
Received 11 November 2022, accepted 5 December 2022, date of publication 14 December 2022,
date of current version 21 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3229003

fbSAT: Automatic Inference of Minimal
Finite-State Models of Function
Blocks Using SAT Solver
KONSTANTIN CHUKHAREV AND DANIIL CHIVILIKHIN
Computer Technologies Laboratory, ITMO University, 197101 Saint Petersburg, Russia

Corresponding authors: Konstantin Chukharev (kchukharev@itmo.ru) and Daniil Chivilikhin (chivdan@itmo.ru)

This work was supported by the Ministry of Science and Higher Education of Russian Federation under Project 075-03-2020-139/2
(goszadanie no. 2019-1339).

ABSTRACT Finite-state models are widely used in software engineering, especially in the development
of control systems. In control applications, such models are often developed manually, which can make it
difficult to keep them up to date. To simplify the maintenance process, an automatic approach can be used to
infer models from behavior examples and temporal specification. As an example of a specific control systems
development application, we focus on inferring finite-state models of function blocks (FBs) defined by the
IEC 61499 international standard for distributed automation systems. In this paper, we propose a method
for inferring FB models from behavior examples based on reduction to the Boolean satisfiability problem
(SAT). Additionally, we take into account linear temporal properties using counterexample-guided synthesis.
The developed tool, fbSAT, implementing the proposed method is evaluated in three case studies: inferring
a finite-state controller for a Pick-and-Place manipulator, reconstructing randomly generated automata, and
minimizing transition systems. In contrast to existing approaches, the suggested method is more efficient
and produces finite-state models that are minimal in terms of both the number of states and the complexity
of guard conditions.

INDEX TERMS Control system synthesis, inference algorithms, Boolean satisfiability, counterexample-
guided inductive synthesis, formal verification, model checking.

I. INTRODUCTION
The non-trivial process of develponig control logic for an
industrial control system may be reduced to the creation
of a finite-state automaton or a system of interconnected
automata. Controller behavior may be represented using the
deterministic finite-state model, describing how the system
reacts to input events and which output actions it produces.
Such models are extensively used in program testing [1],
[2] (e.g., for model-based test case generation) and verifica-
tion [3], [4] (e.g., the behavior of a program is modeled using
a finite-state machine, and then model checking is applied to
check whether the model has the desired properties), as well
as for representing and modelling controllers in control

The associate editor coordinating the review of this manuscript and

approving it for publication was Engang Tian .

systems. One practical example of finite-state model appli-
cation is the international standard for distributed automation
systems development IEC 61499 [5], which defines control
systems as networks of interconnected function blocks (FBs),
specified by their interfaces and implementations (control
algorithms).

In practice, most finite-state models for control
applications are developed manually – this is a tedious and
error-prone approach. Furthermore, there is the issue of
maintaining these models to be up-to-date and consistent
during the changes in system parameters, architecture, and
logic. An alternative to the manual process is automatic
synthesis from given execution scenarios and/or temporal
properties [6], [7], [8], [9], [10], [11], [12], [13]. Inferred
models can be used for model-based testing, verification, and
can even replace the original controller.

131592 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-4636-2379
https://orcid.org/0000-0002-6417-6254
https://orcid.org/0000-0002-8169-5347

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

FIGURE 1. IEC 61499 Function block example.

The contribution of this paper is a method for synthesis
of minimal finite-state FB models, which, in contrast to
existing approaches (see Section III), allows simultaneously
and efficiently accounting for (1) behavior examples, (2) lin-
ear temporal logic (LTL) properties, and (3) minimality of
synthesized automata both in terms of number of states and
guard conditions complexity. We also present a tool FBSAT
implementing the proposed method, and evaluate it in sev-
eral experimental case studies. Our approach is designed for
FB model synthesis, but it can be applied to inference of
other types of state machines with minimal modifications
(see e.g., Section VI).

II. PROBLEM STATEMENT
A function block (FB) (Fig. 1) is characterized by its interface
and control algorithm. The interface defines input/output
events (sets I and O) and input/output variables (sets X
and Z) which can be, for example, Boolean, integer or
real-valued. In this paper, we consider Boolean input/output
variables only. The control algorithm is represented by a
finite-state machine extended with guard conditions, and
called execution control chart (ECC). In the following we
will refer to such a machine simply as an automaton. A com-
plete formal definition of an ECC can be found in [14]. Since
in this paper we deal only with Boolean inputs and outputs,
we use a simplified definition: an automaton A is a tuple
(Q, qinit, I,O,X ,Z, τ, ψ, ω), where:
• Q is a finite set of states;
• qinit ∈ Q is the initial state;
• I and O are the sets of input/output events;
• X and Z are the sets of input/output variables;
• τ : Q× I × B|X |→ Q is the transition function;
• ψ : Q × I × B|X | → (O ∪ {ε}) is the output event
function;

• ω : Q× I ×B|X |×B|Z|→ B|Z| is the output function.
Each state has an associated output event and an algorithm,
a function that can modify the values of output variables Z .
In this paper, we only consider algorithms over Boolean
vectors B|Z| → B|Z|, where each output variable only
depends on its previous value (assuming that its initial value is
False). Each transition has an associated input event and a
guard condition, which is a Boolean function that indicates
the possibility to follow the transition. We consider guard

conditions to be Boolean functions over the input variablesX :
B|X | → B. An automaton A behaves as a finite-state trans-
ducer: it accepts input actions and produces output actions,
while keeping track of output variable values. The transition
function τ : Q × I × B|X | → Q defines the state in which
the automaton finishes processing an input action. The output
event function ψ : Q × I × B|X | → (O ∪ {ε}) defines
the output event emission rule. Finally, the output function
ω : Q × I × B|X | × B|Z| → B|Z| defines the changes in
output variable values. Note that the automaton may not react
to some input actions, i.e. it may stay in the same state and not
produce an output action. In that case:
• τ (q, i, x̄) = q;
• ψ(q, i, x̄) = ε;
• ω(q, i, x̄, z̄) = z̄,

where q ∈ Q, i ∈ I, x̄ ∈ B|X |, z̄ ∈ B|Z|.
An execution scenario is a sequence of elements
〈i[x̄], o[z̄]〉, where each element consists of an input
action i[x̄] and an output action o[z̄]. An input action is a
pair of an input event i ∈ I and an input x̄ ∈ B|X |, whereas
an output action is a pair of an output event o ∈ O ∪ {ε} and
an output z̄ ∈ B|Z|. An empty output event ε is necessary
to represent the absence of an output action, e.g., in the
case when an automaton does not react to an input action.
A positive scenario is an execution scenario representing a
desired behavior of an automaton. Commonly, such scenarios
are obtained by simulating an existing model (in a simulation
tool, such as Matlab, nxtSTUDIO1), or by collecting data
from a real control system. An example of a set of three
scenarios S = {s1, s2, s3} is shown below:

s1 = [〈R[00], ε[0]〉; 〈R[01],B[1]〉;

〈R[00], ε[1]〉; 〈R[01],B[0]〉],

s2 = [〈R[00], ε[0]〉; 〈R[10],A[0]〉;

〈R[00], ε[0]〉; 〈R[01],B[1]〉],

s3 = [〈R[00], ε[0]〉; 〈R[10],A[0]〉; 〈R[10],A[0]〉].

(1)

We say that an automaton satisfies a scenario if, while sequen-
tially receiving input actions from scenario elements, it pro-
duces the same sequence of output actions as in the scenario.

An LTL specification L is a set of LTL formulas that
describes the temporal properties of a finite-state model.
An LTL formula is an expression that may contain propo-
sitional variables (i.e. input/output events/variables of the
automaton), logical connectives (∧, ∨, ¬,→), and temporal
operators (e.g., X is ‘‘next’’, U is ‘‘until’’, G is ‘‘always’’,
F is ‘‘eventually’’). An LTL specification can be verified
using a model checker, which produces a counterexample for
each violated LTL formula. We convert each counterexample
into a negative scenario representing undesired behavior.
We describe this in detail in Section IV-B.

Ultimately, the problem addressed in this paper is to
find the most succint (minimal) automaton that satisfies all

1https://www.nxtcontrol.com/en/engineering

VOLUME 10, 2022 131593

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

positive scenarios S+ and complies with the given LTL spec-
ification L. Commonly, finite-state models are minimized
w.r.t. their number of states and/or transitions [6], [8], [11].
In this work we additionally explicitly consider complexity
of guard conditions: the automaton is minimized both in
terms of the number of states and the complexity of its guard
conditions, measured as the total number of vertices in parse
trees of corresponding Boolean formulas.

III. RELATED WORK
There exists a large body of work on SAT-based synthesis of
circuits, bit-vector programs, domain-specific programs, etc.
However, in this workwe are interested specifically in synthe-
sis of finite-state machines: first, state-based models are com-
prehensible, and their formal verification is relatively simple;
second, they can be directly used in control applications for
controller logic implementation, e.g., in Matlab/Stateflow,
nxtSTUDIO [15].

The problem of finding a minimal deterministic
finite-state machine from behavior examples is known to be
NP-complete [16], and the complexity of the LTL synthesis
problem is double exponential in the length of the LTL
specification [17]. Despite this, synthesis of various types
of finite-state models from behavior examples and/or formal
specification has been addressed by many researchers includ-
ing [3], [6], [7], [8], [10], [11], [12], [18], [19], [20], [21],
[22], and [13] with methods based on heuristic state merging,
evolutionary algorithms, and SAT solvers. In the context of
this paper we are interested in exact methods, so we direct
our attention to SAT-based methods.

