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ABSTRACT Since its creation, the Linux kernel has gained international recognition and has been employed
on a large range of devices: servers, supercomputers, smart devices and embedded systems. Given its
popularity, the security of the kernel has become a critical research topic. As a consequence, a wide
range of third party tools were created to detect bugs in its implementation. However, new vulnerabilities
are discovered and exploited every year. The explanation for this phenomenon lies in the fact that the
programming language that is used for the kernel implementation, C, is designed to allow unsafe memory
operations. In this paper, we show that it is possible to incrementally transition the kernel code from
C to a memory safe programming language, D, by porting and integrating a device driver. In addition,
we propose a series of code transformations that allow the D compiler to reason about the safety of certain
memory operations. Our implementation increases the security guarantees of the kernel without incurring
any performance penalties.

INDEX TERMS Memory safety, Linux kernel, driver development, security, D programming language.

I. INTRODUCTION
One of the most popular operating system kernels, Linux,
is used on a wide range of hardware, from supercomputers to
IoT devices. While Microsoft Windows dominates the desk-
top market, Linux is the most popular operating system used
by supercomputers [29], in the server market [31], handheld
devices, as part of the Android operating system [27] and the
embedded world [1].

Like all operating system kernels, Linux runs in a
privileged processor mode (called kernel mode or supervisor
mode) with complete access to system memory and devices.
A successful attack on Linux will provide the attacker
full control of the entire system, making it a sought after
target. Such attacks represent a common occurrence. Figure 1
highlights the number of vulnerabilities discovered based on
the Common Vulnerability and Exposure (CVE) reports [12].
The trend appears to be slightly decreasing, however, it still
amounts to an average of roughly 250 reports per year.
This number is extremely large, considering the years of
manpower invested in securing the kernel. In addition, there
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FIGURE 1. Number of Common Vulnerability and Exposure (CVE) reports.

is no way of knowing howmany undiscovered vulnerabilities
exist and are being actively exploited.

To protect itself from potential security attacks, the Linux
kernel employs a variety of self-protection mechanisms [10],
[17] such as Kernel Address Space Layout Randomization
(KASLR), Kernel Page Table Isolation (KPTI), stack protec-
tor etc.

134502 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-4934-1829
https://orcid.org/0000-0001-9713-2760
https://orcid.org/0000-0001-8287-1712
https://orcid.org/0000-0002-5196-8148


C. E. Staniloiu et al.: Safer Linux Kernel Modules Using the D Programming Language

Kernel self-protection mechanisms usually rely on
enabling specific configuration parameters and adding
runtime checks to prevent exploitation of code vulnerabilities.
Vulnerabilities appear as a combination of programmer
mistakes and lack of safety support from the programming
language. The Linux kernel is mostly written in C, a fast
programming language but with minimal safety features.
C syntax allows easy access to the program memory such as
liberal use of pointers, weak typing, no bounds checking for
arrays etc. While these give flexibility to the programmer,
they are also the main source of vulnerabilities: buffer
overflows, pointers to expired data, pointers to uninitialized
memory etc.

In this paper we propose a complementary approach to
securing the Linux kernel: the use of a safe programming
language, i.e. a language with features that assist the
developer in writing secure code.

Our choice is the D programming language [5], that has a
syntax similar to C/C++ and provides modern programming
and safety features. D aims to provide as many of the
performance benefits of the C programming language, with
as few of the security downsides as possible.

With the goal of porting a Linux kernel module to
the D programming language, we answer the overarch-
ing research question: Can critical software components
(operating system drivers) be rewritten in a safe program-
ming language with reasonable effort while maintaining
performance?.

Rewriting a software component from an older language
to a newer one offers the possibility to use more modern
programming features. In our case there are safety benefits
such as: array bounds checking, immutable variables, safe
functions, guaranteed initialization. At the same time, the
translation process poses multiple challenges. Firstly, each
feature in the initial programming language has to be
available in the new programming language; if not, it has to be
adapted. Secondly, the newly rewritten software component
has to be built and linked against the main program: symbol
names, calling conventions, memory references have to be
compatible. Thirdly, dependencies of the newly rewritten
software component, such as its runtime library, have to be
added to the new program or need to be disabled.

Additionally, the Linux kernel adds its own challenges.
Certain features such as a standard C library or the use of
floating point are missing. Memory allocations are typically
resident in the Linux kernel. The stack size is limited.

