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ABSTRACT This work presents a comprehensive review of the developments in using Machine Learning
(ML)-based algorithms for the modeling and design optimization of switched reluctance motors (SRMs).
We reviewed Machine Learning-based numerical and analytical approaches used in modeling SRMs.
We showed the difference between the supervised, unsupervised and reinforcement learning algorithms.
More focus is placed on supervised learning algorithms as they are the most used algorithms in this area.
The supervised learning algorithms studied in this work include the feedforward neural networks, recurrent
neural networks, support vector machines, extreme learning machines, and Bayesian networks. This work
also discusses several essential aspects of the considered machine learning algorithms, such as core concept,
structure, and computational time. It also surveys sample data acquisition methods and data size. Finally,
comparisons between the different consideredML-based algorithms are conducted in terms of electric motor
type, dataset inputs and outputs, and algorithm’s structure and accuracy to provide a summary overview of
the ML-based algorithms for SRMs modeling and design.

INDEX TERMS Electric machine design, electric machine modeling, machine learning (ML), switched
reluctance motor (SRM).

I. INTRODUCTION
Switched reluctancemotors (SRMs) are receivingmore atten-
tion owing to their simple and robust construction, low cost,
and fault tolerance capability. SRMs also offer reliable per-
formance and stable operation at high speeds [1], [2]. These
advantages make SRMs a promising alternative to conven-
tional electric motors, such as induction motors and perma-
nent magnet synchronous motors (PMSMs). The challenges
in SRMs are the high torque ripples, vibration and acous-
tic noise, and high-level of nonlinearity in modeling. How-
ever, extensive research has been conducted to address those
issues. SRMs have recently been used in many applications,
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such as propulsion, machinery, mining, pumps, and domestic
appliances [3], [4].

Each application of SRMs requires a set of specific require-
ments. For example, electric machines in EVs and HEVs
should have high torque and power densities, a wide operating
speed range, and high efficiency at different operating con-
ditions [5], [6]. Design optimization of SRMs helps signifi-
cantly in fulfilling these requirements. Design optimization is
a multi-objective and nonlinear problem [7]. The design opti-
mization process requires an accurate electromagnetic model
that relates the designable parameters to the output objectives
[8], [9]. Themachinemodel provides various electromagnetic
characteristics such as induced electromotive force, flux den-
sity and electromagnetic torque. It also helps calculate the
machine losses and assesses the machine performance.
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Several nonlinear modeling techniques were developed
in the literature. These techniques can be categorized as
numerical and analytical techniques. Numerical modeling
methods include the finite element analysis (FEA) and the
boundary element method (BEM). FEA is one of the widely
adopted numerical modeling techniques [10], [11]. Although
FEA provides accurate results, it is computationally expen-
sive [12]. On the other hand, the BEM approach has attracted
interest in electromagnetic analysis due to its high accuracy
and reduced computational burden as compared to FEA [13].
Analytical techniques derive approximate analytical relation-
ships between the designable parameters of the machine and
the performance characteristics [14], [15]. The most known
analytical modeling methods are based on curve fitting,
Maxwell’s equations, and magnetic equivalent circuit tech-
niques. Unlike numerical methods, analytical approaches are
much less expensive computationally [16]. However, the key
challenges of analytical methods aremodeling core saturation
and end-winding inductance, and calculating eddy current
and hysteresis losses [17]. ML-based modeling methods are
classified as curve fitting techniques. They became more
popular due to the emergence of many advanced AI algo-
rithms. They offer a good generalization capability formodel-
ing nonlinear characteristics. ML-based modeling techniques
provide good accuracy at a reasonable computational cost.
These techniques are the subject of this paper.

Heuristic and optimization approaches for electric machine
design require many simulations to reach an optimal design.
ML-based algorithms were recently proposed as surrogate
models to reduce the computational cost in FEA [8], [18],
[19]. Initially, an FEA model is developed to accurately sam-
ple the data space for various combinations of designable
parameters. These designable parameters include both geo-
metric and material parameters. ML-based algorithms then
model the nonlinear relationship between these parameters
and the corresponding output performance characteristics at
different operating conditions. This mapping is used as a
surrogate model, which significantly decreases the compu-
tational time and cost as compared to an FEA model. Finally,
a multi-objective optimization algorithm is applied to achieve
the optimal design.

This paper discusses various numerical and analytical tech-
niques utilized in the electromagnetic modelling of SRMs.
A comprehensive review of ML-based algorithms used for
modeling SRMs is presented. This work classifies ML-based
algorithms into supervised learning, unsupervised learning,
and reinforcement learning. We focus on the supervised
learning techniques such as feedforward neural networks,
recurrent neural networks, and support vector machines as
they are the commonly applied algorithms in the scope of
this paper. Moreover, we discuss how these algorithms are
adopted for the geometry optimization of SRMs to improve
motor performance.

The rest of the paper is organized as follows. Section II
discusses the electromagnetic characteristics of SRMs.
Section III introduces common numerical and analytical

FIGURE 1. A typical structure of a three-phase 12/8 SRM.

FIGURE 2. Ideal profile of flux linkage versus rotor position.

techniques for modeling of SRMs. In Section IV, the clas-
sification of ML-based algorithms is presented. Section V
reviews ML-based modeling techniques for SRMs. The
ML-based surrogates for the modeling and design opti-
mization of SRMs are discussed in Section VI. Potential
future work is introduced in Section VII. Finally, concluding
remarks are presented in Section VIII.

II. SWITCHED RELUCTANCE MOTORS
SRMs feature a simple and robust construction. Fig. 1 shows
a typical structure of a three-phase 12/8 SRM. The stator and
rotor consist of a stack of laminated ferromagnetic material.
The stator has concentrated windings. The rotor does not have
permanent magnets or windings. This makes SRMs easier
and less expensive to manufacture with a secure and stable
supply chain [20], [21]. Besides, they can run at high tem-
peratures. The SRM phases require independent excitation,
which enables programming of the shape of the phase current
for performance improvement and fault tolerance capability
of the motor drive [22].

On the other hand, the double saliency structure of SRMs
brings some challenges, such as high torque ripple, nonlin-
ear magnetic characteristics, and windage losses, especially
at high-speed operation. Depending on how the motor is
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FIGURE 3. Ideal SRM rotor positions with respect to phase A shown on
an 6/8 SRM (a) aligned position and (b) unaligned position.

designed and controlled, SRMs might also suffer from lower
power density, and torque density compared to PMSMs [23].
Acoustic noise and vibration are the most well-known chal-
lenges in SRMs. However, much research has been conducted
to tackle these issues and improve motor performance. For
example, the authors in [24] proposed a segmental rotor
structure to enhance the motor torque density. In [25], the
authors used a higher number of rotor poles to improve the
torque characteristics. A chamfered rotor poles design has
been introduced in [26] to reduce the induced EMF. This
led to injecting more current at high speeds and, as a result,
improving the torque capability [26]. Also, the acoustic noise
and vibration issues have been addressed in [27] by adapting
SRM pole configurations and current profiling.

In this paper, we mainly focus on conducting a comprehen-
sive review of the ML-based algorithms applied to modeling
and design SRMs. The main goal of modeling SRMs is to
determine the relationship between the phase flux linkage ψ ,
the stator current, i and rotor position,θ [28]. Equations (1)-
(3) can be used to get these electromagnetic characteristics.
The phase flux linkage is obtained from.

ψ(t) =
∫ t

0
[u(t)− Ri(t)]dt + ψ(0), (1)

whereψ(t) is the instantaneous phase flux linkage andψ(0)is
the initial flux linkage at t = 0. u(t) and i(t) are the instanta-
neous phase voltage and phase current, respectively, andRis
the phase resistance.

The electromagnetic torque is directly proportional to the
rate of change of co-energy at different rotor positions:

T =
∂W ′(i, θ)
∂θ

∣∣∣∣
i=const

, (2)

where T is the instantaneous electromagnetic torque, θ is the
rotor position, andW ′ is the co-energy which is given by:

W ′ =
∫ i

0
ψ(i, θ)di. (3)

An ideal flux linkage profile with respect to rotor position
is shown in Fig. 2 for one electrical cycle. There are three
central regions based on the rotor position: aligned, partial-
overlap and unaligned positions [28]. The SRM rotor pole
overlaps the energized stator pole at the aligned position,

as depicted in Fig. 3 (a). In contrast, there is no overlap
between the stator and rotor poles in the unaligned position,
as depicted in Fig. 3 (b). At the unaligned positions, the
relative distance between stator and rotor poles is the largest.
Thus, the resulting air gap is the largest, and flux linkage
is the lowest. In contrast, flux linkage is the highest at the
aligned position. The profile of the phase inductance follows
an identical pattern to the flux linkage. The inductance rises
as the rotor pole moves from unaligned to aligned position.
It should be indicated that as the phase current increases, the
flux linkage increases. However, at high current levels, the
rate-of-change of flux linkage decreases due to the saturation
that of the magnetic core [3]. To achieve high torque density,
SRMs work in saturation regions [29]. Thus, phase flux link-
age exhibits a nonlinear relationship with stator phase current
and rotor position [28], [29]. In addition, the airgap periphery
is inconsistently distributed due to the salient construction
of the stator and rotor poles. These reasons make modeling
of SRMs challenging. This motivates research that addresses
these issues.

III. MODELING TECHNIQUES FOR SRMs
Undoubtedly, the accurate electromagnetic modeling of
SRMs is the basis for design optimization, performance pre-
diction, and current control. Numerous studies have focused
on modeling the electromagnetic characteristics of SRMs.
These approaches are commonly classified into twomain cat-
egories: numerical and analytical methods. Fig. 4 summarizes
the most common modeling methods for SRMs.