The extended Finite-State Machine (EFSM) (in terms
of [8]) is a model that is similar to the ECC considered in
this paper: it combines Mealy and Moore automaton seman-
tics, and uses conditional state transitions. Transitions are
labeled with input events and Boolean formulas over the input
variables, and automaton states have associated sequences of
output actions. Several approaches based on translation to
SAT [8], [23] have been proposed for inferring EFSMs from
behavior examples and LTL properties. In EFSM-tools [8],
LTL properties are accounted for via an iterative counterex-
ample prohibition approach, but minimization of guard con-
ditions is not considered.

BoSy [7] implements bounded synthesis of a transition
system (a type of automaton similar to EFSM and ECC)
only from LTL properties (scenarios are not considered).
Apart from a SAT-based approach, a more efficient solu-
tion based on a Quantified SAT (QSAT, also called QBF,
Quantified Boolean Formula satisfiability problem) encod-
ing is developed. Transition systems inferred using the SAT
encoding are explicit (in the sense that the guard conditions
include all input variables), whereas the QSAT encoding
generates symbolic models (guard conditions are Boolean
formulas over the input variables). BoSy ensures minimal-
ity of found solutions w.r.t. the number of states, however
it does minimize guard conditions, which tend to be large
and incomprehensible. An approach to simplify generated

solutions is suggested in [24], where the SAT encoding is
augmented with constraints for minimizing the number of
cycles in the transition system. However, guard conditions
complexity is not addressed. Furthermore, BoSy does not
support behavior examples. Though they can be modeled
with LTL, this approach is inefficient even for behavior exam-
ples of moderate size. Other LTL synthesis techniques, e.g.,
G4LTL-ST [12] and Strix [25], have the same drawbacks in
application to the considered problem: no guard conditions
minimization and lack of support for behavior examples.

In [26], the FBCSP method is proposed for inferring an
FB model from execution scenarios via a translation to the
Constraint Satisfaction Problem (CSP). However, FBCSP has
the following restrictions. Guard conditions are generated
in complete form, i.e. the corresponding Boolean formulas
depend on all input variables. Such models do not gener-
alize to unseen data. This is countered by a greedy guard
conditions minimization algorithm, but it does not guaran-
tee the minimality of the result. In [27], FBCSP is extended
with a counterexample prohibition procedure to account for
LTL properties, which is similar to the one used in EFSM-
tools. Guard conditions are represented with fixed-size con-
junctions of positive/negative literals of the input variables.
The drawback of this approach is that it is inefficient when
the LTL specification is insufficiently covered with behavior
examples.

In [28], a two-stage approach is developed: on the first
stage, a base model is inferred using a SAT encoding, and
on the second stage its guard conditions are minimized via
a CSP encoding, in which guard condition Boolean formulas
are represented with parse trees. By introducing a total bound
on the number of nodes in these parse trees and solving
a series of CSP problems, the method finds a model with
minimal guard conditions w.r.t. the base model identified on
the first stage. Global minimality of guard conditions is not
guaranteed due to the two-stage implementation: minimal
guards may correspond to another base model, not the one
found on the first stage. The same argument applies against
any approach based on state machine minimization [29].
In addition, LTL properties are not supported by approaches
of this type.

Overall, none of the existing methods allow simulta-
neously and efficiently accounting for (1) behavior exam-
ples, (2) LTL properties, and (3) minimality of synthesized
automata in terms of both the number of states and the
complexity of the guard conditions. The approach proposed
in this paper extends [28] and contributes to the state-of-
the-art in SAT-based state machine synthesis: it supports
positive behavior examples, realizes counterexample-guided
synthesis to account for LTL properties, and produces models
minimal both in terms of the number of states and guard
conditions complexity.

IV. PROPOSED APPROACH
In this section we describe the proposed approach for
inferring minimal FB models from a given set of positive

131594 VOLUME 10, 2022

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

FIGURE 2. Scenario tree constructed from scenarios (1).

scenarios and an LTL specification. In Section IV-A we
describe a convenient storage structure for execution scenar-
ios, the scenario tree. In Section IV-Bwe describe the process
of verifying an LTL specification using a model checker tool,
which produces a counterexample for each violated LTL for-
mula. Obtained counterexamples are converted into negative
scenarios representing the undesired behavior, which must
be prohibited in the desired automaton. In Section IV-C we
describe the reduction of the FB model inference problem to
SAT. In Section IV-D we describe the process of inferring
an FB model that is minimal both in terms of the number of
states and guard conditions complexity.

A. SCENARIO TREE
A scenario tree T is a prefix tree built from the given sce-
narios S. Before the scenario tree construction, we prepend
each scenario with an auxiliary element consisting only of
an output action ε[〈0 . . . 0〉]. With this we ensure that all
scenarios have a common prefix. Each tree node and its
incoming edge correspond to a scenario element: a node is
marked with an output action, and an edge is marked with an
input action.

Further in this paper, we will refer to the key features of a
scenario tree as follows: V is the set of tree nodes; ρ ∈ V is
the root of the tree; tp(v) ∈ V is the parent of node v, v 6= ρ;
tie(v) ∈ I is an input event on the incoming edge of node v,
v 6= ρ; toe(v) ∈ O ∪ {ε} is an output event in node v, where
ε is an empty event; V(act) = {v ∈ V \ {ρ} toe(v) 6= ε} is
the set of active tree nodes; V(pass) = {v ∈ V \ {ρ} toe(v) =
ε} is the set of passive tree nodes; U ⊆ B|X | is the set of
inputs encountered in scenarios; tin(v) ∈ U is an input on the
incoming edge of node v, v 6= ρ; tov(v, z) ∈ B is the value
of output variable z in node v. The root ρ has no parent, thus
tp(ρ), tie(ρ), and tin(ρ) are undefined. A positive scenario
tree T + is a scenario tree built from positive scenarios S+.
An example of a scenario tree constructed from scenarios (1)
is shown in Fig. 2.

B. LTL VERIFICATION, COUNTEREXAMPLES, NEGATIVE
SCENARIOS
An LTL specification can be verified using a model checker
tool, which produces a counterexample for each violated LTL
formula. We use a symbolic model checker NuSMV [30]. For
safety properties, a counterexample is a finite sequence of

FIGURE 3. Example automaton with a looping behavior.

FIGURE 4. Counterexample for the liveness LTL property L2 = F z .

execution states. For liveness properties, a counterexample
is an infinite but periodic sequence of states, which can be
represented as a finite prefix followed by a cycle [31].

A negative scenario is an execution scenario representing
an undesired behavior. We convert each counterexample into
a negative scenario as follows. Consider the example automa-
ton in Fig. 3, where I = {R}, O = ∅, X = {x}, Z = {z}.
Also consider two LTL properties: L = {G¬z, F z}. A coun-
terexample for the safety property L1 = G¬z is a finite
sequence [q1/0] R[1]−−−→[q2/0] R[1]−−−→[q4/0] R[1]−−−→[q5/1]. Here,
the notation [q1/0] indicates the execution state (in NuSMV’s
sense), in which the automaton is in the state q1, and the
current value of the output variable z is 0. The correspond-
ing ‘‘loopless’’ negative scenario looks as follows:̂s1 =
[〈R[1],A〉; 〈R[1],A〉; 〈R[1],A〉]. Counterexample for the
liveness property L2 = F z is a finite prefix followed by a
cycle (Fig. 4).
The corresponding looping negative scenario looks as fol-

lows: ŝ2 = [〈R[1],A〉; 〈R[1],A〉; 〈R[0],A〉; 〈R[1],A〉],
where the first element (underlined) is the beginning of a
loop.

A negative scenario tree T − is a scenario tree built from
negative scenarios S−. We denote the set of all nodes that cor-
respond to the last elements of loopless scenarios as V̂ (ends).
We augment the tree with special back edges from the end to
the beginning of each loop from looping scenarios.We denote
the set of all nodes which are connectedwith node v̂ via a back
edge as t̂be(̂v) ⊆ V̂ . For example, for the negative scenario
tree built from the scenario ŝ2 only: t̂be(̂v5) = {̂v2} (indices
are shifted by 1, since we prepend the scenario tree with an
auxiliary root node ρ̂ = v̂1). All other tree features are the
same as defined in Section IV-A, but marked with the hat
symbol, e.g., v̂ ∈ V̂ , t̂p(̂v), t̂ie(̂v).

C. FB MODEL INFERENCE USING SAT SOLVER
We propose a method for inferring an FB model based
on a reduction to SAT. The reduction consists in formally

VOLUME 10, 2022 131595

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

describing an automaton A of size C by constructing a
Boolean formula that is satisfiable if and only if there exists
an automaton which satisfies given positive scenarios S+
and does not satisfy given negative scenarios S−. For encod-
ing non-Boolean variables with bounded domains we use
standard pairwise encoding (also known as ‘‘sparse’’ or
‘‘direct’’ [32]) and Onehot+Binary [33] encoding.

The reduction includes four parts. First, we encode the
automaton structure. Second, we encode the positive sce-
nario tree T + mapping and enforce its satisfaction. Third,
we encode the guard conditions structure, i.e. the structure of
parse trees of corresponding Boolean formulas, and declare
cardinality constraints bounding the guard conditions size.
Lastly, we encode the negative scenario tree T − mapping and
prohibit its satisfaction.

