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ABSTRACT Estimating sharp images from blurry observations is still a difficult task in the image processing
research field. Previous works may produce deblurred images that lose details or contain artifacts. To deal
with this problem, a feasible solution is to seek the help of additional images, such as the near-infrared
image and the flashlight image, etc. In this paper, we propose a fusion framework for image deblurring,
called Guided Deblurring Fusion Network (GDFNet), to integrate the multi-modal information for better
image deblurring performance. Unlike previous works that directly compute a deblurred image using paired
multi-modal degraded and guidance images, GDFNet employs image fusion techniques to obtain a deblurred
image. GDFNet can combine the advantages by fusing the pre-deblurred streams of single and guided
image deblurring using convolutional neural network (CNN). We adopt a blur/residual image splitting
strategy by fusing the residual images to enhance the representation ability of encoders and preserve details.
We employ a 2-level coarse-to-fine reconstruction strategy to improve the fusion and deblurring performance
by supervising its multi-scale output. Quantitative comparisons on multi-modal image datasets show that our
GDFNet can recover correct structures and produce fewer artifacts while preserving more details. The peak
signal-to-noise ratio (PSNR) of GDFNet evaluated on the blurry/flash dataset is at least 0.9 dB higher than
the compared algorithms.

INDEX TERMS Blind image deblurring, guided image deblurring, image deblurring, image fusion, multi-
modal image fusion.

I. INTRODUCTION
Image deblurring aims to recover sharp images from their
blurred observations degraded by camera/object movements
or lens defocus. Under the uniform blur assumption, the
blurry image I can be modeled as the convolution of the sharp
latent image F and a point spread function (PSF) k,

I = F ∗ k+ n, (1)

where n represents the noise and ∗ denotes the convolution
operator. Generally, the blurring degradation can be catego-
rized into out-of-focus blur and motion blur. Out-of-focus
blur occurs when the image plane is away from the ideal
reference plane. Motion blur is caused by relative motions
between the scene and camera during exposure.
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Actually, restoring the sharp image based on one single
blurry image is severely ill-posed as it needs to estimate
both the point spread function k and the sharp image F
simultaneously. The results of single blind image deblurring
algorithms, such as multi-input multi-output U-Net (MIMO)
[1], multi-stage progressively restoration network (MPR) [2],
and a deep neural network embedded with residual Fourier
transform (DeepRFT) [3], usually lose details during the
process of removing motion blur. Guided image deblurring
algorithms handle deblurring with the help of the additional
structure and texture information provided by different wave-
length sensors or camera settings. For example, near-infrared
(NIR) sensors are highly adaptable to thick fog and darkness
due to different wavelength sensitivity, and flashlight imaging
captures a clear picture by changing the environment illumi-
nation. Previous work has used aligned multi-modal image
pairs such as flash/no-flash image pairs [4], [5], RGB/NIR
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FIGURE 1. A deblurring example of the proposed method. (a) Input blurry
RGB image. (b) Input guidance NIR image. (c) The fused deblurred image.
(d)-(f) The pre-deblurred images. The best parts of the pre-deblurred
images marked with color boxes in (d)-(f) are fused into (f) using GDFNet.

image pairs [6], and blurry/noisy image pairs [7] to relax
the illness of the blind image deblurring problem. However,
the original visible information like pixel intensity and tex-
ture is inaccurate in the guidance images due to structural
inconsistency caused by the noise in NIR imaging [8], the
reflectance differences, and the object movements. It is the
reason why integrating information from guidance images to
degraded images sometimes produces artifacts or halos. This
observation inspires us to deblur images in a fusion manner.

In this work, we propose a deep fusion network, called
Guided Deblurring Fusion Network (GDFNet), to perform
joint image deblurring by fusing the pre-deblurred images
obtained by multiple image deblurring streams. It is moti-
vated by the fact that the single image deblurring stream
cannot effectively recover detailed contents while the guided
deblurring stream produces incorrect low-frequency con-
tent due to structural inconsistency. In comparison, our pro-
posed GDFNet can effectively address these two problems
in an image fusion mechanism. Enlighten by the residual
learning [9] and the frequency principle [10], we embed a
blur/residual image splitting strategy in GDFNet to estimate
the fusionweights of residual images to enhance the represen-
tation ability of encoders. We use a coarse-to-fine reconstruc-
tion strategy to generate finer fusion weight maps by train-
ing the network using multi-scale supervision. Experimental
results show that our GDFNet outperforms the competitors
including blind deblurring algorithms, cascaded algorithms,
and other fusion networks on multi-modal datasets. In sum-
mary, the main contributions of this work are as follows:

• We propose a deep fusion framework GDFNet to deal
with image deblurring by fusing the pre-deblurred
streams of single and guided image deblurring using a
multi-modal image pair as input.