While we also considered Rust and Go as programming
languages for the Linux kernel port, we ultimately chose D.
Our choice of D was based on three criteria: syntax similarity
to the C programming language, interoperability with C
programs and high performance generated code. D fitted
these criteria, with its close syntax to C, its reasonably easy
interoperability1 with other languages and its proven track
record of generating code that is on par with C’s performance.

1The D primary compiler (DMD) has a feature called -betterC
enabling it to build a C program with some D features.

We selected a Linux kernel driver (virtio_net) and ported
it successfully in the D programming language. The ported
driver benefited from the safety features of the D program-
ming language, improving its security: bounds checking, safe
functions, templates. The performance costs were negligible.

In summary, in this paper we make the following
contributions:

• We demonstrate the feasibility of using a modern pro-
gramming language in the Linux kernel by successfully
porting a Linux kernel module to the D programming
language.We ported virtio_net, the network driver of the
virtio framework [11].

• We design and implement techniques that rely on
specific D language features in order to improve
the Linux kernel drivers. The performance costs are
negligible with the security benefits being provided by
the D programming language.

• We provide a methodology for porting Linux kernel
modules to the D programming language. Demonstrated
by our successful port, the methodology can be used to
port other Linux kernel modules.

The rest of the paper proceeds as follows. Section II
details the D programming language and Linux kernel
specifics. Section III presents the methodology employed for
porting Linux kernel modules to D. Section IV presents the
concrete steps and challenges in porting the virtio_net Linux
kernel module. Section V evaluates the security benefits and
performance costs for the ported module. Section VI presents
related work. Section VII concludes.

II. BACKGROUND
A. LINUX KERNEL MODULES
Linux source code consists of the kernel proper and a plethora
of device drivers and configurable components. Loading a
Linux kernel image with all the device drivers included will
result in unnecessary memory consumption and an increase
of the attack surface. For this, similarly to other modern
operating systems, Linux uses loadable kernel modules, i.e.
object files that can be added to the kernel at runtime to extend
its functionality. Kernel modules can be loaded or unloaded
upon request, without the need to reboot the system or to
recompile the kernel.

Device drivers are typically implemented as kernel mod-
ules. On a given system, only drivers for its particular set of
hardware devices will be loaded in the kernel. The loading of
these specific device drivers usually takes place at startup.

Past studies have shown that device drivers host security
vulnerabilities. Johnson et al. have found that 9 of 11 vul-
nerabilities in the Linux kernel located in device drivers [9].
An investigation using Parfait, a C/C++ static analyzer, has
found that 81% of the bugs are located in device driver
code [4]. A two year investigation has revealed that 85% of
Android kernel bugs are found in vendor drivers. As such, this
paper focuses on securing a device driver by porting it to the
D programming language.We use the virtio_net Linux kernel
module as a proof-of-concept of our approach.
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B. THE D PROGRAMMING LANGUAGE
D is a general-purpose, statically typed, systems program-
ming language. It has a similar syntax to the C programming
language and it compiles to native code, i.e. it is not
interpreted nor does it use a virtual machine. D supports both
automatic and manual memory management: one can rely
on the garbage collector (GC) for memory management or
directly use the malloc and free functions for manual
allocation and deallocation of memory, similarly to C.

D is designed as a more feature rich and safe alternative to
the C programming language. It aims to create programs with
comparable performance to those written in C but without
the safety issues of it. D provides a set of features aimed at
reducing the likelihood of memory issues and vulnerabilities
typically found in C programs.

D implements bounds checking for both static and dynamic
arrays. To address the C design flaw of conflating pointers
with arrays and losing the length information, D implements
two separate types for pointers and arrays. While the normal
pointers have the same implementation as in C, the arrays
are implemented as fat pointers: the pointer representation is
extended to a structure that includes length information used
in bounds checking.

In D, the type system is more stringent and void pointers
are not implicitly converted to other pointer types. Moreover,
local variables marked with the scope keyword are limited
to the function scope, reducing the presence of dangling
pointers.

Besides common pointers such as those found in C,
D provides a memory-safe option called slices. A slice acts
as a ‘‘view’’ of a precise segment of an array. It tracks both
the pointer and the length of the segment. Instead of referring
an array through a pointer that may cause an out of bounds
memory access, one can use a bounded slice.

D offers the @safe annotation for functions. This enables
the compiler to statically check the body of annotated func-
tions for instructions that could lead to memory corruption
such as pointer arithmetic and casts. By default, D relies on
the GC to safely manage the lifetime of objects. Although
the GC has proven to aid productivity and memory safety,
its use is incompatible with performance critical or real-time
applications such as the Linux kernel.

