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ABSTRACT In this paper, we introduce a new design method of burst error control codes (BECCs),
which can correct single burst error or two random bit errors by using the maximum likelihood syndrome
decoder (MLSD), where the proposed BECCs are designed by a modification of the well-known Fire codes
using constacyclic codes. Also, for the existing low-latency burst error-correcting decoder, it is shown that
the proposed BECCs have the single burst error correction capability together with two random bit error
detection capability with no additional parity bits and comparable complexity with the existing BECCs. For
this, the complexity and latency is numerically analyzed by register-transfer level (RTL) synthesis.

INDEX TERMS Burst error control codes (BECCs), burst errors, error control codes, fire codes, low-latency
decoder.

I. INTRODUCTION
Error control codes (ECCs) have been widely used for the
reliable communication and memory systems. For emerg-
ing state-of-art applications of the high-performance mem-
ory and interconnect systems, the low-latency property for
the decoders of ECCs was introduced as a key requirement
to meet industrial demand [1]. For the corresponding error
model, burst errors and burst ECCs (BECCs) are commonly
considered in the two-dimensional array bit and symbol
placement [2]. To this end, cyclic product and Fire codes
with the low-latency burst decoder (BD) were proposed in [3]
and [4] and adopted for the 10G ethernet standard [5].

In addition, it is known that multi-bit errors become preva-
lent for recent memory devices, where the existing single
burst error correction code is not sufficient for covering
multi-bit errors [6], [7], [8]. Thus, a modified class of BECC,
called Hsu-Kasami-Chien (HKC) codes with multi-bit error
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correction was proposed by expurgating the cyclic Fire
codes [9], [10], [11] for a compound channel model with ran-
dom bit errors and single burst error. However, known classes
of HKC codes exists only for limited parameters found by
exhaustive computer search and required to have additional
parity bits compared to the Fire codes. Although the BECC
with random bit error control capability is necessary in many
applications, general constructions and optimalities of the
BECC are still unknown.

For the implementation of ECC, a digital signal processor
(DSP) or field programmable gate array (FPGA) is known
to be more faster and energy-efficient than software-based
implementation [12]. For the low-latency applications, the
BECC is often implemented as a DSP or logic modules in
the transceiver for the physical layer. In addition, the BECC
can be implemented as the smart network interface card
(NIC) with a FPGA for scalability and compatibility of the
communication system [13], [14].

In this paper, we introduce a new design of BECCs by
modifying the binary cyclic Fire codes without additional
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parity bits. The proposed BECC is constructed using the con-
stacyclic code [15], [16], [17] in order to correct single burst
error or two random bit errors for the maximum likelihood
syndrome decoder (MLSD). Also, we investigate the perfor-
mance of the proposed BECC for the existing low-latency BD
and it is shown that the proposed BECCs have the single burst
error correction capability or two random bit error detection
capability. In order to analyze the performance under the
hardware implementation of BECCs in the low latency appli-
cations, the existing and proposed BECCs are synthesized
and compared by the numerical analysis in register-transfer
level (RTL).

The paper is organized as follows. In Section II, some
preliminaries are introduced including the mathematical
notation, system model, Fire code as a BECC, and decoding
algorithms. In Section III, new BECCs using constacyclic
codes with single burst or two random bit error control capa-
bilities are proposed. In Section IV, the error control capa-
bility, decoder latency, and decoder complexity are analyzed
using the theoretical and numerical approaches. Finally, the
paper is concluded in Section V.

II. PRELIMINERIES
A. NOTATIONS AND DEFINITIONS
In this section, we first summarize some mathematical
expressions. Let v be a binary row vector and vi be the i-th
element of v. Let 1 and 0 be all-one and all-zero vectors,
respectively. The support set of v is denoted as supp(v) =
{i; vi 6= 0} and the Hamming weight of vector v is given as
wt(v) = |supp(v)|. Let [a, b] = {i ∈ Z; a ≤ i ≤ b}, i ≥ 1 for
the set of integers Z. Also, a linear code C over the finite
field with characteristic two has parameters (n, k, d), where
n and k denote the codelength and message length with the
minimum Hamming distance d = minc∈C\{0} wt(c).
Code operations are based on the a × b matrix A over the

binary finite field F2 or its extended fields F2l , F2m , F22m , and
F2lm for a positive integerm and an even integer l. Also, let α,
β, ξ , and γ be primitive elements of F2l , F2m , F22m , and F2lm ,
respectively. It is easy to check that F2m is a subfield of F22m ,
where F22m is also a subfield of F2lm . Then, the corresponding
primitive elements should satisfy

β = ξ2
m
+1
= γ (

∑
i∈[0,l−1] 2

mi), ξ = γ
(
∑

i∈[0, l2−1]
22mi)

. (1)

Let F be a linear map from F2m to F22m , that is, F(β i) =
ξ i(2

m
+1), i ∈ [0, 2m − 2] and F(0) = 0.