• We employ a blur/residual splitting strategy to fuse the
pre-deblurred residual images to enhance the represen-
tation ability with a coarse-to-fine reconstruction struc-

ture trained using multi-scale supervision to improve
the deblurring performance by generating finer fusion
weights.

• We experimentally show that the GDFNet can fuse
single and guided image deblurring streams, and out-
performs the existing deblurring algorithms and fusion
approaches on multi-modal datasets.

The organization of the paper is as follows. We review the
relatedwork in Section II. Section III presents themotivation,
framework and details of the proposed method. Section IV
illustrates the experimental results, and finally Section V con-
cludes the work.

II. RELATED WORK
In this section, we provide a brief review of the work related
to image deblurring and image fusion.

A. IMAGE DEBLURRING
Image deblurring techniques can be coarsely classified into
two categories: single image deblurring and guided image
deblurring. Single blind image deblurring refers to restoring
the latent image from its degraded observation. Early works
usually employ an alternative framework to estimate the blur
kernel and latent image iteratively based on natural image
priors. A heavy-tailed distribution on image gradients regu-
larizes the iterative optimization for deblurring [11]. This reg-
ularization term is further improved by fitting the distribution
using a hyper-Laplacian function [12]. The work [13] fits the
logarithmic density of image gradients by concatenating two
piece-wise continuous functions as a prior. L0 distribution is
used to approximate the image gradients and intensity in [14]
and [15]. Later, Pan et al. [16] and Yan et al. [17] define
the dark channel and extreme channel and apply L0 sparse
constraint on the intensities. Bai et al. [18] use coarse-to-
fine priors and recover the latent image using a multi-scale
image pyramid. Levin et al. [19] modify a conventional lens
by inserting a patterned disc into the aperture to produce a
characteristic distribution of image frequencies that is very
sensitive to defocus blur. Zhang et al. [20] estimate the sharp
image using multiple blurry observations with a coupled
sparse prior.

However, the recovered latent image can be visually poor
when the kernel estimation is inaccurate. Recently, CNN
has been widely applied in image processing and computer
vision tasks. A cascaded network is adopted to estimate the
latent image and blur kernel iteratively in [21]. Two gener-
ative networks are used to capture the blur kernel and the
latent image in [22]. The work [23] uses a scale-recurrent
network that shares network weights across scales. Min et al.
decompose the low- and high-frequency information using
wavelet transform followed by a recursive convolutional neu-
ral network to deblur. Further, a Multi-Input Multi-Output
(MIMO) U-Net [1] is presented to deblur images in a coarse-
to-fine strategy. Ople et al. [24] extract multi-scale fea-
tures using dilated convolutions with different dilated rates.
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FIGURE 2. The architecture of our proposed Guided Deblurring Fusion Network (GDFNet) using RGB/NIR image pairs as an example. First, the blurry RGB
image and the sharp NIR guidance image are fed into three pre-deblurring streams to predict three pre-deblurred images. Then the residual images are
computed by subtracting the pre-deblurred image from the blurry RGB image. Three individual encoders are used to extract the features of these residual
images. Then the features of three streams are concatenated, followed by two convolutional blocks to aggregate. We use three decoders to estimate the
fusion weights of three residual images of the pre-deblurred images in a coarse-to-fine scheme. Finally, the composite residual images are added to the
original blurry input to generate the final fused deblurred result.