The goal is to infer an automaton with |Q| = C states.
We assume that each state has at most K outgoing transitions.
Further in this paper we assume that K = C · |I|, since it is
the safest minimum value that does not prohibit the inference
of an automaton, which may happen for smaller values of K .
However, lowering this value greatly reduces the size of the
reduction (i.e. number of declared Boolean variables and
clauses), which is likely to significantly increase the solving
efficiency. Further in this section we assume that b ∈ B =
{⊥,>} = {0, 1}, q, q′ ∈ Q, k ∈ [1 ..K], i ∈ I, u ∈ U , v ∈ V ,
unless stated otherwise.

1) ENCODING THE AUTOMATON STRUCTURE
Each state has an associated output event and an algorithm.
Variable φq ∈ O ∪ {ε} denotes the output event in state q.
Variable γq,z,b ∈ B represents the algorithm for the output
variable z.

Each transition has an associated input event and a guard
condition, which is a Boolean function over the input vari-
ables X . Variable τq,k ∈ Q0 (Q0 = Q ∪ {q0}) denotes
the destination state of the k-th transition from the state q.
‘‘Transitions’’ to the auxiliary state q0 /∈ Q are called null-
transitions and represent the absence of a transition. W.l.o.g.
we ensure that null-transitions have the largest indices:

(τq,k = q0)→ (τq,k+1 = q0).

Variable ξq,k ∈ I ∪ {ε} denotes the input event on the k-th
transition from the state q. Only null-transitions are marked
with the special ε input event:

(τq,k = q0)↔ (ξq,k = ε).

Variable θq,k,u ∈ B represents a guard condition repre-
sented by a truth table: it denotes the value of the guard
condition of the k-th transition from the state q for the input u.
Variable δq,k,i,u ∈ B represents a guard firing function by
denoting whether the k-th guard from the state q fires on the
input action i[u]. These two variables are related as follows:

δq,k,i,u ↔ (ξq,k = i) ∧ θq,k,u.

According to the IEC 61499 standard, each state has
a transition priority: the automaton follows the first fired

transition or stays in the same state if no transition fired.
Variable ff q,i,u ∈ [0 ..K] denotes the index of a transition
which fires first on input action i[u]. ff q,i,u = 0 means that
no transition fires at all. A transition fires first iff all previous
transitions do not fire:

(ff q,i,u = k)↔ δq,k,i,u ∧
∧

1≤k ′<k
(¬δq,k ′,i,u).

When the automaton in state q processes an input action
i[u], it either (1) switches to another state q′ or (2) ignores
it (or rather, reacts by ignoring) by staying in the state q.
Such behavior is represented by variable λq,i,u ∈ Q0, where
λq,i,u = q0 denotes the second (2) case. Note that in the first
(1) case the automatonmay switch (through a loop-transition)
into the same state q′ = q. Formally, the definition for λ is the
following:

(λq,i,u = q′)↔
∨

k∈[1..K]

[
(τq,k = q′) ∧ (ff q,i,u = k)

]
.

2) BOUNDING THE NUMBER OF TRANSITIONS
In order to declare an upper bound for the total number of not-
null transitions T in the automaton, we impose the cardinality
constraint:∑

q∈Q, k∈[1..K]
BOOL2INT(τq,k 6= q0) ≤ T .

In order to encode this in CNF, we use a technique
described by [34], which consists in declaring a totalizer,
which encodes the sum in unary form, and a comparator,
which bounds this sum. We omit the formal definition of the
resulting constraints which can be found in [34].

3) BFS-BASED SYMMETRY BREAKING FOR AUTOMATON
STATES
Additionally, we declare auxiliary symmetry-breaking con-
straints [9], which force the automaton states to be enumer-
ated in the order they are visited by the breadth-first search
(BFS) algorithm launched from the initial state. Variable
τ bfs-Aqa,qb ∈ B (qa, qb ∈ Q) indicates the existence of a transition
from qa to qb:

τ bfs-Aqa,qb ↔
∨

k∈[1..K]
(τqa,k = qb).

Variable πbfs-A
qb ∈ {q1, . . . , qb−1} (b ∈ [2 ..C]) denotes the

parent of the state qb in the BFS traversal tree:(
πbfs-A
qb = qa

)
↔ τ bfs-Aqa,qb ∧

∧
c<a

(
¬τ bfs-Aqc,qb

)
.

The actual BFS constraint is defined as follows:(
πbfs-A
qb = qa

)
→

∧
c<a

(
πbfs-A
qb+1 6= qc

)
.

4) ENCODING THE MAPPING OF POSITIVE SCENARIO TREE
The goal is to organize a mapping µ : V → Q between the
nodes of the positive scenario tree T + and the states of the
automaton A (see Fig. 5). Variable µv ∈ Q denotes the sat-
isfying state in which the automaton finishes processing the
sequence of scenario elements formed by the path from the

131596 VOLUME 10, 2022

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

FIGURE 5. Tree-to-automaton mapping example.

root ρ to the node v. The root ρ itself maps to the initial state:
µρ = qinit.

Passive nodes (with toe(v) = ε) map to the same states
as their parents and correspond to the situation when the
automaton ignores the input action, thus:

(µp = q)→ (µv = q) ∧ (λq,i,u = q0),

where v ∈ V(pass), p = tp(v), q ∈ Q, i = tie(v), u = tin(v).
Active nodes correspond to the situation when the automa-

ton reacts to an input action by switching the state and pro-
ducing an output action, which we constrain according to the
tree node:

(µp = q)→
(
(µv = q′)→ (λq,i,u = q′) ∧ (φq′ = o)

∧

∧
z∈Z

(γq′,z,b = b′)
)
,

where v ∈ V(act), p = tp(v), q, q′ ∈ Q, i = tie(v), u = tin(v),
o = toe(v), z ∈ Z , b = tov(p, z), b′ = tov(v, z). See Fig. 5 for
a mapping example.

5) BASIC ALGORITHM
Constraints declared so far allow inferring a computable
automaton capable of processing input actions and react-
ing to them by emitting output actions. Denote by
BASIC∗(S+,C,T) the procedure of inferring an automaton
satisfying positive scenarios S+, which has C states and at
most T transitions. This procedure consists of (1) building
a positive scenario tree, (2) encoding the automaton struc-
ture, the scenario tree mapping, and the cardinality constraint
‘‘total number of not-null transitions is at most T ’’, and (3)
delegating the constructed CNF formula to the SAT solver.
The constructed CNF formula consists of O(C2

· |I| · |U | +
C · |V |) variables and O(C3

· |I| · |U | + C2
· |V | · |Z| + C ·

|V | · |U |) clauses. Additionally, denote by BASIC(S+,C) =
BASIC∗(S+,C,∞) an alias for the call without a bound on T .

6) ENCODING THE STRUCTURE OF GUARD CONDITIONS
In the above encoding, guard conditions are represented as
truth tables (by variable θ), which are not human/interpretable

or usable in control systems development software such as
Matlab or nxtSTUDIO [15], where guard conditions must
be explicitly represented with Boolean formulas. Therefore,
we supplement the reduction with an encoding of arbitrary
Boolean formulas over the input variables X ; each Boolean
formula is represented by its parse tree. Each tree is built
of P nodes, where P is a parameter. Each node may be either
a Boolean operator node or a terminal node representing
an input variable. However, not all formulas may need as
much as P nodes, and some nodes may remain unused, i.e.
not included in the tree. We call such nodes none-typed.
We define the size of a parse tree as the number of typed (i.e.
not none-typed) nodes in it. Further in this section we assume
that p ∈ [1 ..P], q ∈ [1 ..C], x ∈ X , unless stated otherwise.
Variable ηq,k,p ∈ {�,∧,∨,¬, •} denotes the type of

the p-th parse tree node of the guard condition on the k-
th transition from the state q, where � denotes a terminal
node, • denotes a none-typed node, and the rest are logical
operators. Variable χq,k,p ∈ X∪{0} denotes the input variable
associated with the node p (or its absence). Only terminal
nodes have associated input variables:

(ηq,k,p = �)↔ (χq,k,p 6= 0).

Variables πq,k,p ∈ [0 .. (p−1)] and σq,k,p ∈ {0}∪[(p+1) ..P]
denote, respectively, the parent and the (left) child of the p-th
node (or their absence, e.g., πq,k,p = 0). These variables are
related as follows:

(σq,k,p = ch)→ (πq,k,ch = p).

Only typed nodes, except the root (p = 1), have parents:

(ηq,k,p 6= •)↔ (πq,k,p 6= 0).

We do not encode the right child explicitly, but for binary
operators we assume that it is next to the left one:

ηq,k,p ∈ {∧,∨} ∧ (σq,k,p = c)→ (πq,k,c+1 = p).

Since each binary operator node must have two children, the
P-th and (P− 1)-th nodes cannot be of type ‘‘∧’’ or ‘‘∨’’.
Similarly, the P-th node cannot be of type ‘‘¬’’.