Let B be an incidence matrix of A over F2m , denoted as
B = M (A), that is, bi,j = 1 if ai,j 6= 0 and bi,j = 0,
otherwise, where ai,j and bi,j are the (i, j)-th elements ofA and
B, respectively. Also, letT i be a companionmatrix denoted by

T i =: [[ξ i], [ξ i+1], . . . , [ξ i+2m−1]] ∈ F2[T ] ⊆ F2m×2m
2 ,

where [ξ i] is denoted as a 2m × 1 column vector derived
from the additive 2m-tuple representation of a finite field with
basis {1, ξ, . . . , ξ2m−1} for an arbitrary integer i and F2[T ] =
{T 0,T 1, . . . ,T 22m−2

}. Then, it is easy to check that there

FIGURE 1. Compound error model with single burst error and two
random bit errors with u = 6, v = 3, and f = 2.

exists a field-isomorphic map I from {0, ξ0, ξ1, . . . , ξ2
2m
−2
}

to {O,T 0,T 1, . . . ,T 22m−2
}, where O denotes an all-zero

matrix [22].

B. ERROR MODEL AND ERROR CONTROL CAPABILITY
In this subsection, we introduce the error model for the state-
of-art application such as memory and interconnects [1]. For
positive integers f , v, and u, the data and error patterns are
represented as an fv×u two dimensional bit-wise array, where
a column is called as a lane. Here, each element of the lane,
called a symbol is denoted by the column vector of size f and
thus, each lane is composed of v symbols from each pin of
the memory chip. Thus, burst errors in lanes are assumed to
be independently occurred. Then, the compound error model
with both single burst error of several symbols, called a burst
error and random bit errors is represented as follows. First,
a burst error is occurred for adjacent symbols in a lane, and it
should be detected or corrected by the decoder. Here, we only
consider single burst error for BECC. In addition, random bit
errors can be occurred for any lane and any row locations,
where some possible cases should be detected and thus do
not be mis-corrected. The error control capability of BECCs
is represented by the following four parameters ts,c, ts,d , tb,c,
and tb,d as;

i) Upto ts,c and ts,d symbols in a burst error in a lane are
correctable and detectable:

ii) Upto tb,c and tb,d bits in the random bit errors are
correctable and detectable,

where the expressions of correctable and detectable are
used when all the errors in the specified pattern can be
corrected and detected. For the next subsection, we introduce
well-known design types of the existing cyclic BECCs. Fig. 1
describes the compound error model with single burst error
and two random bit errors with u = 6, v = 3, and f = 2.

C. THE EXISTING BINARY CYCLIC BECCs
In this subsection, we introduce the well-known class of
binary cyclic BECCs, called as Fire codes [3]. Note that
the introduced BECCs were rediscovered as an optimal
binary locally repairable codes (BLRCs) for bit erasures in
the distributed storage systems (DSSs) [18]. In this paper,
the parameters of the existing BECCs (Fire codes) can be
modified as (n, k, ts,c, ts,d , tb,c, tb,d ). Thus, the binary cyclic
BECCs in [3] are modified as follows.
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FIGURE 2. Parity check matrix of the modified BECC (Fire code) in
Construction 1.

Construction 1 (Modified BECC in [3]): For codelength
n = fuv with v > l, let δ be a (2fl − 1)-th root of unity over
the finite field F2fl , where uo = 2fl − 1 and u ≤ u0. Here,
suppose a cyclic code with a generator polynomial g(x) =
(x fv+1)pα′ (x), where pα′ (x) is a minimal polynomial of α′ ∈

F2fl over F2. Then, a parity check matrix Ho =
[
HGo
HLo

]
is composed of two submatrices, an fl × fu0v submatrix
HGo = [HG,1,HG,2, . . . ,HG,uo ] and an fv × fuov submatrix
HLo = [HL,1,HL,2, . . . ,HL,uo ] = [Ifv, Ifv, . . . , Ifv] for an
fl × fv submatrix HG,i, i ∈ [uo] and an fv× fv identity matrix
Ifv. Here, HGo and HLo are constructed by check equations
with roots in pα′ (x) and (x fv + 1), respectively.

