composed of an
array of PEs to perform MAC operations, global buffers, and
local scratchpad (SPad) memory to support data reuse. In the
Eyeriss v2 accelerator, PEs and global buffers (GLB) are
grouped into clusters to support a flexible Network On Chip
(NoC), as shown in Fig. 33. The main difference between
Eyeriss and Eyeriss v2 is that Eyeriss v2 uses a hierarchical
mesh NoC (HM-NoC) to connect the global buffers to the
PEs; in contrast, the Eyeriss uses multicast NoC between the
global buffer and PEs. Furthermore, the Eyeriss v2 accel-
erator uses separate NoCs to transfer the input activations,
weights, and partial sums between the global buffer and
PEs. The hierarchical mesh NoC used in the Eyeriss v2
accelerator supports unicast, multicast, and broadcast. The
HM-NoC can be configured into various modes ranging from
high data reuse to high bandwidth. The proposed architecture
supports various CNN layer dimensions and sizes because
of the flexible hierarchical mesh NoC. The authors proposed
an analysis framework named EYEXAM for evaluating the
performance of various CNN dataflows. The Eyeriss v2
accelerator has higher hardware utilization than Eyeriss but
has a large area overhead. The experimental results show
that Eyeriss v2 reaches 11.3x and 42.5x improvement
in energy efficiency and throughput, respectively, with the
sparse AlexNet, compared to Eyeriss running with the
AlexNet. It also achieves 2.5x and 12.6x improvement in
energy efficiency and throughput, respectively, with sparse
MobileNet compared to Eyeriss running with MobileNet.

Multiply-Accumulate Engine with Reconfigurable Inter-
connect (MAERI) is a DNN accelerator containing a set
of configurable building blocks to support various CNN
partitions and mapping by configuring the tiny switches
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FIGURE 33. Eyeriss v2 top-level architecture, adopted from [57].

presented in [131]. MAERI contains a set of multiply adder
computation units, each augmented with tiny configurable
switches that can be configured to support various kinds
of dataflows, see Fig. 34. The prefetch buffer stores the
input activations, intermediate partial sums, weights, and
output activations. Acceleration units mainly contain look-up
tables (LUT) and perform activation functions. MAERI uses
two configurable interconnect networks, namely, distributed
network and augmented reduction network. To assist the
effective mapping of the irregular dataflows and to provide
high resource utilization, MAERI offers non-blocking com-
munication via reconfigurable links with large bandwidth.
The proposed accelerator can accelerate various operations
viz., convolution, pooling, fully connected layer, and LSTM.
The proposed accelerator also supports sparsity and cross-
layer mapping. MAERI is implemented in Bluespec System
Verilog (BSV) [163] and is synthesized with TSMC 28 nm
standard cell and SRAM library at 200 MHz.
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FIGURE 34. MAERI architecture, adopted from [57].

Tensor Processing Unit (TPU) is developed by Google in
order to implement machine learning algorithms. A matrix
multiplication unit as a systolic array of 256 x 256 units
is used in the TPU architecture [120]. Fig. 35 shows the
block diagram of the TPU. The mentioned systolic array
structure is basically built with weight-stationary dataflow
and as a 2-D SIMD architecture. Extracting from the DRAM,
the weights can then be stored in the weight FIFO (First-In,
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First-Out) register. The results from the previous layers and
the input activation function are stored in the unified local
buffer. In order to perform a convolution operation on a
matrix multiply unit, a systolic data setup block is used in
order to rearrange the data. Efficient running of machine
learning model tasks and inference tasks like search and
image recognition, and language translation have been the
focus of the first version of TPU, called TPU1. Since 2015,
TPU1 has been operational in Google’s data center. A second
version TPU2, also called Cloud TPU is operational in data
centers for the purpose of training and interference. Cloud
TPU supports several frameworks, including TensorFlow,
PyTorch, and JAX/FLAX.
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FIGURE 35. Block Diagram of TPU, adopted from [120].

C. SPARSITY BASED ACCELERATORS
The fraction of zeros in a CNN layer’s weights and input
activation matrices is called sparsity. Since multiplying by
zero should produce a zero, there should be no effort required.
As aresult, typical layers can cut work by a factor of four, and
in some instances, by a factor of ten. Also, the addition is not
needed because the zero products won’t add anything to the
total of which they are a part. Moreover, data with many zeros
can be compressed—these traits, when combined, open up a
lot of possibilities for improvement. This section provides a
comprehensive overview of accelerators that explore sparsity.
A CNN accelerator referred to as Sparse CNN (SCNN) is
presented in [167] for inference of CNNs. SCNN employs
a novel dataflow referred to as sparse Planar-Tiled Input-
Stationary Cartesian Product (PT-IS-CP-sparse) dataflow
that maximizes the reuse of activations and weights and
removes needless data transfers and reduces storage and
power requirements. The dataflow used in SCNN eliminates
all multiplications with a zero and keeps both activations and
weights in compressed form. SCNN mainly contains an array
of processing elements arranged in a 2-D fashion with systolic
connections to transfer partial sums. The proposed dataflow
efficiently delivers activations and weights to the multiplier
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array to perform the required MAC operations. SCNN
exploits all three kinds of parallelisms viz., inter-kernel,
intra-kernel, and inter-output. SCNN requires additional
optimization circuitry to implement the fully connected layer
operations. SCNN improves the performance by skipping
the zeros in the input feature maps and weights. SCNN is
implemented in system C and Catapult High-Level Synthesis
(HLS) [30] tool is used to generate the Verilog RTL. Synopsys
Design Compiler synthesizes the Verilog version of the
design. SCNN is implemented using TSMC 16 nm FinFET
technology.

Eyeriss [56] also looked into input sparsity as a way
to save energy. The gating mechanism deactivates MAC
units that correspond to zero inputs. Gating saves energy
while not increasing throughput. With sparse models, The
processing speed and energy efficiency of Eyeriss V2 [57]
have improved due to its ability to process sparse data directly
in compressed format for both the weights and activations.

Zhang et al. [225] developed Sparse Neural Acceleration
Processor (SNAP) to exploit unstructured sparsity in DNNs.
To ensure that data is distributed evenly throughout the MAC
units, SNAP employs parallel associative search. SNAP is
fabricated using 16 nm CMOS technology and achieves a
peak energy efficiency of 21.55 TOPS/W (FP16) for CONV
layers with 10% weight and activation density.

Lee et al. [135] proposed an energy-efficient on-chip
accelerator called LNPU for sparse DNN model learning.
In the LNPU accelerator, Sparsity is exploited with intra-
channel as well as inter-channel accumulation. The input
load buffer module of the LNPU evenly distributes workload
among the PEs while considering irregular sparsity. LNPU
uses the fine-grained mixed precision (FGMP) of FP8-FP16
that optimizes data precision while maintaining training
accuracy. LNPU maintains an average hardware utilization
of 100%. LNPU is fabricated using 65 nm CMOS technology
and has an energy efficiency of 3.48 TFLOPS/W (FP8) at 0%
sparsity and 25.3 TFLOPS/W (FP8) at 90% sparsity.