Liu et al. [25] refine the optimization based deblurred results
using an encoder-decoder network. A multi-stage architec-
ture called MPRNet progressively learns restoration func-
tions for the degraded inputs in [2]. A residual fast Fourier
transform with convolution block is introduced in DeepRFT
[3] to integrate both low- and high-frequency residual infor-
mation. Saqlain et al. [26] introduce a generative adversarial
network (GAN) based approach called DeblurFusedGAN
(DFGAN) that fuses a lightweight attention (LSA) mecha-
nism and gradient-based filters in the generator work. Wang
et al. [27] introduce Uformer, a transformer-based architec-
ture for image deblurring. It uses a locally-enhanced win-
dow (LeWin) transformer block and a learnable multi-scale
restoration modulator to capture both local and global depen-
dencies. Tsai et al. [28] construct a transformer-based archi-
tecture using intra- and inter-strip tokens to catch blurred
patterns with different orientations. Chen et al. [29] introduce
an efficient Nonlinear Activation Free Network (NAFNet)
that lowers the computational cost and removes unnecessary
activation functions. Chu et al. [30] investigate the distribu-
tion differences in the features between training and inference
and introduce a Test-time Local Converter (TLC).

Guided image deblurring algorithms introduce additional
information from the guidance image to facilitate image
deblurring. The paired images used in image deblurring are
multi-modal, such as RGB/NIR [31], and blurry/flash [32],
[33]. However, extraneous artifacts could appear when the
guidance and input images are captured in different spectrums
or have inconsistent structures. In the pioneering work [4],
a robust flash gradient constraint is introduced to solve the
flash deblurring problem by performing kernel estimation
and non-blind deconvolution iteratively. Guided filtering [32]
can be applied to deblur images by calculating the local
linear model between two inputs. Further, a CNN-based joint
filtering algorithm is designed to deblur images by estimating
the coefficients of the spatially variant linear representation
model (SVLRM) [5].

B. IMAGE FUSION
Image fusion can be roughly separated into three tasks: fea-
ture extraction, fusion rules, and feature reconstruction. Tra-
ditional fusion algorithms use domain transform approaches
like wavelet transform, Laplacian pyramid decomposition,
and guided filtering as feature extraction components.
Recently, fusion algorithms based on deep learning have been
introduced to improve the ability of feature representation
like DenseFuse [34], or directly fuse images in an end-
to-end manner [35]. Zhou et al. [36] introduced a fusion
algorithm that fuses infrared and visible using L0 filter, the
weighted least squares (WLS) filter, and parallel gradient
fusion called target-aware decomposition and parallel gradi-
ent fusion (TAD-PGF). U2Fusion [37] solves different fusion
problems using one fusion network in an unsupervised man-
ner. In [38], a pair of infrared and visible images are used
to fuse the obvious object information based on multi-level
Gaussian curvature filtering image decomposition. Tang et al.
[39] introduce a semantic-aware image fusion network (SeA-
Fusion), which leverages the semantic segmentation task
to guide the image fusion with a gradient residual dense
block (GRDB). More multi-modal image fusion techniques
in medical imaging are discussed in Tirupal et al. [40] and
Srinvasu et al. [41].

In this work, we integrate the image deblurring and image
fusion techniques and propose a deep learning based image
fusion algorithm to deblur images by fusing the pre-deblurred
streams.

III. PROPOSED METHOD
A. GDFNet
The idea of deblurring by image fusion is motivated by the
following observations. Single image deblurring algorithms
usually recover low-frequency information or unreliable tex-
tures since the degradation corrupts the details and there are
few clues to recover them. On the contrary, guided deblurring
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FIGURE 3. Illustration of the encoders and feature aggregation.

algorithms preserve more high-frequency components like
edges and textures according to the guidance image. How-
ever, they produce artifacts due to the structural inconsistency
and differences in wavelength sensitivites between multi-
modal images. To overcome these drawbacks, we fuse these
deblurred images into Ifuse. It is represented as the linear
combination of three pre-deblurred image J1, J2, and J3,

Ifuse = ω1 � J1 + ω2 � J2 + ω3 � J3, (2)

where ω1,ω2,ω3 represents corresponding fusion weights
and� is the element-wise product. The pre-deblurred images
J1, J2, and J3 can be represented as

J1 = N1(Iblur), (3)

J2 = N2(Iblur, Iguid), (4)

and

J3 = N3(J1, Iguid), (5)

where N1, N2, and N3 represent three pre-deblurring net-
works.