Then, let CBC be a BECC, whose codeword c =

(c1, . . . , cu) can be defined by shortening f (u0 − u)v infor-
mation bits as in Fig. 2 and its parity check matrix consists

of two submatrices HG and HL as HBC =
[
HG
HL

]
with

HG = [HG,1, . . . ,HG,uo ] andHL = [HL,1, . . . ,HL,uo ]. Then,
the BECC CBC has the following properties;

i) A burst error of at least ts,c ≥ l and ts,d ≥ v symbols
is correctable and detectable [3].

ii) Random bit errors for tb,c ≥ 1 and tb,d ≥ 1 are
correctable and detectable (Theorem 4 in [10]).

In fact, Construction 1 with f = 1 and uo = u corresponds
to the binary cyclic BECC (Fire code) in [3]. Also, note that
shortening the cyclic BECC offers the modified parameters
while shortening preserves the error control capability of the
original cyclic code. However, burst error control capability
in this paper is not identical to that in [3] and [10] from the
difference of the channel model such that each burst error is
only located in a lane.

In order to improve tb,c and tb,d , HKC codes were proposed
by multiplying additional polynomials into g(x) in the cyclic
Fire codes. However, only some classes of HKC codes with
good selection of additional roots were analyzed requiring
additional parity bits [9], [10], [11].

For the low-latency applications, BECC operations are
designed as a hardware module. Conventionally, encoding
and decoding implementation of the cyclic BECCs such as the
existing Fire and HKC codes consist of linear feedback shift

FIGURE 3. BD implementation logic architecture.

registers (LFSRs) for the finite field arithmetic [19]. First, the
encoding operation can be represented as multiplication of
binary polynomials and consumes at least k cycle to com-
plete. In addition, decoding operation of burst trapping pro-
cess is known to require at least fv+ l cycles to proceed [20],
where the required latency becomes prohibitive for BECCs
with long codelength and low-latency applications.

In order to improve the latency for the burst error cor-
rection, the MLSD and low-latency BD for BECC are
introduced.

D. MLSD AND LOW-LATENCY BD FOR BECC
Here, concepts of the MLSD and low-latency BD are intro-
duced for the existing and proposed BECCs. In fact, both
decoders have an advantage of using combinatorial logics and
thus, low latency can be achieved by removing processing
cycles by LFSRs. Also, both decoders use syndrome values
which can be obtained from the following procedures. First,
suppose that an fuv-length codeword c = (c1, . . . , cu) ∈ CBC
in the BECC experiences the compound channel. A burst
error in the i-th lane is assumed to be occurred, which is
represented by a nonzero 1×fv error subvector ei in the 1×fuv
received and error vectors r and e such that r = c+ e. Then,
the syndrome s is defined as s> = Hr> = He>.
Here, the MLSD can correct single burst or multi-bit errors

for BECC if all the corresponding error vectors upto single
burst error of ts,c symbols or tb,c random bit errors have differ-
ent syndromes. However, its naive implementation requires
comparing all the possible correctable cases, which results
in the high decoding complexity for BECCs with the single
burst or bit error control capability.

In order to achieve low-latency design from the MLSD,
the parallel decoder architecture for cyclic BECCs was intro-
duced [21], where the global syndrome sG and local syn-
dromes sL were derived as;

i) (sL)> := HLr>,
ii) (ei)> := (HL,i)−1(sL)>,
iii) (sG)> := HG,ie>i = HGr>.

Then BD can be implemented by combinatorial logic using
the following two phases;

i) Syndrome generator (SG): Calculate (sG)> = HGr>

and (sL)> = HLr>.
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ii) Burst error corrector (BC): If sG 6= 0 and sL 6= 0, find
a unique i satisfying

(sG)> = HG,i(HL,i)−1(sL)>. (2)

If there exists a unique i ∈ [u], we can recover ci =
ri+ei. If there does not exist a unique i, error detection
is declared.

For low-latency property, BD can parallelize the BC opera-
tion for all possible u lanes. Fig. 3 shows the BD implemen-
tation logic architecture with parallelized BC.

As complexity and latency measures of the proposed BD
logic architecture, the gate count and logic depth of SG and
BC are presented. First, gate count is the total number of
used gates for operating hardware modules. In addition, logic
depth is the maximum number of processed gates for critical
paths. Generally, gate count and logic depth show the level
of complexity and latency of combinatorial logics for the BD
architecture [19], [21]. Also, two measures can be analyzed
by either estimation from the constructed parity check matrix
H or synthesis on the FPGA using the Verilog codes for RTL.
Note that the BD is sub-optimal compared with the MLSD

because it can only correct single burst error, not multi-bit
errors in the multiple lanes. Also, for the compound channel
with multi-bit errors, there exists mis-correction to single
burst error if they have the same syndrome. In the next
section, concepts of constacyclic codes and new design for
low-latency BECCs are introduced.