SIGMA is a scalable and flexible accelerator proposed
in [176] to implement large, irregular, and sparse general
matrix-matrix multiplications (GEMMs). The basic building
block in SIGMA is the Flexible Dot Product Engine (Flex-
DPE). All the Flex-DPE modules can be interconnected via
simple NoC. In SIGMA, all the Flex-DPE multipliers are
arranged in a 1-D fashion, and it performs the multiple
variable-sized dot-products in parallel. SIGMA uses scalable
interconnects to efficiently map the GEMMs of different
dimensions and sparsity levels to the PEs. SIGMA outper-
forms systolic array architectures by 5.7 x for irregular sparse
matrices. SIGMA is implemented using the 28 nm CMOS
technology and achieves a throughput of 10.8 TFLOPS with
a power dissipation of 22.33 W.

Zhang et al. [224] proposed an accelerator called GAMMA
to perform the Sparse matrix-sparse matrix multiplication
(spMspM) operations. The proposed accelerator uses Gus-
tavson’s algorithm [99] to compute the spMspM operations.
GAMMA accelerator mainly consists of an array of
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processing elements(PEs), on-chip storage referred to as
FiberCache, and a scheduler, as shown in Fig. 36. The PEs
are used to perform the required spMspM operations that
combine sparse input rows to produce each output row.
FiberCache is a specialized memory structure that stores
the non-zero elements and their coordinates. The scheduler
distributes computational workloads among PEs to maximize
resource efficiency while reducing unnecessary access to
shared memory. GAMMA is implemented using 45nm
CMOS technology.

Memory
FiberCache
! 11 !
PE| |PE| |PE| <+ (PE
O |
Scheduler

FIGURE 36. Block Diagram of GAMMA, adopted from [224].

We summarized the reviewed ASIC-based accelerators
for DNN in Table 5. For each accelerator, we list the year
the accelerator was introduced, the process technology, the
clock frequency, the dataflow, the architecture type, the
power dissipation, the area, the performance in GOPS, and
finally, the power efficiency. Fig. 37 shows the plots of
various metrics, such as power, throughput, area, and power
efficiency of ASIC-based accelerators.

V. GPU BASED ACCELERATORS

Over the last few decades, Graphics Processing Units (GPUs)
are widely used in training DL algorithms or CNNs for
face recognition [109], object detection [220], [226], data
mining [88], and other AI applications. GPU supports
parallelism due to lots of parallel cores in the architecture
and offers significant computation speed. GPU exploits
large degrees of data-level parallelism in the applications
through the Single Instruction Multiple Thread (SIMT)
execution models. The high computational capacity of the
GPUs makes them the primary choice for DNN acceleration.
In this section, we would like to review some of the recent
GPU-based DNN accelerators.

The study of implementing a standard backpropagation
algorithm for training multiple perceptrons simultaneously
on GPU using NVIDIA CUDA technology is presented
in [100]. For a given program, GPU-based implementation
on NVIDIA GTX 260 GPU achieves 50x to 150x speedup
compared to the CPU-based implementation. A neurally
accelerated architecture for GPU, called NGPU (neurally
accelerated GPU) is presented in [218] to enable scalable
integration of neural acceleration with a large number of GPU
cores. The proposed architecture brings the neural and GPU
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accelerators together without hampering the SIMT execution
model. NGPU provides significant energy and performance
benefits at the cost of reasonably low hardware overhead.
NGPU achieves 2.44x average speedup and 2.8x average
energy reduction compared to the baseline GPU architecture
across different sets of benchmarks.

Danial et al. [196] presented a framework for accelerating
the training and classification of arbitrary CNNs on the
GPU. The proposed method improves the performance
by moving the computationally intensive tasks of a CNN
to the GPU. Training and classification of CNN on the
GPU performs 2 to 24 times faster than on the CPU
based on the network topology. Li et al. [139] proposed
an efficient GPU implementation to accelerate the training
process of large-scale Recurrent Neural Networks (RNN).
When compared to the CPU-based solution with Intel’s
Math Kernel Library (MKL), the proposed method yields
a speedup of 2 to 11 times. Kim et al. [127] proposed a
new memory management scheme to enhance the overall
GPU memory utilization in multi-GPU systems for deep
learning algorithms acceleration. The authors extended the
concept of VDNN to a multi-GPU environment employing
PCle-bus, where vDNN [179] virtualizes the GPU and
memory of the CPU so that it can be used simultaneously
to train DL algorithms in a hybrid fashion. The suggested
memory scheme increases batch size by 60% in multi-
GPU systems and enhances training throughput by 46.6%.
High-performance GPU dedicated architecture referred to
as TResNet is presented in [180] to accelerate CNNs. The
proposed architecture effectively utilizes GPU resources and
achieves better accuracy and efficiency.

Nvidia GPUs are the most popular for Deep Learning (DL)
implementations. Table 6 lists the accelerators that Nvidia has
released, which are used for the inference and training of deep
learning (DL) algorithms and have both a Central Processing
Unit (CPU) and a GPU integrated on a single chip.

VI. CGRA-BASED ACCELERATORS

Coarse Grain Reconfigurable Architectures (CGRAS) pri-
marily consist of an array of Processing Elements (PEs)
connected using reconfigurable interconnects. When com-
pared to FPGAs, CGRAs often have a shorter reconfiguration
time. CGRAs have emerged as a popular option for real-
time computing due to their low power consumption, high
efficiency, fast reconfiguration time, and ability to perform
both spatial and temporal calculations. In recent years,
CGRAs have become increasingly significant in accelerating
DNN:gs, particularly CNNs, thanks to their ability to combine
FPGAs’ flexibility with ASICs’ efficiency. In this section,
we would like to review some of the recent CGRA-based
DNN accelerators.

Jafri et al. [118] proposed a CGRA-based accelerator
named NeuroCGRA to realize neural networks and digital
signal processing applications. The authors have opted to
investigate the viability of deploying neural networks on an
actual CGRA using a Dynamically Reconfigurable Resource
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TABLE 5. Summary of ASIC-based accelerators.

