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ABSTRACT The aim of this study is to provide a fast and reliable approach to detect weak arc faults that do
not noticeably distort the bus current, with the minimum possible arc duration required to respond in low-
voltage AC systems. Progressive singular-value decomposition is utilized to filter interference components,
primarily AC/DC components. Then, the signals are thoroughly decomposed by empirical analytic tools
in the time-frequency domain, combined with the fast Fourier transform to enhance feature extraction in
the frequency domain. The features are passed to the neural networks, where the networks are trained
and validated repetitively by datasets that are randomly selected from the data sampling. The comparison
experiments demonstrate the excellent performance of the proposed method under all crucial evaluation

criteria of arc-fault detection.

INDEX TERMS Arc discharges, electrical safety, empirical mode decomposition, fault diagnosis, fourier
transforms, high intensity discharges, machine learning, neural networks, singular value decomposition,

wavelet analysis.

I. INTRODUCTION

An arc fault describes the fire hazard phenomenon of the
voltage between electrodes breaking through the insulating
medium or an air gap, possibly accompanied by visible lumi-
nescence, followed by a discharge that can release up to
20,000 K heat instantly and ignite combustible materials [1].
Case studies have shown that these types of safety threats
can be caused by bad or loose connections, aged or damaged
electrical systems, faulty switches, outlets and frayed wires
[2]. Arc fault is a contributing factor or the main reason for
at least 38.71% of the more than 224,000 home electrical
fires that occurred in America between 2012 and 2016, which
resulted in an economic loss of approximately 6.5 billion
dollars and 8,450 civilian injuries or deaths [3]. In the field
of electrical safety, arc faults are one of the most serious fault
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types, and with the continuous increase in electricity con-
sumption and transmission, the discovery of reliable arc-fault
detection solutions has become increasingly urgent. However,
research on arc-fault detection started in the late 1970s, yet it
is still in progress until today [4], and the depth of the subject
is revealed by this fact alone. Arc faults can be divided into
different categories by the AC or DC systems, the series or
parallel connection ways of the circuit, the faulted situations,
and the strong or weak distortions they inflict on the line
current; each category has unique challenges [5]. Previous
surveys summarized the extraction domains and approaches
of arc-fault features, as well as the detection methodolo-
gies for different categories of arc faults [6], [7]. It is clear
that arc-fault detection evolves from depending on basic VI
features and threshold diagnosis to more up-to-date non-VI
features or engineered VI features combined with machine
learning (ML) classification [8]. Generally, although the pop-
ularity of ML algorithms as tools for integrating features has
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been growing rapidly, the features that need to be extracted
are still decided empirically by the knowledge of the signals
and decomposition of the experimental data. However, some
methods even rely on ML algorithms to decide which features
to extract [9]. Based on reviews and comparisons of the
established methods and current progress in the field, this
study attempts to present a perspective of the underlying logic
in the development of arc-fault detection.

Arc faults are normally classified by their signal types.
This study is about the detection of arc faults in AC systems
with low voltage and current magnitudes. In this field, not
all arc faults necessarily cause obvious distortions to the bus
current signals; sometimes arc-fault current samples do not
show apparent differences from normal signals. These arc
faults are classified as ‘weak arc faults’ in this study, and
arc faults that cause apparent distortions to the bus current
signals are classified as ‘strong arc faults’. Strong arcs that
bring apparent distortions to the VI characteristics of the
circuits were first addressed by earlier works in this field;
they contain much more energy than weak arcs, and thus,
are much more threatening. However, strong arcs are easy
to detect since many aspects of the circuit are considerably
influenced, and basic VI features, such as a zero-crossing
shoulder current [10] or a bus current amplitude [11], com-
bined with straightforward threshold detection, are effective
in many cases. Nevertheless, threshold detection by current
amplitudes sometimes fails in a system with frequent current
amplitude fluctuations due to load shifts or operational tran-
sitions, and zero-crossing characteristics do not exist in DC
systems. Therefore, researchers developed methods to detect
strong arcs by the derivative of the current amplitude [12]
and fast Fourier transform (FFT) coefficients [13]. Despite
the four references listed, they represent long-lasting and
widely applied industrial arc-fault detection methods. These
methods do not work in the detection of weak arc faults that
have similar VI features as normal signals, but they can be
easily realized with the lowest costs. Weak arc faults are
hard to detect and are less dangerous, but the discharge still
releases enough energy to ignite combustibles. Moreover,
they continuously inflict harm to the circuits, which causes
serious deterioration in the long run; hence, the detection of
weak arc faults cannot be neglected.

Since the VI features of weak arc faults are not obvious,
with the masking effects of other components of the bus
current, detecting weak arc faults by VI features is much
more difficult than strong arc faults. To resolve this problem,
researchers turned to non-VI features of arc faults. The three
most common non-VI features used for arc fault detection
are arc flash, magnetic coupling and electromagnetic radia-
tion (EMR). A method that applies general regression neu-
ral networks (GRNNS5) to detect arc faults by the influence
of arc flash on the light spectrum was proposed in [14].
Bao and Jiang proposed a series of methods to detect arc
faults by magnetic coupling [15], [16], [17], which required
retrofitting the circuits by passing the live line and the neutral
line through the current transformer to obtain high-frequency
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oscillating pulses. The detection methodologies were devel-
oped from multiple thresholds of feature values [15] to higher
order cumulants [16] and singular values of the extracted
features [17], which shows the increasing emphasis on feature
engineering. The EMRs of arc faults have been studied for
years, and some relevant detection methods are presented in
[18], [19], [20], and [21]. From these previous studies, it is
clear that when an arc fault occurs, it transmits electromag-
netic radiation, and this fact can be used to diagnose arc faults.
The EMR-based detection methods evolved from classifica-
tion by empirically decided thresholds [18], [19] to dynamic
thresholds, such as, for example, combining the structural
similarity index matrix (SSIM) with a wide band of spec-
trograms [20] or correlations in characteristic frequencies of
radiation [21]. Without the interference of other components
brought upon VI characteristics, the non-VI arc-fault features
can be more deterministic, and thus, combined with VI fea-
tures, the detection accuracy is improved. However, to incor-
porate non-VI features, extra equipment is inevitable, and
sometimes the equipment can be quite expensive. In addition,
detection by non-VI features usually has the problem of a
severely limited detection range compared to detection by VI
features [14], [18], [19], [20], [21]. The methods proposed in
[15], [16], and [17] do not necessarily have the downside of a
limited detection range, but they require renovation of the live
line and the neutral line to function, which makes them not
applicable in most scenarios without adaptive modifications,
but they may still be suitable as part of the integrated electrical
safety design of a residential building [17].