A. NUMERICAL MODELING METHODS
Numerical modeling methods utilized in SRM modeling
include FEA and boundary element method (BEM) [30],
[31]. FEA is the most common numerical technique. It pro-
vides an electromagnetic analysis with high accuracy for
motor geometrical parameters. It does not require the assump-
tions considered in analytical methods [29]. The FEA mod-
eling accuracy is highly dependent on the number of finite
elements [32]. Since SRMs commonly operate in the satu-
rated region, a large number of finite elements is required to
promotemodel accuracy [28]. In addition, the airgap of SRMs
varies with the rotor operation. This requires a finemesh close
to the airgap. The key disadvantage of FEA modeling is the
high computational cost, as one FEA simulation time might
extend to hours depending on the model complexity and how
fine the utilized mesh is.

BEM is an alternative technique to FEA. It solves the
magnetic fields on the boundary domain using the bound-
ary integral equations. It usually requires less computational
effort, and its accuracy can be as high as the FEA [33].
However, BEM’s main shortcoming is the difficulty of ana-
lyzing and solving saturated magnetic fields [30]. To tackle
this issue, BEM is usually combined with another modeling
method, such as FEA or magnetic equivalent circuit (MEC),
to model SRMs [33], [34]. FEA or MEC are used to solve for
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FIGURE 4. Classification of various modeling techniques for SRMs.

FIGURE 5. The basic flow chart of supervised learning techniques.

FIGURE 6. The basic flow chart of unsupervised learning techniques.

the electromagnetic fields in the saturated nonlinear regions,
while BEM analyzes fields in the linear region.

B. ANALYTICAL MODELING METHODS
Maxwell’s equations, magnetic equivalent circuit (MEC), and
curve fitting techniques are themost common analytical mod-
eling methods. Maxwell’s equations-based models ignore the
local saturation, mutual coupling effect, and leakage flux thus
limiting the model accuracy [28]. It is commonly preferred in
preliminary design stages to determine main design parame-
ters [35], [36].

MEC method is powerful in analyzing and designing
electric motors. It develops magnetic circuits for consid-
ered machines to study the magnetic characteristics. The
MEC method utilizes fewer elements than numerical meth-
ods and results in smaller system matrix dimensionality.
This provides a significant computation speed [29]. Unlike
Maxwell’s-based method, MEC method can be improved to
consider the magnetic saturation and leakage flux to achieve
a closer accuracy with respect to FEA [10]. The magnetic
flux path of MEC structures for SRMs should be modified
with rotor position. This can be addressed by using empirical

formulas or assumptions for the flux paths at various rotor
positions based on preceding experience gained from FEA
simulations. However, that restricts the generality and accu-
racy of this method [29].

Curve-fitting models utilize lookup tables, interpolation
techniques, or machine learning algorithms to approximate
phase flux linkage variation respect to rotor position and
stator current [28]. This is achieved based on limited data
captured from FEA simulations or experiments.

The look-up table-based method is easy to implement with
reasonable accuracy. FEA simulations are used to capture
flux linkage, induced voltage and torque characteristics with
respect to various stator phase currents and rotor positions.
These data are then stored in 2-D (or 3-D when mutual
coupling between phases is considered) look-up tables. Then,
a dynamic model for the considered SRM is developed
solving the time-domain differential equation for the phase
current based on the look-up tables. Interpolation is applied
to obtain the torque as a function of the rotor position and
calculated phase current [37], [38].

Interpolation modeling techniques are used to approxi-
mate the nonlinear relationship between the flux linkage or
inductance and the phase current by piecewise interpolation
functions. For instance, a 2-D bicubic spline and quadratic
interpolation function are adopted in [39] and [40] to analyze
magnetic performance of SRMs.

ML-based algorithms are used to express the nonlinear
nature of the flux linkage, inductance, and torque regarding
the SRM phase current and rotor position. The learning algo-
rithms use training datasets acquired through numerical sim-
ulations or experiments. The advantage of ML-based algo-
rithms is that they can predict profiles of SRMflux and torque
based on limited data. Thus, ML-based techniques reduce
required computational efforts as compared to conventional
numerical methods [29]. In addition, these techniques are
able to adapt to the variation inmotor parameters due to losses
and manufacturing tolerances [41].

IV. CLASSIFICATION OF MACHINE LEARNING
ALGORITHMS
Artificial Intelligence (AI) is a prosperous field with multiple
practical applications and active research subjects. ML is the
capability of AI systems to derive patterns from raw data to
acquire knowledge. ML comprises computational methods
that rely on available past information to enhance perfor-
mance or get accurate predictions. This past information or
sample data should be collected carefully since its quality and
size are essential for predicting an accurate output [42]. ML-
based techniques can provide solutions for many applications
such as computer vision, speech recognition, robotics, biol-
ogy, andmedical diagnosis [42]. ML-based algorithms can be
classified into supervised, unsupervised, and reinforcement
learning [43]. These learning types differ in the sample data
and its collection and evaluation.

Supervised learning algorithms are the most utilized ML-
based algorithms. They learn from the available examples
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(training data) provided by a knowledgeable supervisor. The
training data is composed of a set of labelled examples of the
input vector and the corresponding output target vector [42].
After training themodel, some examples that were not used in
the training process are used to test themodel’s generalization
ability. The difference between the predicted and the actual
target values determines the prediction error. Fig. 5 illustrates
the basic schematic of supervised learning techniques. Super-
vised learning algorithms are used to address regression and
classification problems [42]. Classification is one of the stan-
dard learning tasks. Digit and image recognition are examples
of classification problems where definite discrete categories
are assigned for each input item. The number of categories
differs according to the classification problem. Regression
is the prediction of a real output value corresponding to a
given input vector. An excellent example that explains the
difference between the classification and the regression is
the weather temperature forecast. A regression model pre-
dicts the weather temperature in values such as 20◦C. The
classification predicts whether the weather is hot or cold.
Another regression example related to this work is predicting
the torque of an SRM based on the considered motor’s flux
linkage and current.

In unsupervised learning, the sample data comprises unla-
beled examples containing input data without any target
vector values [42]. Thus, there is no guide or instructor in
this type, and the developed algorithm should learn to use
the available data effectively without a guide. Unsupervised
learning algorithm can observe the data features. It then
attempts to predict the dataset structure, which is known
as the probability distribution in the context of machine
learning. It can also combine sets of similar examples into
homogeneous subsets, known as clustering [42]. A famous
clustering example is dividing uncategorized data of two
different animals, such as dogs and cats, into two separate
clusters. Fig. 6 shows the structure of unsupervised learning
techniques. The system does not have any prior knowledge
about the features and does not have any dataset for training.
The algorithm task is to distinguish the features of the dataset
on its own and perform clustering into subsets.

Reinforcement Learning does not have available training
examples. Instead, a trial-and-error approach is used to define
the training examples. The reinforcement learning approach
interacts with the system (simulation model) by receiving
observed states and selecting appropriate actions. In response
to each control action, the algorithm accepts a feedback signal
(reward) taken in each situation [44], as shown in Fig. 7.
The reward differentiates between the good and bad action
results and defines the objective of the reinforcement learning
algorithm. The algorithm tends to maximize the reward over
a set of iterations and actions with the system [43].

V. MACHINE LEARNING-BASED ALGORITHMS FOR
MODELING SRMs
This section presents relevant published work on modeling
SRMs using ML-based algorithms. Several algorithms are

FIGURE 7. The basic flow chart of reinforcement learning technique.

used for modeling SRMs to accomplish fast computation
and accurate results. Almost all machine learning techniques
used in this context are supervised learning algorithms. These
algorithms include Feedforward Neural Networks (FNN),
Recurrent Neural Networks (RNN), Adaptive Neuro-Fuzzy
Inference Systems (ANFIS), and Support Vector Machine
(SVM).

A. FEEDFORWARD NEURAL NETWORK (FNN)
Artificial Neural Networks (ANNs) have evolved rapidly in
recent years due to their capability of learning and generaliz-
ing complex relationships, ease of implementation, and fast
real-time operation. Feedforward Neural Networks (FNNs)
form the basis of several important commercial and industrial
applications [45]. An FNN is a mathematical model that
approximates functions by mapping features and labels. Fea-
tures are the attributes associated with each given example.
They are defined as the input vector to the learning algorithm.
The accurate selection of the features is critical to achieving
adequate performance results. This is typically done by the
user based on prior knowledge of the learning problem [42].
Labels are the predicted outputs of the algorithm. The label
can be a value for a regression problem or a category for a
classification task.

Fig. 8 illustrates the basic structure of an FNN with one
hidden layer. The information passes forward through the
layers of the network. The input vector, X provides initial
data, which propagates forward to the computational hidden
neurons and finally produces the label, y. The hidden neurons
calculate a weighted sum of the features with an added bias,
b, as illustrated in (4). This sum then triggers an element-wise
nonlinear activation function, g(z). Typically, the hidden neu-
rons are only distinguished from each other by the selection
of the type of the activation function.

A recommended default choice for most FNN applications
is the rectified linear units (RELU) expressed in (5) [45].
Applying RELU to a linear transformation output produces a
nonlinear transformation. The RELU function is a piecewise
linear function composed of two linear segments. Therefore,
it enables gradient-based optimization and generalization of
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FIGURE 8. The basic structure of FNN with one hidden layer.

FIGURE 9. The basic structure of FNN with two hidden layers.