Accelerator Name  Year Process Technology Frequency Dataflow Architecture Power Dissipation Area Performance  Power Efficiency

(MHz) (W) (mm?) (GOPS) (GOPS/W)
NeuFlow [170] 2012 IBM 45 nm SOI 400 Flexible 2-D systolic 0.6 12.5 320 490
DianNao [53] 2014 TSMC 65nm CMOS 980 NLR 1-D array 0.485 3.02 452 932
DaDianNao [54] 2014 TSMC 28 nm CMOS 606 NLR 1-D array 15.97 0.78 5580 350
PuDianNao [141] 2015 TSMC 65nm CMOS 1000 NLR 1-D array 0.596 3.51 1056 1752
ShiDianNao [79] 2015 TSMC 65nm CMOS 1000 (O 2-D matrix 0.32 4.86 194 606
Origami [50] 2015 UMC 65 nm CMOS 700 WS 2-D array 0.744 3.09 274 369
FlexFlow [145] 2017 TSMC 65nm CMOS 1000 flexible 2-D matrix 6.8 3.89 420 500
SCNN [167] 2017 TSMC 16 nm FinFET 1000 N/A 2-D systolic N/A 79 2000 N/A
Eyeriss [56] 2017 TSMC 65nm CMOS 200 RS 2-D array 0278 12.25 N/A N/A

(for AlexNet)
TPU [120] 2017 28 nm CMOS 700 'S 2-D systolic N/A <331 N/A N/A
Bit Fusion [188] 2018 TSMC 45 nm CMOS 500 N/A 2-D array 0.895 5.87 N/A N/A
MAERI [131] 2018 TSMC 28 nm CMOS 200 WS, RS, OS 2-D array N/A 6 N/A N/A
DNPU [190] 2018 65nm IP8M CMOS 200 N/A 2-D array 0.279 16 300 3900
UNPU [133] 2018  65nm IP8M logic CMOS 200 N/A 2-D array 0.297 16 345.6 3080
LNPU [135] 2019 65nm IP8M CMOS 200 N/A 2-D array 0.367 16 > 300 3480
SNAP [225] 2019 16 nm CMOS 33-480 N/A 2-D array 0.0163-0.364 2.4 N/A 3860
Eyeriss2 [57] 2019 TSMC 65nm CMOS 200 RS 2-D array N/A N/A 153.6 2532
(for AlexNet)
SIGMA [176] 2020 28 nm CMOS 500 WS 2-D array 2233 65.1 10800 480
GAMMA [224] 2021 28 nm CMOS 1000 WS, RS, OS 1-D array N/A 30.6 N/A N/A
TABLE 6. GPU-based accelerators developed by Nvidia.
Memory Bandwidth ~ Thermal Design ~ Performance

Accelerator DNN Model  Precision ~ Memory (}é}B/s) Power (W)g (GOPS) Applications
Jetson Xavier NX [26]  ResNext-50  int8 16 GB 59.7 10 21 ﬁ?ﬁ;cﬁjﬂgzlﬁchf:; detection.
Jetson AGX Xavier [28]  ResNext-50 int8 32 GB 136.5 10 32 ::ﬁ;iiiigztgczzz detection,
T4 [31] ResNet-50 int8 16 GB 320 70 130 Natural language interpretation
V100 [74] [121] ResNet-50 fp32 16 GB 900 300 15700 Natural language interpretation
A100 [198] [63] ResNext-50 fp32 40 GB 1555 250 19500 High performance computing

Array (DRRA). DRRA mainly consists of four elements, viz.,
Data Path Units (DPUs), register files (Reg-files), Switch
Boxes (SB), and sequencers, as shown in Fig. 38. The DPUs
are the functional units that perform the required computa-
tions. The Reg-files store the data for the DPUs. Intercon-
nectivity between various DRRA components is provided
through SBs. The sequencers configure the DPU, switch
boxes, and register files. Distributed Memory Architecture
(DiMArch) is essentially a scratch pad providing enough
data to the DRRA. The authors have embedded dedicated
hardware, known as neuroDPU, with each DPU of DRRA
to implement neural networks on it. The authors proposed
a neural network translator that provides a framework for
mapping neural networks onto CGRAs. The translator takes
three inputs, viz., network model, weights, and network
specifications, and generates three outputs: DPU, Reg-
file, and SB instructions. NeuroCGRA is synthesized using
65nm technology running at a frequency of 500 MHz.
A framework called FIST is presented in [162] that allows
the NeuroCGRA [118] to realize both DSP applications
and neural networks, depending on the target applications.

131812

The authors have implemented edge detection on DRRA
using the proposed framework.

EMAX is an energy-efficient, low-power CGRA architec-
ture with on-chip distributed memory proposed in [202] to
implement CNNs. EMAX supports both CNN training and
inference. EMAX is composed primarily of an array of PEs
and an interconnection network, as shown in Fig. 39. Each
PE is connected to its neighbors by local interconnections,
and each row of the PE array has a shared bus. The results
of calculations performed on the PEs are passed on to the
PEs that exist in the next row. The PEs can access external
memory (DRAM) via the memory interface. Each PE has
two execution units that perform the arithmetic and logical
operations. Each PE also has a local memory to store the
required data, reducing the memory bandwidth pressure.
Experimental results show that EMAX performs better than
GPUs in terms of per memory bandwidth and per area.

A CGRA-based accelerator referred to as stream dual-
track CGRA (SDT-CGRA), which targets the implementation
of object inference algorithms, is presented in [83]. SDT-
CGRA employs stream processing and uses both static and
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FIGURE 37. Performance metrics of ASIC-based accelerators.

dynamic configurations for stream processing. The SDT-
CGRA accelerator mainly contains an array of PEs known
as reconfigurable cells (RS) and stream buffer units (SBUs),
as shown in Fig. 40. The SDT-CGRA architecture is divided
into two sections: global memory and computing array.
The global memory section is dynamically configured and
stores data streams. On the other hand, the computing array
section operates in a static configuration mode. It comprises
several RC columns and one special RC column. The Special
RC is used for operations like power (represented as PRC
in Fig. 40) and piece-wise functions (represented as IRC
in Fig. 40). The crossbar switch serves as a bridge to connect
the RC array and SBUs. Data can be transferred from off-chip
memory to SBUs using the external direct memory access
interface. Static and dynamic interfaces are used for static and
dynamic configurations, respectively. The proposed SDT-
CGRA is realized in Verilog HDL, and Synopsys design
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compiler is used to synthesize the design. The proposed SDT-
CGRA is implemented using SMIC 55nm CMOS technology.
Experimental results show that SDT-CGRA outperforms
EMAX by three times in terms of operations per memory
bandwidth.

In [110], the authors proposed mapping of CNNs onto
Tightly Coupled Processor Array (TCPA) efficiently. TCPA
belongs to the class of CGRA, containing an array of tightly
coupled VLIW Processing Elements (PEs) [104]. TCPA
offers multiple levels of parallelism, for instance, task-level,
loop-level, iteration-level, instruction-level parallelism, etc.
TCPAs are suited for accelerating computationally expen-
sive nested loop programs exhibiting a high degree of
parallelism, such as CNNs. CNN layers are based on
matrix multiplications which can be written as 6-dimensional
nested loops, making them suitable for acceleration. It was
demonstrated that TCPAs use techniques such as loop
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permutation, loop unrolling, and layer-parallel processing to
exploit the parallelism offered by the TCPA architecture.
Layer fusion allows the processing of multiple layers of
CNN in the overlapped fashion [33], which was exploited by
TCPA to save the intermediate memory needed between the
layers. Loop permutation allows the computation of multiple
convolution filters in an interspersed way. TCPA allows the
parallel execution of multiple layers by different PEs. A CNN
model for the MNIST benchmark on an array of size 4 x4 was
evaluated and the performance of the layer-parallel approach
over layer-by-layer processing was compared.