As a consequence, an advanced user has the possibility of
opting out of using the GC and using a different approach
for lifetime management. Among the possible alternatives
are reference counting or the Resource Acquisition Is
Initialization (RAII) technique. As an alternative to reference
counting [16], the language maintainers have added support
for an ownership/borrowing system [7] that can be mechani-
cally checked, similar to Rust’s borrow checker. At the time
of this writing, October 2022, D’s ownership system is not on
par with Rust’s, but it is under active development.

We note that the garbage collector is not involved in any
of the safety checks that the compiler employs, apart from
lifetime management. Array bounds checking, compile time
safety checks and scope analysis are performed even when
the GC is turned off.

Another important part of the D language are its
metaprogramming features. Template metaprogramming is
a technique that allows the user to make decisions based
on the template type properties. This technique makes
generic programming even more powerful, allowing generic
types to be more flexible based on the types that they are
instantiated with. We have used metaprogramming to employ
compile-time polymorphism inside the Linux kernel in order
to replace the use and casts to/from void* with concrete
types.

C. INTERFACING C WITH D
Regarding interoperability with C, the D programming
languagewas designed tomatchmost of the C data types, data
structure memory layout and calling convention. Moreover,
the compatibility extends to the format of the object files.
D and C use the same application binary interface (ABI)
and the same linkers. D permits access to the C standard
library through bindings in the D runtime library and the
D standard library; similarly, C programs can access D
functions. Due to name mangling, C functions called in D
need to be declared with the appropriate linkage attribute
(extern “C”); similarly, D functions called in C code are
prepended with the same linkage attribute. This is identical to
the integration of C++ functions in C code and viceversa.

Linking D code to a C program relies on restricting D
objects only to the C standard library. D-generated object
files can be linked to C-generated object files by restricting
D code to a subset that is not reliant on the D runtime library.
This is achieved through the -betterC compiler switch
that limits the language to a specific subset that meets the
foregoing requirement. This subset, called BetterC, results
from removing or altering certain features of the language
that rely on the runtime library. While some important
functionalities, such as garbage collection, are removed, most
relevant memory-safety features are preserved. Array bounds
checking and slicing, metaprogramming facilities, automatic
initialization of local variables, function safety are part of the
BetterC subset.

D. INTEGRATING D CODE IN THE LINUX KERNEL
We ported virtio_net, the network driver of the virtio
framework.

While C and D integration of user space applications is a
well documented process, integrating D code in the Linux
kernel poses its own set of challenges. To the best of our
knowledge, we are the first to have successfully integrated
a D software component in the Linux kernel.

In the next sections we highlight the challenges, methodol-
ogy and outcomes of integrating D code in the Linux kernel.

III. METHODOLOGY FOR PORTING AND ENHANCING
KERNEL MODULES USING D
A. INTRODUCING D CODE IN THE LINUX KERNEL
There are twoways of adding new functionalities to the Linux
kernel: (1) statically linking the new object file directly with
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the core kernel or (2) compiling the code as a loadablemodule
and linking it into the kernel on demand.

A general rule of thumb is to add new functionalities as a
loadable module. This practice has the advantage of keeping
the kernel code as clean as possible and is easier to maintain.
Also, it permits customization to a greater extent, as necessary
functionalities can be loaded and unloaded on demand.
Moreover, it keeps the Trusted Computing Base (TCB) small
and reduces the overall susceptibility to compromise, thus
increasing security.

Regardless of the type of module that has to be built, the
kernel build system assumes the source files are written in
C. As such, a source file written in another programming
language won’t successfully compile and the build will fail.
This is also the case for the D language. At the same time,
the module entry point and exit point functions must be in
C, so that the kernel can reach them. Summarizing, porting a
module to the D programming language requires:

• writing the corresponding source code in D
• providing module entry points as C interface functions
• updating the build system files to link the new module

For the 2nd requirement, a C interface must be imple-
mented between the kernel and the D-written module. This
C interface should contain only the entry point functions and
bindings to macros and functions that can not be ported to D.
This interface will imply that new features will require at least
two source code files: one in C and the ones in D. Therefore
the directives in the Linux kernel build file must be written
accordingly, for the 3rd requirement.

The kernel build system assumes that it is dealing with C
source files and it tries to build the object files accordingly.
Fortunately, the build system also accepts pre-built object
binaries, as dependencies, that it will link with the object files
it built in order to create the kernel module. This is done by
changing the name of the dependency from module-file.o to
module-file.o_shipped. To link D object files into a kernel
module, the D source files must be compiled beforehand
and have their name with the suffix .o_shipped. The source
files will be compiled by a D compiler with the -betterC
switch. One can choose between using the LLVM-based D
Compiler (LDC) and the GCC-based D Compiler (GDC).
After they are compiled independently, they will be shipped
to the kernel build system to be linked together with the other
C objects.