III. NEW DESIGN OF PROPOSED LOW-LATENCY BECCs
USING CONSTACYCLIC CODES
In this section, we first introduce the concept of the exist-
ing constacyclic codes. Then, the new design of low-latency
BECCs is proposed using the constacyclic codes.

A. CONSTACYCLIC CODES
Before introducing the constacyclic codes, we first remind
cyclic codes. For the cyclic codes with codelength n =
2l − 1, encoding and decoding operations are defined over
an isomorphic mapping from the algebraic operation over the
principal ring F2[x]/< xn + 1 >, where< · > is a generator.
Denote α ∈ F2l as a primitive element satisfying α2

l
−1
= 1.

For the set of root exponents C = [0, 2l − 2], let Ci =
{αi, α2i, . . . , α2

l−1i
}, |Ci| ≤ l be a coset, a partition of C . Let

pi(x) be a minimal polynomial of αi over F2. Then, we have

xn + 1 = (x + 1)(
∑

i=[0,n−1]

x i) =
∏

i∈I\{0}

(x + 1)pi(x), (3)

where I is a subset of [0, 2l − 2] satisfying C = ∪i∈ICi with
the minimum cardinality.

Then, a special class of non-binary constacyclic codes was
proposed as a generalization of cyclic codes, which is defined
as follows.
Definition 1 (Constacyclic codes, [15], [17]): For inte-

gers m, l and an element λ ∈ F2m , a 2m-ary linear code C
with codelength n = 2l − 1 is denoted as λ-constacyclic if
(λcn, c1, . . . , cn−1) ∈ C for all (c1, c2, . . . , cn) ∈ C.

Similarly, a constacyclic code is defined over an isomor-
phic mapping to the principal ring F2m [x]/< xn + λ >. Note
that the authors in [15] and [17] only considered the case with
l = m, but this isomorphism generally holds for any l and m.
Here, suppose an element δ ∈ F2m satisfying δn = λ, where
the coset C ′i = {δ · α

i, δ · α2i, . . . , δ · α2
l−1i
} and β j · αk

returns γ j(
∑

i∈[0,l−1] 2
mi)+k(

∑
i∈[0,m−1] 2

li)
∈ F2lm for αk ∈ F2l

and β j ∈ F2m , j, k ∈ Z. Then, we use the following lemma.
Lemma 1: For a principal ring F2m [x]/< xn + λ >, with

n = 2l − 1 and relatively prime l and m, the following
statements are valid;
1) There exists an element δ satisfying δn + λ = 0 and
δ = βe, where β ∈ F2m .

2) Let p′i(x) be a minimal polynomial of δ · αi over F2m

mapped from pi(x) ∈ F2[x]/< xn + 1 >, where themap
converts the coefficients of zero and one of the binary
coefficients to zero and one overF2m , respectively. Then,
xn + λ is factored into

xn + λ = δn(δ−nxn + 1)

= δn(δ−1x + 1)
∏

i∈I\{0}

p′i(δ
−1x). (4)

Proof: For the first part, note that n = 2l − 1 and 2m −
1 are relatively prime. By the well-known Chinese remainder
theorem, we can always find a unique value satisfying i′ =
0 mod 2m − 1 and i′ = e(

∑
i∈[0,l−1] 2

mi) mod 2l − 1 for

i′ ∈ [(2m − 1)(2l − 1)]. Let i′′ = (2ml−1)i′

(2m−1)(2l−1) ∈ [2ml − 1].

Then, δ = γ i
′′

is an element of F2m because γ ∈ F2lm and

δ2
m
−1
= γ

(2ml−1)i′

(2l−1) = (γ
(2ml−1)
(2l−1) )i

′

= 1. Also, δ = βe in that

δ2
l
−1
=

(
γ

(2ml−1)
(2m−1)

)i′
= γ e(

∑
i∈[0,l−1] 2

mi)
= βe = λ.