A CGRA-based accelerator called Neural Processing
CGRA (NP-CGRA) is presented in[134] to accelerate
lightweight CNNs. The authors have proposed a set of
extensions to the baseline CGRA [152] to improve the
performance of CGRAs and to efficiently implement depth-
wise convolution (DWC) and pointwise convolution (PWC).
The authors have presented three architectural extensions:
a crossbar-style memory bus, dual-mode MAC unit, and
operand reuse network. The crossbar-style memory bus
contains horizontal and vertical buses, and each bus is
accessible to all the PEs connected to it. Dual-mode MAC
unit works in MAC mode and MUL/ALU mode. The
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multiplication and accumulation operations are chained
together in the MAC mode to realize the function. On the
other hand, in the MUL/ALU mode, a PE can choose
either a multiplication or an addition operation for each
cycle. Operand reuse network offers input-to-input routing
instead of output-to-input routing. The proposed NP-CGRA
is realized in Verilog HDL, and Synopsys design compiler
is used to synthesize the design. The proposed NP-CGRA
is implemented using Samsung 65nm CMOS technology.
Experimental results show that the area-delay product of NP-
CGRA is 8-18 times better than that of baseline CGRA.
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FIGURE 40. SDT-CGRA architecture, adopted from [83].

There is a lot of room for CGRA research to develop and
expand as a topic of study for future architecture; this is
especially true when developing high-performance CGRAs
tailored to specialized or general-purpose computing. Some
key issues that require further research in this area include
developing tools to program the architecture efficiently,
memory management, scalability, adaptability, productivity,
virtualization, etc.

VIil. EMBEDDED Al ACCELERATORS

The Al hardware requirements are more critical in the
edge environment, typically represented by the Internet of
Things (IoT) devices (e.g., smart speaker, mobile, sensors
and actuators) with limited computing resources, as opposed
to cloud infrastructure with relatively sufficient computing
capability. For the sake of real-time immediacy, latency,
offline capabilities, security, and privacy, Al models are
increasingly required to be implemented on edge. In this
context, Small Form Factor (SFF) devices such as micro-
controllers, which dominate the market, are of particular
interest, and having Al capabilities on these devices can
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help many applications. Many industrial solutions require
products with SFF and Size, Weight, and Power (SWaP)
enhanced embedded systems. In this section, we review some
of the latest embedded Al accelerators.

Fig. 42 shows the architecture of Edge TPU from
Google, which is used in products such as Coral and
Pixel Phones [111]. Edge TPUs are designed to give high-
performance acceleration while staying within strict physical
and power constraints [219]. Edge TPU is organized in a
2-D array of Processing Elements (PEs) where each PE
performs computations in a SIMD fashion. Data is transferred
from off-chip memory and PEs via an on-chip controller.
Activation and parameters are loaded into the on-chip staging
buffers by the controller. In addition, the controller reads
in the low-level instructions executed on the PEs (e.g.,
convolution, pooling, etc.). Each PE may contain single
or multiple cores, each having multiple compute lanes to
support operation in SIMD fashion. A memory is shared
across all cores, PE Memory is used to model activations,
partial results, and outputs are all stored in a shared memory,
which is labeled PE Memory, see Fig. 42. Each PE’s cores
have a core memory that is mostly used to store model
parameters. Each compute lane has multi-way MAC units
to perform computations between activations and model
parameters. A few prototyping boards, see Fig. 43 from Coral
are available for the community to try and deploy ML apps
at the edge, including the Dev Board, USB accelerator, Dev
Board Mini, and Dev Board Macro [27]. TensorFlow Lite
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framework is particularly developed for mapping various
neural network operations onto the Edge TPU [29]. The
Edge TPU coprocessor can compute 4 trillion operations per
second (TOPS) while consuming just 0.5 watts for each TOPS
(2 TOPS per watt) [27].
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d) Dev board

a) Dev board b) USB Accelerator c) Dev board Mini Macro

FIGURE 43. Prototyping boards from Coral [27] having edge TPU.
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FIGURE 44. NVIDIA's Jetson Nano.

NVIDIA’s Jetson Nano [3], [183] is an embedded board
suitable for edge Al applications. It contains a 64-bit quad-
core Arm Cortex-A57 CPU running at 1.43 GHz, NVIDIA
Maxwell GPU with 128 CUDA cores, and 4GB LPDDR4
memory. Jetson Nano runs Linux and offers 472 GFLOPS
of FP16 computation performance while consuming only
5-10 W of power. NVIDIA also provides the developer
kit with examples to map the multiple neural networks
applications such as object detection, segmentation, image
classification, and speech processing [183]. NVIDIA also
provides many embedded boards such as Jetson AGX Orin,
Jetson Orin NX, Jetson Xavier NX Series, Jetson TX2 Series
in various combinations of form-factor, power-efficiency, and
performance to address various industry segments [3], [11].

BeagleBone Al [4], built around Texas Instruments’ (TI)
AM 5729 Sitara SoC [115], is yet another board for Al at the
edge. This SoC has two 32-bit Arm Cortex-A15 cores, two
Image Processing Units (IPUs) that each having two Cortex-
M4 cores, two C66x DSP cores, two PowerVER SGX5443D
GPUs, and four Embedded Vision Engines (EVEs). It also
has 15 GB of eMMC flash, 1 GB of RAM, Wi-Fi, Bluetooth
support, and USB connectors for power and data transfer. The
BeagleBone Al runs Linux, and TI Deep Learning (TIDL)
framework can be used to develop real-time ML applications.

A Vision Processing Unit (VPU) [10] is a processor
optimized to perform inference tasks at the edge with ultra-
low power without compromising performance. Movidius
Myriad 2 VPU is based on the Intel Neural Compute
Stick (NCS) platform, designed as a 28 nm co-processor
that provides the high-performance tensor acceleration,
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FIGURE 45. BeagleBone Al board [4].

see Fig. 46. The Streaming Hybrid Architecture Vector
Engines (SHAVE) are 12 highly parallelizable vector pro-
cessors in the Myriad 2 VPU, whose parallelism and
ISA allow good performance efficiency across a range of
computer vision applications, even those with low latency
requirements. The Neural Compute Engine, a dedicated
hardware Al accelerator for deep neural network deep-
learning inferences, is included in the Myriad X VPU,
Movidius’ third generation of VPUs. Myriad X is popular
for on-device DNN's and computer vision applications thanks
to the Neural Compute Engine, 16 SHAVE cores, and ultra-
high throughput. The Myriad X VPU includes a native 4K
image processor pipeline and can directly link up to eight HD
sensors. The Myriad Development Kit (MDK), which offers
development tools, frameworks, and APIs to implement
computer vision, imaging, and DNN workloads on the chip,
can be used to program both the Myriad 2 and Myriad X
VPUs.
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FIGURE 46. Myriad 2 VPU architectural block diagram, adopted from [15].