Since the pre-deblurred images computed by multiple
image deblurring streams are the estimates of the sharp
images, they are similar in low-frequency content. There-
fore, small differences in fusion weights can greatly affect
the fused details, which makes the image deblurring not
robust. As we use CNN to predict the fusion weights, the
networks often fit target functions from low frequencies to
high frequencies according to the frequency principle claimed
by Xu et al. [10]. The success of residual learning [9], [42]
inspires us to use an effective blur/residual image split-
ting strategy in GDFNet to focus on high-frequency com-
ponent fusion. The blurry image itself can be regarded as
the low-frequency component of the estimated sharp latent
image, and the difference between a pre-deblurred image and
the blurry image is a reasonable initial guess of the high-
frequency component. Correspondingly, the residual Ri is
defined in the form

Ri = Ji − Iblur. (6)

FIGURE 4. Illustration of fusion weights generation.

Combining (2) and (6), the fused deblurred image Ifuse can
be expressed as

Ifuse = ω1 � R1 + ω2 � R2 + ω3 � R3 +

3∑
i=1

ωi � Iblur.

(7)

In this way, we encourage GDFNet to focus on the fusion
of high-frequency components which makes the convergence
faster and the deblurring performance better.

The overall framework of our GDFNet is illustrated in
Fig. 2. The network takes the blurry image Iblur and the
guidance image Iguid as input to compute a deblurred image
Ifuse through image fusion. We use three deblurring streams
to generate three different pre-deblurred images for image
fusion. A single deblurring stream takes Iblur as input and
predicts a coarsely deblurred image J1. A guided deblurring
stream takes Iblur and Iguid as input and jointly estimates an
edge-preserving deblurred image J2. Another guided deblur-
ring stream takes Iguid and the output of the single deblur-
ring stream J1 as input to recover another pre-deblurred
image J3.
Then we compute the corresponding residual images

R1,R2, and R3 of three pre-deblurred images J1, J2, and J3,
respectively, by subtracting them with the blurry observation
Iblur. The features of these residual images are extracted
by three individual encoders and aggregated by a feature
concatenation layer. Since these aggregated features contain
all information of three pre-deblurred images, they can pre-
dict the fusion weights ω1,ω2, and ω3 of the three resid-
ual images. We compute the weighted summation of the
multi-scale residual images using the coarse-to-fine fusion
weights ω1,ω2, and ω3 to obtain multi-scale fused residual
images. During training process, we add multi-scale blurry
input to them for multi-scale supervision to generate finer
fusion weights. During the inference, we add the blurry input
Iblur to the original scaled fused residual image using the
single-scale extraction step to generate the final fused output
image Ifuse.

B. PRE-DEBLURRING STREAMS
To generate the pre-deblurred images for image fusion,
we use three pre-deblurring streams, including one single
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image deblurring stream and two guided image deblurring
streams. All of the streams are replaceable and can be imple-
mented using state-of-the-art approaches.

The single image deblurring stream N1 provides an esti-
mate J1, which cannot restore the details completely because
most of the high-frequency components are lost during degra-
dation. We use the guided image deblurring network N2 to
recover more details by taking the concatenation of the blurry
observation Iblur and guidance image Iguid as input. The
deblurred image J2 embeds the information of the guidance
image. Since the structure in the blurry input is not reliable,
this stream tends to use low-frequency contents in Iguid. How-
ever, these contents may be wrong due to object movements
and sensor differences. As a result, it causes the pre-deblurred
image J2 to be structurally and color inconsistent with the
ground truth, and creates halos and fake shadows. Therefore,
we employ another guided image deblurring network N3
which uses the single deblurring stream J1 and the guidance
image Iguid to estimate J3. The pre-deblurred image J1 is a
prediction of the sharp image containing coarse but correct
structures. Thus, this guided stream learns to believe the
structures in J1 rather than Iguid, because the structures in Iguid
can be wrong in some cases like object movements. On the
other hand, Iguid brings less impact on corrupting the structure
since the inconsistency between the multi-modal images J1
and Iguid is reduced. Therefore, the output J3 provides better
estimates and different information compared to the other two
streams.