Variable ϑq,k,p,u ∈ B denotes the Boolean value of the
subformula (represented by the subtree rooted in node p) on
input u. Variable θ defined earlier is a shortcut for the root
node value: θq,k,u ↔ ϑq,k,1,u. Terminals have values from
the associated input variables; values of non-terminal nodes
are calculated according to their types and children values;
and none-typed nodes have False values:

(ηq,k,p = �) ∧ (χq,k,p = x)

→

∧
u∈U

[
ϑq,k,p,u ↔ ux

]
;

(ηq,k,p = ∧) ∧ (σq,k,p = c)

→

∧
u∈U

[
ϑq,k,p,u ↔ ϑq,k,c,u ∧ ϑq,k,c+1,u

]
;

(ηq,k,p = ∨) ∧ (σq,k,p = c)

→

∧
u∈U

[
ϑq,k,p,u ↔ ϑq,k,c,u ∨ ϑq,k,c+1,u

]
;

VOLUME 10, 2022 131597

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

(ηq,k,p = ¬) ∧ (σq,k,p = c)

→

∧
u∈U

[
ϑq,k,p,u ↔ ¬ϑq,k,c,u

]
;

(ηq,k,p = •)

→

∧
u∈U

[
¬ϑq,k,p,u

]
.

7) BOUNDING THE TOTAL GUARD CONDITIONS SIZE
In order to declare an upper bound for the total size of
all guard conditions, i.e. the total number of typed (i.e. not
none-typed) parse tree nodes N , we impose the cardinality
constraint:∑

q∈Q, k∈[1..K], p∈[1..P]
BOOL2INT(ηq,k,p 6= •) ≤ N .

For encoding it in CNF, we again use a technique described
by [34], as explained in Section IV-C2.

8) BFS-BASED SYMMETRY BREAKING FOR GUARD
CONDITIONS
Additionally, we declare auxiliary symmetry-breaking con-
straints, which enforce the nodes of parse trees representing
the guard conditions to be enumerated in BFS order. Essen-
tially, they are almost identical to the BFS constraints for
automaton states, but declared for each parse tree separately
(for each q ∈ Q, k ∈ [1 ..K]). Variable τ bfs-Ga,b ∈ B (1 ≤ a <
b ≤ P) indicates the existence of an edge from the a-th to the
b-th node:

τ bfs-Ga,b ↔ (πq,k,b = a).

Variable πbfs-G
b ∈ [1 .. (b−1)] (b ∈ [2 ..P]) denotes the

parent of the b-th node in the BFS traverse tree:(
πbfs-G
b = a

)
↔ τ bfs-Ga,b ∧

∧
c<a

(
¬τ bfs-Gc,b

)
.

The actual BFS constraint is defined as follows:(
πbfs-G
b = a

)
→

∧
c<a

(
πbfs-G
b+1 6= c

)
.

9) EXTENDED ALGORITHM
Denote by EXTENDED∗(S+,C,P,T ,N) the procedure for
inferring an automaton which satisfies positive scenarios S+,
has C states and at most T transitions, while each guard
condition (represented by a parse tree) consists of at most P
nodes, and the total guards size is at most N . This procedure
consists of (1) building a positive scenario tree, (2) encoding
the automaton structure, the scenario tree mapping, the guard
conditions structure, and the cardinality constraints ‘‘total
number of not-null transitions is at most T ’’ and ‘‘total size
of guard conditions is at most N ’’, and (3) delegating to the
SAT solver. The constructed CNF formula consists of

O(C2
· |I| · |U | + C2

· P · |U | + C · |V |)

variables and

O(C3
· |I| · |U | + C2

· |V | · |Z|+C2P2 · |U |+C · |V | · |U |)

clauses. Additionally, denote by EXTENDED(S+,C,P) =
EXTENDED∗(S+,C,P,∞,∞) an alias for the call without
bounds on T and N .

10) ENCODING THE MAPPING OF NEGATIVE SCENARIO
TREE
The mapping µ̂ : V̂ → Q0 for the negative scenario tree
is similar to the positive one. The key difference is that the
negative tree may represent behaviors which the automaton
does not have. Moreover, it contains looping behaviors which
the automaton is explicitly prohibited to have.

Variable µ̂̂v ∈ Q0 denotes the satisfying state (or its
absence) of the negative tree node v̂ ∈ V̂ , where µ̂̂v =
q0 denotes the absence of a satisfying state and corresponds to
the situation when the automaton does not have the behavior
represented by the negative tree. The root ρ̂ of the negative
tree maps to the initial state of the automaton: µ̂ρ̂ = qinit.

Passive nodes either (1) map to the same states as their
parents, or (2) map to q0:(

µ̂p̂ = q
)
→
(
µ̂̂v = q

)
∨
(
µ̂̂v = q0

)
,

where v̂ ∈ V̂ (pass), p̂ = t̂p(̂v), q ∈ Q. The first (1) case
corresponds to the situation when the automaton ignores the
input action: (

µ̂̂v = q
)
→

(̂
λq,i,u = q0

)
,

where v̂ ∈ V̂ (pass), q ∈ Q, i = t̂ie(̂v), u = t̂in(̂v). And the
second (2) case corresponds to the situation when the automa-
ton actively reacts to the input action, thus unsatisfying the
passive behavior captured in the negative scenario tree.

Similarly, active nodes either map to the state in which the
automaton switches after processing an input action, or stay
unmapped (i.e. mapped to q0):(
µ̂p̂ = q

)
→

((
µ̂̂v = q′

)
↔

(̂
λq,i,u = q′

)
∧

(
φ̂q′ = o

)
∧

∧
z∈Z

(
γ̂ q′,z,b = b′

))
,

where v̂ ∈ V̂ (act), p̂ = t̂p(̂v), q, q′ ∈ Q, i = t̂ie(̂v), u =
t̂in(̂v), o = t̂oe(̂v), z ∈ Z , b = t̂ov(̂p, z), b′ = t̂ov(̂v, z).
Note that this constraint requires the equivalence operator
(↔) in contrast to the positive one (where implication (→)
in the same place is sufficient): the codomain of µ̂ is Q0,
but the constraint is only declared for q′ ∈ Q. By using the
equivalence operator, we can avoid declaring constraints for
the special case when µ̂̂v = q0.
Additionally, if some node is unmapped, then this propa-

gates down the tree:

(µ̂t̂p(̂v) = q0)→ (µ̂̂v = q0).

Lastly, in order to prohibit the undesired looping behavior
represented by back edges, we ensure that the start and the
end of each loop either map to different states, or both are
unmapped (i.e. mapped to q0):∧

v̂′∈t̂be(̂v)

[
(µ̂̂v 6= µ̂̂v′) ∨ (µ̂̂v = µ̂̂v′ = q0)

]
.

131598 VOLUME 10, 2022

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

11) COMPLETE ALGORITHM
Denote by COMPLETE∗(S+,S−,C,P,N ,T) the procedure
for inferring an automaton which satisfies positive scenar-
ios S+, does not satisfy negative scenarios S−, has C states
and at most T transitions, while each guard condition parse
tree consists of at most P nodes, and the total guards size is at
most N . This procedure consists of (1) building positive and
negative scenario trees, (2) encoding the automaton structure,
the mapping of both positive and negative scenario trees,
the guard conditions structure, and the cardinality constraints
‘‘total number of not-null transitions is at most T ’’ and ‘‘total
size of guard conditions is at most N ’’, and (3) delegating to
the SAT solver. The constructed CNF formula consists of

O(C2
· |I| · |U | + C2

· P · |U | + C2
· P · |Û |
+C · |V | + C · |V̂ |)

variables and

O(C3
· |I| · |U | + C3

· |I| · |Û | + C2
· |V | · |Z|

+C2
· |V̂ | · |Z| + C2

· P2 · |U | + C2
· P2 · |Û |

+C · |V | · |U | + C · |V̂ | · |Û |)

clauses. Additionally, denote by COMPLETE(S+,S−,C,P) =
COMPLETE∗(S+,S−,C,P,∞,∞) an alias for the call with-
out bounds on T and N .

D. MINIMAL MODEL INFERENCE
Proposed methods require the automaton parameters C and
P to be known in advance. In order to automate the inference
of minimal models so that the knowledge of C and P is
not needed, we use an iterative approach which we describe
below.

1) BASIC-MIN ALGORITHM
In order to quickly estimate the minimal number of states,
we use the BASIC(S+,C) algorithm by iterating C bottom-
up: starting from 1 until we find a solution, an automa-
ton A with Cmin states satisfying S+. Next, in order to
obtain a model with a minimal number of transtions, we use
the BASIC∗(S+,Cmin,T) algorithm by iterating T top-down:
decreasing it by 1 until an even smaller model could not
be found: the solution is the last found automaton with
Tmin transitions. Let us denote this algorithm, which is for-
mall described in Algorithm 1, as BASIC-MIN(S+).

2) EXTENDED-MIN ALGORITHM
Assuming that the parameter P is known and the number
of states C is either given or estimated using the BASIC-MIN

algorithm, we minimize the total size of guard conditions N
using the same top-down iterative approach as during the T
minimization described above, but using the EXTENDED algo-
rithm internally. Let us denote the described algorithm as
EXTENDED-MIN(S+,P).
Note that we could additionally minimize the total number

of not-null transitions T , but in our current implementation
we do not do this. The reason for this is the observation

Algorithm 1 BASIC-MIN(S+)
Input: positive scenarios S+
Output: automaton A with minimal number of

states Cmin and transitions Tmin

// minimize number of states C
1: for Cmin = 1 to∞ do
2: A← BASIC(S+,Cmin)
3: if A 6= null then break

// minimize number of transitions T
4: while A 6= null do
5: Abest← A
6: T ′← getT(Abest)− 1
7: A← BASIC∗(S+,Cmin,T ′)

8: return Abest

that the minimal value of N already implies a small num-
ber of transitions in the automaton. Moreover, each naive
top-down minimization ends with a proof that the smaller
solution does not exist, leaving the SAT solver in the UNSAT
state. Hence, in order to perform two consecutive top-down
minimizations, we have to reset the solver, redeclare all the
constraints and re-solve the corresponding SAT problem from
scratch. A well-known technique allowing to overcome this
is known as solving under assumptions: instead of declaring
a cardinality constraint, we can assume it, and even if the
resulting problem is unsatisfiable, the SAT solver will still
be operational and able to continue the solving process with
(possibly) other assumptions.