FIGURE 10. The basic structure of a single-layer FNN with ten hidden
nodes to model a 6/4 SRM [54].

linear models [45]. Before introducing the RELU activation
function, most ANNs used Sigmoid, Hyperbolic Tangent
(Tanh), and Tansig functions [45]. These activation functions
are expressed in (5). These functions saturate at minimum
function output for low stimulus values. They also saturate
at maximum output for high stimulus values. They increase

FIGURE 11. Rotor position estimation error profile at 400-rpm and
1000-rpm [54].

FIGURE 12. A simplified example of RBFNN structure.

monotonically for the values in between the minimum and
maximum outputs as the neuron stimulus increases [46].

z = W TX + b (4)

g(z) =



max{0, z} − RELU
1

1+ e−z
− Sigmoid

ez − e−z

ez + e−z
− Tanh

1− e−2z

1+ e−z
− Tansig


. (5)

The neural network’s training process aims at estimating
the optimal set of weights,W and optimal bias, b that would
achieve the best function approximation. The learning algo-
rithm usually involves an iterative procedure to minimize a
loss (error or cost) function, which is used to estimate the
algorithm’s performance. The loss function is the measure-
ment of the distance between the actual and predicted target
response. The prediction error increases as the measured
distance increases [45]. Themodelmean squared error (MSE)
is typically used as a loss function to measure the model
performance in regression tasks. The ML-based algorithm is
then evaluated using a test dataset. The test dataset has not
been used during the training process. The main objective of
the test dataset is to ensure that the algorithm can generalize
the mapping to new input-output pairs.
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Due to the FNN’s ability to approximate any nonlinear
mapping with a certain degree of accuracy, it maintains a high
research interest, especially for the multilayer perceptron
(MLP) and radial basis function (RBF) networks. MLP is
a fully connected FNN which contains one or more hidden
layers. The RBF networks are comprised of only a single
hidden layer. Backpropagation learning algorithms enable
MLP networks to be trained [47]. The following subsections
overview the recent literature on using Backpropagation Neu-
ral Networks (BPNN) and RBF neural networks in electric
motor modeling.

1) BACKPROPAGATION NEURAL NETWORKS (BPNNS)
The backpropagation term describes the training method-
ology of MLP networks. Standard backpropagation applies
gradient descent to the sum-squared error function through
two stages. The derivatives of the loss function are evaluated
with respect to the neurons’ weights. These derivatives are
propagated backward through ANN layers. Then, in the sec-
ond stage, the weights are adjusted based on the evaluated
derivatives [43]. The shortcoming of using gradient descent
is its slow convergence. In most cases, the gradient descent
algorithm (GDA) follows a zigzag pattern to reach an opti-
mal solution, so it might not meet the fast training network
requirements [46] [48]. Other gradient-based algorithms can
be used to train ANNs, such as conjugate gradient, which
searches for an optimal solution along a sequence of conju-
gate directions. It overcomes issue the GDA has and shows
a faster convergence [46]. However, the step size should be
adjusted for each iteration, which leads to a computational
overhead [48].

Newton’s method provides faster convergence than GDA
and conjugate gradient approaches. Therefore, it is more
favourable, but the high computational cost of calculating
the Hessian matrix H (second-order derivatives) is the main
concern. Moreover, it does not guarantee a local minimum
convergence, especially if the initial point is far from the
optimal solution [46]. The quasi-Newton method approxi-
mates H with the first-order derivatives. However, it uses a
large memory to save the approximate matrix at each training
iteration [48].

The Levenberg Marquardt (LM) algorithm tackles the
issues with Newton’s method. When the sum squared error
function is used as a cost function, LM does not require cal-
culating the Hessian matrix. Instead, it uses a Jacobian-based
approximation matrix. Generally, LM tends to finish the
learning stage in fewer epochs than other discussed algo-
rithms. The number of epochs reflects the number of the
total complete passes through the training dataset. It can be
adjusted to often hundreds or thousands to allow the learning
approach to run until the error is minimized to a sufficient
value. Moreover, LM guarantees local minimum conver-
gence. It is evident that Quasi-Newton and LM provide faster
convergence at the expense of more memory requirements.
LM offers better overall performance as it combines the mer-
its of gradient descent and Newton methods [48]. It is worth

noting that the discussed gradient-based approaches obtain
a local minimum, which is the global minimum for convex
functions. The problem arises if the function is non-convex
since it could possibly have multiple local minima [45], [46].

In [49], BPNNwas used for modeling a 12/8 1.5-kWSRM.
The network structure has one input layer for the two input
variables: targeted average torque and rotor position. The
BPNN contains two hidden layers with 12 neurons and each
neuron utilizes the Hyperbolic Tansig function. However, the
output layer utilizes a linear activation function to estimate
the output current. An experimental setup was built to collect
the training dataset of the torque versus the rotor position
at different current levels. The generalization of the learning
algorithm is evaluated using a test dataset that was not used
during the learning process. The BPNN presented in [49] was
applied to control the SRM torque using a torque sharing
function (TSF). The TSF is used to determine the desired
torque assigned as the network’s input. The authors in [49]
utilized many numerical optimization algorithms for the net-
work training, such as Quasi-Newton, conjugate gradient, and
LM. LM achieved the fastest and the most accurate learning
results. The error between the actual (measured) and the
predicted output phase current using the LM algorithm was
less than 0.1 A.

The authors in [50] used the BPNN structure developed
in [49] to provide a model for the torque output of an SRM.
This model was utilized in a dynamic control system to min-
imize the torque ripple. By proposing optimum profiling for
the phase current, smooth instantaneous torque waveforms
during conduction and commutation periods are obtained.
However, no experimental data were presented to validate the
simulation results.

A BPNN was also applied in [51] to model an 8/6 SRM.
The learning phase of the ANN utilizes 496 measured mag-
netization data samples. The structure of the BPNN consisted
of a single input layer for the current and flux linkage, single
hidden layer, and single output layer to estimate the rotor
position. The activation function chosen for the hidden layer
was a sigmoid, and the output layer was linear. LM man-
aged to finish the training in only 22 epochs with the mini-
mum error compared to conjugate gradient and quasi-Newton
algorithms.

Besides BPNN, the authors in [51] developed an SRM
model using fuzzy logic (FL) and adaptive neuro-fuzzy infer-
ence system (ANFIS) techniques as well. FL is based on the
Boolean logic that was first introduced in 1965 [52]. It pro-
vides a high level of flexibility to mimic human reasoning
based on a predefined set of fuzzy rules. The ANFIS com-
bines the benefits of the FL and ANN [51]. The simulation
results manifested that the BPNN had higher accuracy and
smaller average percentage error (APE) than FL and ANFIS
approaches. The APE of FL and ANFIS was 1.37% and
0.2086%, respectively, whereas that of BPNN was 0.1266%.

The authors in [13] developed real-time modeling of phase
inductance and flux linkage of a 4.1-kW8/6 SRMusing FNN.
Unlike [51], which used a static locked-rotor test to obtain the
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magnetic motor characteristics, this work applied dynamic
measurements to achieve an online learning algorithm. The
learning process was performed using the BPNN algorithm
to optimize the network weights. The network structure is
comprised of one input layer assigned for the measured cur-
rent and rotor position, two hidden layers, and single output
layer to estimate the flux linkage, as depicted in Fig. 9.
A Gaussian function was utilized as an activation function
for both hidden and output layers. The proposed model was
validated experimentally. However, as discussed earlier, GDA
was applied to train the ANN and optimize the weights, which
has a slow convergence.

In [53], two cascaded single-output PBNNs were used for
modeling an 8/6 SRM. The first BPNN was used to model
the current i(ψ, θ) and the second for the torque T (i, θ).
The authors used FEA to obtain the dataset. The variation
ranges of phase current and rotor position angle used to get
the dataset are [0A – 20A] and [0◦ – 30◦], respectively. The
chosen step size was 1A for the current and 1◦ for the rotor
position. The training dataset uses even rotor position angles,
whereas the test dataset uses the odd ones. The structures of
the two BPNNs were similar: single input layer for the inputs,
two hidden layers, and single output layer. The total number
of hidden neurons to estimate the current and the torque is
10 and 8, respectively. The activation function of the hidden
layerwas a hyperbolic Tansig, whereas that of the output layer
was a linear function.

In [53], LM was utilized as an optimization algorithm for
training the network. The mean square error was acted as a
loss function for performance evaluation, and the target error
was set to 0.0001. The simulation results showed that the
generalization capability of the cascaded BPNN models is
high. However, the training process took longer time than
that in [51]. In [53], It took about 1000 epochs for model-
ing the current and more than 600 epochs for modeling the
torque; however, it took only 22 epochs for modeling the rotor
position in [51]. An 8/6 SRM was modelled in both works.
That significant difference might be because of the dataset
size and the target error used to terminate the learning phase.
In fact, the training error, gap between training and test errors,
and sample data size should be selected carefully to avoid
overfitting and underfitting problems [44]. Overfitting and
underfitting are common problems associated with learning
in ANNs. Overfitting means that the model is complex and
does not fit the new data optimally. It arises when the gap
between test and training errors is too large, leading to a sig-
nificant generalization error. In contrast, underfitting refers
to a model that is incapable of fitting the training data with a
sufficiently low error value.

The authors in [54] used an FNN to form an efficient
mapping for the nonlinear characteristics of an 11.5-kW 6/4
SRM. The current and flux linkage are the inputs to the FNN,
and the output is the estimated rotor position, as illustrated in
Fig. 10. The training dataset was acquired using twomethods.
The first uses a suitable magnetization model to calculate
flux linkage at random currents and random rotor positions.

FIGURE 13. A basic structure of RNN.

A detailed study of the magnetization model can be found
in [55]. The second method measures the sample data by
experimentally measuring phase currents and flux linkages
at different rotor positions. The first method was used during
the training process, whereas the second one was used during
experimental verification.