With the aim of successfully detecting both strong and
weak arc faults without being bound by extra condi-
tions of non-VI feature extraction, detecting arc faults by
more sophisticated VI feature engineering or classification
methodology has been trending. A method that combines
multiple line current features and multiple thresholds was
suggested in [22]; if one aspect is not enough to describe arc
faults, then more features and thresholds are added. Absolute
feature value thresholds may not be sufficiently adaptable;
thus, detection based on thresholds of calculated probabilities
was introduced in [23] and [24]. The STD of a certain eigen-
vector was extracted from the PCA matrix of adjacent cur-
rent data windows in [23], and sparse representation indices
of FFT values are the features extracted for [24]. Similar
to the probability threshold, the threshold proportional to
feature values can protect the adaptiveness of the detection,
as well. A method that extracts the current drop and RMS
of DWT coefficients and then makes diagnoses by a dynamic
threshold proportional to feature values was presented in [25].
Detection by multiple thresholds of the STD of the moving
average current and FFT amplitudes [26] or voltage SNR [27]
has also been verified. ML classification as the integrational
tool to conduct final diagnosis for each sample is becoming
increasingly dominant in the field of arc-fault research for
three major reasons: the day-by-day development of ML
algorithms, the ever-improving computational power, and the
increasingly complicated feature extraction. Telford et al.
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designed an inspirational method that utilizes trained hidden
Markov models to arrange samples into three classes, normal,
normal transitional, and arc-fault, instead of the conventional
dichotomy of normal and arc-fault states by DWT coeffi-
cients [28]. In this way, the arc-fault signals that are difficult
to identify are assigned to the class between normal and
arc-fault, which enables further operations. Another method
using the ensemble machine learning (EML) algorithm to
diagnose arc faults by multiple time-domain current features
selected by exhaustive search of the optimal solution was also
suggested [29]. Since ML algorithms are good at discovering
hidden patterns from heuristic features, combining feature
extraction by trial-and-error with ML classification performs
rather well in many cases.

Empirical mode decomposition (EMD) is currently one of
the popular choices for VI feature extraction and is consid-
ered to have more adaptability and less information overlap
than traditional frequency or time-frequency analytic tools,
such as FFT or wavelet transform (WT), as it decomposes a
signal by the layer-by-layer IMF numbers of the same time-
frequency scale with the signal itself instead of relying on
the compression and stretch of a predetermined base FFT
or wavelet function. However, it does not calculate energy
indices of frequency bands to directly reflect the compo-
sition of the original signal in the frequency domain or
extract wavelet coefficients of components at different time-
frequency scales, which can be further processed, so EMD
is not a replacement of FFT or WT. Some newest detection
methods are based on EMD and its variations; one example is
to detect arc faults by modified variational mode decomposi-
tion (VMD) and a support vector machine (SVM) fused with
particle swarm optimization (PSO) [30]. Another interesting
EMD-based method proposed in [31] directly passes the
intrinsic mode function (IMF) numbers obtained by applying
EMD on the original signal to the SVM algorithm, where the
parameters are adjusted by a genetic algorithm (GA). In con-
trast to the traditional gradient descent-based approaches with
convergence proven by mathematical theorems, optimizing
the parameters of one ML tool by another ML tool is an
uncommon black-box approach. A statistically better solution
is possible, but optimality is not guaranteed; nevertheless,
the functionality of the method is supported by experiments.
ML networks trained by heuristic features are becoming
dominant in many scientific fields because contemporary
computational power is more than sufficient to support abun-
dant samples and repetitive calculations, which makes no
difference to deterministic methods but is decisively advan-
tageous for adaptive methods; from a result-oriented per-
spective, as long as the performances of ML classification
are satisfactory, it is a practically reliable methodology. The
summary of the above research comparison is presented in
Table 1.

Motivated by the necessity of detecting arc faults by bus
current signals while the load conditions and current ampli-
tudes change frequently in low voltage AC systems, this
research proposes a trustable method that detects arc faults
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from information contained in just one AC current cycle. The
proposed method incorporates the progressive singular value
decomposition (PSVD) introduced in [32] as the denoised
filter; then, it analyzes the signals by the empirical wavelet
transform (EWT) and EMD to extract the features of each
IMF sequence layer-by-layer in the time-frequency domain,
enhanced by the fast Fourier transform (FFT) to extract
energy indices of frequency bands in the frequency domain.
After feature extraction, backpropagation neural networks
(BPNN) are trained by the features. To avoid overfitting, the
data are assigned to the training set, verifying set and testing
set in a completely random manner, with 80% of the data used
to train the neural networks (NNs), 10% of the data used to
verify the training results and the remaining 10% of the data
used to conduct experiments and comparisons. The choices
of the PSVD, EWT, EMD and FFT are based on the aim
for an arc-fault detection method that is sufficiently accurate
(over 95%) and also as fast as possible. The experimental
result of 96.12% accuracy and 0.034 s average detection time
on a laptop with an Intel i7-7700HQ CPU and 16 GB of
RAM shows that the proposed PSVDEA-NN method is more
satisfactory than the methods selected for comparison.

This study tackles the problem of detecting weak arc faults
that cannot be detected by overcurrent protection because
they do not cause apparent magnitude changes on the bus
current, which is a blind spot for previous researches, by an
original design of the PSVD filter, a new combination of
multiple fast feature extraction tools in time and frequency
domains, and a modified application of the NN to conduct
diagnoses by integration of features. The test results illustrate
the practicality of the proposed method.

Il. DESIGN OF THE PROPOSED METHOD
A. EXPERIMENTAL PLATFORM AND BUS CURRENT
SAMPLING
The experimental platform displayed in Fig. 1 is constructed
according to UL 1699-2008 [32], an American standard
for arc-fault circuit interrupters (AFCls), and GB/T 31146-
2014 [33], a Chinese standard for arc-fault detection devices
(AFDDs). The experimental platform is identical to the depic-
tion in Fig. 1 in [34]. Two arc generators are alternatively
used: a rod-pulling arc generator to simulate series arc faults
caused by bad connections and a carbonized-path arc genera-
tor to simulate parallel arc faults caused by carbonized paths
between damaged wires.

Experimental data are collected from the bus current with
a sampling frequency of 100 kHz by a PCIE1816H high-
speed sampling card. The PCIE1816H high-speed sampling
card is capable of a 1 MHz sampling frequency. However, a
100 kHz sampling frequency is far more practical for indus-
trial applications in regard to cost; an economic AD7606 sam-
pling chip is a common choice to realize 100 kHz sampling
frequency for commercial AFDDs. The step motor operates
two terminals (rods) of the rod-pulling arc generator to move
away from each other at a fixed speed of 0.015 mm/s to
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TABLE 1. Structural analysis and comparison of previously published arc-fault detection methods.