For the second part, it is easy to check that (4) is satisfied
using (3). Also, p′i(δ

−1x) is a minimal polynomial of δ · αi

because p′i(δ
−1x) is an irreducible polynomial with roots C ′i ,

which concludes the proof.
Also, the constacyclic codes preserve some useful prop-

erties of the cyclic codes [15]. Let Z and Z ′ be defining
sets, that is, sets of roots in the generator polynomial of
cyclic and constacyclic codes, respectively. Then, Z and Z ′

are represented as the unions of some cosets of the finite field
denoted as Z = ∪iCi = ∪i{αi} and Z ′ = ∪iC ′i = ∪i{δ ·α

i
} for

cyclic and constacyclic codes. Accordingly, the well-known
BCH bound for constacyclic codes is represented as follows.
Lemma 2 (Constacyclic BCH Bound [15], [17]): For δ ∈

F2m and α ∈ F2l , suppose a constacyclic code Ccc over F2m

with a defining set Z ′ = ∪i{δ · αi} including the consecutive
roots {δ · αl, δ · αl+1, . . . , δ · αl+d

′
−2
}, Then, Ccc has the

minimum Hamming distance at least d ′.
Proof: See the proof in [15] and [17].

Using this property, we can generalize the class of cyclic
BECCs as the constacyclic codes while preserving error con-
trol capability and parity bits for single burst errors. In the
next subsection, we propose the new design of low-latency
BECCs using the constacyclic codes.
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B. NEW DESIGN OF BECCs USING CONSTACYCLIC CODES
In this subsection, the proposed BECCs can be constructed as
follows.
Construction 2 (Construction of the Proposed Binary

BECCs): Suppose the primitive roots β and ξ over F2m and
F22m , satisfying l < v and β = ξ2

m
+1, where l and m are

relatively prime. For the principal ring of < xuv + λv >, let
b = 2m + 1 and δ = βe = ξ e(2

m
+1)
= ξ eb be a root of

xu + λ over F2m for u = 2l − 1 and some integer e. From
an (n, k) = (uv, uv − l − v) constacyclic code CP, a linear
binary BECC Cprop with (n, k) = (fuv, f (uv − l − v)) for a
symbol size f = 2m has a 2m(l + v) × 2muv parity check

matrix HCprop =

[
HG
HL

]
, where HG = [HG,1, . . . ,HG,u]

and HL = [HL,1, . . . ,HL,u] are constructed as following
procedures.

i) Let C1 be a constacyclic code over F2m with the parity
check polynomial h(x) as

h(x) =
xu + λ
p′i(δ
−1x)

=

∏
j∈I\{i}

p′j(δ
−1x)

=

∑
i∈[0,u−l]

hix i, hi ∈ F2m .

ii) Generate an l × uv PG = [P′U , δ
vP′U , . . . , δ

v(u−1)P′U ],
where an l × uv P′U is represented as shown at the
bottom of the page, using the coefficient of check
polynomial h(x) and hi ∈ F2m .

iii) Construct a v × uv submatrix PL = [PL,1, . . . ,PL,u]
with

PL,i =


δv(i−1) 0 . . . 0

0 δv(i−1) . . . 0
. . . . . . . . . . . .

0 0 . . . δv(i−1)

,
and thus, an (l + v) × uv matrix P =

[
PG
PL

]
is

generated from PG and PL . Then, P is a parity check
matrix of the constacyclic code CP with the generator
polynomial g(x) = (δ−vxv + 1)p′i(δ

−1x) over F2m .
iv) From CP, convert all the elements by two sequential

maps I ◦ F to binary elements. First, the map F
converts β i to ξbi and δi = βei to ξbei. Then, the
elements of ξ i are mapped into 2m × 2m companion
matrices by I(ξ i) = T i, which finally construct the
proposed binary BECC with a 2m(l+v)×2muv parity
check matrix HCprop .

For the encoding of the proposed BECCs, encoding of the
constacyclic codes can be implemented as a multiplication of

two polynomials over F2[x]/< xn + λ >, where the required
complexity is similar to the existing one Also, the MLSD and
low-latency BD can be used for the low-latency decoding of
the proposed codes.

Note that the parity bits for the proposed BECC are the
same as the cyclic Fire BECCs, which maintains high code
rates for low-latency applications. Nevertheless, the proposed
BECC and BD have additional two bit error detection capa-
bility with the same burst error correction capability as Fire
codes. For the existing HKC codes, they requires the addi-
tional parity bits for multi-bit error control capability. In the
next section, theoretical approach is introduced in order to
show it.

IV. ANALYSES OF THE PROPOSED BINARY BECC
In this section, single burst and two random bit error control
capability of the proposed binary BECC is analyzed via the
theoretical approach. Also, its decoding latency and complex-
ity are numerically derived by nonzero values on parity check
matrix and RTL synthesis.

A. THEORETICAL ANALYSIS FOR ERROR CONTROL
CAPABILITY ON THE PROPOSED BECC
In this subsection, the single burst and two random bit error
control capability is derived. The first theorem shows that the
proposed BECC has the same burst error control capability as
the Fire code for f = 2m.
Theorem 1 (Burst Error Control Capability of the Pro-

posed Binary BECC): The proposed BECC can correct ts,c
symbols and detect ts,d symbols of single burst error by both
the MLSD and BD, where ts,c ≥ l and ts,d ≥ v.