In [54], a single-layer FNN with ten hidden neurons was
proposed to obtain a good balance between the estimated
error and the ANN complexity. The hidden layer neurons
use sigmoidal activation functions, whereas the output layer
utilizes linear transfer function. A test dataset was used to
assess the performance and the generalization capability of
the learning algorithm. Fig. 11 shows the error between the
estimated and real rotor position at 400-rpm and 1000-rpm
[54]. It is clear that the error of the rotor position is larger at
the lower speed. Thus, the approach presented in [54] intro-
duced an initial approach for a sensorless position estimation
for SRM control.

In [56], a BPNN was applied to model the magnetic non-
linearity of SRMs. The flux linkage of the SRM and the
position are the inputs to the ANN, whereas the current
is the ANN output. Two hidden layers were utilized with
hyperbolic tangent transfer functions. The learning algorithm
was developed using GDA to adjust the network weights
and minimize the error arising from the difference between
the actual and predicted outputs. The training dataset was
collected experimentally to train the ANN more accurately
and efficiently. The training strategy starts with a few hidden
neurons. Then the number of the neurons is increased while
monitoring the network’s generalization capability after each
epoch. The generalization capability was evaluated through
the testing dataset. The optimal number of hidden neurons
was found to be 8 for each hidden layer. The total num-
ber of training epochs was 2000. The training results using
the BPNN showed great agreement with the experimental
outcomes.

In [57], a BPNN was integrated with a genetic algorithm
(GA) for modeling a 5.5-kW SRM. GA was applied to obtain
a globally optimal solution of the weights, thereby improving
the BPNN convergence speed. GA was first used to search a
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FIGURE 14. The simulation block diagram of a 3-phase SRM using ANFIS
to model the torque and flux linkage characteristics [66].

definite range in the whole solution space. The BPNN was
then applied to find an optimum solution in this specified
range. The BPNN is comprised of one hidden layer with
30 neurons, employing a tangent sigmoid activation func-
tion, and one output layer with one neuron using a pure
linear transfer function. The current and rotor position were
assigned as input parameters with the flux linkage as the
output response. The training dataset was acquired from static
measurements. The flux linkage at various stator currents and
rotor positions, obtained from BPNNwith GA, was recorded,
and it was similar to the staticmeasurements. The authors also
verified theGA efficacy by comparing the required number of
training steps to those ofGDA.UsingGAwith BPNN reduces
the number of epochs to 300 compared to 2000 when GDA is
used with BPNN.

2) RADIAL BASIS FUNCTION NEURAL NETWORK (RBFNN)
The structure of the RBF network has only a single hidden
layer, as depicted in Fig. 12. The RBF network is considered
as a linear function approximator that uses RBFs for its fea-
tures. Typically, the RBF feature holds a Gaussian response
which depends only on the ith measurement of the distance
between the central state,ciand the state, X relative to the
feature width, σi [48]:

Fi(X ) = e
−
‖X−ci‖

2

2σ2i . (6)

Some learning techniques for RBF neural networks adjust
the centers of the features and the widths as well. The most
outstanding merit of RBFNN is that it provides the best
approximation along with fast convergence. However, the
number of hidden neurons is larger than that used in BPNN
[48]. The computational complexity is the downside of RBF
networks, especially for nonlinear RBF networks [44]. At the
start of the training process, the number of hidden neurons
is zero, and it increases gradually until the error difference
between the actual and estimated output reaches the target
error, or the number of the neurons reaches a prespecified
limit.

FIGURE 15. The RBFN-AFS architecture proposed in [68] for modeling of
torque and flux linkage of an SRM.

An RBFNN was used in [58] for modeling the magnetic
characteristics of an 8/6 SRM. A set of experimentally mea-
sured data for the flux linkage at various stator currents and
rotor positions was used for training. The proposed RBFNN
is comprised of two inputs for the current and rotor position,
six hidden neurons, and one output layer to estimate the
flux linkage. The number of epochs for the network training
is 100. The simulation outcomes of the proposed RBFNN
showed a good match with the experimental training data.
However, the authors did not test the generalization ability
of the proposed RBFNN using a separate test dataset.

In [48], the authors used an RBFNN and PBNN for model-
ing a 1.5-kW 12/8 SRM and compared both neural networks.
The training dataset was acquired using experimental mea-
surements. The inputs of both neural networks are the flux
linkage and stator current, whereas the network output is the
position. The structure of the BPNN had a single hidden layer
with a Tansig activation function. An LM optimization algo-
rithm was implemented for learning BPNN. The recorded
error of the BPNN output (rotor position) was 1.51◦ when
using five hidden neurons. The error increases as the number
of neurons decreases. For RBFNN, the optimum number of
the hidden neurons was 69, and the maximum rotor position
error was 2.07◦.
Table 1 compares the two proposed models in terms of

MSE, linear regression correlation coefficient (R), and the
maximum position error. The minimum the MSE value is,
the closer the R value is to 1. R reflects the precision of
the test dataset, while the MSE reflects the precision of the
training dataset. However, the maximum error indicates the
overall model performance because it covers the entire subset
of the parameter space [48]. Based on the MSE and R values,
the LM-BPNN showed better accuracy than the RBFNN for
estimating the rotor position. Experimental verification was
carried out for sensorless control of a 12/8 SRM based on
the BPNN-developed rotor position. The maximum deviation
between the estimated and actual position at low and high
speed was less than 4◦.

In [59], an RBFNN based on combined clustering
was applied to model 0.2-kW 8/6 SRM. The RBFNN is
designed by defining the number of hidden neurons and the
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FIGURE 16. The schematic diagram of SVM separating and marginal
hyperplanes for the (a) classification and (b) regression tasks. ε in (b) is
the tolerable deviation between the hyperplane and the transformed
data [69].

TABLE 1. Simulation results of BPNN and RBFNN in [48].

corresponding centers. The design started by determining
the center vector using subtractive clustering [59]. Then, the
Fuzzy C Mean clustering algorithm was applied to adjust the
center points of the network [59]. The training of RBFNN
is achieved when the inputs fall close to the center point of
the input space. Using FEA, the authors collected the torque
and flux linkage training dataset at different currents and rotor
positions.

The current and rotor position ranges are [0A – 20A] and
[0◦ – 30◦], respectively. The training data of SRM torque
was acquired at steps of 1A and 3◦, whereas the SRM flux
linkage was obtained at steps of 0.4A and 3◦. The determined
number of hidden neurons is 68, with a learning error of less

than 0.001◦ [59]. After testing the network, a SIMULINK
model was established utilizing inversion of the flux linkage
look-up table and the torque RBFNNs. The maximum error
between the actual rotor position and that obtained using the
RBFNN is approximately 6.87◦ [59]. This work focused on
the simulation results, and it did not show the experimental
validation. In addition, the number of hidden neurons was
quite large, as compared to that of the RBFNN in [48].
This increases the network scale and, hence, increases the
computational time for the real-time control.

Apart from the mentioned RBFNN modeling methods
in [48], [58], and [59], the authors in [60] introduced a
novel way to use some available prior knowledge by using
the system boundary value constraints (BVC). Using prior
information can help enhance the SRM modeling accuracy
and generalization capability. This proposed method is called
BVC-RBFNN, and it was applied to model the nonlinear flux
linkage characteristics of a 12/8 SRM. The sample dataset
was obtained based on a 3D-FEA simulation to consider
the end magnetic field effects and provide better calculation
results. The stator current and the rotor position are the two
inputs used in the proposed BVC-RBFNN. The assigned
current range is 0A – 20A, whereas the rotor position range
is 0◦ (unaligned position) - 22.5◦ (aligned position).

For comparison, the flux linkage characteristics were mod-
eled with the proposed BVC-RBFNN and a conventional
RBFNN. The results showed that the BVC-RBFNN demon-
strated lower modeling errors. The maximum modeling error
using BVC-RBFNN was 83.3% less than the error when
using the standard RBFNN. Moreover, A dynamic MAT-
LAB/SIMULINK model was developed using the proposed
BVC-RBFNN at 1500 and 3000-rpm. A comparison between
the dynamic simulation and experimental results were con-
ducted at the same operating speeds and firing angles to verify
the modeling effectiveness of the proposed BVC-RBFNN
method. This comparison indicated that the developed BVC-
RBFNN-based dynamic simulation model matched well with
the experimental outcomes by an estimated error of less than
0.25% for the maximum flux linkage value.

However, the study in [60] did not consider either the
effect of using the 3D-FEA model on the modeling precision
of SRMs or the simulation time as compared to a 2D-FEA
model. Furthermore, the authors in [60] did not consider
the simulation time in the provided comparison between
the proposed BVC-RBFNN and the conventional RBFNN.
Computational cost and accuracy are vital aspects and should
both be considered to achieve appropriate modeling.

Similar to [60], the authors in [61] applied BVC-RBFNN
for modeling the flux linkage characteristics of an 18.5-kW
12/8 SRM. In [61], online modeling was proposed instead of
FEA modeling for training the network. The inputs of the
BVC-RBFNN are the phase current [0A – 60A] and rotor
position [0◦ – 22.5◦].
The proposed online flux linkage modeling was con-

structed using an SRM experimental platform that imple-
mented based on digital signal processing (DSP). First, the
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real-time sampling phase voltage and current were measured
and transmitted using an analog to digital converter (ADC) to
be stored in a DSP. Then, the voltage and current data pairs
were sent to the computer. Finally, the transmitted data were
processed to calculate the flux linkage and form the required
input-output training data for the BVC-RBFNN.