Source(s) of the Features

Detection Methodology

Aim of the Design

Limitation(s)

Basic Voltage-current (V1) features: Zero
crossing distortions (voltage or current) [10];
Bus current amplitude [11]; Derivative of
current amplitude [12]; Energy variations of
frequency components (FFT indices) [13]

Combination of VI features and non-VI
features: Arc flash [14]; Magnetic field
coupling [15]-[17]; EMR [18]-[21]

Engineering VI features: multiple line current-
voltage features [22]; STD of certain
eigenvector from PCA matrix of adjacent
sampling windows [23]; Sparse representation
of FFT values [24]; Current drop and RMS of
DWT coefficients [25]; STD of moving
average current and FFT amplitudes [26];
Voltage SNR [27]; DWT coefficients [28];
Selected time-domain current features [29];

Threshold detection of unprocessed
feature values

ML classification: GRNN [14];
Threshold detection: Single threshold
[18], [19]; Multiple thresholds [15];
Higher order cumulants [16]; SVD
values [17]; SSIM and wide band of
spectrograms [20]; Frequencies of
radiations [21]

ML classification: Trained Hidden
Markov Models for normal, arc-fault
and normal-transient states [28];
Ensemble machine learning [29]; PSO
modified SVM [30]; GA-SVM [31];
Threshold detection: Multiple
thresholds [22], [26], [27]; Proportional
dynamic thresholds [25]; Probability
threshold calculated from features and

Detect strong AC arc faults
that distort bus current
remarkably

Detect arc faults more
accurately by deterministic
non-VI arc features

Enhance detection accuracy
by engineering VI features
to magnify the differences

between arc-fault and
normal signals, as well as

increasing the amount of VI

features if it helps better
improving the classification

Not useful in detection
DC arc faults (zero
crossing distortions based
methods); Not applicable
in detecting weak arc
faults that have similar VI
features as normal signals

Extra equipment; Limited
detection range [13],
[17]-[20]; Necessary

retrofit of circuits [14]-
[16]

The diagnosis is
extensively customized,
which brings the risk of

overfitting; The detection
speed is not guaranteed
due to comparatively
sophisticated feature
engineering

Modified VMD values [30]; EMD extracted
features [31]

test results [23], [24]

Current Sensor
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< =
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FIGURE 1. Schematic diagram and circuit layout of the experimental
platform.

0.03 mm/s for experiments with a current level below 10 A to
prolong the stable period of the weak arc fault. For exper-
iments with a current level above 10 A, the speed can be
adjusted up to 0.5 mm/s to avoid over-energizing the arc so
that the excessively dispersed heat may cause the rods to melt.
As the ionization of the air gap progresses and approaches
completion, the arc becomes more stable until it breaks when
the consistently growing distance between the two rods is too
large for this arc to maintain itself with the energy stored. The
random nature of the arc makes it difficult to generalize the
maximum distance between two rods for arc sustainment in
any experiment, but from the experiments of this research, the
arcs with the current level below 10 A could not be sustained
when the distance was larger than 5 mm. The frequency of
the AC power source is 50 Hz.
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In total, 2,320 data points contain 1,160 weak arc-fault
data points and 1,160 normal data points from a wide vari-
ety of load settings, including an electronic dimming light,
a squirrel-cage induction motor, resistors, a fluorescent light,
a hand drill, a halogen lamp, a switching power supply, and a
vacuum cleaner mounted in the experimental circuit. In each
experiment, with the AC voltage relatively constant, the bus
current fluctuates and is primarily decided by the normal
operations of the load if the load is a practically functional
appliance. The fluctuation of the current amplitudes inflicts
negative effects on the detection; thus, the current amplitude
normalization (CAN) approach is incorporated, which pro-
tects the data from frequent changes in current amplitudes
while preserving the correlations and proportions between
indices that describe different aspects of the VI information.

G(g)

' L I=12....L (1)
max [G(g;)] — min [G(g)]

G'(g) =

L is the number of data sampling windows, G (g;) denotes
each collected signal, and G’ (g;) is the resulting normalized
signal. The current amplitude normalization in (1) was also
applied in [35].

B. PROGRESSIVE SINGULAR VALUE DECOMPOSITION
(PSVD) FOR AC/DC COMPONENTS FILTERING

SVD is one of the most popular choices for unwanted com-
ponent filtering. The traditional approach is to construct a
Hankel matrix from the coefficients of the original signal
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sequence in the following form [26]:

x(1) x(2) B x(n)
x(2) x(3) x(n+1)

x(N —.n +1) x(N —'n +2) x(N)

@

N is the length of the collected signal, and x represents signal
sequences. The problem is that the traditional combination of
the Hankel matrix and SVD is slow. With the stricter request
for a shorter detection time, faster execution of the SVD
is becoming increasingly important in breaking through the
bottleneck in the detection speed. To address this problem, the
PSVD that progressively performs SVD on a signal sequence
is a new application approach of the SVD proposed in [34].
The PSVD constructs matrix A by the folding-in-half of the
signal rather than by the traditional Hankel matrix construc-
tion. Each signal sequence p of length N is folded in half and
turned into the following matrix of dimensions 2 by (N / 2):

A= [ po(l) Po(2) PO(N/Z)]
PoN/2+ 1) po(N/2+2) Po(N)
3)

The secondary component of A is the targeted component
for feature extraction, and the primary component is filtered
because it contains the unwanted AC/DC components with
the highest energy levels of the entire signal, as shown by
Equation (4):

,_[ 0 0 0] @
~ LpoWN/2+ 1) po(N/2+2) Po(N)

A’ is the filtered signal.

Since the SVD is a fully invertible mathematical operation,
the remaining components are restored after PSVD filtering,
and the signal no longer contains the components that do not
relate to arc faults but hinder the characteristic analysis of
the remaining components with masking effects caused by
their overwhelming energy proportions [35]. The empirical
mode decomposition (EMD) analysis did not extract enough
information from the arc-fault data when the aforementioned
masking components were not filtered. Excluding the phase
shift, the arc-fault signal is very similar to the normal signal
in terms of contrast; hence, they are not quite distinguish-
able. However, once the masking components are filtered,
the features of the arc-fault signal extracted by the EMD
demonstrate a more sophisticated pattern, and the information
can be accessed is much more plentiful. At this point, the
empirical features of the arc-fault signal contrast well with
the normal signal, and classifying them is easy.

A demonstration of the filtering effects of the PSVD shown
by the composites of correspondent EMD sequences of unfil-
tered and filtered signals is depicted in Fig. 2. The load of the
samples in Fig. 2 is electronic dimming light, and the rated
current amplitude is 5 A.
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FIGURE 2. Demonstration of PSVD filtering effects by performing EMD on
unfiltered and filtered normal and arc-fault signals.