3) EXTENDED-MIN-UB ALGORITHM
One can note that P, the maximum allowed size of a sin-
gle guard condition, is a required parameter and has to be
provided by the user or an external algorithm. Ultimately,
an automatic way of determining an appropriate value of
parameter P is desirable. Note that the solution, which is an
automaton satisfying the given scenarios, exists only when
P is large enough to capture the necessary complexity of
the guard conditions. The simplest strategy is to iterate P
starting from 1 and use EXTENDED-MIN(S+,P) until we find
a solution – automaton with N = N ∗min – for some P∗.
However, there may exist some value P′ > P∗ for which
the corresponding N ′min is even smaller than N ∗min. Therefore,
in order to obtain the globally minimal automaton in terms
of N , we shall continue the search process for P > P∗ up to
a theoretical upper bound as described below.

Consider P = P′. Ideally, we expect that all guard con-
ditions will be of size 1, and only one of them will be of
size P′. Also, ideally, there are exactly Tmin guards, therefore,
the ideal minimal total size of guard conditions is N ′min =

Tmin − 1 + P′′. Let us denote by N best
min the best, i.e. the most

minimal value found so far. Ultimately, we are looking for

VOLUME 10, 2022 131599

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

N ′min < N best
min , thus Tmin − 1 + P′ < N best

min , from where the
upper bound for P is P′ ≤ N best

min − Tmin.

Algorithm 2 EXTENDED-MIN-UB(S+, w)
Input: positive scenarios S+, maximum plateau

width w
Output: automaton A with minimal number of

states Cmin and guard conditions size Nmin

1: Abasic← BASIC-MIN(S+)
2: Tmin← getT(Abasic)
3: Cmin← getC(Abasic)
4: N best

min ← N prev
min ← Plow←∞

5: for P = 1 to∞ do
6: if P > (N best

min − Tmin) then break /* upper
bound reached */

7: if (P− Plow) > w then break /* max width
reached */

8: A← EXTENDED-MIN(S+,Cmin,P)
9: if A 6= null then

10: Nmin← getN(A)
11: if Nmin < N best

min then N best
min ← Nmin

/* update best found N */
12: if Nmin 6= N prev

min then Plow← P /* update
local minimum */

13: N prev
min ← Nmin

14: return A

The process of searching P up to the theoretical upper
bound can take an extensive amount of time. Hence, we pro-
pose the following heuristic. Consider the two successive
values P′ and P′′ = P′ + 1, and the corresponding values
N ′min and N

′′

min. The equality N
′

min = N ′′min indicates the local
minimum (plateau). As we go further by incrementing the
value of P′′, the remaining equality extends the plateau width.
By choosing the critical plateau width w, on which to stop
incrementing P, we provide a trade-off between the execution
time and global minimality of the solution. When w = 0, the
algorithm is equivalent to the simplest strategy of searching P
until the first SAT. When w = ∞, the algorithm continues
to iterate P until an upper bound, resulting in globally min-
imal Nmin. An arbitrary choice of w = 2 has shown a good
performance in our initial study. It is worth noting that with
this heuristic applied, our proposed method remains exact
in the sense that the inferred automata still satisfy the given
positive scenarios S+.
Let us denote by EXTENDED-MIN-UB(S+,w) the mini-

mization process described above. It is depicted by Algo-
rithm 2 and consists of two stages. First, we estimate the
automaton parameters Cmin and Tmin using the BASIC-MIN

algorithm. Second, we iterate P starting from 1 and use the
EXTENDED-MIN algorithm to infer minimal models. We stop
the search in two cases: if the current P is greater than the

FIGURE 6. CEGIS loop.

upper bound (N best
min − Tmin), or if the current local minumum

width is greater than the provided threshold w.

E. COUNTEREXAMPLE-GUIDED INDUCTIVE SYNTHESIS
In order to make the inferred automaton not only satisfy
given positive scenarios, but also comply with a given LTL
specification, we use a counterexample-guided inductive syn-
thesis (CEGIS) [35] iterative approach. On each CEGIS
iteration, we infer an automatonA using the COMPLETE algo-
rithm, verify the LTL specification L using the NuSMV [30]
model checker, and supplement the negative scenario tree
with obtained counterexamples, if any. The process shown
in Fig. 6 repeats until there are no more counterexam-
ples, thus, the automaton complies with L. Denote by
CEGIS∗(S+,L,C,P,T ,N) the procedure implementing the
described inductive synthesis, where arguments are similar
to ones in the COMPLETE∗ algorithm, and L is an LTL spec-
ification. Additionally, denote by CEGIS(S+,L,C,P) =
CEGIS∗(S+,L,C,P,∞,∞) an alias for the call without
bounds on T and N .

1) CEGIS-MIN ALGORITHM
Consider an automatonA produced by the CEGIS algorithm.
If we start minimizing the total size of guard conditions N ,
the automaton will most likely stop complying with the LTL
specification, though the already obtained negative scenarios
will still not be satisfied. Therefore, we propose to main-
tain a minimal model on each CEGIS iteration. We begin
with a model produced by EXTENDED-MIN-UB(S+,w) (or
by EXTENDED(S+,P), if P is provided) and continue by
running CEGIS∗(S+,L,C∗,P∗,∞,N ∗) with estimated C∗,
P∗ and N ∗, but without a bound on T . The UNSAT result
indicates thatN ∗ is too small for an automaton to complywith
the given LTL specification L, hence we increase it and con-
tinue the CEGIS. Note that this is the only moment we stop
solving incrementally, because we weaken the constraints
(upper bound for N). Let us denote the described process as
CEGIS-MIN(S+,L,w).

F. THE FBSAT TOOL
We implemented the proposed methods in an open-source
tool2 FBSAT, which is written in Kotlin. FBSAT uses a SAT
solver to synthesize minimal finite-state models of func-
tion blocks from given specifications, and it supports both
execution scenarios and LTL properties. To make FBSAT

2https://www.github.com/ctlab/fbSAT

131600 VOLUME 10, 2022

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

FIGURE 7. Pick-and-Place manipulator.

more flexible and efficient, we have also developed an open-
source library3 called kotlin-satlib, which provides a
common SAT solver interface for Java/Kotlin and includes
native wrappers for several popular SAT solvers, such asMin-
iSat 2.2, Glucose 4, Cadical 1.4.1, and CryptoMiniSat 5.8.0.

V. CASE STUDY: PICK-AND-PLACE MANIPULATOR
The experimental evaluation of proposed methods was done
on a case study devoted to the inference of a finite-state model
of the controller for a Pick-and-Place (PnP) manipulator [36]
shown in Fig. 7. We also performed an evaluation on random
automata (Section VII) and transition system minimization
(Section VI). Experiments were conducted on a computer
with an Intel(R) CoreTM i5-7200U CPU @ 2.50 GHz and
8 GB of RAM.

The PnP manipulator consists of two horizontal pneumatic
cylinders (I, II), one vertical cylinder (III), and a suction
unit (IV) for picking up work pieces (WPs). When a WP
appears on one of the input sliders (1, 2, 3), the horizontal
cylinders position the suction unit on top of the WP, the verti-
cal cylinder lowers the suction unit where it picks up the WP
and then moves in to the output slider (V). The control system
is implemented using IEC 61499 function blocks in nxtSTU-
DIO. The controller is a basic FB with 10 input and 7 output
Boolean variables. Input variables include: c1Home/c1End
(is horizontal cylinder I in fully retracted/extended posi-
tion), c2Home/c2End (is horizontal cylinder II in fully
retracted/extended position), vcHome/vcEnd (is verti-
cal cylinder III in fully retracted/extended position),
pp1/pp2/pp3 (is a WP present on input slider 1/2/3),
vac (is the vacuum unit IV on). Output variables
include: c1Extend/c1Retract (extend/retract cylin-
der I), c2Extend/c2Retract (extend/retract cylinder II),
vcExtend (extend cylinder III), vacuum_on/vacuum_
off (turn the vacuum unit on/off). The purpose of this case
study was to infer a finite-state model of this controller FB.
The process of capturing scenarios for the PnP manipulator
controller is described by [26]. We used sets of scenarios of
various sizes: 1, 10, 39 and 49 scenarios in each.

A. INFERENCE OF MINIMAL AUTOMATA FROM POSITIVE
SCENARIOS
In the first set of experiments, we compare methods that infer
minimal models from positive scenarios with explicit regard
of the guard conditions size. Our method was compared to

3https://www.github.com/Lipen/kotlin-satlib

the TWO-STAGE approach from [28], where on the first stage
a basic automaton model is inferred with a SAT solver, and
then this model’s guard conditions are minimized with a CSP
solverw.r.t. given scenarios. Note that the TWO-STAGEmethod
has already been shown to be superior to EFSM-tools.