Sipeed Maixduino is like an Arduino for machine learning
projects. It has MAIX SoC [13], which includes Kendryte

VOLUME 10, 2022



P. Dhilleswararao et al.: Efficient Hardware Architectures for Accelerating Deep Neural Networks: Survey

IEEE Access

K210 KPU (Knowledge Processing Unit, also called Network
Processing Unit), a powerful chip suited for visual and
semantic recognition [12]. MAIX SoC block diagram is
shown in Fig. 47, which includes K210 featuring two RISC-
V 64-bit CPU cores, an APU (Audio Processing Unit, also
called Audio Accelerator), and KPU optimized for running
CNNs. KPU offers 0.25 TOPS@0.3 W,400 MHz; when
overclocking to 800 MHz, it offers 0.5 TOPS. It means,
we can do object recognition 60 fps@VGA. MAIX also
includes a Fast Fourier Transform (FFT) unit, making it
useful for signal processing. In addition, it supports a wide
range of other peripherals, see Fig. 47. TensorFlow Lite
framework is supported by this board, and platforms such as
Arduino IDE and PlatformlIO can be used for development.
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FIGURE 47. Block diagram of KPU and MAIX SoC, adopted from [13].

Sophon’s edge developer board, see Fig. 48, is envisioned
as a rapid prototype development board for ML applications.
It contains a powerful BM 1880 capable of efficiently imple-
menting DNN/CNN/RNN/LSTM models using a tailored
tensor processing unit. It also features two Arm Cortex-A53
CPUs and a RISC-V CPU. TPU can perform 1 TOPS for
8-bit integer data. This board is mainly used for surveillance
cameras, BM1880 [5] is designed using 28 nm process
and dissipated 2.5 W. Frameworks such as TensorFlow,
PyTorch, ONNX, Caffe, etc. are supported by this board.
However, BITMAIN has its own framework called BITMAIN
Neural Network Software Development Kit (BMNNSDK) [5]
and recommends it to achieve high inference throughput
and efficiency. BMNET and BMRunTime are included in
the BMNNSDK. BMNET is a DNN compiler for TPU
processors on edge. It translates CNN-like algorithms into
TPU instructions.

Ultra96-V2 [1] and PYNQ-Z2 [18] are embedded Al boards
using FPGAs, see Fig. 49. Ultra96-V2 features a Zynq
UltraScale+ MPSoC ZU3EG device. Xilinx’s Zynq devices
contain both Processor System (PS) and Programmable
Logic (PL), where PS consists of hardcore processors while
PL contains the FPGA. Before the Zynq, processors were
connected to an FPGA, which complicated communication
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FIGURE 49. Ultra96-V2 [1] and PYNQ-Z2 [18] development boards from
Xilinx.

between the PL and the PS. As the latest version of
Xilinx’s all-programmable System-on-Chip (SoC) families,
the Zynq architecture combines a dual-core ARM Cortex-
A9 processor with a conventional processor (FPGA). The
Advanced eXtensible Interface (AXI) standard is used
to connect the various pieces of the Zynq architecture,
allowing for high bandwidth and low latency connections.
Vivado Design Suite [22] is used to map programs on
to Ultra96-V2 board and is widely used in AI and ML
projects. For instance, authors in [39] implemented real-
time face recognition on Ultra96-V2. Designers may use the
Python language and libraries to use Zynq’s programmable
logic and microprocessors to create more capable and
intriguing embedded systems. PYNQ (Python On Zynq) is a
Xilinx® open-source project that makes designing embedded
systems with Zynq® Systems on Chips simple. PYNQ-
72 is an FPGA development board based on the ZYNQ
XC7Z020 FPGA, which has been meticulously developed
to support PYNQ. By combining PL and PS, designers
can create more powerful embedded systems using ZYNQ.
Furthermore, the SoCs may be programmed in Python, and
the code can be developed and tested on the PYNQ-Z2
directly. In the same manner that software libraries are
imported and programmed, programmable logic circuits are
imported as hardware libraries and programmed through
APIs. PYNQ-Z2 board has many interfaces such as user
LEDs, push-buttons, switches, MIC input, Ethernet, HDMI
Input/Output, MIC Input, Audio Output, Arduino as well
as Rasberry Pi interfaces etc. PYNQ takes advantage of
the greatest features of both ZYNQ and Python. Machine
learning research and prototyping have made extensive use
of it. For instance, authors in [207] used this board for
implementing CNNs. Xilinx’s configurable DPU IP [7] can
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also be used together with PYNQ board for creating a network
with the desired number of layers, activation functions etc..
Vivado [22], Vitis [21] and Python can be used to work with
PYNQ board.

FIGURE 50. Xilinx's Kria KV260 SOM, adopted from [122].

Xilinx’s Kria KV260 [23],[122] is an Al starter kit
targeted for vision Al applications in smart cities, smart fac-
tories, robotics, home automation, etc., see Fig. 50. KV260
includes a Zynq MPSoC, and it supports the Python-based
PYNQ framework. The trained models can be implemented
in the DPU [7] and are loaded with PYNQ using hardware
overlays. In [122], authors have demonstrated pre-trained
models based on the MNIST dataset, RESNET based on
Caffe framework, and InceptionV1 based on Tensorflow.
Furthermore, to exercise the features of KV260, many models
from Vitis AI Model Zoo [24] repository are implemented.
Traffic detection, lane detection and segmentation algorithms
were also implemented and tested in real-time. Silicon
Lab has recently introduced BG24/MG24 [19] SoCs with
built-in Al accelerators and a new software toolkit. These
new devices with optimized hardware and software will
help execute AL/ML applications on battery-powered edge
devices. The MAX78000 [14] from Maxim Integrated is an
Almicrocontroller that runs neural networks at extremely low
power. It has a hardware-based CNN accelerator, enabling
the battery-powered applications to execute Al inferences.
AlphalCs’ Gluon Al co-processor [9] is optimized for vision
Al applications. It comes with an SDK for easy porting of
neural networks.