The flux linkage results of the proposed method were com-
pared to the conventional RBF, and the error was recorded
in terms of the measured flux linkage values. The model-
ing error of the BVC-RBFNN was less than the conven-
tional RBFNN. Moreover, the authors in [61] compared the
BVC-RBFNN training results based on the online modeling
and locked rotor test (offline modeling). The results of the
online modeling showed higher accuracy, as the relative error
was less than 0.01 Wb, representing 0.55% of the maximum
flux linkage.

B. RECURRENT NEURAL NETWORK (RNN)
Unlike FNN, Recurrent Neural Network (RNN) utilizes
recurrent units that store past information data to handle a
sequential input [41], [62]. A neural network is called recur-
rent when the output or an intermediate state is passed back
to the input, thus allowing the use of past data, as shown in
Fig. 13.

The authors in [41] adopted a two-layer RNN for parameter
identification of an 8/6 SRM. Since the SRM parameters
may differ at standstill from dynamic operation due to the
losses and saturation, the authors added a parallel damper
winding to the magnetization winding to improve the model
accuracy. The RNN was adopted to estimate the damper and
the magnetizing currents because both are highly nonlinear
and not measurable. Besides phase current and rotor position,
the phase voltage, v and speed, ω are assigned as inputs to
the RNN to consider the motional back EMF. The outputs
of the RNN are the magnetization current, Im and the total
phase current (used as a training objective), which are fed
back again into the input layer to form RNN.

The chosen activation functions are Tansig for the hidden
layer and pure linear for the output layer. After training the
RNN using standstill data, the damper current was calculated
by subtracting the estimated magnetizing current from the
total phase current. The damper voltage was also calculated.
As a result, the damper inductance and resistance were identi-
fied using themaximum likelihood estimation technique [63].
The proposed online model had been validated, and the
results showed its estimation superiority over the standstill
model. The average covariance of the phase currents for
the online model was 0.6885, whereas that for the standstill
model was 0.9127.

C. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS
(ANFIS)
Adaptive neuro-fuzzy inference system (ANFIS) integrates
the expert knowledge of fuzzy logic, represented in mem-
bership functions and if-then rules, with the ANN learning
power. Thus, it combines the benefits of both FIS and ANN.

FIGURE 17. LSSVM input-output models (a) cascaded single-output
models (b) multi-output model [83].

The ANFIS aims to optimize the FIS parameters using the
learning algorithm based on the training data sets. Like ANN,
parameter optimization is finished when the error measured
between the real and target output is minimized.

In [64], the authors applied an adaptive neuro-fuzzy infer-
ence system to identify the inductance of a 6/4 SRM.A hybrid
learning technique that combines the backpropagation and
least square method was utilized for rapidly training and
adapting the fuzzy inference system. The inputs for ANFIS
are the stator phase current and rotor position angle, whereas
the output is the estimated phase inductance, L. A dataset
of 552 samples is generated using FEA; 75% of these data
are used for training and 25% for testing ANFIS. The current
dataset is between 2A – 24A, whereas the rotor position range
is from 0◦ – 45◦. The number of training epochs is 100. The
authors assigned 9 Gaussian membership functions for each
current and rotor position. Thus, the number of rules is 81.
The root mean square errors (RMSEs) for training and testing
ANFIS were 1.914e-6 and 3.461e-6, respectively. Thereby,
the ANFIS-based inductance profile was in good agreement
with that of the FEA model. However, a dynamic simulation
and real-time validation need to be investigated. Additionally,
a comparison between ANFIS and ANN should be added
since the authors in [51] showed that the LM-based BPNN
wasmore accurate than the ANFISmodel. ANFIS usually has
the potential to converge to a local minimum solution [65].

Another similar approach that uses ANFIS for modeling
a 0.55-kW 1500-rpm 6/4 SRM was introduced in [66]. The
authors employed ANFIS for modeling the considered SRM
flux linkageψ(i, θ) and torque T (i, θ). The flux linkage char-
acteristics were obtained experimentally, and the torque was
calculated using the virtual displacement principle [66]. data
samples of 396 out of 512 dataset are used for training the net-
work. The remaining sets were used for testing. The RMSE
value at the end of the training process was 1.78e-3 Wb for
the flux linkage and 0.022 Nm for the torque model. These
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FIGURE 18. Comparison of torque modeling error for LSSVM, LSSVM-GA,
LSSVM-PSO and LSSVM-DE [90].

values were reached after 100 epochs. After training ANFIS,
the model accuracy was validated by comparing the flux
linkage and torque with the corresponding measured data.
The authors verified their proposed model by carrying out a
dynamic simulation. Fig. 14 shows the block diagram of the
SRM dynamic model to simulate its dynamic performance.
The maximum deviation in the average torque between the
measured and simulated results was less than 10%.

A combination of radial basis function network and an
adaptive fuzzy system (RBFN-AFS) was proposed in [67]
for modeling and predicting the dynamic performance of
a 0.55-kW 1500-rpm 6/4 SRM. The proposed RBFN-AFS
comprises four layers, as illustrated in Fig. 15. An input layer
transmits the current and rotor position to the hidden layer.
A hidden layer uses a Gaussian function as an activation
function. The number of hidden neurons is four to obtain
an error less than the threshold value. The third layer was
dedicated to 64 (43 = 64) fuzzy rules. Triangular member-
ship functions were adopted for the fuzzy sets. Finally, in the
fourth layer, a center of gravity defuzzification approach
[67] was employed to calculate the output of the RBFN-
AFS. The outputs of the proposed modeling method are flux
linkage and torque. The authors in [67] used hierarchically
self-organizing learning (HSOL) algorithm to determine the
fuzzy rules and adapt the hidden neurons’ mean, variance,
and weights. This is performed based on the sample data
without the need for prior information about the considered
motor. The sample data used for training the RBFN-AFSwere
obtained from measured flux linkage and calculated torque.
Two-thirds of the sample data were used for training the
neural network, and the remainder was used for testing.

The authors in [67] applied two performance indicators,
maximum absolute value of errors (MAVE) and RMSE,
to validate the RBFN-AFS accuracy. The flux linkage mod-
eling error represented 0.12% of the maximum flux link-
age value, whereas the torque modeling error was 0.22% of
the maximum torque value. In addition, the authors com-
pared the BPNN, RBFNN, and the proposed RBFN-AFS
methods. The RBFN-AFS showed the highest accuracy and

fastest computation. The MAVE of flux linkage and torque
of the RBFN-AFS model was less than other methods by
at least 84%. Also, the computation time of the RBFN-AFS
model was 50% less than that used in BPNN and RBFNN.
The proposed modeling method in [67] was implemented
in a dynamic simulation and verified experimentally. The
dynamic simulation results of RBFN-AFS showed an error
of less than 8% compared with the experimental results of
the considered SRM prototype.

D. SUPPORT VECTOR MACHINE (SVM)
Support Vector Machine (SVM) is a class of supervised
machine learning algorithm that was first presented as a
classifier to achieve classification tasks [68]. The Support
Vector network nonlinearly maps the input vectors to some
high-dimensional feature space. SVM derivation is based on
the theory of the statistical learning. SVM can also be used
for regression tasks; in this case, it is called a support vector
regression (SVR). Fig. 16 (a) shows a schematic diagram of
the SVM for the classification tasks. The blue line represents
a separating hyperplane that differentiates between two dif-
ferent types of data [69]. The red lines represent the marginal
hyperplanes, and the dark red circles located on these planes
are called the support vectors. On the other hand, Fig. 16 (b)
shows a schematic diagram of the SVM for the regression
tasks, which can be used to forecast the data trends. The
formula of separating hyperplane is [69]

f (X ) = W Tϕ(X )+ b, (7)

where ϕ(X ) denotes the kernel functions that takes the input
data X and maps it to high-dimensional solution space.

SVM has gained much popularity since it has overcome
ANN problems such as dependency on the size and quality
of the sample data, local minima solutions, and the over-
fitting possibility. SVM has been successfully applied in
fault diagnosis [70], [71], speech recognition [72], and data
mining [73], [74]. In [75], a combined modeling method for
a 1-kW 12/8 SRM using SVM and BPNN was introduced.
The flux linkage characteristics were measured without rotor
position sensors and clamp devices. Thus, only 64 samples
are acquired, which are not sufficient for precise modeling.
Therefore, the proposed algorithm in [75] consists of two
main steps: data reconstruction and characteristic descrip-
tion. SVM was trained in the data reconstruction stage from
the few measured sample data to model the flux linkage
characteristics. After that, two BPNNs were adopted in the
description stage to model the SRM. One BPNN model is
used to model the current i(ψ, θ) based on the reconstructed
data. However, the other BPNN was used to model the torque
T (i, θ) based on the calculated static torque characteristics.
The authors verified the proposed method’s accuracy by

carrying out dynamic simulation and comparing its results
with those from experimental measurements. The discrep-
ancy between the simulation and online estimation of the
average torque is 5.7% [75]. The SVM succeeded in convert-
ing the flux linkage modeling problem with low-dimensional
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FIGURE 19. Dynamic Torque of MCC-LSSVR model compared to look-up
table model at 6000-rpm [91].

FIGURE 20. Measured and RR-LSSVR Phase torque comparison at (a)
600-rpm and (b) 6000-rpm [65].

space to an optimization problem with a high-dimensional
space.