We apply the proposed EXTENDED-MIN-UB method to
infer an automaton with the minimal number of states Cmin
and total size of guard conditions Nmin. Three values of
the parameter w were used: w = 0 for the case when first
solution found is considered final, w = 2 for the case with
the proposed heuristic applied, and w = ∞ for the ‘‘without
heuristic’’ case. Results are summarized in Table 1, where
for TWO-STAGE: Cmin is the minimal number of states, Tmin is
the minimal number of transitions, Nmin is the minimal total
size of guard conditions; and for EXTENDED-MIN-UB:w is the
maximum width of local minima plateau, P is the maximum
guard condition size, T is the number of transitions, Nmin is
the minimal total size of guard conditions. Results indi-
cate that EXTENDED-MIN-UB produces compact automata: in
studied cases, w = 2 already gives optimal results in terms
of Nmin.

B. COMPARISON WITH LTL SYNTHESIS TOOLS
We considered tools BoSy [7] and G4LTL-ST [12], which
accept LTL specifications as input. Comparison was only
done for synthesis from scenarios, which were converted to
LTL formulas. For BoSy, we considered a simplified version
of scenario S(1), for which passive elements were removed,
leaving only 8 scenario elements. The input-symbolic version
of BoSy was the only one that worked for this example,
generating a solution with 9 states and 17 transitions in
273 s. For G4LTL-ST, we selected the number of unroll steps
(a required parameter of this tool) equal to the length of the
largest scenario. For S(1), a solution with 10 states (though
with verbose guard conditions) was found in 10 s. Larger sets
of scenarios required 16 unroll steps, and runs failed with a
memory limit of 8 GB. As expected, experiments showed
that LTL synthesis tools are not well-suited for inference
of models from finite-length scenarios. Experiments with
LTL properties were not considered due to (1) poor perfor-
mance on scenarios, and (2) lack of support for general-form
NuSMV plant model, which is crucial for synthesis from
liveness properties.

C. INFERENCE OF AUTOMATA FROM POSITIVE
SCENARIOS AND LTL PROPERTIES
The third set of experiments is devoted to CEGIS. In order to
use the liveness LTL properties, the verification of candidate
models with NuSMV was performed in a closed loop [37]
with a manually prepared formal model of the plant – PnP
manipulator. This model defines the state of the plant and
its actions as implied by the controller commands. The set
of considered LTL properties (see Table 3) includes safety
properties ϕ1, . . . , ϕ6 (‘‘controller does not lead the system to
an unsafe state’’) and liveness properties ϕ7, . . . , ϕ10 (‘‘some-
thing useful eventually happens’’). Properties ϕ1, . . . , ϕ7 are

VOLUME 10, 2022 131601

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

TABLE 1. Inference of automata with minimal guard conditions from positive scenarios.

TABLE 2. Temporal properties for the Pick-and-Place system.

fixed and used in all experiments, while the use of ϕ8, . . . , ϕ10
varies. We focus on these last properties, which define that
whenever a WP is placed on some input slider, it will even-
tually be removed. Note that for the original PnP system [36]
only ϕ8 is satisfied, while ϕ9 and ϕ10 are false (the controller
is not wait-free for sliders 2 and 3: if a WP is always present
on slider 1, WPs from sliders 2 and 3 will never be picked
up). Therefore, we consider the property for each input slider
separately, assuming that WPs never appear on other input
sliders. For the experiment with ϕ9, we use a special set of
scenariosS(1)′′, which consists of a single scenario describing
the processing of the WP from slider 2. Likewise, for ϕ10,
set S(1)′′′ is used, which describes a one-time WP processing
from slider 3.

Three algorithms are compared: the proposed CEGIS-MIN

and CEGIS, and the CEGIS-extension of FBCSP [27], which
we refer to as FBCSP+LTL. Note that EFSM-tools, BoSy and
G4LTL-ST are not considered here, mainly due to the poor
performance on scenarios only. For our algorithms we use

w = 2, as this value has shown a good performance in our ini-
tial study. For a SAT solver we use MiniSat. Apart from run-
ning time andN , we measureNinit (for the automaton initially
built only from positive scenarios using EXTENDED-MIN-UB)
and the number of CEGIS iterations (#iter). Experimental
results are summarized in Table 3. The automaton generated
using the CEGIS-MIN algorithm from scenarios S(1) and LTL
specification ϕ1, . . . , ϕ7, ϕ8 is shown in Fig. 8.
Solutions found with CEGIS methods are always larger

than ones constructed from scenarios only (in terms of N).
This indicates that the used sets of scenarios are incomplete
and do not cover considered specifications completely. Then,
CEGIS-MIN always finds the smallest solutions and is always
faster than FBCSP+LTL. Most interestingly, CEGIS-MIN

allows for efficient construction of models for scenarios S(1),
S(1)′′, andS(1)′′′ – these scenarios do not ‘‘cover’’ correspond-
ing liveness properties of interest (e.g., ϕ8 = G(pp1 →
F(vp1))) in the sense that each scenario describes only a
single processing of aWP. The existing method FBCSP+LTL

131602 VOLUME 10, 2022

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

FIGURE 8. Automaton generated by CEGIS-MIN algorithm from S(1) and ϕ1, . . . , ϕ7, ϕ8.

TABLE 3. Results of CEGIS experiments for PnP controller inference.

FIGURE 9. Inference time distribution for the CEGIS-MIN method with different SAT solvers (Minisat 2.2, Glucose 4, Cadical 1.4.1) using 20 different
random seeds. Numbers on the left denote the mean and standard deviation (µ± σ).

failed on these cases, while the proposed approach suc-
ceeds with ease. Lastly, the CEGIS algorithm allows con-
structing models fast, but losing the guard conditions
minimality.

Additionally, we repeated the CEGIS-MIN evaluation with
different SAT solvers using 20 different random seeds.
For MiniSat and Glucose, we specified the following
options: random_var_freq=0.1, rnd_pol=true,

VOLUME 10, 2022 131603

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

FIGURE 10. Evaluation results for random automata synthesis. Each boxplot represents the inference time distribution of SAT instances finished within a
30 min timeout. The numbers below each boxplot denote the number of SAT runs out of the total.

FIGURE 11. Validation results for random automata synthesis. Each boxplot represents the distribution of ‘‘forward check’’ validation (percentage of
scenarios that the automaton satisfies). The numbers below each boxplot denote the number of 100%-validated runs out of the total SAT instance.

rnd_init_act=true. The resulting inference time dis-
tributions are shown in Fig. 9. The high variance of infer-
ence time for MiniSat/Glucose can be explained as follows:
CEGIS is basically a model guessing process, and any devi-
ations during it could result in different number of iterations
(thus, in different running time, since they are generally pro-
portional), especially when a small set of positive scenarios
is used, e.g., S(1). In contrast, the low variance of Cadical
results indicates that probably either Cadical is not employing
randomness too much, or the models it produces are not
heavily dependent on this randomness, so CEGIS converges
in a constant number of iterations.

VI. CASE STUDY: SYNTCOMP BENCHMARK
As another case study and to demonstrate the applicability of
FBSAT to problems other than the synthesis of function block
models, in this section we show an example of FBSAT being
used to synthesize transition systems using benchmakrs from
the SYNTCOMP reactive synthesis competition [38].

One of the SYNTCOMP competition tracks, the sequential
synthesis track, is devoted to the synthesis of a transition
system from a given LTL specification – the so-called LTL
synthesis. There is a large variety of LTL synthesis tools
available including BoSy [7] and Strix [25]. To the best of our
knowledge, out of all LTL synthesis tools, only BoSy limits

131604 VOLUME 10, 2022

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

the size of generated transition systems (number of states),
but it does not try to minimize the size of generated guard
conditions, which tend to be large and incomprehensible.

Note that FBSAT in its current version is not directly appli-
cable to the LTL synthesis problem, as it requires positive
execution scenarios, which LTL synthesis does not use. How-
ever, here we show how to apply FBSAT for minimization
of transition systems generated by LTL synthesis tools, e.g.,
BoSy.

A transition system T [7] is a tuple (T , t0, 6, τ), where T is
a finite set of states, t0 ∈ T is the initial state, 6 = I ∪ O is
an input/output interface, I is a finite set of propositional
variables controllable by the environment (inputs), O is a
finite set of propositional variables controllable by system
(outputs), and τ : T × 2I → 2O × T is a transition function,
whichmaps a state t ∈ T and a valuation of an input vector i ∈
2I to a valuation of an output vector o ∈ 2O and a next state t ′.
From analysis of this definition, one may note the sim-

ilarity between the transition system and the ECC of the
basic function block. Overall, if the transition system is of
the Moore type (i.e. for any t ∈ T and i 6= i′ ∈ 2I with
τ (t, i) = (o, _) and τ (t, i′) = (o′, _) it holds that o = o′),
it can be easily modeled using an ECC.

In this case study, we started from the full_arbiter_3
instance from SYNTCOMP-2018 and used BoSy (input-
symbolic QBF-based version) to generate a transition system
satisfying the specification. The resulting transition system
Aoriginal was saved in the NuSMV format and had C =
8 states, T = 28 transitions with a total size of guard condi-
tions N = 147. The graphical representation of the resulting
transition system is shown in Fig. 12. Then we used NuSMV
to automatically generate 20 execution scenarios, each of
length 20, covering all transition system states. The goal was
to minimize the size of guard conditions while preserving the
transition system’s compliance with the LTL specification.