B. PORTING A KERNEL MODULE
Porting the kernel module, we followed 5 steps, including
testing and benchmarking:

• Port the data structures used inside the module. Ensure
the size and layout of each new ported structure is
identical to the size and layout of the original one.

• Port the module implementation one function at a
time. Check module functionality after each new ported
function.

• Conduct the first set of benchmarks: assess the module
behaviour. Compare the D and the C versions of the
module.

• Introduce D idiomatic constructs and features into the
code. Add bounds checking, replace macros and casts
with metaprogramming, add @safe, @trusted and
other useful features.

• Perform the second set of benchmarks: assess the effect
of the idiomatic code added. Compare the idiomatic D
and the rough D versions of the module. Compare the D
and the C versions of the module.

The first step, the porting of data structures, is the most
complex one. In a kernel module, some structures are defined
inside the code of the module, while others come from
different header files. To be able to generate an object that can
pass and receive structures from a C program, a D compiler
(like any other compiler) must know the layout in memory of
those C structures. This means porting them to D.

This porting can be done using dpp [28], ‘‘a compiler
wrapper that will parse a D source file with the .dpp extension
and expand in place any #include directives it encounters,
translating all of the C or C++ symbols to D, and then
pass the result to a D compiler’’. However, a high level of
branching in header files or recursive inclusions may lead
to the impossibility of using dpp. In this case, one has two
alternatives: (1) port the data structures by hand or (2) make
dppworkwith the Linux kernel headers.We chose the former.

Regardless of the porting method, the size and layout of
each new structure ported to D should be compared with the
size and layout of the original one from C. In the case of
a size or layout mismatch, the bug can be easily detected
by comparing the offsets of the fields from D with the
offsets of their C counterparts. In D, the offset of a field can
be obtained using the .offsetof field property. In the Linux
kernel, it can be obtained using the offsetof(TYPE,MEMBER)
macro.

A difference to consider is the size of an empty structure:
the C kernel size of an empty structure is 0, while in D
this kind of structure has the size of 1 byte. We used D’s
powerful compile-time introspection to solve this issue. Also,
one should consider the fact that the D language does not
implicitly support bitfields. However, the same functionality
can be achieved using the std.bitmanip.bitfields
library type.

While porting the implementation, the D functions called
fromCmust be annotatedwith the extern(C) linkage attribute.
The attribute instructs the linker to use the C naming and
calling convention instead of the D one. The same must be
done when declaring, in the D header, a function that is
implemented in C.

In D, the non-immutable global variables are placed in
the thread-local storage (TLS), while in C they are placed
in the global storage. To achieve functional parity, one must
annotate D global variables with the __gshared attribute.
Also, the const qualifier is transitive in D, meaning that it
applies recursively to every subcomponent of the type that
it is applied to.
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Primitive data type equivalence can be problematic too.
The equivalence between basic C and D types is described
in [6].

Not all the functionalities that are used or implemented in
a kernel module are worth to be ported. This is the case of
certain macros, which in their turn call other macros and so
on and are very deeply rooted in the kernel code. It is also
the case of certain kernel functions that use GCC features
that extend the standard C language and which may not be
implemented in the D compiler. A way to avoid the porting
these macros or functions is to create C bindings (functions
that only call other functions), that can be exposed to a
D object and called from there. These bindings should be
created in the C interface of the module.

After each new ported function, a functionality test suite
should be run. If bugs were introduced, there is only one
function to debug. The process of porting should be more
syntax-oriented in the first two steps of the methodology.
One straightforward way of solving syntax related issues
is to follow and solve the errors that are issued by the
compiler. On the other hand, step 4 should be more oriented
towards functionality and one should use all the features that
the BetterC subset retains, in order to improve the safety
and the performance of the module. Several techniques for
enhancing the safety of a module are presented in the next
section.

The benchmarks (steps 3 and 5) should be done according
to the module functionality. As a rule of thumb, a benchmark
should be done after the module is ported (step 3) to assess
if the D version of the module can ‘‘keep up’’ with the C
version. Then, one should take into account that memory
safety features can lead to further performance penalties.
Safety checks are likely to introduce additional overhead. The
second benchmark (step 5) should be done to assess if the
addition of idiomatic code and safety features is worthwhile
from a performance perspective.