The values in Fig. 2 are standardized to between -0.5 and
0.5 with the mean value of 0, the horizontal axis corresponds
to the index values of 2,000 data within one sampling win-
dow. The demonstration proves that the PSVD is capable of
considerably reducing the masking effects by filtering the
components not closely related to arc-fault features, though
they possess the dominant energy proportions in the original
signal.

C. EMPIRICAL MODE DECOMPOSITION

The right decision of the tools for the extraction of the arc-
fault features is the most critical part in developing a success-
ful detection method. Lala and Karmakar [36] proposed an
arc-fault detection method that extracts features by empirical
mode decomposition (EMD) and makes diagnoses by neural
networks (NNs); determining the results, the method was a
success; however, the research subject was high-impedance
arc faults, which are a fault type more distinguishable than
weak arc faults. Another method that extracts features by the
EMD and classifies signals by the support vector machine
(SVM) was also introduced in [37].

EMD is a mathematical tool invented by Huang et al. [38]
in 1998; it approximates IMF sequences layer-by-layer by
the differential sequences between the spline lines of local
maxima and local minima minus the mean of the current
layer. It has been shown by Equations (3.2) and (3.3) in
[38] that an IMF sequence after the Hilbert transform can be
expressed as an analytic signal Z(¢):

Z(t) = X(t) 4+ iY (1) = a(r)e? D, (5)
at) = [X* + Y202,
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Y(n)

0(t) = arctan(X(t)) 6)
Then, to perform a Fourier transform on such an analytic
signal Z(#), the result W(w) sequence has the instantaneous
frequency of the original signal as the maximum contribu-
tion according to the stationary phase method, @ being the
instantaneous frequency sequence, and 8 being the frequency
sequence, as shown by Equation (7), which corresponds to

Equation (4.1) in [38].

W(w) = / - a(r)ef e g (7

In summary, the IMF sequence of each layer reflects partial
instantaneous frequency information of the original signal
in the time-frequency domain. EMD is a widely recognized
feature extraction tool in recent years because it reliably
analyzes the signals by layers of the intrinsic mode function
(IMF) sequences, and it can be executed quickly. Since the
two merits of the EMD perfectly satisfy the requirements of
the method design in this study, the EMD is selected as one
of the feature extraction tools for the proposed method.

The comparison research of the IMF sequences (EMD
components) of the collected data in this study is demon-
strated in Fig. 3, with the load of the experimental samples
being the electronic dimming light (EDL), and the rated
current amplitude being 5A. The IMF sequences are distorted
compared to the ones extracted from a normal signal, and the
pattern of each IMF sequence no longer shows ups and downs
in correspondence with the AC current; instead, it emphasizes
a peak that clearly resembles the arc. However, the clear
contrast depicted in Fig. 3 does not always exist in other
sampling windows, especially when the VI characteristics of
arc-fault samples are almost identical to the normal ones at
the beginning of a weak arc fault; therefore, relying on EMD
components alone is not sufficient for accurate detection with
the sampling window limited to one current cycle for fast
execution.

Su and Xu [39] also presented an EMD-based arc-fault
detection method, which extracts specific IMF sequences
by the EMD and then calculates the mathematical indices
from the coefficients of the sequences as arc-fault features.
The results were acceptable; however, the method was too
customized, and the optimal number of IMF layers for each
experimental setting was decided by experimental results,
which made the method prone to overfitting and not adapt-
able. To overcome the same dilemma, the method proposed
in this study does not manually select the signals to sep-
arate them into categories in accordance with the experi-
mental settings. The data collected from all experiments are
used to train, verify and test the networks without manual
adjustments, regardless of the differences in experimental
conditions.

D. EMPIRICAL WAVELET TRANSFORM

Mandic et al. continued the research on empirical mode
decomposition and presented a study result of performing
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FIGURE 3. Demonstration of IMF sequences of PSVD filtered normal and
arc-fault signals extracted by EMD.

EMD to analyze multivariate signals in the time-frequency
domain. It is worth mentioning that Huang, as the founder of
EMD, was also a member of this research team [40], in which
it was shown that the performance of the traditional EMD
method could be improved by combining the EMD with the
discrete wavelet transform (DWT). However, the DWT is not
as fast as the EMD, and using both the EMD and DWT for
feature extraction will slow down the detection. A compre-
hensive survey of empirical analysis methods [41] suggests
that the empirical wavelet transform (EWT) can be a good
substitution of the DWT because it extracts the layer-by-layer
wavelet coefficients as compliments to the EMD components
for feature extraction as well, but it can be implemented to run
as fast as the EMD.

Gilles invented the EWT in 2013 [42]; the empirical
wavelets are bandpass filters each constructed according to
the empirical scaling function, and the empirical scaling func-
tion and wavelets are defined by Equations (4), (5), and (6) in
[42]. The empirical scaling function of the EWT is expressed
as follows:

1 if|lw| <w, — 1,
—~ T 1
Pu(w) = cos | =B | =— (o] —w, + 1) ®)
2 21,
0 otherwise
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The empirical wavelets can be described by the following
equations:

1 ifw,+ 1 < |o| < opp1 — Tatt
T 1
cos [Eﬂ <2 (lo| — Wp41 + Tn-‘rl))]
Tn+1
7= lijTOn+1 —lfn+1 <ol < wpy1 + Tatt )
sin [Eﬂ (Z (lo| — wy + tn))]
ifw, -1 <|o| 2w, + 1
0 otherwise
0 ifx <0
Bx) = and B(x) + B(1 —x) = 1,Vx € [0, 1] (10)
1 ifx>1

The EWT extracts different modes of a signal by an adap-
tive wavelet filter bank, which is a new wavelet analysis tool
that extracts information in the time-frequency domain by
wavelet coefficients in a layer-by-layer manner instead of the
traditional decomposition by frequency bands. A EWT-based
method that resolves the spectrum subdivision problem by
morphological filtering enhancement was proposed in [43].
In this research, it was stated that EWT provides a consistent
decomposition by wavelet analysis, while EMD sometimes
exhibits diverse results and it can be difficult to interpret the
information, so EMD and EWT can be applied together for
improved feature extraction. The method of arc-fault detec-
tion using a twin support vector machine was introduced in
[44]; this method also utilized the EWT as the base approach
for feature extraction. As a result of the successful examples
and with the aim of fast and comprehensive feature extraction
in the time-frequency domain and the caution of not overly
processing the features so that the trained machine learning
classification tool is more resilient to the challenge of over-
fitting, the EWT was also chosen as a feature extraction tool
in this research.

The demonstration of normal and arc-fault EWT sequences
is displayed in Fig. 4. The data samples used for Figs. 3 and
4 are the same to show the differences and resemblances
between the EMD and EWT components in comparison.
Judging by the results, the EWT coefficients complement the
information obtained by the EMD well such that the detection
accuracy is enhanced by combining the EWT with the EMD,
and the detection speed does not show an apparent slow-down
due to the fast execution of both approaches.