C. FEATURE AGGREGATION
Based on our blur/residual image splitting strategy, the
residual images of three pre-deblurred streams are fed
into the fusion network and encoded by three independent
encoders.We choose to use individual encoders because three
pre-deblurred residual images focus on recovering different
contents of sharp images. Fig. 3 illustrates the details of
the feature aggregation architecture. The encoders contain
6 convolutional blocks and 2max-pooling layers, which com-
pute features with 64 channels and the spatial size is 1

4 of
the input size. The features of the residual images of the
three pre-deblurred residual images are then concatenated,
followed by two convolutional blocks to reduce the dimen-
sion of the channel. The entire feature aggregation process is
represented as

Ffusion = conv(NE1 (R1)⊕NE2 (R2)⊕NE3 (R3)), (8)

where NE1 , NE2 , andNE3 are the corresponding encoders of
three residual images which include two downsampling lay-
ers,⊕ denotes the concatenate operation, and conv(·) denotes
the convolutional operator that reduces the dimension of the
channel to 64. We use these encoders to keep information
in three streams for the following fusion weights generation.
The blur/residual image splitting strategy enhances the fea-
ture representation ability by directly extracting features on
the residual images.

D. COARSE-TO-FINE RECONSTRUCTION
We adopt a coarse-to-fine reconstruction strategy that can
further improve the quality of fused deblurred images [43].
The architecture of the coarse-to-fine reconstruction and its
decoders for fusion weights generation is demonstrated in
Fig. 4. We use three individual decoders that contain 5 convo-
lutional blocks and upsampling layers for every level of scale,
each of them generates 2-scale features

Fki = N k
Di (F

k
fusion), k ∈ {0, 1}, (9)

where k represents the scale level and N k
Di is the i-th (1 ≤

i ≤ 3) decoder at level k , and Fkfusion is the 2
k upsampling of

Ffusion.
The fusion weights ωk

i of the residual images at scale level
k are computed using a tanh activation function instead of a
ReLU because we need to preserve both positive and negative
values for fusion. The weights are given by

ωk
i =

{
N k

tanh((F
k−1
i )↑ ⊕ Fki ) k = 1

N k
tanh(F

k
i ) k = 0,

(10)

where ωk
i is the fusion weights of the i-th residual image at

scale level k , N k
tanh is the tanh activation function at level k ,

(·)↑ represents the upsampling operation, and⊕ denotes con-
catenation. The fused deblurred image is computed by adding
the fused residuals layers of three pre-deblurred images using
ωk
i to the original blurred observation,

Ikfuse = ωk
1 � Rk

1 + ωk
2 � Rk

2 + ωk
3 � Rk

3 + Ikblur, (11)

where Rk
i , i ∈ {1,2,3}, represents the corresponding resid-

ual image at scale level k downsampled using max-pooling,
Ikfuse, k ∈ {0,1} represents the 2-level fused deblurred
images, and � denotes the element-wise product. Both
2-level deblurred images are used for back propagation in
training, but only the original scale image is needed in infer-
ence.

E. LOSS FUNCTION
We employ L1, structural similarity index measure (SSIM),
learned perceptual image patch similarity (LPIPS) [44], and
a frequency-domain loss function on the multi-scale output
Ikfuse [43] to train GDFNet. The multi-scale LPIPS can be
represented as

LMS-per =

1∑
k=0

∥∥∥P (Ikfuse)− P
(
Ikgt
)∥∥∥

1
, (12)

where k and P(·) denote the scale level and LPIPS network,
respectively. LPIPS is a pre-trained network for evaluating
the perceptual similarity between two images. Recent stud-
ies show that reducing the frequency-domain discrepancy
is essential for restoring the lost high-frequency compo-
nents [1], [3]. We adopt the multi-scale frequency reconstruc-
tion (MSPR) loss function on our multi-scale output,

LMS-freq =

K−1∑
k=0

1
M k

∥∥∥F (Ikfuse)− F
(
Ikgt
)∥∥∥

1
, (13)
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FIGURE 5. The 8 blur kernels used for generating synthetic blurry input
on the RGB/NIR dataset.

FIGURE 6. The 20 blur kernels used for generating synthetic blurry input
on the ambient/flash dataset.

where F(·) denotes the Fourier transformation and M k

denotes the number of elements at scale k . The total loss
function is

Ltotal = LMS-L1 + λ1LMS-SSIM + λ2LMS-per + λ3LMS-freq.

(14)

The balance parameters are empirically set as λ1 = 0.2, λ2 =
0.1, and λ3 = 0.1.