C. SAFETY ENHANCEMENTS
These are some of the security enhancements provided by the
D programming language. They are used to implement and
build the newly implemented kernel module in D.

1) VARIABLES
are initialized to a default value of their type, removing
initialization bugs.

2) IMPLICIT CONVERSIONS
of void pointers to any other pointer types are not permitted.
D requires an explicit cast for converting pointers of different
types.

The C implicit switch fall-through behaviour is not
permitted in D. D also uses the final switch statement
where the default case is not required nor permitted, useful
when the default statement is useless. The final
switch statement is especially useful when it is applied
on an enum type, as it will enforce the use of all the enum
members in the case statements.

3) STATIC ARRAYS
are by default bounds-checked.

4) SLICES
specify a part of an array, via a reference and length
information. They are used to bounds-check dynamically-
allocated arrays. Note that this requires knowledge of the
initial size of the dynamically-allocated arrays.

5) TEMPLATES
can be used as replacement for C void pointers and macro
definitions for generic programming, thus enabling type
system checks.

6) SAFE FUNCTIONS
(annotated with @safe) are statically verified against cases
of undefined behavior.Within safe functions, there are several
language features that cannot be used, such as casts that break
the type system or pointer arithmetic.

Scope, return ref and return scope function parameters
are used to ensure that parameters do not escape their scope,
do not outlive their matching parameter lifetime and are
correctly tracked even through pointer indirections.

7) TRUSTED FUNCTIONS
(annotated with @trusted) provide the same guarantees as
a safe function, but checks must be done by the programmer.

8) SAFE FUNCTIONS
can only call other safe functions and trusted functions.

IV. METHODOLOGY IN ACTION. THE virtio_net DRIVER
Given the steps described above, the goal was to select and
port a Linux kernel driver from C to D. This was an iterative
process with the methodology being updated with feedback
from the porting process.

To select a target driver we considered the following
criteria:

• The driver is in the Linux kernel mainline and it is
maintained, so it is relevant for the kernel community.

• The driver is easy to test and benchmark: being a
network driver, one can easily send and receive packets
and measure what bandwidth is achieved.

• The driver should be medium-sized (thousands of lines
of code). This is a nice trade-off between feature
complexity and porting effort.

Based on these criteria, we selected the virtio_net
driver, part of the virtio framework [11]. As it’s name
suggests, it is a virtual network device driver, used as a
communication channel between the guest and the hypervisor
in a paravirtualized environment. It satisfies the three criteria:
(1) it is actively maintained and used for virtualization use
cases, (2) it can be easily tested with network tools: network
functionality and network metrics such as bandwidth and
latency can be part of a comparison evaluation process and
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(3) it has roughly 3.3k lines of code, fitting into the
medium-size range we wanted.

The Linux kernel version used, and the compatible driver,
was 4.19.0. For development, testing and evaluation we used
a virtual machine (VM) based on QEMU.

V. EVALUATION
To validate our approach we show that:

1) The D code has the exact same behavior as the C code
that it replaces.

2) The safety mechanisms inserted successfully prevent
the occurrences of memory corruption bugs.

3) The performance of the replacement software does not
degrade with regards to its predecessor.

We created a setupwherewe provide both implementations
of the virtio_net driver (C and D) and ran similar scenarios to
compare functionality, safety and performance.

A. EXPERIMENTAL SETUP
We created a virtual machine image with the 4.19.0 version of
the Linux kernel. The virtual machine is run as two instances:
one running the C version of the virtio_net driver, and the
other one running the D version. We refer to the virtual
machines using guest and the physical system using host.
We compiled the D source files of the module using the

GDC compiler, version 10.3.0, with the following flags:
-fno-druntime -mcmodel=kernel -O2 -c.

For evaluation we focused on functional correctness /
parity, safety and performance.

B. FUNCTIONAL CORRECTNESS
We then run network tools in each virtual machine to check
for parity of functionality. For example, using ping to
validate functionality, using wget to download information
from the Internet. Additionally, we check whether the
transferred file is the correct one by comparing its MD5 hash
with the expected one.

C. SAFETY
To enhance the safety of the ported driver code we modified
the code as to use several D language features: array bounds
checking, @safe functions and templates.

1) ARRAY BOUNDS CHECKING
The virtio driver uses both statically and dynamically
allocated arrays. In the case of static arrays defined inside
the driver, the D language compiler has sufficient information
at compile time to insert bounds checking code. Dynamic
arrays, on the other hand, are represented in C as a pointer to
a chunk of data, therefore there isn’t sufficient information at
compile time to offer the possibility of implementing runtime
checks. However, using slices, we are able to enable bounds
checking for dynamic arrays that are defined inside the ported
driver. Accesses to arrays that are dynamically allocated
outside the driver remain without bound checks.