E. FEATURE EXTRACTION AND CLASSIFICATION BY
NEURAL NETWORKS (NN)

To further improve the detection accuracy without a costly
trade-off on the executional speed, the fast Fourier transform
(FFT) has been incorporated as another feature extraction tool
because it is at least equally as fast as the EMD and helpful
to extract features in the frequency domain [34]. Referring to
the proposals in [34] and [39], verified by the experimental
results, each sequence extracted by the EMD and EWT is
computed into sum and kurtosis, while each FFT sequence
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FIGURE 4. Demonstration of EWT sequences of PSVD filtered normal and
arc-fault signals.

is computed into sum and standard deviation, since kurtosis
is not meaningful in the frequency domain.

An overview of the complete feature extraction and
machine learning (ML) classification based on the extracted
features in this study is shown in Fig. 5. Due to the increased
amount of extracted features, the most suitable classifica-
tion tool is no longer the support vector machine (SVM),
as presented in [34] and [35]. Neural networks (NNs) are
selected as the classification tool for the proposed method to
make diagnoses for each sample after integrating the features.
The influences of different sizes of the sampling window are
shown in Fig. 6, and the comparison of the two ML classifi-
cation tools with the same features and sampling winnow size
is depicted in Fig. 7.

As shown in Fig. 6, the detection accuracy is considerably
improved from 81.47% to 100% by increasing the size of
the sampling window from 1,000 data points to 8,000 data
points with a sampling frequency of 100 kHz in the 50 Hz AC
system. When the sampling window size is increased from
2,000 or one current cycle to 8,000 or four current cycles, the
detection accuracy is improved from 96.12% to 100% in this
comparative test, but the detection time is increased by nine
times, which is a costly trade-off. With the sampling window
size increased from one current cycle to four, and the average
detection time increased to 0.306 s, which corresponds to
at least 30 current half-cycles in a 50 Hz AC system, also
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FIGURE 5. Overview of empirical feature extraction and NN classification
of the proposed method.

considering the sampling time, an arc is possibly allowed to
burn for more than 40 half-cycles before being detected, then
the direct application of the algorithm in China is disqualified
by the current Chinese standard for AFDDs, which requires
an arc fault of a current amplitude below 75 A to be detected
within 12 half-cycles [33]. Based on the results, the sampling
window size is set to be one current cycle.

The NN is now a better ML classification tool than the
SVM, as illustrated clearly in Fig. 7; the SVM still has the
speed advantage, but the poor accuracy eliminates it as a can-
didate ML tool for the proposed method. The NN applied for
the proposed method is the backpropagation neural networks
(BPNN) with the settings of one hidden layer, a maximum
epoch number of 10,000, a learning rate of 0.01, and an
error margin of 0.00000001; the parameters are decided by
trial-and-error automatic test runs. The node number in the
input layer is decided by the layer numbers of the signals
decomposed by the empirical analysis (EA), which is 19 (18
features plus 1 label) in this study, and the node number
of the hidden layer is set as twice the node number in the
input layer plus one, which is 39, according to Kolmogorov’s
theorem explained in [45]. Although there are more advanced
parameter optimization approaches introduced in previous
studies, including the differential evolutionary cooperative
coevolution (DECC) composed of the quantum evolutionary
algorithm (QEA) and genetic algorithm (GA) [46], and the
combination of the variable neighborhood search and the
nondominated sorting genetic algorithm [47], the scale of the
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FIGURE 7. Performance comparison of SVM and NN to process extracted
features as ML classification options.

parameter matrix in this study is not large enough for the mer-
its of the abovementioned approaches to become apparent,
and the parameter tuning for the ML tool is not as influential
as the feature extraction in detecting arc faults verified in [34]
and [35].

F. IMPLEMENTATION PROCESS AND FLOWCHART

The purpose of this study is to continuously develop a fast
and reliable arc-fault detection method on the foundation
of previous studies, [34] and [35]. The PSVD-FFT method
proposed in [34] addressed the weakness of slow execution
of the WASVD-CAN method proposed in [35] and substan-
tially improved the detection speed. However, the PSVD-FFT
method still needs to be modified in regard with the follow-
ing drawbacks: the maximum number of responsive current
cycles to detect an arc fault is 12 due to the dynamic design,
meaning that in the worst case scenario, an arc fault cannot be
detected until it has been burning for 24 current half-cycles,
plus the executional time of the algorithm; the accuracy still
has room for improvement, and the detection time can be
further reduced. The PSVDEA-NN method proposed in this
study has solved each of the aforementioned drawbacks of
the PSVD-FFT method with excellent detection accuracy,
even faster detection speed, moreover, the responsive current
cycle for an arc fault is fixed to be 1. Therefore, the newly
designed method has overcome the weaknesses of the pre-
vious studies in [34] and [35], and the purpose of this study
is fulfilled. A more comprehensive comparison between the
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FIGURE 8. Logic design and step explanations of the proposed
PSVDEA-NN method.

WASVD-CAN, PSVD-FFT, and PSVDEA-NN methods with
other selected methods is presented with details in the next
section. The logic design of the proposed method is shown
in Fig. 8. Fig. 9 is the complete flowchart of the proposed
method.

This study adopts a design principle similar to that of
previous studies, which uses relatively simple mathematical
tools to reduce the complexity of the problem and then con-
structs feature vectors to be processed by ML classification.
For example, Chen et al. developed a method for hyperspec-
tral images of which principal component analysis (PCA) is
employed to reduce the complexity of hyperspectral images,
and the local binary pattern (LBP) is used for constructing
feature vectors to be processed by the kernel extreme learning
machine (KELM) [48]. The proposed method utilizes the
PSVD, which is the fastest form of the SVD, along with fast
empirical analyses, including the EMD and EWT, as well as
the FFT, one of the fastest analytical tools in the frequency
domain. In addition, the trained neural network takes little
time to make each diagnosis by computing one arithmetic
equation with parameters tuned during the training. This
design enables the proposed method to detect arc faults in
a timely and accurate manner.

Ill. EXPERIMENTS AND ANALYSES

A. EXPERIMENTAL CONDITIONS

There is a total of 2,320 datasets (sampling windows) gen-
erated from the experiments in this study to evaluate the
proposed method and parallel comparison. The experiments
are composed of various load settings, current amplitudes,
circuit layouts, and several types of arc faults simulated
by different arc generators. The voltage-current waveform
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demonstration of realistic sampling during experiments with
different conditions is depicted in Fig. 10, and the conditions
of each set of experiments are summarized in Table. 2. The
experiments are also incorporated in two previous studies,
[34], [35]. Fig. 10 corresponds to Fig. 10in [34] and Fig. 15 in
[35]. However, in [34] and [35], the experiments of each set
of conditions are used to test the performances of the methods
individually, but in this study, all of the experimental data are
used to evaluate the proposed method and the methods for
comparison altogether. Considering the nature of the machine
learning (ML) algorithms and the AC system characteristics
at the user end, the frequent shift of loads and fluctuations
of the bus current amplitudes should be common, and ML
algorithms are particularly good at classifying data with
repetitive patterns; therefore, the methods should be evaluated
by their performances on arc-fault detection within samples
from all of the experiments for more realistic simulation. The
sampling window size is determined to be 2,000 data points,
which is one current cycle with the sampling frequency set
to 100 kHz according to the research comparison shown in
Fig. 6.