Note that the definition of the transition systems does not
constrain the transition function to be deterministic. However,
FBSAT is currently only applicable to the synthesis of deter-
ministic state machines. Therefore, for this case study we
needed deterministic execution scenarios. In order to obtain
them, we augmented BoSy with corresponding constraints to
make the transition function deterministic.

Two experiments were conducted. In the experiments,
FBSAT was given as input the generated execution scenarios
and the LTL specification of the SYNTCOMP instance, and
the CEGIS-MIN algorithm was used. In the first experiment,
we ensured that the minimized transition system generated by
FBSAT is deterministic. Since the definition of the transition
system does not include a transition priority function (as
in the ECC), it implies that guard conditions of transitions
originating from one state must not have a common satisfying
assignment. This additional constraint was added to FBSAT
for the purpose of this case study. As a result, we were able
to find a solutionAdeterministic shown in Fig. 13 with the same
number of states and transitions, but with a smaller total size
of guard conditions N = 105.

In the second experiment we removed the determinism
constraint described above. We can do this because, as men-
tioned above, the transition system definition does not require
determinism. This way, the generated transition system will
be deterministic as an ECC (due to transition priority), but
will be non-deterministic as a transition system. As a result,
for the generated solution Anon-deterministic shown in Fig. 14
the size of the guard conditions was greatly reduced down
to N = 52.
These results indicate that our approach of explicit tree

representation of guard conditions allows to sufficiently min-
imize the guard conditions size. It can potentially be applied
not only after LTL synthesis: it should be possible to augment
BoSy encodings [7] with our encodings for guard conditions
and minimize them during synthesis.

VII. CASE STUDY: RANDOM AUTOMATA
In order to test our developed tool FBSAT on more instances,
we perform its evaluation on randomly generated automata in
this case study.

The first step is to generate random automata. Initially,
we wanted to choose the automaton parameters similar to
the parameters of the model inferred in ‘‘Case Study: PnP
Manipulator’’ (Section V): number of statesC = 8, one input
and one output event, |X | = 10 input and |Z| = 7 output
variables. However, our preliminary experiments with these
parameters has shown the predictable strong hardness of the
random automata synthesis problem. Hence, we chose to
study simpler models with the following parameters: number
of states C ∈ [4 .. 7], number of transitions T = C2 (each
state has a transition to every other state), guard condition
max size P = 5, and number of input and output variables
|X | ∈ {5, 10} and |Z| = 5, respectively. We generate
up to 100 random automata for each combination of C
and |X |. Our preliminary experiments with more complex
automata showed the predictable strong hardness of the ran-
dom automata synthesis problem, so we chose to study sim-
pler models instead. The goal of this case study is to explore
the problem landscape and determine the general applicabil-
ity of FBSAT as a model synthesis tool.
The second step is to simulate execution scenarios.We start

at the initial automaton state and sequentially select ran-
dom inputs. The automaton reacts to these input actions
and produces output actions, forming an execution scenario.
Note that this random walk corresponds to a situation when
the plant has random dynamics. Hence, these randomly
simulated instances are most likely harder than real-world
instances, since real-world plants (such as the PnP manip-
ulator) do not have random dynamics. We simulate sets of
scenarios of the following sizes: 10× 50, 20× 50, 20× 100,
30× 100 (‘‘count’’×‘‘length’’).
The next step is to infer the minimal automaton

from the simulated scenarios. For this, we employ the
EXTENDED-MIN-UB algorithm with a value of w = 0,
along with the Glucose SAT solver with the following
options: random_var_freq=0.01, rnd_pol=true,

VOLUME 10, 2022 131605

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

FIGURE 12. Transition system Aoriginal generated by BoSy for the full_arbiter_3
instance has C = 8 states, T = 28 transitions with guard conditions of size N = 147.

131606 VOLUME 10, 2022

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

FIGURE 13. Deterministic minimized transition system Adeterministic generated by FBSAT has smaller guard conditions of
size N = 105.

VOLUME 10, 2022 131607

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

FIGURE 14. Non-deterministic minimized transition system Anon-deterministic generated by FBSAT has much smaller guard conditions of
size N = 52.

131608 VOLUME 10, 2022

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

rnd_init_act=true, and timeout=1800s (30 min-
utes). In addition, since we observed in Section V-C that
different random seeds can greatly affect the results, we rerun
the inference 3 times using different random seeds for the
solver. It should be noted that we do not currently aim to study
the effect of using random seeds.

The final step is to validate the inferred automaton using
the ‘‘forward check’’ validation approach from [39]. This
approach involves generating a large set of validation scenar-
ios, denoted by S100×100

validation, and checking whether the inferred
automaton satisfies them. The metric used to evaluate the
results of the validation is the percentage of scenarios that
the automaton satisfies. It is expected that a high coverage
of target automata by scenarios will result in good validation
results.

The experimental results are shown in Fig. 10. For C ∈
[4 .. 6] and |X | = 5, all 100 ·20 ·3 = 6000 runs finished with
a SAT result. For other parameter values, some runs timed out
after 30 minutes. Each boxplot represents the inference time
distribution only for SAT instances finished within a timeout.
The numbers below each boxplot (e.g., ‘‘5959/6000’’) denote
the number of SAT runs out of the total, whereas a single
number denotes the absence of timeouts. Additionally, each
boxplot is supplied with (up to) 100 random sampled points to
render the overall distribution. We observe that the inference
time depends at least exponentially on the size of the input
data, specifically on the number of states C , the number of
input variables |X |, and the size of execution scenarios.

The validation results are shown in Fig. 11. Each boxplot
represents the distribution of ‘‘forward check’’ in percent,
and the numbers below each boxplot denote the number
of 100%-validated runs out of the total SAT instances.
As expected, larger scenarios provide higher model coverage,
thence, higher ‘‘forward check’’. Additionally, the larger the
model, the larger the size of scenarios necessary to capture
the original model behavior. These results can be extrapolated
to non-random models and used as a reference, for example,
when inferring a model with C = 6 states, it is best to use
scenarios of size at least 20× 100.

VIII. CONCLUSION AND FUTURE WORK
We have proposed a SAT-based approach for inference of
minimal FB models from execution scenarios and LTL prop-
erties, and implemented it in the tool FBSAT. The proposed
approach is the only one that allows direct minimization of
guard conditions complexity of synthesized automata. In par-
ticular, the EXTENDED-MIN-UB algorithm is guaranteed to
find the solution with globally minimal complexity of guard
conditions. Experiments showed that the suggested approach
outperforms existing ones and demonstrates predictable scal-
ability on random instances.

The proposed methods allow to infer minimal finite-state
models of function blocks from a given specification: exe-
cution scenarios and LTL properties. The algorithms have
an exponential worst-case complexity, since they rely on
SAT solvers to solve an NP-hard problem. The scenarios are

either derived from existing systems under learning (SULs)
or generated by simulating existing system models, while
the LTL properties are written manually. It is important to
note that synthesized models are not always equivalent to the
original SUL and may exhibit different behavior in situations
not covered by the specification. We assume that the given
specification covers the necessary behavior. Note that it is not
possible to formally verify the conformance of the SUL to the
LTL specification or the equivalence of the synthesizedmodel
to the SUL, since we do not have explicit access to the SUL
(i.e. to its internal structure and source code) due to the purely
‘‘passive learning’’ industrial problem statement.

Future research may include synthesizing modular
automata and exploring other encodings for integer vari-
ables and cardinality constraints. Additionally, the devel-
oped encodings of tree-form arbitrary guard conditions can
be applied to other SAT-based methods for state machine
synthesis, such as augmenting BoSy [7] to reduce the size
of generated transition systems. Another possible direction
is parallelizing the proposed approach. For example, it is
possible to perform iterations (such as those in BASIC-MIN)
in parallel by launching several independent instances of the
algorithm for each value ofC in a specified range, or by using
an incremental parallel SAT solver.

APPENDIX FIGURES
The last pages of this manuscript contain several large figures
(namely, 12, 13, and 14) referenced throughout the paper.

REFERENCES
[1] L. Apfelbaum and J. Doyle, ‘‘Model based testing,’’ in Proc. Softw. Quality

Week Conf., 1999, pp. 296–300.
[2] L. Marsso, R. Mateescu, and W. Serwe, ‘‘TESTOR: A modular tool for

on-the-fly conformance test case generation,’’ in Tools and Algorithms for
the Construction and Analysis of Systems. Cham, Switzerland: Springer,
2018, pp. 211–228.

[3] I. Buzhinsky and V. Vyatkin, ‘‘Automatic inference of finite-state plant
models from traces and temporal properties,’’ IEEE Trans. Ind. Informat.,
vol. 13, no. 4, pp. 1521–1530, Aug. 2017.

[4] E. Lee, Y.-G. Kim, Y.-D. Seo, K. Seol, and D.-K. Baik, ‘‘RINGA: Design
and verification of finite state machine for self-adaptive software at run-
time,’’ Inf. Softw. Technol., vol. 93, pp. 200–222, Jan. 2018.

[5] V. Vyatkin ‘‘IEC 61499 as enabler of distributed and intelligent automa-
tion: State-of-the-art review,’’ IEEE Trans. Ind. Informat., vol. 7, no. 4,
pp. 768–781, Nov. 2011.

[6] M. J. H. Heule and S. Verwer, ‘‘Exact DFA identification using SAT
solvers,’’ inGrammatical Inference: Theoretical Results and Applications.
Berlin, Germany: Springer, pp. 66–79.