SVM was also formulated to solve nonlinear equations
using quadratic programming to avoid local minima solu-
tions. However, this increases the computational burden.
In [76], an alternative approach was demonstrated to replace
inequality constraints with equality constraints and apply sum
squared error (SSE) as a loss function. This approach is
known as the least square support vector machine (LSSVM).
This reformulation has significantly simplified the prob-
lem because the solution became identified by the Karush-
Kuhn-Tucker (KKT) linear system [76]. This system can
be efficiently solved by utilizing an iterative approach such
as the conjugate gradient algorithm. This simplicity makes
the LSSVM algorithm faster than standard SVM with less
computational time [74], [77]. Similar to SVM, LSSVM can
be employed for regression and classification tasks, but its
regression model accuracy relies on the values of the hyper-
parameters [78].

FIGURE 21. A flowchart of motor design optimization using ML-based
algorithms.

FIGURE 22. A quarter model of the considered SRM showing the stator
and rotor arc angles.

Kernel functions are used in LSSVM to map the input
data to a higher-dimensional space. There are different ker-
nel functions, such as sigmoid, polynomial, Gaussian, and
RBF. The proper selection of the kernel type is essential
because this choice affects the LSSVM performance. More-
over, the choice of the regularization, C and kernel width,
σ 2 parameters determine the accuracy and the generalization
capability. Parameter optimization is thus crucial to obtain
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FIGURE 23. The GRNN Input-output modeling system proposed in [102].

optimal performance. The cross-validation (CV) optimiza-
tion method is usually applied in standard LSSVM. How-
ever, the unreasonable prediction accuracy and the relatively
long computational time limit its use [79]. Therefore, several
optimization algorithms such as Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), Artificial Bee Colony
(ABC), and Differential Evolution (DE) have been proposed
for hyperparameter optimization [80], [81], [82], [83], [84],
[85], [86], [87], [88], [89], [90], [91].

In [80], an adaptive genetic algorithm was employed to
update the LSSVM parameters. The authors used RBF to
be the kernel function of the LSSVM, and the values of
the parameters C and σ 2 were obtained using GA. This
optimized LSSVM was used to form an efficient mapping
structure for modeling nonlinear flux linkage characteristics
of a 15-kW 12/8 SRM. The training data set was collected
experimentally. The current [0A – 100A] and rotor position
[0◦ – 22.5◦] are the inputs to the LSSVM. The total number of
the captured training data was 612, whereas the total number
of test data was 126. The optimal values of C and σ 2 were
849.17 and 0.0257, respectively. These values were obtained
after 12 generations. The GA reduces the training time from
16 minutes when using a CV to 5 min. For validation, the
forecasted data were compared with the measured data, and
the maximum mean average percentage error (MAPE) value
was 0.00782%, which indicates an acceptable generalization
performance.

Another LSSVM work was proposed in [81], where a grid
diamond search (GDS) was employed to define the kernel
function and the regularization parameters. GDS is based on
the grid search and diamond search methods. The grid search
is applied first to speed up the search and identify the optimal
space. The diamond searching algorithm then estimates the
optimal solution in the best solution space. Although GDS
has an extensive search range and fast convergence, it lacks
relative search precision. The recorded computation time of
GDS is 6 seconds, but it was 13 minutes for the CV method.
The researchers in [81] used the proposed LSSVM-GDS to
model the nonlinear characteristics of the flux linkage of an
8/6 SRM. Similar to [80], the rotor position and stator current
are taken as inputs. Their corresponding intervals are [0◦

– 55◦] and [0A – 14A], respectively. The proposed model

was verified by comparing the forecasted results with the
measured data, which reflected satisfactory matching.

Another similar approach based on LSSVMwas presented
in [82]. A PSO was used to optimize the LSSVM hyper-
parameters. The proposed LSSVM-PSO was used to model
the inductance of a 1-kW 12/8 SRM. The training data set
was obtained from a 3D FEA model of the considered SRM.
The chosen kernel function in this work is RBF, and PSO opti-
mized the parameters as C = 124 and σ 2

= 6.16. The mean
relative error (MRE) of the proposed LSSVM-PSO model
was 0.031%, and that of the LSSVM model was 0.068%,
which verified the improved accuracy of the proposed model.

An improved 0.5-kW 12/8 SRM model based on LSSVM
was introduced in [83]. Two cascaded single-output SRM
models were replaced by a multi-output LSSVM to modify
the model structure, as shown in Fig. 17. The model inputs
are flux linkage and rotor position, whereas the outputs are the
phase current and torque. A combination of the RBF and poly
kernel functions has been used to enhance the performance of
the kernel functions. The parameters of the improved kernel
functions were optimized using the CV optimization method.
The MSE of the output torque in the test set based on the
multi-output LSSVMmodel is 32.76% of that of the cascaded
single model.

An experimental DC-pulse test was performed to obtain
1196 sample data set. The current and rotor position ranges
were [1A – 91A] and [−22.5◦ – 0◦], respectively. The data set
was split into 728 data pairs for training the LSSVM model
and 468 for testing the model performance. The provided
simulation results of the modified LSSVM model in [83]
showed a decrease in the training time from 4.7 seconds to
2.619 seconds. Also, a noticeable improvement in the phase
current model was demonstrated as the error reduced by 3%.

LSSVM lacks sparseness as compared to SVMs because
all the dataset points in LSSVM become support vectors
[84]. Lack of sparseness increases training time and decreases
algorithm prediction accuracy [85]. Sparsity requires less
time for out-of-sample extensions because it has fewer sup-
port vectors [84]. Therefore, sparse LSSVM was proposed to
add sparseness to LSSVMs [86].

The authors in [87] used sparse LSSVM tomodel nonlinear
characteristics of the inverse force function for a planar SRM
(PSRM). The inverse force function provides a vital current
command for PSRM precise motion. The function is highly
nonlinear and limits the accuracy of the model. The training
data was acquired from experimental measurements. The
dataset is composed of 500 points, 350 points for training
and 150 points for testing. The least essential data points of
the training set were omitted, and the LSSVM was retrained
with the survival points to achieve sparseness.

In [88], RBF was used as the kernel function. The tra-
ditional CV method was applied to tune the kernel and
regularization parameters. The optimal values of these hyper-
parameters are C = 150 and σ = 0.03. The calculated RMSE
of the training and testing data were 0.3269A and 0.6266A,
respectively. The inverse force function modeling results
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showed small training and testing errors when the estimated
phase current is more than 1A.

The authors in [88] have employed LSSVMwith Artificial
Bee Colony (ABC) to model flux linkage characteristics
of a 0.5-kW 4000-rpm 8/6 SRM. ABC is a meta-heuristic
optimization algorithm that mimics the foraging behaviour
of a bee swarm [89]. ABC was used in this work to tune
the LSSVMhyperparameters. The sample data were obtained
using a 2D FEAmodel. The current and rotor position resem-
ble the model inputs with ranges [0A – 5A] and [31◦ – 60◦],
respectively. The training sample size is 450 data pairs, and
the testing size is 154.

The regression efficiency of the proposed LSSVM-
ABC model [88] was verified against other models such
as LSSVM, LSSVM-GA, LSSVM-PSO, and LSSVM-DE,
as presented in Table 2. The LSSVM-ABC model offered
the best modeling results, with a mean absolute error (MAE)
of 0.066%. The minimum fitness value has been achieved
after 11 iterations, and the values of the optimal hyperpa-
rameters are C = 3545.88 and σ 2

=0.04512. Although
this paper provided a comprehensive comparison between
different prediction algorithms, it did not verify the proposed
model performance dynamically or experimentally.

The authors in [90] used LSSVM for modeling an 0.5-kW
8/6 SRM. They proposed LSSVM-DE to model the motor
torque. The training data was also collected using FEA,where
the rotor position range is [0◦ – 60◦] with a step of 1◦, whereas
the excitation current range is [0A – 3A] with a 0.25A step.
The number of data samples captured for training the algo-
rithm is 732, and the test sample uses 144 sample data. In this
paper, DE was chosen to optimize C and σ 2 parameters to
accomplish the learning and training processes of the selected
kernel function. RMSE was assigned as the optimization
fitness function to measure learning system accuracy and
evaluate the LSSVM performance. Moreover, some statistics
metrics were employed as performance indicators, such as
MAE, MAPE, and Normalized Mean Square Error (NMSE).

The authors in [90] also conducted a comparison between
6 kernel functions to build the LSSVM. The exponential
RBF showed its superiority in terms of the minimum RMSE,
as shown in Table 3. Therefore, the exponential RBF was
selected to build the LSSVM-DE and validate its regression
capability by comparing it with LSSVM, LSSVM-GA, and
LSSVM-PSO. The modeling error of the SRM torque profile
based on FEA (dataset) and the four algorithms have been
shown in Fig. 18 [90]. It is evident that the proposed LSSVM-
DE offered the most accurate regression model. Furthermore,
the authors carried out a dynamic MATLAB simulation with
the proposed LSSVM-DE-based model using the torque and
current models. The behaviour of the proposed model imi-
tated that of the FEA-based model.

Although the provided LSSVM algorithms in the earlier
mentioned papers [80], [81], [82], [83], [84], [85], [86],
[87], [88], [89], [90] were efficient and precise, a potential
downside is that the solution might deviate from the inlier
samples if outliers existed. The inlier samples denote the

TABLE 2. Comparison of optimized hyperparameters and their
correspondence performance indicators for various models [88].

TABLE 3. Optimal regularization and kernel functions parameters [90].

samples close to the most normal samples. On the other
hand, the outliers represent the samples noticeably far from
the remaining samples. To tackle outliers’ interference and
significant noise problems, an adaptive version of LSSVM
is required to assign smaller weights to the outliers with
significant errors.