It is worth mentioning that among the eleven experimental
sets there is only one parallel arc-fault type. The parallel arc
faults generally have higher arc current magnitudes and gen-
erate more energy under the same circuit conditions, in most
cases it is easier to detect parallel arc faults than series ones.
However, the arc current amplitudes are not measured, only
the bus current is measured, and the current amplitudes in
Table 2 are the rated current amplitudes of the loads. Since the
location of potential arc faults cannot be decided beforehand,
arc faults are detected by the features extracted from the bus
current. Arc faults are random and the energy keeps being
emitted in different forms and directions from arcs, so the
impact caused by parallel arc faults on the bus current is not
as large or regular as short-circuit faults. To add a parallel
arc-fault experiment is to examine whether the algorithm can
successfully recognize parallel arc faults when the majority
of faults are series ones.

The strong arc-fault signals with bus-current fluctuations
that are obviously larger than the ones of normal load oper-
ations are excluded, because the emphasis of this research
is to detect weak arc faults from mixed signals of differ-
ent load operations by alternations in the patterns of the
bus current, without depending on current magnitudes. The
arc faults that cause abnormally large bus-current fluctua-
tions can be detected by a circuit-breaker or residual cur-
rent circuit-breaker with overcurrent protection. However, arc
faults, especially the ones in early stages, are not necessarily
accompanied by apparent changes in the magnitudes of bus-
current fluctuations, thus overcurrent protection cannot be
triggered.

B. DESCRIPTION OF THE METHODS SELECTED FOR
PERFORMANCE COMPARISONS

Three previously established arc-fault detection methods and
one earlier version of the proposed method are selected
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TABLE 2. Summary of experimental conditions and data composition.

Load Type Arc-fault Type Rated Current Amplitude Data Composition

Electronic Dimming Light series SA 120 normal samples, 120 arc-fault samples
Resistors parallel 15A 120 normal samples, 120 arc-fault samples
Motor series 14A 120 normal samples, 120 arc-fault samples
Fluorescent Light series 8A 120 normal samples, 120 arc-fault samples
Hand Drill series 6A 100 normal samples, 100 arc-fault samples
Halogen Lamp series 9A 100 normal samples, 100 arc-fault samples
Resistors series SA 100 normal samples, 100 arc-fault samples
Switching Power Supply series 14A 100 normal samples, 100 arc-fault samples

Vacuum Cleaner series 20A 60 normal samples, 60 arc-fault samples

Electronic Dimming Light,
Fluorescent Light, and Halogen series
Lamp in parallel

Switching Power Supply and

. series
Vacuum Cleaner in parallel

5A electronic dimming light, 9A
halogen lamp, and 8A fluorescent light

14A switching power supply and 20A
vacuum cleaner

100 normal samples, 100 arc-fault samples

120 normal samples, 120 arc-fault samples

for parallel comparison, including the EMD-PNN [39], the
WASVD-CAN [35], the PSVD-FFT [34], and the PSVDEA-
SVM; except for the PSVDEA-SVM, the other methods are
introduced by published articles. For the sake of a fair com-
parison, all algorithms are reprogrammed to be executed on
the same computational platform, and examined by exactly
the same experimental data.

The EMD-PNN method calculates the standardized param-
eters from each of the specific layers of the extracted intrinsic
mode function (IMF) sequences to maximize the margin
between normal signals and arc-fault signals, and the diag-
noses are made by probabilistic neural networks (PNN) with
the parameters as features. The original version of the EMD-
PNN extracts features from specific IMF layers by empirical
mode decomposition (EMD) for each load setting according
to the characteristic analysis beforehand. However, in this
study, the data contain a variety of load settings, in contrast to
[39], where each load setting is studied and tested separately.
The original approach is no longer suitable; relying on man-
ual adjustment for each load setting deprives the method of
the functionality in realistic applications. Now the test data
are the normal and arc-fault signals from eleven experiments
of conditions distinct from one another, and it is impossible
to manually decide which IMF sequences to be included,
therefore, the optimal IMF layer number is decided by an
exhaustive search on the outcomes of the probabilistic neural
networks (PNN) trained with IMF sequences of different
layer numbers. This process is very time-consuming, but it
is the necessary improvement for the method to be usable in
detecting arc faults within mixed samples from experiments
with distinctively different settings.

The WASVD-CAN method normalizes current amplitudes
and decomposes the signals by wavelet analysis (WA), then
applies singular value decomposition (SVD) to the wavelet
coefficient sequences and locates the corresponding coeffi-
cients of the irrelevant components with large energy indices
that cause masking effects, including the AC/DC compo-
nents, by entropy calculation. Then, the method filters those
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components by setting the coefficients to zero before fur-
ther reducing the environmental and systematic influences
by subtracting one calculated standard signal base from
each wavelet coefficient sequence. Since WA and SVD are
both fully reversible mathematical operations, the signals
with components irrelevant to arc-fault detection filtered are
reconstructed from the remaining coefficients for feature
calculation. The features are passed to the support vector
machine (SVM) for diagnoses. Per the results presented in
[35], the method can achieve high accuracy by carefully
eliminating all of the components that are not closely related
to arc-fault detection to maximize the difference between
normal signals and arc-fault signals. However, this method is
slow, because the conventional SVD, WA and reconstruction
processes on each signal consume too much time. It has
been shown in [34] that with more advanced hardware, the
execution of the method can be accelerated, but the detec-
tion speed of this method is still a downside compared to
some other methods with the same data on the same plat-
form. Moreover, the original sampling window size for the
WASVD-CAN in [34] is 8,000 data points with a sampling
frequency of 100 kHz, which corresponds to four current
cycles; when the sampling window size is decreased to 2,000
data points, the detection accuracy of the method shows a
cliff descent. The dependence on a larger sampling window
is a weakness of the method. The more current cycles to
make a single detection are demanded, the more sampling
time is needed regardless of the sampling frequency; when
the method requires information from more current cycles to
detect an arc fault, the potential burning time of the arcs is
prolonged.