[7] P. Faymonville, B. Finkbeiner, and L. Tentrup, ‘‘BoSy: An experimentation
framework for bounded synthesis,’’ inComputer Aided Verification. Cham,
Switzerland: Springer, 2017, pp. 325–332.

[8] V. Ulyantsev, I. Buzhinsky, and A. Shalyto, ‘‘Exact finite-state machine
identification from scenarios and temporal properties,’’ Int. J. Softw. Tools
Technol. Transf. vol. 20, no. 1, pp. 35–55, Feb. 2018.

[9] V. Ulyantsev, I. Zakirzyanov, and A. Shalyto, ‘‘BFS-based symme-
try breaking predicates for DFA identification,’’ in Language and
Automata Theory and Applications. Cham, Switzerland: Springer, 2015,
pp. 611–622.

[10] G. Giantamidis and S. Tripakis, ‘‘Learning Moore machines from input–
output traces,’’ in Formal Methods. Cham, Switzerland: Springer, 2021,
pp. 291–309.

[11] F. Avellaneda and A. Petrenko, ‘‘FSM inference from long traces,’’ in
Formal Methods. Cham, Switzerland: Springer, pp. 93–109.

VOLUME 10, 2022 131609

K. Chukharev, D. Chivilikhin: fbSAT: Automatic Inference of Minimal Finite-State Models of FBs Using SAT Solver

[12] C.-H. Cheng, C.-H. Huang, H. Ruess, and S. Stattelmann, ‘‘G4LTL-ST:
Automatic generation of PLC programs,’’ in Computer Aided Verification.
Cham, Switzerland: Springer, pp. 541–549.

[13] R. Smetsers, P. Fiterău-Broştean, and F. Vaandrager, ‘‘Model learning as a
satisfiability modulo theories problem,’’ in Language and Automata The-
ory and Applications. Cham, Switzerland: Springer, 2018, pp. 182–194.

[14] V. Dubinin and V. Vyatkin, ‘‘Towards a formal semantic model of IEC
61499 function blocks,’’ inProc. IEEE Int. Conf. Ind. Informat., Aug. 2006,
pp. 6–11.

[15] NxtControl. Accessed: Dec. 11, 2022. [Online]. Available: https://www.
nxtcontrol.com/en/engineering

[16] E. M. Gold, ‘‘Complexity of automaton identification from given data,’’
Inf. Control, vol. 37, no. 3, pp. 302–320, 1978.

[17] R. Rosner, ‘‘Modular synthesis of reactive systems,’’ Ph.D. thesis,
Wiezman Inst. Sci., Rehovot, Israel, 1991, p. 104.

[18] D. Neider and U. Topcu, ‘‘An automaton learning approach to solving
safety games over infinite graphs,’’ in Tools and Algorithms for the
Construction and Analysis of Systems. Berlin, Germany: Springer, 2016,
pp. 204–221.

[19] F. Coste and J. Nicolas, ‘‘Regular inference as a graph coloring problem,’’
in Proc. Workshop Grammatical Inference, Automata Induction, Lang.
Acquisition, 1997, pp. 1–6.

[20] I. Zakirzyanov, A. Morgado, A. Ignatiev, V. Ulyantsev, and
J. Marques-Silva, ‘‘Efficient symmetry breaking for SAT-based minimum
DFA inference,’’ in Tools and Algorithms for the Construction and
Analysis of Systems. Cham, Switzerland: Springer, 2019, pp. 159–173.

[21] F. Tsarev and K. Egorov, ‘‘Finite state machine induction using genetic
algorithm based on testing and model checking,’’ in Proc. 13th Annu. Conf.
Companion Genetic Evol. Comput. (GECCO), 2011, pp. 759–762.

[22] A. Petrenko, F. Avellaneda, R. Groz, and C. Oriat, ‘‘FSM inference and
checking sequence construction are two sides of the same coin,’’ Softw.
Qual. J., pp. 651–674, 2019, doi: 10.1007/s11219-018-9429-3.

[23] N. Walkinshaw, R. Taylor, and J. Derrick, ‘‘Inferring extended finite state
machinemodels from software executions,’’Empirical Softw. Eng., vol. 21,
no. 3, pp. 811–853, 2015.

[24] B. Finkbeiner and F. Klein, ‘‘Bounded cycle synthesis,’’ inComputer Aided
Verification. Cham, Switzerland: Springer, 2016, pp. 118–135.

[25] P. J. Meyer, S. Sickert, and M. Luttenberger, ‘‘Strix: Explicit reactive
synthesis strikes back!’’ in Computer Aided Verification, H. Chockler and
G. Weissenbacher, Eds. Cham, Switzerland: Springer, 2018, pp. 578–586.

[26] D. Chivilikhin, V. Ulyantsev, A. Shalyto, and V. Vyatkin, ‘‘CSP-based
inference of function block finite-state models from execution traces,’’ in
Proc. IEEE 15th Int. Conf. Ind. Informat. (INDIN), Jul. 2017, pp. 714–719.

[27] D. Chivilikhin, I. Buzhinsky, V. Ulyantsev, A. Stankevich, A. Shalyto, and
V. Vyatkin, ‘‘Counterexample-guided inference of controller logic from
execution traces and temporal formulas,’’ in Proc. IEEE 23rd Int. Conf.
Emerg. Technol. Factory Autom. (ETFA), Sep. 2018, pp. 91–98.

[28] D. Chivilikhin, V. Ulyantsev, A. Shalyto, and V. Vyatkin, ‘‘Function block
finite-state model identification using SAT and CSP solvers,’’ IEEE Trans.
Ind. Informat., vol. 15, no. 8, pp. 4558–4568, Aug. 2019.

[29] T. Klenze, S. Bayless, and A. J. Hu, ‘‘Fast, flexible, and minimal
CTL synthesis via SMT,’’ in Computer Aided Verification. Cham,
Switzerland: Springer, 2016, pp. 136–156.

[30] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, ‘‘NUSMV: A new
symbolic model checker,’’ Int. J. Softw. Tools Technol. Transf., vol. 2, no. 4,
pp. 410–425, 2000.

[31] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. Cambridge,
MA, USA: MIT Press, 1999.

[32] T. Walsh, ‘‘SAT v CSP,’’ in Proc. 6th Int. Conf. Principles Practice Con-
straint Program. Berlin, Germany: Springer, 2000, pp. 441–456.

[33] M. Björk, ‘‘Successful SAT encoding techniques,’’ J. Satisfiability,
Boolean Model. Comput., vol. 7, no. 4, pp. 189–201, Jul. 2009.

[34] O. Bailleux and Y. Boufkhad, ‘‘Efficient CNF encoding of Boolean cardi-
nality constraints,’’ in Principles and Practice of Constraint Programming.
Berlin, Germany: Springer, 2003, pp. 108–122.

[35] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat, ‘‘Com-
binatorial sketching for finite programs,’’ ACM SIGPLAN Notices, vol. 41,
no. 11, pp. 404–415, Nov. 2006.

[36] S. Patil, V. Vyatkin, and M. Sorouri, ‘‘Formal verification of intelligent
mechatronic systems with decentralized control logic,’’ in Proc. IEEE 17th
Int. Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2012, pp. 1–7.

[37] V. Vyatkin, H. M. Hanisch, C. Pang, and C. H. Yang, ‘‘Closed-loop
modeling in future automation system engineering and validation,’’ IEEE
Trans. Syst., Man, C, Appl. Rev., vol. 39, no. 1, pp. 17–28, Jan. 2009.

[38] S. Jacobs, R. Bloem, M. Colange, P. Faymonville, B. Finkbeiner,
A. Khalimov, F. Klein, M. Luttenberger, P. J. Meyer, T. Michaud,
M. Sakr, S. Sickert, L. Tentrup, and A. Walker, ‘‘The 5th reactive synthesis
competition (SYNTCOMP 2018): Benchmarks, participants & results,’’
2019, arXiv:1904.07736.

[39] V. I. Ulyantsev and F. N. Tsarev, ‘‘Extended finite-state machine induction
using SAT-solver,’’ IFAC Proc. Volumes, vol. 45, no. 6, pp. 236–241,
May 2012.

KONSTANTIN CHUKHAREV received the
bachelor’s degree in control systems and
informatics and the master’s degree in applied
mathematics and informatics from ITMO Univer-
sity, Saint Petersburg, Russia, in 2018 and 2020,
respectively, and the one-year program ‘‘algo-
rithmic bioinformatics’’ from the Bioinformatics
Institute, Saint Petersburg, in 2017. He is currently
pursuing the Ph.D. degree with the Computer
Technologies Laboratory, ITMO University.

He is also a Junior Research Associate with the Computer Technologies
Laboratory, ITMO University. He studies formal methods, software engi-
neering, SAT solvers, and phylogenetics, while teaching students discrete
math and working on his Ph.D.

DANIIL CHIVILIKHIN received the bachelor’s
and master’s degrees in applied mathematics and
informatics and the Ph.D. degree in technical sci-
ences (mathematics and software for computing
systems) from ITMOUniversity, Saint Petersburg,
Russia, in 2011, 2013, and 2015, respectively.

He is currently an Associate Professor with the
Computer Technologies Laboratory, ITMO Uni-
versity. His research interests include program
synthesis and verification, industrial informatics,

evolutionary algorithms, and SAT solver applications.

131610 VOLUME 10, 2022

http://dx.doi.org/10.1007/s11219-018-9429-3