Proof: It is known that the BD calculates the syndrome
in parallel by a lane, where the BD corrects the single burst
error only when the corresponding syndrome uniquely exists
for one lane. Let b(x) =

∑
i∈[0,l−1] bix

i be a burst error
polynomial of degree l − 1 over F2m . If there exists another
burst error polynomial x j1b′(x), j1 ∈ {v, 2v, . . . , (u−1)v}with
b′(x) =

∑
i∈[0,l−1] b

′
ix
i, which returns the same syndrome

value as b(x), b(x) is not correctable. Provided that x j1b′(x)+
b(x) = 0 mod g(x) = (δ−vxv + 1)p′i(δ

−1x), the following
equations should be satisfied as;

i) From (δ−vxv + 1)|(x j1b′(x) + b(x)), b′(x) =

δj2−j1x−j2b(x) for j1 − j2 ∈ {0, v, 2v, . . . , (u− 1)v}.
ii) From p′i(δ

−1x)|(x j1b′(x) + b(x)) = (δj2−j1x j1−j2 +
1)b(x)), p′i(δ

−1x)|b(x).

However, the condition p′i(δ
−1x)|b(x) is not satisfied because

degree of b(x) is less than l and p′i(δ
−1x) of degree l is

irreducible. It contradicts the assumption and thus single burst

P′U =


h0 h1 . . . hu−l 0 . . . 0
0 h0 . . . hu−l−1 hu−l . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . hu−2l+1 hu−2l+2 . . . hu−l
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error less than l symbols in a lane is correctable for the
proposed BECC.

For the single burst error of v symbols in the lane, the index
of lane i satisfying (2) either uniquely exists in the erroneous
lane or coexists both in the erroneous lane and other lanes.
In either case, the BD can know their error occurrence and
thus detect the burst error. Similar to the BD, the MLSD
can correct and detect the errors by the syndrome, which
concludes the proof.

In order to show the additional random bit error control
capability for the proposed BECC, the following lemma and
theorem are introduced.
Lemma 3: The Hamming distance of a constacyclic code

CP over F2m is at least four. Also, for the parity check matrix
P, M (P) is a parity check matrix of the binary BECC (Fire
code) in Construction 1 with g(x) = (xv + 1)pi(x).

Proof: For CP with g(x) = (δ−vxv + 1)p′i(δ
−1x), its

corresponding defining set is Z = {δ · α0, δ · αi, . . . , δ ·
α2

l−1i
}. By three subsequent roots of {δ · α0, δ · αi, δ · α2i},

the Hamming distance of CP over F2m is at least four from
Lemma 2.
Theorem 2: For the proposed binary BECC Cprop with

v =
∑

i∈[0,d l2 e−1]
22im, the BD can detect the two random

bit errors. Also, the MLSD can correct the two random bit
errors.

Proof: Suppose a constacyclic code over F22m from
F(CP ). For the proof, it is sufficient to show that all the
corresponding syndromes for upto single burst error of ts,c =
l symbols and two random bit errors are different. For two
random bit errors, the corresponding error polynomial can be
represented as e(x) = ξ i1xd1 for one symbol error or e(x) =
ξ i1xd1 + ξ i2xd2 for two symbol errors over F22m . However,
we only focus on the case of e(x) = ξ i1xd1+ξ i2xd2 . Also, note
that ξ i1 , ξ i2 ∈ [ξ0, . . . , ξ2m−1], whose binary representation
has the Hamming weight one. Then, what we have to show
can be divided into two parts.

i) The syndrome by two random bit errors in the pro-
posed code is different from that of all the other two
random bit error cases.

ii) All the syndromes from single burst error less than or
equal to ts,c symbols are different from those of all two
random bit errors.

First, suppose that a two random bit error polynomial
e1(x) = ξ i1,1xd1,1 + ξ i1,2xd1,2 returns the syndrome value,
which is not unique and thus, another two bit error polynomial
e2(x) = ξ i2,1xd2,1 + ξ i2,2xd2,2 returns the same syndrome. For
MLSD, recall that different syndromes between two random
bits errors guarantee the correction and detection. However,
BD only guarantees detection because there is no correction
algorithm for two random bit errors, which can only detect
error by checking that there does not exist a case satisfying (2)
in BD. Also, it is known that the cases with not guaranteeing
correction and detection are possible in the decoding of Fire
codes, which shows the superiority of the proposed BECC.