To solve the imbalance between the detection accuracy and
speed of the WASVD-CAN method, the PSVD-FFT method
starts with the current amplitude normalization, and then the
signals are analyzed by the fastest form of the SVD, pro-
gressive singular value decomposition (PSVD), in a recursive
manner. In each round of recursion, the signal under decom-
position is filtered by half, and a singular value is extracted
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TABLE 3. Overall detection accuracies and average detection times of
selected methods in comparison.

Method Detection Accuracy (%)  Average Time (s)
EMD-PNN [39] 68.36 0.199
WASVD-CAN [35] 49.96 0.151
PSVD-FFT [34] 77.12 0.016 - 0.047
PSVDEA-SVM 79.60 0.025
PSVDEA-NN 96.12 0.034

as a feature, with the optimal amount of recursions decided
empirically by comparative studies. The feature extraction
is enhanced by the fast Fourier transform (FFT), and all of
the features are passed to the SVM to diagnose potential
arc faults within each small diagnostic window. Then, the
results of the small diagnostic windows are integrated into the
structure of the double diagnostic window frame (DDWF) to
reduce the most common errors in the detection of weak arc
faults, which are the false-negative type errors. As illustrated
by the results in [34], the PSVD-FFT achieved a detection
speed that is considerably faster than the WASVD-CAN with
a satisfactory detection accuracy. The weakness of the PSVD-
FFT method is that, to maintain high detection accuracy, the
DDWEF is necessary; however, this structure increases the
number of maximum current cycles allowed to detect an arc
fault, potentially prolonging the burning time of an arc, which
can lead to a safety hazard. Nevertheless, of course, with
the high detection accuracy and fast detection speed, this
method still has its practical value. The sampling window
size of the PSVD-FFT method in [34] is 4,000 data points
with a sampling frequency of 100 kHz, which corresponds
to two current cycles; the detection accuracy decreases
when the sampling window size is reduced to 2,000 data
points.

The contrast between the proposed PSVDEA-NN and
PSVDEA-SVM is already depicted in Fig. 7. The only differ-
ence between the two is the choice of the machine learning
(ML) tool for making the final diagnoses, and it is also
included here for the sake of analysis.

The comparative test results are displayed in Table 3. The
algorithms of the methods are written in MATLAB 2021 and
executed on a laptop computer with one Intel i7-7700HQ
CPU and 24 GB RAM. Each window sampling takes 0.02 s
with the sampling frequency of 100 kHz.

The proposed PSVDEA-NN method achieved excellent
performance in both detection accuracy and speed with the
sampling window size of 2,000 data points and sampling
frequency set to 100 kHz, which corresponds to only one
current cycle. In AC systems, one current cycle is almost the
minimal sampling window size for any heuristic detection
method without special sampling processes, since the features
extracted from normal signals are to be compared with those
extracted from arc-fault signals for the algorithms to adap-
tively learn the differences; hence, serious information loss is
bound to happen when the sampling window size is less than
one current cycle because the half-cycles have quite different
patterns even when no faults have occurred.
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C. ANALYSIS OF THE RESULTS

Table 3 shows the detection times and accuracies of the
PSVDEA-NN method proposed by this study and the meth-
ods for comparison. Per the results, the overwhelming domi-
nance of the proposed method in arc-fault detection with the
sampling data window limited to one current cycle is clearly
illustrated, partially because other methods were designed to
function with larger sampling window sizes. In the area of
DC arc-fault detection, if the sampling subject is the DC bus
current, the information of the system contained in the current
cycles does not concern the sampling window size because
there are no current cycles, so the sampling window size can
be as small as 1,000 data points with a sampling frequency
of 100 kHz [23] or even smaller. However, in the area of AC
arc-fault detection, if the method resolves the problem in a
heuristic manner rather than in a deterministic or empirical
manner to diagnose arc faults by capturing changes in the pat-
tern caused by the arcs, a sampling window size smaller than
one current cycle requires modified sampling approaches.
As explained in earlier sections, a smaller sampling win-
dow size indicates less sampling time, and more importantly,
more sensitivity to burning arcs because the minimum num-
ber of current cycles a method allows arcs to burn cannot
be less than the number of AC current cycles required for
sampling.

It has also been shown by Fig. 13 in [35] that the accuracy
of the WASVD-CAN method is approximately 50% when the
sampling window size is 2,000 data points; the method fails
to classify, thus all of the signals are labeled the same, but
the accuracy of the WASVD-CAN method increases rapidly
from 49.96% to over 95% when the sampling window size
increases from 2,000 data points to 8,000 data points. The
accuracy of the EMD-PNN is 68.36% because it is degraded
not only by insufficient data in each sampling window but
also by mixed load settings and current amplitudes. The
original design of the method adapts to each experimental
condition by abundant manual analyses and then the sepa-
rately trained PNN networks take the test by signals from
each set of the experimental conditions. A method such as this
can still be used in realistic situations if once the application
scenario is adapted, it does not change often. In contrast to the
PSVD-FFT that extracts the singular values of the PSVD as
the arc-fault features, the PSVD part of the proposed method
is utilized as the filter, the original design of the PSVDEA-
SVM method is to work with the sampling window size of
4,000, and the downsized sampling window does affect the
detection accuracy. The detection accuracies of PSVD-FFT
and PSVDEA-SVM are 77.12% and 79.60%, respectively,
which are hardly passable. Since the only difference between
the PSVDEA-NN and PSVDEA-SVM is the ML tool, it is a
good demonstration of how the neural networks (NN) out-
perform the support vector machine (SVM) in integrating
relatively numerous features. The proposed PSVDEA-NN
method is the only method that has achieved a satisfactory
detection accuracy with the restricted condition of detecting
arc faults within each current cycle, and the outstanding
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FIGURE 9. Complete flowchart of the proposed PSVDEA-NN method.

96.12% detection accuracy is ahead of all the other methods
in comparison by a wide margin.