IV. EXPERIMENTS
In this work, the three pre-deblurred streams N1, N2, and
N3 in GDFNet are flexible and can be replaced by other
deblurring streams. To evaluate our algorithm, we conduct
experiments using MIMO [1], MPR [2], and DeepRFT [3]
as N1. As for the choice of the guided deblurring networks
N2 and N3, we use SVLRM [5] to compute J2 and J3.
We evaluate GDFNet on popular public multi-modal image
datasets includingRGB/NIR [31] and flash/ambient [33]. Our
method is compared with single image deblurring algorithms
MIMO [1], MPR [2], DeepRFT [3], Uformer [27], NAFNet
[29], guided image deblurring algorithm SVLRM [5], and
the combinations such as MIMO+SVLRM,MPR+SVLRM,
and DeepRFT+SVLRM. We also compare our fusion net-
work with DenseFuse [34] and SeAFusion [39] using the
same input as GDFNet. All compared networks are retrained
on the same datasets for fair comparisons.

A. IMPLEMENTATION DETAILS
The experiments are conducted on an Intel Xeon Silver
4210RCPU@2.40GHzwith 64GBmemory and anNVIDIA
Quadro RTX 8000. We implemented our network using
PyTorch [45]. It is trained using Adam optimizer [46], and
the initial learning rate is set to 1× 10−4, with a batch size of
64 and a maximal training epoch of 200. The training image

TABLE 1. Quantitative comparisons with image deblurring algorithms on
the RGB/NIR datasets in terms of PSNR, SSIM, and LPIPS values. The best
ones are in bold.

TABLE 2. Quantitative comparisons with image fusion approaches on the
RGB/NIR datasets in terms of PSNR, SSIM, and LPIPS values. The best
ones are in bold.

is of size 128 × 128. We use zero-padding in convolutional
layers.

B. DATASETS
We evaluate GDFNet on two multi-modal image pair
datasets. The RGB-NIR scene [31] contains registered RGB
and NIR image pairs. They are collected using several digital
single-lens reflex (DSLR) cameras with and without infrared
blocking filters in separated exposures. Although the cameras
are equipped with tripods, there are still small misalign-
ments between the RGB and NIR images. Many algorithms
are introduced to register multi-modal image such as [47],
[48], and [49]. This dataset applies a feature-based alignment
algorithm [50] to register these image pairs. We generate
the blurry input by computing the convolution of the sharp
RGB images and the ground truth blur kernels in [51]. Fig. 5
shows the blur kernels used in our experiments. For each
scene, we randomly select one kernel to blur the RGB image,
and take the NIR image as the guidance reference image.
We discard the image pairs of large misalignment in the
RGB/NIR dataset.

The blurry/flash dataset is generated using ambient and
flash illumination image pairs presented in [33]. The ambient
and flash dataset is collected using DLSR cameras controlled
by a mobile App that sequentially captures the flash and

VOLUME 10, 2022 130713



Y. Liu et al.: Guided Image Deblurring by Deep Multi-Modal Image Fusion

FIGURE 7. The deblurring results and corresponding PSNR of a palace produced by different algorithms on the
blurry/flash dataset.

FIGURE 8. The deblurring results and corresponding PSNR of a building produced by different algorithms on the blurry/flash dataset.

TABLE 3. Quantitative evaluations on the RGB/noisy NIR datasets in
terms of PSNR, SSIM, and LPIPS values. The best ones are in bold.

no-flash photographs with a small delay between two expo-
sures. An improved version of the dual inverse compositional
alignment algorithm (DIC) [52] is used to correct the mis-
alignment. We blurred the ambient image using 20 ground
truth blur kernels provided in [53] as shown in Fig. 6, which
are resized to 13 × 13, 19 × 19, and 25 × 25 to increase
the diversity of degradation types. For the guidance image,
we multiply the intensities of flash images by 1.5 to remove
some structures by over-exposure, which actually makes the
image deblurring more challenging.

C. EVALUATION ON RGB/NIR DATASET
We evaluate our GDFNet on the RGB/NIR dataset [31],
which includes 300 scenes. Deblurring streams N1 and N2
takes 40 randomly choosed image pairs to train, and 10 image
pairs to validate. We choose the trained network with the
best PSNR on the validation dataset. After we determineN1,
N3 takes the output J1 and the guidance NIR image Iguid
as input, using another 50 image pairs to train. Then we
fix the parameters of these three pre-deblurred streams and

FIGURE 9. The deblurring results and corresponding PSNR of a indoor
scene produced by different fusion networks using the same input on the
RGB/NIR dataset.

train GDFNet using corresponding pre-deblurred images of
50 scenes. The remaining 150 scenes are used for testing.