Then, the syndrome polynomial is s(x) = h(x)e1(x) =
h(x)e2(x) mod g(x) and equivalently, h(x)(e1(x) + e2(x))
mod g(x) with the Hamming weight less than or equal to
four. However, there is no codeword with the Hamming
weight less than four by Lemma 3. Also, suppose that
there exists a weight-4 codeword polynomial ξ i1,1xd1,1 +
ξ i1,2xd1,2 + ξ i2,1xd2,1 + ξ i2,2xd2,2 = ξ i1,1xd2,2 (xd1,1−d2,2 +
ξ i1,2−i1,1xd1,2−d2,2 + ξ i2,1−i1,1xd2,1−d2,2 + ξ i2,2−i1,1 ).

Then, the binary representation of each coefficient
[ξ i1,2−i1,1 ], [ξ i2,1−i1,1 ], [ξ i2,2−i1,1 ] should be in
{[1], [ξ1], [ξ2], . . . , [ξ2m−1]}. However, encoding operation
by g(x) is defined over F2m with a primitive element β = ξb,
b|(i1,2 − i1,1), b|(i2,1 − i1,1), and b|(i2,2 − i1,1). By b =
2m + 1 > 2m, the only possible case is i1,1 = i1,2 =
i2,1 = i2,2, which means that there exists a codeword whose
nonzero coefficients are one. Then, we have a codeword
c(x) = xd1 (x l1v + 1) + xd2 (x l2v + 1), where d1,1 = d1,1 +
l1,1v and d1,2 = d1,2 + l1,2v for d1,1, d1,2 ∈ [0, v − 1].
From (δ−vxv + 1)|c(x), we have (δ−vxv + 1)|(x l1v + 1) and
(δ−vxv + 1)|(x l2v + 1). Then, c(x) should be factored into
c(x) = (δ−vxv + 1)(xd

′

1
∑l1−1

i=0 δ
vixvi + xd

′

2
∑l2−1

i=0 δ
vixvi) and

δvl1 = δvl2 = 1. Also, from c(1) = 0, l1 should be equal to
l2 for all-one weight-4 codeword c(x) because δv 6= 1 and∑l1,2−1

i=l1,1
ξ ibev 6= 0 for l1 6= l2. However, δ

(
∑

i∈[0,d l2 e−1]
22mi)l

6=

1 because 2m−1 does not divide
∑

i∈[0,d l2 e−1]
22mi. Therefore,

there is no weight-4 codeword polynomial, which proves the
first part.

For the second part, suppose that there correctable exists
single burst error polynomial in the first lane e2(x) =∑

j∈[ts,c] ξd2+jx
d2+j for ξd2+j ∈ {0, 1, ξ, . . . ., ξ

22m−2
} and

ts,c+b < bv, together with a two random bit error polynomial
e1(x) = ξ i1,1xd1,1 + ξ i1,2xd1,2 . If e1(x) + e2(x) becomes a
codeword c(x), then g(x)|c(x) and (δ−vxv+1)|c(x). In order to
satisfy it, e2(x) should be reduced to e2(x) = δl1,1vξ i1,1x

d ′1,1 +

δl1,2vξ i1,2xd
′

1,2 and c(x) is represented as

c(x) = ξ i1,1xd
′

1,1 (x l1,1v + δl1,1v)+ ξ i1,2xd
′

1,2 (x l1,2v + δl1,2v),

(5)

where d1,1 = d ′1,1+l1,1v, d1,2 = d ′1,2+l1,2v, and ξ
i1,1 , ξ i1,2 ∈

[ξ0, ξ1, . . . , ξ2m−1] similar to the first procedure without loss
of generality. From (5) and c(δ · α) = 0, we have

(ξ )i1,1−i1,2 (δ · α)d
′

1,1−d
′

1,2 =
(δ · α)l1,2v + δl1,2v

(δ · α)l1,1v + δl1,1v

=
(δl1,2v · αl1,2v)+ (δv)l1,2

(δl1,1 · αl1,1v)+ (δv)l1,1
, (6)

where v =
∑

i∈[0,d l2 e−1]
22mi. Here, the left-hand side

in (6) is in F2lm but not F22m from (δ · α)d
′

1,1−d
′

1,2 =

γ
(d ′1,1−d

′

1,2)(e(
∑

i∈[0,l−1] 2
mi)+(

∑
i∈[0,m−1] 2

li)), where all the factors
of the exponents are not divided by

∑
i∈[0,d l2 e−1]

22mi for
|d ′1,1 − d ′1,2| < v. On the contrary, the right-hand side is in
F22m because the field operation is conducted only using the
elements of F22m , (δ

v)i, (αv)i ∈ F22m by γ v = ξ ∈ F22m
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TABLE 1. Complexity and latency analysis for the poposed and existing BECCs with BD.

and (1), which results in contradiction and the theorem is
proved.