FIGURE 2. VM to VM setup. One VM runs the iperf3 server, the other is
running the client.

From the total number of array accesses inside the
virtio_net driver, we were able to enable array bounds
checking in 88.4% of the cases. The rest of 11.6% represent
accesses to dynamic arrays that have been allocated outside
of the ported driver. To test the effect of adding array bounds
checking on the driver, we have added artificial out of bounds
accesses to the code. In 60% of the cases, the C version of
the driver has finished execution gracefully, whereas the D
version has stopped with a kernel panic in 100% of the cases.

2) @SAFE FUNCTIONS
To enable the D compiler to check the safety of the code,
we aimed to annotate all the functions present in the
driver with the @safe keyword. 19% of the functions have
successfully compiled without any modifications, whereas
81.2% have failed compilation due to performing unsafe
operations. Most of these functions rely on pointer operations
and casts that are forbidden in @safe code. Additional
modifications are required to bring the code in a@safe state,
however, this can be done incrementally after the initial port
of the driver.

3) TEMPLATES
D code may use templated functions that are instantiated
at compile time with the right type. In case of a type
mismatch, that will result in a compilation error, thus making
it impossible to have runtime memory corruption bugs.
By using templated functions, we replaced 56% of the total
number of void pointer usages. The remaining 44% could not
be replaced because there was no conversion pattern that we
could detect and leverage for our transformation.

D. PERFORMANCE
For performance, we used the iperf3 tool that sends packets
between a client and a server. We used a virtual machine
instance running the original C version of the virtio_net driver
and a virtual machine running the D version. Each VM was
allocated 1GB of RAM and 1 CPU. iperf3 was deployed on
both VMs.

We devised 3 setups:
• vm-to-vm (in Figure 2): One VM is running the server,
one VM is running the client. Both machines are of the
same type: either C and either D.
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FIGURE 3. VM to host setup. The host is running the iperf3 server, the VM
is running the client.

FIGURE 4. VM to remote setup. Another system in the host network is
running the iperf3 server, the VM is running the client.

TABLE 1. Comparative performance.

• vm-to-host (in Figure 3): The host is running the server,
the VM is running the client.

• vm-to-remote (in Figure 4): Another system in the host
network is running the server, the VM is running the
client.

Each of those setups was used for 2 × 2 types of
measurements: (1) the VM is running D or or the VM is
running C and (2) iperf3 is using TCP or it is using UDP.

Results are summarized in Table 1 and in Figure 5 and
Figure 6.
Results show negligible overhead for the D module

implementation compared to the C implementation. Given
that parts of the measurements show a negative slowdown,

FIGURE 5. Comparative TCP Performance (C vs D).

FIGURE 6. Comparative UDP Performance (C vs D).

we consider performance similar and subject to network and
measurement variation.

One thing to note is the relatively reduced impact of
the changes: the basic network driver functionalities are
unmodified, most of the code responsible for that being
shared between the two implementations. Porting other
drivers may affect a larger part of the implementation and
could feature a higher slowdown. This is subject for analysis
in the future.

E. REPLICABILITY
In the interest of the validating our work, we provide
it to the community on GitHub as a fork of the Linux
kernel, an implementation of the D virtio_net driver and
experiment scripts: https://github.com/edi33416/d-virtio.

The implementation of the D virtio_net is on the
test_dvirtio_gdc branch, in the drivers/net/
dfiles folder. Alongside the .d source files present in the
drivers/net/dfiles path, there are also a Makefile
and two test.sh files. The Makefile is used to compile
the .d source files into the .o_shipped objects that, in turn,
will be linked by the kernel build system to build the
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virtio_net.komodule. The test.sh and test2.sh
helper scripts are used to validate the experimental setup.
They load the compiled kernel module, configure the IP
address and routing table, and validate that the network is
working properly; this is done by downloading a file and
comparing its md5sum with the reference value.
In order to be able to compile the D driver, one needs

to install gdc-10, the GCC based D compiler. As we are
using QEMU to run the VMs, one also needs to ensure that it
has installed qemu-system-x86_64 with KVM support.
We have been connecting to our VMs using a serial port with
a serial communication program, such asMinicom.2

Once all the prerequisites are met, one can build the kernel
module, boot-up the VM and start using the compiled driver.
This process is automated in the tools/labs/ directory.
The tools/labs/Makefile, through the run target,
will (1) compile the .o_shipped object, (2) trigger the
kernel build system that will result in the virtio_net.ko
module, (3) download the YOCTO_IMAGE specified in the
tools/labs/qemu/Makefile and boot-up the VM,
and (4) copy the module inside the VM. It will also setup
IP forwarding and NATMasquerading for the eno1 network
interface on the host machine, so one must update the
Makefile if one’s system is using a different network interface
name.