Deep neural networks (DNN) are increasingly being used
on loT-enabled devices like the Raspberry Pi to improve
efficiency, security, and privacy. However, the size and
complexity of the machine-learning (ML) model that can
be deployed in such systems are limited by the available
computational and memory resources. The Raspberry Pi
is a low-cost, small, and portable computer board with
built-in software that allows users to create scripts or
programs in Python [229]. There are two main limitations
to utilizing a Raspberry Pi for deep learning: 1) the small
amount of memory available and 2) the slow processing
speed. These limitations severely hamper the implementation
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of more complex neural networks. There are two ways
to deploy deep learning at IoT end devices. 1) Deploy
feature vector and model architecture on the Server machine
and call with API using Web service to IoT. 2) Deploy
feature vector and model architecture on resource-constraint
platforms like Raspberry Pi, also called on-device computing.
The first method has network latency issues, security
risks, and high communication costs. The second method
has difficulty in implementing large DNN models due to
the limited memory and computational resources of IoT-
enabled devices like Raspberry Pi. Furthermore, devices
with limited resources, such as the Raspberry Pi, are
only used for DNN inference. The trained DNN model
can be transferred to the Raspberry Pi through network
connectivity. However, network connectivity can introduce
delays, data loss, and other security concerns, limiting DNN
deployment on the Raspberry Pi[41]. Bhosale et al. [42]
proposed Deep Convolutional Neural Network (DCNN) for
Covid-19 classification. In this work, the DCNN architecture
is deployed on the cloud and uses radiology x-ray images
for classification. On the other hand, the authors in [41]
proposed a lightweight Deep Learning model (LDC-Net) for
Covid-19 classification with lung disease. In this work, LDC-
Net was trained on High-Performance Computing (HPC).
Furthermore, the trained LDC-Net and weights have been
deployed in an IoT-enabled Raspberry Pi with network
connectivity for Covid-19 classification.

FIGURE 51. Raspberry Pi computer [230].

An Arm processor is a general-purpose processor that
belongs to the family of CPUs and uses Reduced Instruc-
tion Set Computer (RISC) architecture. Because of their
efficiency and flexibility, Arm processors are used in many
electronic products, including smartphones, tablets, and
wearables. Arm’s new portfolio of hardware solutions is now
aimed toward Machine Learning (ML) and Deep Neural
Network (DNN) applications. In recent times, ARM-based
processors have been developed for the acceleration of
machine learning applications from various manufacturers
viz., Marvell (ThunderX2), Fujitsu (A64FX), Huawei (Kun-
peng 920), and Ampere (eMAG). With the help of its recently
released Neural Processing Units (NPUs), Arm processors
bring machine learning to low-end edge devices.
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Arm ML processor uses the Neural Network (NN) software
development kit provided by the company to interface the
ML software and corresponding hardware [214]. The Arm-
based ML accelerator consists of a number of computing
engines up to 16, each of which includes a programmable
layer engine and a MAC convolution engine, see Fig. 52.
Each computing engine has its own local memory to
process the ML models. Starting with weights applied to
incoming data, processing via the MAC convolution engine,
and finally, results processed by the Programmable Layer
Engine (PLE), the flow is typical of DNN implementations.
There are 128 multiple-accumulate (MAC) units in the MAC
convolution engine. MAC convolution engine receives the
input data from the input feature map read block, weights
from the weight decoder, and performs the required MAC
operation. The result of the convolution is processed by the
PLE, which is a vectorized microcontroller. It is more akin to
a RISC platform designed to wrap up the processing of a layer
for a piece of a DNN model with several layers. The PLE is
in charge of tasks like pooling and activation. The throughput
of the proposed ML processor is 4.6 TOPS. The proposed
design is implemented using 7 nm chip technology, and it is
scalable, and can achieve the throughput of 150 TOPS for
high-end applications.

The Arm Al platform, also known as Project Trillium,
is a heterogeneous compute platform that includes Arm
Cortex CPUs, Ethos NPUs, Mali GPUs, and microNPUs to
accelerate the ML algorithms [142]. Arm supports various
ML frameworks such as TensorFlow Lite, Caffe, PyTorch,
etc. and accelerates the ML applications using software
libraries including arm NN, arm COMPUTE LIBRARY,
and Common Microcontroller Software Interface Standard-
NN (CMSIS-NN). The hardware products such as Arm
Cortex CPUs, Ethos NPUs, Mali GPUs, microNPUs, FPGAs,
DSPs, etc. ARM’s new Cortex-A55/A75 and Mali-G72
combination targets machine learning on edge computing
devices.

Arm has developed its Ethos series of ML processors for
machine learning applications. Ethos series is classified into
N-series and U-series [25]. Ethos N-series was introduced
in October 2019, containing NPUs identical to the Cortex
family. Ethos U-series was introduced in early 2020, and it
contains microNPUs. MicroNPUs are paired with the CPU,
like the Cortex-M55, to process the ML algorithms. Ethos-
US55 achieves a throughput of 0.5 TOPS, containing 32 to
256 8-bit MAC units [143]. Ethos-US55 supports 8-bit and 16-
bit integer data types. Ethos-U65 achieves a throughput of
1 TOPS, containing 256 to 312 8-bit MAC units. Ethos-N57
achieves a throughput of 2 TOPS, containing 1024 8-bit MAC
units. Ethos-N77 is a highly efficient ML inference processor
that achieves a throughput of 5 TOPS and is best suitable
for mobile devices. Ethos-N77 ML processors can be used
for facial or object recognition applications. Ethos-N78 is a
scalable and efficient ML inference processor that achieves
a throughput of 1 to 10 TOPS [144]. Arm’s Cortex-M55
and the Ethos-US55 can be used as an Al accelerator in edge
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computing devices [89]. This combination achieves a 32x
improvement in ML processing compared to the base Cortex-
MSS5 core. Furthermore, TinyML [20] advancements have
made it possible to use ML models on the microcontroller
hardware found in our household appliances, including
printers, TVs, smartwatches, and pacemakers, which can now
carry out tasks that were previously only capable of being
done by computers and smartphones. The machine learning
and embedded ultra-low power systems communities have
joined forces to create TinyML foundation. This joint effort
has paved the way for innovative and captivating alternative
uses of on-device machine learning. TinyML supports various
frameworks, including TensorFlow Lite Micro (TFLM),
TensorFlow-Native, Embedded Learning Library (ELL),
Graph Lowering (GLOW), etc. Google developed an open-
source framework called CFU Playground [174] for TinyML
acceleration on FPGA. CFU playground toolchain com-
bines open-source software (TensorFlow), RTL generators
(LiteX, Migen, etc.), and FPGA tools for synthesis (yosys),
place, and route (vpr). The CFU playground framework
makes it possible to investigate custom architectures for
the acceleration of Tiny ML for embedded ML systems.
TinyML is used in many applications, including medical
face mask detection [156], eating detection [166], Li-Ion
batteries parameter estimation [69], etc. The most in-demand
research areas among the TinyML community include sound
recognition, computer vision, and the development of low-
power accurate ML models. More research is needed to
fully comprehend the advantages and drawbacks of the
topics under discussion, even if many applications have
demonstrated TinyML’s promise. Some key issues that
require further research in this area include developing
benchmarks, memory constraints, energy, processor capacity,
cost reduction, etc.