In [91], a maximum-correntropy-criterion-based least
squares support vector regression (MCC-LSSVR) algorithm
was proposed to model the nonlinearity of the flux link-
age and torque characteristics of a 1.8-kW 16/10 6000-rpm
segmented-rotor SRM (SSRM). Correntropy measures the
local similarity between any two arbitrary variables. It was
applied as a cost function instead of the conventional SSE
method. An FEAmodel was established to collect the sample
data required for training the MCC-LSSVR. The Gaussian
function was selected to be the kernel function. Grey Wolf
Optimization Algorithm (GWOA) [92] was utilized to tune
the hyperparameters of the proposed MCC-LSSVR.

The authors in [91] conducted comparisons with other
regression algorithms, like RBFN-AFS, SVM, and LSSVM.
MAE and RMSE of the flux linkage and torque modeling
showed minimal values when using the MCC-LSSVR. For
example, the MCC-LSSVR model reduced the MAE of flux
linkage and average torque by 80% and 52%, respectively as
compared to the LSSVR. Additionally, dynamic simulations
and experimental measurements were carried out at low and
high speeds, which validated the effectiveness of the proposed
model. For example, the dynamic torque of theMCC-LSSVR
model at high speed (6000-rpm) compared to the look-up
table model is shown in Fig. 19 [91]. The only disadvantage is
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that the nonlinear kernel function in correntropy is commonly
restricted to a Gaussian function with a zero-located center.
This zero-mean Gaussian function might not be an adequate
choice for multiple practical applications [93].

The authors of [91] have also developed recursive robust
least squares support vector regression (RR-LSSVR) to
regress nonlinear characteristics of the same 16/10 SSRM
in [65]. RR-LSSVM was employed to obtain adaptive
weights to improve the estimation behaviour with the exis-
tence of outliers. The proposed RR-LSSVM uses MCC as
the cost function instead of SSE. The SSRM inductance and
torque sample data were acquired from experimental mea-
surement instead of FEA to improve the data reliability. PSO
was adopted to optimize the RR-LSSVR hyperparameters.

To evaluate the model accuracy and computation time,
the RR-LSSVR was compared with BSNN, ANFIS, SVM,
and LSSVR. The RR-LSSVR recorded the minimum model-
ing error and computation time. RR-LSSVR model reduced
MAE of inductance and average torque by at least 72% and
67%, respectively, as compared to other methods [65]. It also
reduced simulation times by 50%. In addition, simulation and
experimental outcomes have validated the effectiveness of the
presented approach, which was tested at different speeds. For
instance, Fig. 20 shows the compared results of the phase
torque between the measured and RR-LSSVR models at
600-rpm and 6000-rpm [65].

A fair comparison of ML-based algorithms used in mod-
eling or designing motors requires some essential aspects,
such as similar datasets and similar training techniques with
the same trainable hyperparameters [94]. It should also con-
sider the same motor type since many factors can change for
different motors. Therefore, it is suggested that new studies
in the same field share the captured datasets to help assess
future works. Tables 4 and 5 summarize the motor modeling
methods considered in this paper using the ANN and SVM
algorithms, respectively.

VI. MACHINE LEARNING-BASED ALGORITHMS FOR SRM
DESIGN OPTIMIZATION
The design optimization of electric machines is a nonlinear
multi-objective problem [7]. It requires repeated calls to the
electromagnetic solver. Repeatedly invoking FEA within an
optimization loop can be prohibitive. To reduce the computa-
tional time of the optimization problems, different surrogate
models have been introduced in the literature. SpaceMapping
(SM) aims at utilizing a fast ‘‘coarse’’ model with reduced
accuracy [95] to design an accurate but time-intensive ‘‘fine’’
model. SM was proposed in [96] to design a brushless DC
motor. A kriging surrogate model was used with an evolu-
tionary algorithm to optimize a three-phase PMSM in [97].
Researchers have recently used ML-based algorithms as sur-
rogate models due to their high accuracy and effective gener-
alization ability as compared to other models.

Fig. 21 illustrates a motor design optimization method-
ology using ML. At the beginning, an initial FEA model
is developed to create a reasonable dataset with various

combinations of motor geometric parameters. An ML-based
technique is then trained using this dataset to map out the
nonlinear relationships between the geometric input parame-
ters and corresponding objectives at different operating con-
ditions. The ML-based algorithm provides a good surro-
gate model of the computationally-expensive FEA. Finally,
a multi-objective optimization algorithm is applied to get the
optimal design. The surrogate ANN is repeatedly invoked by
the optimization algorithm to guide the optimization iterates.

An SRM design process might not be straightforward due
to its high nonlinearity.Multiple geometric design parameters
should be optimally chosen to fulfill the requirements of the
application. These parameters include the number of stator
and rotor poles, bore diameter, pole arc angles, taper angles,
air gap length, etc. The authors in [98] focused on designing
the stator pole arc angle βs and rotor pole arc angle βr , shown
in Fig. 22, due to their direct impact on the inductance and
torque profile.

In [98], a generalized regression neural network (GRNN)
was employed in the design procedure of a 3-phase 12/8
SRM. GRNN is a class of probabilistic ANN with a simple
structure and fast convergence [99]. It has a better general-
ization ability than BPNN, especially with a relatively small
training dataset, and its output does not converge to the
local minima. Additionally, GRNN does not use an iterative
process, leading to an incomparably short training time [100].
GRNN has similarities with the RBF method [96], as it has
an RBF layer in its structure and a special linear layer. Fur-
thermore, GRNN has only one adjustable parameter known
as the spread parameter. This parameter controls the GRNN
generalization capability. It should be carefully optimized to
enhance the prediction of the motor performance.

The authors in [98] used FEA to obtain static torque char-
acteristics of the considered motor. These data were then used
to train an ANN to approximate the objective function. The
trained ANN is used as a surrogate to carry out the optimiza-
tion procedure. The constraints on the pole arc angles in this
study were selected to guarantee a fully unaligned position
and ensure self-starting capability [101]. In addition, βs (see
Fig. 22) was chosen smaller than βr to slightly increase
copper winding area and aligned/unaligned inductance ratio.

The static torque characteristics were collected for 35 var-
ious combinations of both βs and βr considering the above
constraints [98]. A dynamic model was built based on the
static characteristics to get the average torque and the torque
ripples. A GRNN is trained to fit input data with specific
label data. The trainedGRNN is then validated using test data.
In [98], An optimization algorithm that exploits GRNN as a
surrogate was applied to get the optimal combination of βsand
βr to maximize the torque and minimize the torque ripples.
The torque ripple was reduced by 12% as compared to the ini-
tial design. The proposedmethodwas validated by simulating
the optimal geometry using FEA, and the output results were
in good agreement with the results of the proposed approach.

In [102], another work using GRNN was proposed for
the modeling a 4-kW 12/8 SRM. The model represents the
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TABLE 4. Motor modeling methods using NN.

TABLE 5. Motor modeling methods using SVM.

nonlinear relationship of the ripples and operation efficiency
with three geometric variables:βs, βr and rotor yoke thick-
ness, yr (see Fig. 23). The spread parameter was optimized

using the fruit fly optimization algorithm (FOA), which is
based on the foraging pattern of the fruit fly swarm [102].
FEA was used to capture a dataset of 105 samples for
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FIGURE 24. The feasible triangle of stator and rotor pole arc angles.

training. 15 data samples were used to test the GRNN. These
constraints form a feasible triangle in the parameter space,
as shown in Fig. 24. Table 6 compares BPNN, RBFNN,
extreme learning machine (ELM), and GRNN to evaluate the
effectiveness of the proposed FOA-GRNN. The results show
the superiority of the FOA-GRNN model.

Besides SRMs, ML-based algorithms were also applied
to design various types of electric motors. ELM and
SVR approaches are suggested in [8] and [103] for the
design optimization of PMSMs. The Bayesian regulariza-
tion backpropagation neural network (BRNN) is adopted in
the design optimization process of synchronous reluctance
motors (SynRM) in [104]. ELM, SVR and BRNN proved
their powerful capability to enhance the PMSM and SynRM
performance. Therefore, there is a great potential to use these
algorithms in design optimization of SRMs. ELM and BRNN
are discussed in more detail in the coming paragraphs.

The extreme learning machine (ELM) approach is pre-
sented in [8] to design a permanent magnet synchronous
linear motor (PMSLM). The structure of ELM is like FNN.
However, rather than using BPNN for the learning algorithm,
ELM is based on a random choice for input weights and
biases. Then the output weights are determined through sim-
ple matrix computations [105]. In [8], the authors initially
developed an FEA model to capture 625 data samples based
on the value ranges of the selected four design geometric
parameters in Table 7. The performance objectives of the
proposed model were to achieve high average thrust, low
total harmonic distortion, and low thrust ripple at different
operating speeds. The data samples were divided into two
sets. The training set utilizes 325 samples to determine the
nonlinear relationship between the structural factors and out-
put objectives. The test dataset uses 300 samples to test the
model regression accuracy. Finally, a GreyWolf Optimization
Algorithm (GWOA) [8] was utilized to search for optimal
performance and the best PMSLM design candidate.

FIGURE 25. Electromagnetic model of concentrated winding PMSM.

FIGURE 26. Electromagnetic model of a synchronous reluctance machine.

A prototype was manufactured based on the optimal
design candidate. The experimental results showed that
the proposed method successfully achieved a good design.
In addition, a comparison was conducted between the initial
non-optimized model and the proposed one, and the results
showed that the average thrust was increased by 12.17%. The
thrust ripple and total harmonic distortion were reduced by at
least 84.78% and 46.62%, respectively.
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TABLE 6. Comparisons of torque ripple and performance efficiency
predictions [102].

TABLE 7. Variable structural design parameters [8].