As shown in Table 1, we compare our method
GDFNet with image deblurring algorithms quantitatively on
150 scenes of RGB/NIR dataset. We split the comparisons
into three parts based on using MIMO, MPR, and DeepRFT
as N1. Our method (GDFNet with MIMO) outperforms the
image deblurring algorithms in terms of PSNR, SSIM, and
LPIPS. Our method (GDFNet with MPR) and our method
(GDFNet with DeepRFT) also perform favorably against
state-of-the-art image deblurring algorithms. Fig. 7 and Fig. 8
show the image deblurring results by the competing algo-
rithms. The single deblurring algorithms MPR [2], Uformer
[27], and NAFNet [29] lose textures and generate ringing
patterns around large edges. The SVLRM [5] produces color
shifts and ghost shadows. The details of textures can be
obtained from NIR input but artifacts may appear since
the local linear assumption [32] is weak on inconsistent
structures. By exploring the use of the single deblurred image
and NIR image, MPR+SVLRM reduces the appearance of

130714 VOLUME 10, 2022



Y. Liu et al.: Guided Image Deblurring by Deep Multi-Modal Image Fusion

FIGURE 10. The results and corresponding PSNR produced by different algorithms on the RGB/NIR image pair with stripe noise.

artifacts. However, some blurry edges still exist. Instead
of using one single or guided deblurring algorithms, our
GDFNet fuses three pre-deblurred streams, generating a
clearer image with sharper edges.

To validate the superiority of our fusion network, we com-
pare two image fusion approaches with our GDFNet using the
same pre-deblurred images as input. Wemodified SeAFusion
so that it can accept three images as input. The results in
Table 2 show that the GDFNet outperforms other algo-
rithms. As shown in Fig. 9, DenseFuse [34] and SeAFusion
[2] produce chromatic aberrations around the organ pipes
and false edges around the chandelier. They are designed
for image fusion, but they do not correctly fuse the high-
frequency information. Our GDFNet produces fewer artifacts
and creates clear edges.

D. EXTENSION TO STRIPE NOISE ON RGB/NIR DATASET
Although our algorithm assumes that the NIR images are
noise-free, there is line pattern stripe noise [8] or random
noise [54] in case of poor imaging quality. Since we use
the NIR images as the guidance image, the stripe noise or
random noise may deteriorate the guided image deblurring
pre-deblurred images and further corrupt the final fused
deblurred image. We compare our GDFNet on RGB/NIR
dataset where the NIR images are noisy.Wemanually corrupt
the NIR images using stripe noise and random noise. The
stripe noise is simulated in a similar manner to [8], with its
intensity varying from [−10, 10]. The random noise level
is set to 10% following Tai and Lin [54]. Table 3 shows
the quantitative evaluation results where our GDFNet still
perform better than deblur/fusion approaches. Since GDFNet
fuses three streams to compute the deblurred image, it is
robust to noise when the NIR images are severely degraded.

We show the deblurring results of a RGB and noisy NIR
image pair in Fig. 10. Single image deblurring algorithms
such as NAFNet [29], Uformer [27], and MPR [2] produce
deblurred images with small blur at the edges. The result of
SVLRM [5] is blurry because the structure of the reference

TABLE 4. Quantitative comparisons with image deblurring algorithms on
the blurry/flash datasets in terms of PSNR, SSIM, and LPIPS values. The
best ones are in bold.

NIR image is destroyed by noise. Noise has little effect on
MPR+SVLRM because the network learns that the guidance
is less reliable and tends to use the output of MPR to regress
the restoration result. DenseFuse [34] and SeAFusion [39]
produce sharper images but are still affected by noise. Our
GDFNet generates sharp result because it can lower the fusion
weights of useless deblurring streams.