Note that in the existing Fire code in Construction 1, at least
one case such that the same syndrome between different types
of two random bit errors always exists from a codeword
c′(x) = x fv(x fu+1)+x fu+1 and thus, the improved multi-bit
error control capability for the proposed code is clearly shown
by the above theorem.

In order to discuss the decoder latency, the next section
focuses on numerical analysis for the existing and proposed
BECCs using the FPGA.

B. NUMERICAL ANALYSIS OF COMPLEXITY AND LATENCY
FOR BD IN THE PROPOSED BECC
In this subsection, the complexity and latency of proposed
BECC is numerically analyzed and compared with the exist-
ing BECCs under the compound channel and BD. For this,
we consider a (n, ts,c, ts,d ) = (476, 3, 17) BECC under the
compound channel with f = 4, u = 7, and v = 22m + 1 =
17. By Construction 2, (n, k, ts,c, ts,d ) = (476, 396, 3, 17)
binary BECCs with m = 2 are considered. Also, the existing
(n, k, ts,c, ts,d ) = (476, 396, 3, 17) binary Fire codes and
(n, k, ts,c, ts,d ) = (340, 256, 3, 5) HKC codes with tb,c =
tb,d = 2 are generated from cyclic Fire codes by Construc-
tion 1 and a primitive polynomial g1(x) = x12 + x10 +
x2 + x + 1 with degree fl = 12. Also, HKC codes with
lower code rate can be generated by repeating four (n, k) =
(85, 64) HKC codes g(x) = (1 + x5)

∏2
i=1 gi(x) from the

second class of (n, k) = (85, 64) HKC codes in Table 3
of [11], where gi(x) is a minimal polynomial with root α6i−3.
Note that only some classes of HKC codes are known to
have a good parameter approaching the theoretical bound and
thus, (85,64) HKC code with the same burst error correction
capability is selected as comparison among the HKC codes
with known parameters. For generator polynomials, two 8-
degree polynomials are selected as g1(x) = x8 + x6 + x5 +
x4 + x2 + x + 1 and g2(x) = x8 + x7 + x5 + x4 + x3 +
x2 + 1. Equivalently, HKC codes can be generated by the
repeated-root cyclic codes with a generator polynomial g4(x)
over F2[x]/< x340 + 1 >.
For estimation of complexity and latency based on H , the

gate numbers of SG and BC are counted by the number of
ones inH andHG,i(HL,i)−1 based on only 2-input XOR gates.
Accordingly, logic depth of SG and BC amounts to the base-
2 logarithm of the maximum number of ones in each row

in H and HG,i(HL,i)−1. Also, BC consumes extra cycles to
construct 1-bit equity flag of (2) from the syndrome, which
requires additional logic depth dlog2 fle from the syndrome
calculation.

In the RTL synthesis on FPGA, Intel Quartus Prime version
19.2 synthesis tool for Intel Arria 10 GT FPGA is used.
By synthesis, gate number and logic depth are further reduced
from the estimation by logic optimization process using
depth-reducing gates from 2-input to 6-input gate operations.
Note that logic optimization process does not change the error
control capability of the BECCs.

Table 1 shows that the logic depth and the gate number
of the proposed and existing BECCs. Due to the short code-
length and sparsity in HG, the processing complexity and
latency are small compared to the (476, 396) proposed and
existing Fire BECCs. Similarly, the simulation results show
that the proposed BECC by Construction 2 has the lower gate
number and logic number with the existing BECCs but shows
the enhanced error control capability without additional par-
ities from the existing Fire codes. Note that optimized results
also consider various aspects of the FPGA such as the number
and placement of arithmetic logic units (ALUs) and the level
of gate reduction is not constant by the code parameters.
Nevertheless, reduction on complexity and latency for the
proposed BECC is shown both in the synthesis result and
estimation on H .

V. CONCLUSION
In this paper, we proposed the BECCs with the single burst
error or two random bit error control capability using the
constacyclic codes while preserving the low latency and low
complexity. In the theoretical approach, the algebraic theory
of constacyclic codes was used to show its error control
capability. Also, numerical analysis showed that the proposed
BECCs can also have the similar or lower latency and com-
plexity properties compared to the conventional BECCs for
the existing BD.

As a future work, the low-latency decoder achieving per-
formance of the MLSD will be researched. Also, new design
for different classes of integrated BECCs with burst and bit
error control capability are possible considerations.
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