Once the VM has booted, one can connect to it through the
serial1.pts serial pipe with the help of the minicom
utility tool, as such minicom -D serial1.pts. The
default login username isroot and requires no password. All
the files can be found in theskels/ directory inside the VM,
the kernel object being named virtio_net_tmp.ko.
Precompiled .ko objects can be found in the Releases3 on
Github:
• Precompiled D .ko: https://github.com/edi33416/d-
virtio/releases/download/dvirtio-ko/virtio_net_tmp.ko

• Precompiled C .ko: https://github.com/edi33416/d-
virtio/releases/download/cvirtio-ko/virtio_net_tmp.ko

It is our hope that the availability of our work will make it
easier to evaluate, to replicate and to provide a critical eye on.

VI. RELATED WORK
Improving the safety of the Linux kernel and its drivers is
the constant focus of the professional and research security
community. There are different approaches ranging from
static analysis of the Linux kernel code [4], [9], [14] to
fuzzing [3], [8], [22], [25] to the use of runtime checks and/or
instrumentation [13], [24].

The idea of using programming languages that implement
different memory safety features in order to make the Linux
kernel code safer has also been tackled.

The recent availability of Rust as a programming language
in the Linux kernel [19], [20] paves the way for adding code
written in a secure programming language. This is compatible
with our own approach of using D to write code in the Linux

2https://wiki.emacinc.com/wiki/Getting_Started_With_Minicom
3https://github.com/edi33416/d-virtio/releases

kernel. Although the memory safety guarantees that Rust
offers are superior when compared to D, integrating it in
the Linux kernel is a very complicated task. As evidence,
the work required to add support for Rust in the Linux
kernel was done by 173 people (present in the commit
changelog [21]) over the course of 18 months. This included
solely the implementation of the infrastructure required to
integrate Rust code in the kernel. It does not implement
any device driver or any parts of the Linux kernel in Rust.
By comparison, our work was done by 3 people over the
course of 4 months, including the initial exploratory phase of
the Linux infrastructure as well as the porting of the kernel
header files. The actual porting time of the device driver
required only 2 to 3 weeks. The reader should consider that,
in the meantime, work has been advanced to automate the
porting of kernel header files to D [26], thus reducing the
required time to integrate D device drivers to a minimum.
In addition, the effort to integrate Rust in the kernel has
required compiler changes to accommodate the esoteric code
encountered, whereas our work does not necessitate any
compiler changes.

A previous attempt to create a memory-safe version of the
C language and to use it into the Linux kernel is CCured [2].
CCured is a program transformation system that extends the
existing type system of the C language by classifying new
pointer types according to their usage. There are three pointer
categories: (1) SAFE qualified pointers may be dereferenced,
but cannot be cast to other types or be used as part of
pointer arithmetic operations, (2) SEQ qualified pointers may
be used as part of pointer arithmetic, but not in type casts
and (3) WILD qualified pointers that can be cast to other
pointer types. Each category is treated separately at runtime.
SAFE pointers simply require a null check. SEQ pointers are
subjected to bounds checking, since they are typically used
for array operations. WILD pointers are the most expensive
in terms of runtime cost, because they require runtime type
information to track the various conversion types that the
pointer may be subjected to. It has been previously discovered
that, in practice, a large percentage of the casts in C codebases
between different types are either upcasts or downcasts [23].
This is also true for the Linux kernel where void* is used as
a generic base type in order to enable polymorphism. These
types of casts will be treated as WILD pointers by CCured
which will be subjected to the costs of runtime checks.
By using D, we were able to leverage it’s metaprogramming
support in order to achieve compile-time polymorphism and
type safety without adding any runtime costs.

The pointers defined by CCured are fat pointers: a structure
that packs together the raw pointer andmetadata related to the
boundaries and type information. The authors acknowledge
[15] that, because of this, multithreaded programs that rely
on shared memory will not work with CCured. The isssue
with shared memory programs stems from the fact that the
programs not written using CCured will assume that the
pointers are one word long and can be written to atomically,
when they are, in fact, a fat pointer that occupies multiple
words in memory and requires multiple instructions in order
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to perform the write, and thus the pointer could get in
an inconsistent state. As D’s arrays are also fat pointers,
they suffer from the same problem. We, as do the authors
of CCured, believe that this problem can be resolved by
acquiring locks on the shared memory before accessing it.
Although, in theory, this solution will impact performance we
have not encountered it in practice while interfacing D with
programs written in other languages.