VIil. COMPARISON BETWEEN VARIOUS HARDWARE
ARCHITECTURES FOR DNN ACCELERATION

The performance of the various hardware accelerators for
the DNN acceleration depends on the target application.
However, researchers defined some standard metrics, namely,
area, power, and throughput, to measure the performance
of the hardware accelerators for the development and
deployment of DNNs. Here, the area is nothing but the
portion of silicon required for the DNN acceleration, which
is generally represented in squared millimeters or squared
micrometers. The area depends on the size of the on-
chip memory and the technology used during the hardware
synthesis process. Power is nothing but the amount of
power consumed by the specific hardware during the DNN
acceleration. The power consumption mainly depends on off-
chip and on-chip memories. Throughput is used to measure
the productivity of the hardware accelerator. The comparison
between the various hardware accelerator architectures for
DNN acceleration is shown in Table 7. Due to a lack of
data on their footprint, power consumption, and throughput,
CGRA-based accelerators are not represented in Table 7.
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FIGURE 52. Arm based ML processor [214].

As expected, temporal or general purpose architectures
such as CPU and GPU have greater power consumption
and area than special purpose architectures such as FPGA
and ASIC because they are not tailored for a particular
application. The essential hardware metrics like power,
area, technology, and throughput are reported for each
hardware architecture. In Table 8, we have compared the few
embedded development boards discussed above concerning
general-purpose CPUs/GPUs, specialized co-processors they
contain, performance, power, SDKs, and supported ML
frameworks.

IX. FUTURE DIRECTIONS

In the future, hardware Al acceleration is set to become ubig-
uitous. In recent processors, some Al accelerator hardware
becoming a standard feature, indicating that Al acceleration
is an essential general-purpose task. This paper reviewed sev-
eral FPGA-based, ASIC-based, GPU-based, CGRA-based,
and edge AI hardware accelerators. However, looking at
the industry trends and startups in this space indicates that
we are still in the early stage of the Al revolution. Many
more energy-efficient architectures will emerge in the future.
In particular, architectures with transprecision or approximate
computing, high-bandwidth memories, and emerging non-
volatile memories such as MRAM and ReRAM may
appear in the market. Evolving architectures involving
the Tsetlin machine are another promising future research
direction.

Emerging technologies such as nanomaterials, optical
computing, and DNA computing may accelerate DNNs in the
near future. Carbon nanomaterials, such as carbon nanotubes
(CNTs) and graphene, are particularly intriguing due to
their rapid electron transport [58]. CNT and graphene have
desirable switching and optical properties, making them
well-suited to electronic and optical architectures [189]. New
chip architectures become possible with the help of CNTs
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and other nanomaterials. Researchers at MIT and Stanford
have developed a new 3-D architecture based on a network
of millions of carbon nanotubes [191]. Computations in
optical computing technology can happen at the speed of
light, much faster than conventional electron-driven chips.
MIT is driving research in advanced optical materials,
switches, lasers, and nano-optics [106] to advance optical
computing. We may expect a greater deployment of optical
chips in the future. DNA computing is a type of parallel
computing in which many different DNA molecules are
used to test many possibilities simultaneously [138]. The
major advantage of DNA is its potential for memory storage.
A single gram of DNA can store 215 petabytes (215
million gigabytes) [6]. Although DNA information storage
has enormous application potential, many issues, such as the
high cost of writing and reading information and techniques
to erase and rewrite the information in DNA that is still
unknown, must be addressed before its widespread use [75].

In FPGA-based architectures, following future directions
seems to be promising. The combination of FPGAs and
cloud computing opens new avenues for developing deep
learning applications. The FPGA cloud service is still in
its early stages. Many imperfections must be investigated,
such as the virtualization of FPGA hardware resources, task
migration, etc. Most current research focuses on lowering
the bandwidth requirements for off-chip memory access.
The performance of multiple FPGA chips combined is
favorable. However, dealing with processing scheduling
and chip allocation remains a significant challenge. Future
research could focus on the development of in-memory-
computing processors. Moreover, further improvements are
required in the computation of the activation functions used
in DNNs. Because most studies focus on loop optimization,
only a few researchers are currently working on activation
function optimization. There will be frameworks to integrate
existing or new architectures, which will help quickly deploy
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TABLE 7. Comparison among accelerators implemented on different hardware platforms.

Accelerator Year  Platform  Area (mm?)  Power (W) Throughput (GOPS)
CNP [85] 2009 FPGA N/A 15 N/A
Parallel coprocessor for CNN [182] 2009 FPGA N/A 11 6.74
MAPLE [47] 2010 FPGA N/A N/A 7
DC-CNN [51] 2010 FPGA N/A 14 16
NeuFlow [84] 2011 FPGA N/A 10 147
NeuFlow [170] 2012 ASIC 12.5 0.6 320
Memory- Centric Accelerator [169] 2013 FPGA N/A N/A 17
nn-X [91] 2014 FPGA N/A 8 23.18
DianNao [53] 2014 ASIC 3.02 0.485 452
DaDianNao [54] 2014 ASIC 0.78 15.97 5580
Origami [50] 2015 ASIC 3.09 0.744 274
PuDianNao [141] 2015 ASIC 3.51 0.596 1056
ShiDianNao [78] 2015 ASIC 4.86 0.32 194
Roofline based Accelerator [222] 2015 FPGA N/A 18.61 61.62
Embedded FPGA Accelerator [177] 2016 FPGA N/A 9.63 136.97
fpgaConvNet [206] 2016 FPGA N/A N/A 12.73
DeepBurning [211] 2016 FPGA N/A N/A 73
SCNN [167] 2017 ASIC 7.9 N/A 2000
FlexFlow [145] 2017 ASIC 3.89 6.8 420
Nvidia V100 [17] 2017 GPU 815 250 15700
Eyeriss [56] 2017 ASIC 12.25 0.278 N/A
TPU [120] 2017 ASIC <331 N/A N/A
DLAU [208] 2017 FPGA N/A 0.234 N/A
ESE [102] 2017 FPGA N/A 41 282
FP-DNN [95] 2017 FPGA N/A 25 364.4
FINN [204] 2017 FPGA N/A 11.7 2465.5
Angle-Eye [96] 2018 FPGA N/A 3.5 137
Bit Fusion [188] 2018 ASIC 5.87 0.895 N/A
MAERI [131] 2018 ASIC 6 N/A N/A
DNPU [190] 2018 ASIC 16 0.279 300
UNPU [133] 2018 ASIC 16 0.297 345.6
Jetson AGX Xavier [28] 2018 GPU N/A 10 32
Tesla T4 [31] 2018 GPU 545 70 130
Accelerator for SSDLiteM2 [82] 2018 FPGA N/A 9.9 N/A
Intel Xeon Platinum 9282 2019 CPU N/A 400 3200
AMD Ryzen Threadripper 3970x 2019 CPU N/A 280 1859
LNPU [135] 2019 ASIC 16 0.367 >300
SNAP [225] 2019 ASIC 24 0.16-0.36 N/A
Eyeriss2 [57] 2019 ASIC N/A N/A 153.6
BFP arithmetic-based Accelerator [140] 2019 FPGA N/A 9.18 760.83
Tera-OPS streaming Accelerator [161] 2019 FPGA N/A 18.29 1877
Caffeine [223] 2019 FPGA N/A 26 354
SIGMA [176] 2020 ASIC 65.1 223 10800
Nvidia A100 [16] 2020 GPU 826 400 19500
CNN2Gate [90] 2020 FPGA N/A N/A 80.04
Jetson Xavier NX [26] 2021 GPU N/A 10-20 14-21
GAMMA [224] 2021 ASIC 30.6 N/A N/A
Accelerator for space DNN [216] 2021 FPGA N/A 3.82 1.34
NPE [125] 2021 FPGA N/A 20 135.14
LP-CNN [81] 2021 FPGA N/A 3.92 129.2
Reconfigurable YOLOV3 Accelerator [209] 2021 FPGA N/A 25 N/A
Ad-MobileNet [45] 2021 FPGA N/A 3.25 N/A
Energy-efficient CNN Accelerator [116] 2021 FPGA N/A 0.628 N/A
Dynamically Reconfigurable Architecture [117] 2022 FPGA N/A 2.039 40.71
RCNN Accelerator [92] 2022 FPGA N/A 1.15 N/A
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TABLE 8. Comparison of various embedded edge Al development boards.