E. EVALUATION ON BLURRY/FLASH DATASET
We evaluate our GDFNet on the Object category in the ambi-
ent/flash dataset [33] which includes 578 scenes. Deblurring
streamsN1 andN2 takes 160 scenes to train, and 40 scenes to
validate. We choose the trained network with the best PSNR
on the validation dataset. Similar to the RGB/NIR dataset,
we use 80 scenes and 20 scenes to train and validate N3.
Then we fix three pre-deblurred streams, and train GDFNet
using another 40 scenes to train and 10 scenes to validate. The
remaining 228 scenes are used for testing.

As shown in Table 4 and Table 5, we compare
our GDFNet with image deblurring algorithms and
image fusion approaches quantitatively on 228 scenes
of the blurry/flash dataset. Our methods perform better
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FIGURE 11. The deblurring results and corresponding PSNR of a building produced by different algorithms on the blurry/flash dataset.

FIGURE 12. The deblurring results and corresponding PSNR of a building produced by different algorithms on the blurry/flash dataset.

TABLE 5. Quantitative comparisons with image fusion approaches on the
blurry/flash datasets in terms of PSNR, SSIM, and LPIPS values. The best
ones are in bold.

against the state-of-the-art image deblurring algorithms
and image fusion approaches. Fig. 11 and Fig. 12 illustrate
the image deblurring results by the evaluted image deblur-
ring and image fusion algorithms. In the resultant images
produced by MPR [2] and NAFNet [29] the texts are hardly
recognizable since the recovered high-frequency information
is incorrect. The resultant content of Uformer [27] is barely
readable due to ghost shadows. The texts produced by

TABLE 6. Quantitative comparisons on loss functions using GDFNet (w/
MPR) on the blurry/flash dataset. The best metrics are in bold, and the
second best ones are underlined.

TABLE 7. Performance comparisons on different ablations of GDFNet (w/
MPR) on the blurry/flash dataset. The best metric values are in bold.

SVLRM [5] and MPR+SVLRM are recognizable but the
edges are less sharp. Image fusion approaches DenseFuse
and SeAFusion produce texts that are generally clear but still
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TABLE 8. Inference times (in seconds) of different algorithms on the RGB/NIR dataset.

contain artifacts. Our GDFNet produces the highest PSNR
values and successfully recovers texts with sharp edges.

F. ABLATION STUDIES AND RUNNING TIMES
As shown in (14), we use several loss functions, including
L1 loss, SSIM loss, perceptual loss, and frequency loss.
To analyze the effect of the loss function on the performance
of GDFNet, we train it on the blurry/flash dataset using differ-
ent versions of loss functions. Quantitative results in Table 6
show that our loss function is suitable when considering all
the PSNR, SSIM, and LPIPS metrics.

We conduct ablation study on the framework components,
including residual image, multi-scale reconstruction, and
multiple guided deblurring streams. As shown in Table 7,
our framework works better than the versions with any com-
ponents removed. The effect of using residual images is
significant; it increases the PSNR by 0.98 dB. Themulti-scale
reconstruction with supervision improves the performance by
0.35 dB in terms of PSNR. The results of without using J2 and
without using J3 demonstrate that both streams are useful,
increasing the PSNR by 0.47 dB and 0.3 dB, respectively.

To quantitatively compare the inference time of the
proposed method with image deblurring algorithms and
image fusion approaches, we evaluate all algorithms on the
RGB/NIR dataset. Table 8 shows that the inference time of
our GDFNet is lower than the deblurring algorithms and close
to the image fusion approaches.

V. CONCLUSION
This paper proposes a novel guided image deblurring frame-
work based on deep image fusion using multi-modal image
pairs, called Guided Deblurring Fusion Network (GDFNet).
Previous work on image deblurring has focused on image
deblurring, neglecting the alternative of image fusion. We use
GDFNet to fuse the pre-deblurred streams of single and
guided image deblurring algorithms to aggregate the struc-
tures and the sharp details based on fusion weights. In detail,
GDFNet employs the blur/residual image splitting strategy
and a coarse-to-fine reconstruction module supervised by
multi-scale ground truths. The effectiveness of the strategy
used in GDFNet is demonstrated by ablation study. Our
method can be easily extended by replacing the approaches
used as pre-deblurred streams. Quantitative comparisons
show that GDFNet outperforms the image deblurring algo-
rithms and image fusion approaches. The average PSNR
of GDFNet is at least 0.9 dB higher than existed algo-
rithms evaluated on 228 test scenes from the blurry/flash
dataset.
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