The detection times of the methods in comparison vary, the
EMD-PNN has the slowest average detection time of 0.199 s,
and the WASVD-CAN is faster, though not by much, with the
average detection time of 0.151 s, and they are the slowest
among the methods in comparison. The EMD-PNN is slow
because the optimal IMF layer number decided dynamically
can be large, and customization of the EMD is necessary, then
the repetitive feature extraction by the customized EMD takes
a heavy toll on the detection speed. The WASVD-CAN is
slow since it performs the Hankel matrix form of the singular
value decomposition (SVD) on each signal as the most time-
consuming part of the feature extraction, and this became the
inspiration of the PSVD as a fast substitution. The PSVD-
FFT can be faster than the proposed method with an average
detection time between 0.016 s and 0.047 s. Even if the
average detection speed is slower than the PSVDEA-NN for
the diagnoses made by three consecutive sampling windows
in the DDWF structure [34], the average detection speed of
the diagnoses made by only one sampling window is about
50% faster than the proposed method. However, with more
powerful computational tools, the execution of the algorithms
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can be accelerated, but the DDWF structure potentially allows
up to three sampling windows to confirm a diagnosis, which
correspond to three consecutive current cycles, and the sam-
pling time of the current cycles is restricted by the AC current
frequency thus cannot be accelerated. The PSVDEA-SVM,
although faster than the PSVDEA-NN, with an average detec-
tion time of 0.025 s over 0.034 s, is nevertheless not in the
same rank as the proposed method due to its poor detection
accuracy. It is worth mentioning that some of the methods
in comparison perform well in regard with detection speed
because the sampling window is much smaller than their
original designs, and a smaller sampling window size not only
reduces the sampling time but also considerably decreases
the amount of data processed in each iteration, which is in
polynomial or exponential proportion to the executional time.
If the sampling window size increases, the average detection
speeds of the methods in comparison will be much slower,
and the detection accuracies of these methods are far inferior
to the proposed method with the small sampling window
size. For example, the average detection time is reduced from
0.068 - 0.198 s of the PSVD-FFT method with a sampling
window size of 4,000 data points to 0.016 - 0.047 s with a
sampling window size of 2,000 data points, and the 96.18%
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FIGURE 10. Voltage-current waveform demonstration of adjacent sampling windows before and after arc generation in each experiment.

(a) Electronic Dimming Light. (b) Resistors for Carbonized-path Arc Generator. (c) Squirrel-cage Induction Motor. (d) Fluorescent Light. (e) Hand Drill.
(f) Halogen Lamp. (g) Resistor for Rods-pulling Arc Generator. (h) Switching Power Supply. (i) Vacuum Cleaner. (j) Electronic Dimming Light, Fluorescent
Light, and Halogen Lamp in Parallel. (k) Switching Power Supply, and Vacuum Cleaner in Parallel.
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detection accuracy of the PSVD-FFT method with the 4,000
data or two current cycles sampling window size is close
to the 96.55% accuracy of the PSVDEA-NN with the same
sampling window size, according to the results presented in
[34]. However, when the sampling window size is reduced to
one current cycle, the proposed method does not suffer from
anoticeable decrease in the detection accuracy (from 96.55%
to 96.12%), where the detection accuracy of the PSVD-FFT
drops from 96.18% to 77.12%.

The proposed method is the only candidate among the five
methods in parallel comparison to perform well in regard to
both of the detection accuracy and speed, with an average
time of 0.034 s to make a single diagnosis. It has consistently
detected arc faults accurately from the mixed data generated
by eleven experiments, each with a unique set of experimental
conditions that represents a category of realistic arc-fault
scenarios. The detection accuracy of the proposed method
is 16.52% higher than the method that switches the ML tool
from the NN to SVM; moreover, it is at least 19% higher than
the established methods proposed by previously published
articles and improves the detection accuracy comparatively
by at least 24.63%. This study successfully invents a heuristic
method for the detection of weak arc faults in AC systems,
which limits the sampling window size required for accurate
detection down to only one current cycle. The breakthrough in
the sampling window size substantially shrinks the sampling
time, and the current cycles of the method allow an arc to burn
before being detected. With the sampling window size being
justone AC current cycle, the PSVDEA-NN method achieved
a 96.12% accuracy in detecting weak arc faults on a total
of 2,320 samples of different load settings, arc-fault types,
circuit layouts and current amplitudes. Since the executional
time is drastically influenced by the data contained in each
sampling window, this also enables the method to detect arc
faults much faster. The average detection time of 0.034 s is
close to the sampling time of 0.02 s with the current sampling
window size of one current cycle and sampling frequency of
100 kHz. If the executional speed is faster than sampling, the
method can be used to monitor the conditions of the system
in real-time and detect arc faults with no delays.

The most relatable application scenario of the proposed
method is to function as the incorporated algorithm of
AFDDs or circuit breakers in low voltage AC systems. How-
ever, since this method does not depend on zero-crossing
distortions or current magnitudes, it has the potential to
be applied in DC systems as well, referring to a previous
research that combines the central neural networks (CNN)
and long-short term memory (LSTM) to construct a deep
learning (DL) approach for the detection of series arc faults in
DC systems [49]; or another example presented in [S0], which
extracts features from the bus current and VI characteristics
of the load in a DC experimental circuit, to detect parallel
arc faults by artificial intelligent algorithms. The proposed
method is adaptable to different application scenarios because
it is accurate, fast, and does not rely on arc-fault features
exclusive to AC systems.
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IV. CONCLUSION

This research inherits the knowledge from [34] and [35],
aiming for a detection method for AC weak arc faults with
excellent accuracy and speed. The method presented in this
study has progressed forward to reduce the average detection
time even more on top of the fast execution in [34], with
the realization that the key point in further accelerating the
diagnosing process is to downsize the sampling window. This
research successfully modified the traditional filtering and
feature extraction technique by the original PSVD filter and
the combination of empirical analyses and BPNN classifica-
tion, so that features extracted from just one current cycle of
the AC bus current are sufficient for fast and reliable arc-fault
diagnoses.

One of the contributions of this study is the design of
using the fastest form of the singular value decomposi-
tion (SVD), the progressive SVD (PSVD), to filter the cur-
rent components that cause masking effects on the feature
extraction, which has been proven to be effective and fast.
Another contribution is to utilize fast compound empiri-
cal analysis (EA) with the help of a fast Fourier trans-
form (FFT) to extract arc-fault features. The third contri-
bution is the implementation of the neural networks (NN)
to repetitively select random training, verifying and testing
datasets from the pool of samples. Then, the neural network
selected is the one with the highest detection accuracy from
numerous repetitions, and the results show strong support of
the idea.

Although the proposed method has withstood the chal-
lenge of detecting weak arc faults from over two thousand
samples of various experiments with different experimental
conditions and dominated the comparison test with excellent
accuracy and speed, the following three subjects still need
to be researched to further improve the proposed method so
that it can become practical for realistic applications: (1) The
average executional time of the method is still longer than
the sampling time, which is a frontier for real-time arc-
fault detection without delays. The executional time can be
shortened to below the sampling time by the advancement of
hardware alone or a combination of algorithm modifications
and hardware upgrades; to prepare the proposed method for
real-time detection or system monitoring tasks, the average
detection time or even better, the maximum detection time,
has to be less than the sampling time. (2) The adaptiveness
in classifying data generated by scenarios absent from the
experimental data is unverified. The proposed method effec-
tively learns to diagnose weak arc faults from the signals of
different experiments, each experiment represents a category
of realistic scenarios with abundant data, but its ability to
generalize a pattern for signals from novel scenarios with
inadequate data is yet to be tested. (3) In realistic environ-
ments, there can be interference factors that are not sim-
ulated by the experimental platform, and the composition
of signals can be a lot more complex, the method must be
equipped with necessary anti-interference solutions to remain
functional.
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