Coral Dev Board Jetson Nano BeagleBone Myriad X Maixduino Sophon Edge
General Purpose I\(I(}l(idlll(\:/[zteSMAsizc Cortex-4F) Quad-core ARM A57, Dual Cortex-Al5, ]ljﬁlmsl;f\/oé\] 4, E::el gji?-v Dual Cortex A53.
U X-AdJ, X - y 1L, .
Processors GC7000 GPU 128-core Maxwell Dual SGX544, Dual PRU-ICSS (Vector Processing Unit) with FPU Single RISC-V
AI Co-Processor Google Edge TPU 128-core NVIDIA GPU  Dual C66x DSP, Quad EVE Neural Computing Engine ~ KPU/NPU BM1880, TPU
Performance 4 TOPS 472 GFLOPS ~100GOPS 1 TOPS 0.25 -0.5 TOPS 1 TOPS
Power 2 TOPS per watt 5-10W 5-10W W 0.3 W 2.5W
SDK Edge TPU Al JetPack TI De.ep Myriad . Maixduino BITMAIN Neural
Learning Development Kit SDK Network SDK

) . TensorFlow, PyTorch, i . Caffe, TensorFlow, ) . Caffe, TensorFlow,

Supported Frameworks ~ TensorFLow Lite Caffe Caffe, TensorFlow MXNet TensorFlowLite PyTorch, MXnet

applications. Most importantly, FPGA-based accelerator
research will be towards training and not inference.

In ASIC-based hardware accelerators, following future
research trends are suggested. TPU is already a standard
in the field of deep learning. More capable replacements
are likely to emerge in the coming years. There will be
entirely new architectures to target low-latency and low-
power applications. Most current studies assume a trained
DNN and focus on increasing the speed of its inference.
There have been only a few studies on accelerator design
for DNN training. Therefore, there will be more emphasis
on developing ASIC-based DNN training accelerators in the
future. More research and breakthroughs in CPU-GPU het-
erogeneous architectures are required for more efficient DNN
implementations. Special-purpose or data center system-on-
chips (SoCs) with embedded FPGA or GPU-based machine
learning accelerators appear to be gaining traction. In CGRA-
based accelerators, architectures driven by programming
might be interesting. Other directions include introducing
process-in-memory into CGRA architectures to address the
data movement bottleneck. Further improvements are needed
for the architectures that support dynamic configuration,
as it is an important step towards the widespread use
of CGRA:s.

The following trends may be observed in the future
development of Edge AI accelerators. Edge Al operates in
a heterogeneous environment where the data at the edge and
the preprocessing techniques required for each sensor vary
greatly between applications. Therefore, more customized,
powerful, and energy-efficient chips for specific edge ML
applications will be developed. Multimodal deep learning is
a major development that pulls data from multiple sources
to extract more granular features. Using these multimodal
techniques, the car’s make and model can be pinpointed
instead of just recognizing a car. Other potential research
directions include using distributed ML algorithms to speed
up ML algorithm training and reduce the amount of memory
required for processing. ML applications at the edge require
high accuracy. Therefore, methods for implementing cutting-
edge models at the edge while maintaining accuracy based on
deep learning model pruning and quantization are among the
new research directions. We will also see the development of
customized and general SDK frameworks targeting specific
or multiple edge accelerators for easy deployment of neural
network applications.
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X. CONCLUSION

Deep Neural Networks have recently gained popularity in a
variety of applications. They are, however, computationally
demanding, making them difficult to handle by general-
purpose architectures. In this context, a detailed review
of recent advances in DNN acceleration on specialized
hardware architectures such as FPGA, ASIC, GPU, and
CGRA is presented. Furthermore, embedded Al accelerators
for the edge environment have been thoroughly discussed.
The review begins with a detailed background of DNNs,
focusing on their key operations and applications. CNNs,
which have a wide range of applications, have also been
included in the review. To improve the performance of
the hardware accelerator, we discussed various computing
architectures, such as temporal and spatial architectures,
as well as different dataflow patterns. The review focused
on recent advancements in the acceleration of DNNs on
FPGA, ASIC, GPU, CGRA, and Embedded Al accelerators.
The review divided the FPGA-based accelerators into three
categories and briefly discussed their key features, including
the frameworks available for each. Similarly, ASIC-based
accelerators are classified, and the review summarizes the
accelerators available in the literature based on area, power
dissipation, throughput, resource utilization, and so on.
A comprehensive review of Nvidia’s GPU-based accelerators
was also presented. Furthermore, the review compared the
various popular FPGA/ASIC/GPU-based accelerators. It has
been observed that temporal architectures, such as CPU and
GPU, dissipate more power than spatial architectures, such as
FPGA and ASIC; however, they have higher throughput than
FPGA and ASIC. As a result, it is difficult to say that one
architecture is superior to another because it depends on the
target application and requirements. Furthermore, the survey
presented and compared recent research contributions in
Arm-based machine learning processors and a few embedded
Al hardware accelerators in terms of their cores, performance,
power, availability of Software Development Kits (SDKs),
and supported frameworks. Finally, the review suggests
future research directions for DNN acceleration using var-
ious hardware architectures, including FPGA, ASIC, GPU,
CGRA, and Edge AI accelerators.
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