CCured was used on two Linux kernel device drivers,
on Linux kernel version 2.4.5, with no significant per-
formance penalties. However, it has incurred performance
penalties ranging from 11% to 87% on other programs, as it
is detailed in its paper.

Another approach to use a modern programming language
for the Linux kernel drivers, in order to increase the
reliability of the system, was done using the Decaf drivers
architecture [18]. The Decaf architecture partitions the
code of a driver in two separate parts: one that must
run in the kernel-space for high performance and must
satisfy the OS requirements and one that can be moved to
the user-space and be rewritten in another language. The
communication between these two parts was done through
extension procedure call (XPC). Using this architecture and
the Linux kernel version 2.6.18.1, five drivers were converted
to Java, gaining exception handling and automatic memory
management through garbage collection. The performance
achieved was close to the one achieved by the native kernel
drivers. The drawbacks of using Decaf result are traced to
the Java programming language, that has no pointers support.
As such, critical paths in the code that use pointers are left in
the unsafe part, still running in kernel space.

Conversely, our methodology covers the use of the D
language for memory safety enhancements in any type of
kernel modules, including those that use multithreading
and shared memory, as is the case with CCured [2]. The
implementation of new components and the interfacing with
other kernel components can be easily done thanks to the
language’s high compatibility with C, compared to the more
complicated syntax of Rust. The entire code of a kernel
module can be rewritten in D to improve memory safety, with
no need of leaving any part of the code unchanged, as is the
case with Decaf [18].

VII. CONCLUSION
In this paper we presented an approach to improve the
security of Linux kernel modules using the D programming
language. We selected virtio_net as our target driver,
a medium-sized and actively maintained component in the
Linux kernel. We ported the driver in the D programming
language and highlighted the functional and performance
parity to the original C driver and discussed the security
benefits. We elaborated a methodology that can be used on
other types of drivers for the same purpose.

The safety features added to the driver show that the
D language is able to leverage safety improvements in a
kernel module, array bounds checking and compile-time
polymorphism being the most important ones.

It is important to note that unsafety inside the kernel is a
fact of life. Although one can use a programming language
that uses different mechanics that increase the safety of the
code that a developer writes, at one point the developer will
be forced to perform unsafe actions. Those can come from the
need to interact with specific pins on the underlying hardware
or the need to interact with the kernel API. Most of the kernel
API core works with raw pointers; as such, even though the
safe code might implement a sound object lifetime algorithm,
being forced to pass the raw pointer to the kernel will void all
the safety bets and assumptions. In spite of this, we believe
that there are two strong arguments that enable the use of
safe languages in practice: 1) the kernel core is extremely
stable and robust as it benefits from 30 years of development
and bug fixes, and 2) the kernel API clearly defines whose
responsibility, the kernel’s or the driver’s, is to free allocated
resources.

Another important observation is that a programming
language must be able to adhere to the constraints and design
patterns implemented inside the Linux kernel. As Linus Tor-
valds has stated [30], kernel needs to trump any programming
language’s needs. For this reason, we believe that the D
programming language is a good fit given its proven ease of
interoperability with C and the kernel infrastructure.

The extent to which the kernel safety can be improved
depends on the degree to which the module implementation is
self-sufficient. The more external functionalities the module
uses, the fewer safety enhancements can be done.

The performance evaluation we conducted on the vir-
tio_net driver shows that the D version of the driver adds
little to no overhead to the original C variant. The safety
features added are sustainable and do not introduce overhead,
therefore, we consider the performance results encouraging.

Given the methodology we created, we are confident other
drivers could be ported to D with reasonable effort. Given
the similarity to the C programming language, getting accus-
tomed to the D programming language will have minimal
impact on the driver developer. This is in contrast to the Rust
programming language whose syntax and features are very
different from the C programming language. We believe that
the increasing interest of adding safe languages into the Linux
kernel is a great step forward, as it provides kernel developers
with alternatives and flexibility such that they can strike the
right balance for their needs and goals.

With these solutions, further drivers could be ported using
the methodology described in this paper. Later on, this could
be extended to entire built-in components and subsystems
in the Linux kernel. Those would bring a much needed
improvement in the overall security of the kernel with close-
to-no overhead, with a welcoming C-similar programming
language.
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