Another example of applying ML-based algorithms to
design PMSM was introduced in [103]. SVR was employed
in [103] for design optimization of a 3-kW 6-phase
concentrated-winding direct-drive PMSM tomeet the electric
vehicle performance requirements. This work focused on
using SVR as a surrogate model due to its high accuracy and
effective training algorithm as compared to other models. The
main idea of implementing SVR was to expand the solutions
in the design space. A Pareto front method [103] was then
applied to get the optimal design models with maximum
torque density and minimum torque ripple.

Initially, the authors in [103] developed a hybrid analytical-
FEAmodel. They derived analytical formulas for the average
torque and the torque ripple based on inductances and flux
linkages. The FEAmodel was invoked to estimate the 6-phase
inductances and flux linkages which were used as inputs
to the analytical model to calculate the average torque and
torque ripple. Furthermore, multi-objective optimization was
performed to get the maximum average torque and minimum
torque ripple, cost, and losses. Four geometric design parame-
ters, shown in Fig. 25, were considered to achieve these goals.
The upper and lower bounds of the four variables are based on
the saturation limits and basic geometrical equations of rotor
yoke and stator teeth. Table 8 shows the four design variables
with the related design constraints.

In [103], a parametric sweep for the four selected geomet-
rical variables was carried out within their specified bounds
to get an initial 200 design candidates using a time step
FEA. Considering FEA and analytical simulations, the total
computation time to obtain these 200 designs is 600 minutes.
The relationship between the input geometrical variables and
objectives was plotted and used to form the training and test-
ing datasets. The training sample was used to learn the SVR

TABLE 8. Upper and lower bounds of the design parameters with their
constraints [103].

and, thereby, predict further examples to boost the solution
candidates in the design space [103]. The SVR optimized and
generated 10,000 new design candidates in only 20 minutes.
1666 minutes were needed to obtain the same number of
design candidates when using a computationally efficient
FEA.

The computationally efficient FEA is a fast and simplified
FEA-based methodology which combines FEA with a dif-
ferential evolution algorithm. It has been applied for large-
scale optimization problems [106]. In addition, to receive the
10,000 design candidates using the conventional time step
FEA, the time taken would be 30,000 min [103]. Thereby, the
proposedmethod saves considerable execution time by taking
only 620 minutes to create 10,200 design candidates [103].
Three optimal design candidates were recommended based
on a Pareto front method [107], out of which one was chosen
that achieves maximum average torque and efficiency. Then
a prototype was developed for the optimal design candidate.
The torque and torque ripple results from the experimental
setup were recorded and compared with the results of the pro-
posed method. The comparison showed that the discrepancy
between the experiment and the proposed model in torque
ripples was 4.3% at rated torque. The average torque of both
models was similar [103].

In [104], BRNN was proposed to get an optimal design for
a single-barrier SynRM. The regularization technique forces
the ANN to converge with smaller weights and biases [108],
[109]. The conventional BPNN is modified by adding a
regularization step that incorporates Bayesian statistics. This
overcomes the problem of overfitting and improves the gen-
eralization capability of ANN.

The chosen design parameters in [104] are the flux carrier
width, Wc and barrier width, Wb, as shown in Fig. 26. The
sum of these widths is constrained to avoid the possibility of
intersection. The authors in [104] considered two conflicting
objectives: maximizingmotor average torque andminimizing
its torque ripples. A 2D FEA simulation was performed to
generate 48 sample points to determine the two objectives
as functions of Wc and Wb. This sample data was divided
randomly into 60%, 25%, and 15% for training, validation,
and testing, respectively.
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TABLE 9. A comparison of motor design methods.

Finally, A Pareto front optimization using amulti-objective
GA was chosen to determine the number of rotor poles
np [104]. Three different configurations (4, 8, and 10) for
the rotor poles have been predetermined; however, only the
design with an 8-pole configuration survived. The percent-
ages of relative error between themulti-objective GA and 2D-
FEA objective values were calculated. The recorded mean
and standard deviation values for the average torque errors
were below 0.2 and 0.1 Nm, respectively, and 5.4% and 4.0%
for the torque ripple.

Table 9 summarizes the referenced papers that used ML-
based algorithms in the design process of electric motors.
All the mentioned papers used FEA to obtain the training
dataset. The size of the dataset varies significantly. In [98]
and [104], the dataset size is less than 8% of that used in
[8]. The optimization objectives for all the mentioned papers
are maximizing the average torque andminimizing the torque
ripple. Whereas different geometrical design parameters are
used due to the change of the considered motor type.

VII. POTENTIAL FUTURE RESEARCH
Based on the publications presented in this survey, SRM
geometry optimization considered only the parameters
directly impacting the considered objectives. This is to sim-
plify the applied algorithm and get accurate results. Opti-
mizing the values of more machine geometrical parameters
using ML-based algorithms is still challenging and needs fur-
ther work. Consideringmore geometrical parameters requires
more training data and finite element simulations. As pre-
viously explained in [103], SVR was used in the geometry
optimization of the PMSM to expand the training data space.
SVR was trained based on few FEA simulations, then used to
generatemore data in a short time compared to the FEA [103].
This could be an effective solution to consider many SRM
geometric design parameters without the need to increase the
FEA simulations.

Almost all published work that applied ML-based algo-
rithms to design the machine geometry optimally considered
only two performance indicators: maximizing the average
torque and minimizing the torque ripple. Therefore, adopting
more indicators such as improving the machine’s efficiency,
reducing radial forces, or increasing torque density requires
more investigation.

Since the ML-based algorithms proved their powerful
capability to model the radial flux SRM, there is a strong
potential for extending this application to axial flux and linear
SRM topologies. In this work, there is only one mentioned
article on modeling linear SRM. Moreover, according to the
authors’ best knowledge, there is no published work on the
design optimization of the axial flux SRMs based on ML
techniques. The flux in the axial flux SRMs penetrates axially
from the stator to the rotor. In contrast to radial SRMs, the
axial flux SRMs have relatively shorter flux paths and hence
offer a higher power density [110]. Therefore, the authors
expect an increase in the research and development in axial
flux SRMs due to the importance and advantages of these
SRMs.

Besides geometry optimization, topology optimizationwas
applied to enhance machine performance. Several published
articles used topology optimization for maximizing the SRM
magnetic energy and minimizing torque ripples and vibra-
tion [111], [112], [113]. However, topology optimization
algorithms suffer from a large consumption time [114]. Deep
Learning, especially the convolution neural network (CNN),
has gained significant attention in the topology optimization
of electric machines. In [115], an CNN was adopted for the
topology optimization of interior permanent magnet motor
to decrease the computational effort and time. The training
data of the CNN was acquired through the motor 2D images
which were used in performing a preliminary topology opti-
mization. The trained CNN was utilized to replace the FEA
model. The CNN algorithm could then classify various motor
models according to the model performance indices, such as
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the average torque, torque ripple and motor efficiency. This
technique reduced the FEA computational time by around
30% [115]. The main challenge of this algorithm is the large
amount of data required to train the CNN.However, this prob-
lem was addressed in [116], [117], [118] to provide an ade-
quate solution. To the best of authors’ knowledge, the CNN
algorithms were not used for SRMs. Therefore, the adoption
of CNN in the topology optimization of SRMs presents an
excellent opportunity for more advanced approaches.

Another potential future research can be using ML algo-
rithms to design the complete electrical drive systems,
including electrical machines, power electronic converters
and control systems. Reinforcement learning has been effec-
tively employed to drive and control electrical machines
[119], [120], [121]. Reinforcement learning can be trained
either from simulation or field experiments. Consequently,
reinforcement learning is able to consider nonlinearities, par-
asitic and physical effects. Moreover, unlike model predictive
control, reinforcement learning does not require an online
optimization of each step, reducing the computational over-
head [121]. Fellow researchers are encouraged to employ
machine learning algorithms to model and drive electric
motors. In other words, ML algorithms offer a good oppor-
tunity for future work as a system-level design optimization
tool for electrical drive systems.

VIII. CONCLUSION
This paper presented a review of the appliedmachine learning
algorithms in the modeling and design optimization of SRMs.
ManyML-based algorithms are appropriate for modeling and
design of SRMs. According to the presented and discussed
studies in this paper, all applied ML-based algorithms in this
field are supervised learning algorithms. The feedforward
neural network and the support vector machine represent 75%
of the considered articles in this paper. Most of the studies
take the current and rotor position as inputs of the proposed
algorithm and the torque and/or flux linkage as outputs. The
sample data was either acquired using the 2D-FEA simulation
or based on a locked rotor test experiment. Although the
experimental method gives more accurate prediction results,
it requires sophisticated sensors and tools.

The quality and size of the data samples are essential for
achieving a good prediction model. Among the summarized
algorithms, SVM and GRNN work well with fewer data
samples. There is no general rule for splitting the sample
data into training, validation, and testing sets. However, the
training set commonly formsmore than two-thirds of the total
sample data. The training process of the neural networks is
an optimization problem. Levenberg Marquardt offered the
fastest and most accurate learning algorithm for backpropa-
gation neural networks. In LSSVM, determining the kernel
function and regularization parameters requires optimization
algorithms as well. The RBFNN is superior in approximation
ability and convergence speed. However, its significant mod-
eling error requires a larger network scale as compared to the
BPNN based on the LM learning algorithm.

The ML-based models are used as surrogates in electric
motor design due to their high accuracy and effective gen-
eralization ability. The main contribution of the ML-based
algorithm in this field is reducing the computational time
of the design optimization process. Generally, the prediction
accuracy of theML-based algorithm and computation cost are
key guidelines to assess modeling and design methods. Due
to the differences between the considered methods’ motor
types, datasets, and output objectives, it is challenging to draw
complete comparative conclusions about these methods.
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