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ABSTRACT We propose a new ML model called Topological Forest that contains an ensemble of decision
trees. Unlike a vanilla Random Forest, Topological Forest has a special training process that selects a smaller
number of decision trees on a topological graph representation that TDA Mapper constructs. Compared to
Vanilla Random Forest, Topological Forest significantly improves the computational efficiency of inference
time due to the smaller ensemble size and selection of better decision trees while keeping the diversity of
decision trees. Our experiments show that Topological Forest can speed up inference time by more than 100x
on average while compromising at most 2% reduction in the AUC metric for the prediction quality.

INDEX TERMS Random forest, graph topology, TDA mapper.

I. INTRODUCTION
Random forests [1] are a type of ensemble learningmodel that
use multiple decision trees to make predictions or perform
classification tasks. In a random forest, each decision tree is
trained on a subset of the features and training data, and the
results of all the decision trees are combined to make more
robust predictions.

Random forests have gained popularity in recent years due
to their simplicity and efficiency [2], [3], [4], [5], [6], [7].
Unlike more complex models like gradient boosted decision
trees [8] or deep neural networks [9], random forests can be
easily parallelized on a cluster of machines, which makes
them faster to train and use for inference. Additionally, the
decision rules from the split nodes in a random forest can be
easily interpreted by humans, which makes them more trans-
parent than other, more complex models. These advantages
make random forests attractive for many classification and
regression tasks.

While random forests have many advantages, the qualities
and contributions of their individual decision trees are often
not considered. Previous attempts to tune the number of deci-
sion trees [10], [11] and understand the impact of ensemble
size on performance [12] have focused on determining the
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upper bounds of ensemble size and the optimal number of
decision trees, rather than analyzing the quality of individual
trees or their contribution to the ensemble. In this paper,
we propose a training process that takes into account the simi-
larity and quality of decision trees in a random forest. By care-
fully selecting decision trees in this way, we achieve similar
performance on prediction tasks with a smaller ensemble
size. This would reduce the size of the model and improve
computational efficiency during inference.

In this paper, we propose the Topological Forest model,
which uses a smaller ensemble of decision trees to perform
regression and classification tasks. The Topological Forest
model has amulti-step training process that begins by training
a vanilla random forest. Next, we transform each tree in the
random forest into a feature graph and extract key features
from the graphs as high-dimensional vectors. We then use
TDA Mapper [13] to transform these high-dimensional fea-
ture vectors into a topological cluster network. This allows
us to identify representative decision trees that can be used to
construct a smaller, more efficient random forest. By using
this approach, we aim to achieve similar performance on
prediction tasks with a smaller ensemble size, reducing the
model size and improving computational efficiency.

TDA Mapper is a technique that allows for the soft clus-
tering of high-dimensional data points while constructing a
network view where similar clusters are connected by short
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FIGURE 1. Building blocks of the topological forest.

paths. TDA Mapper transforms the high-dimensional input
features into a low-dimensional space (in this case, 2D) using
a lens or filter function. Common choices for the filter func-
tion include projection onto one or more axes using tech-
niques like TSNE [14] or density-based methods. Once the
filter function is applied, the data in the original feature space
is transformed into 2D space. TDA Mapper then constructs
a set cover of the projected space in the form of a set of
overlapping intervals with constant length.

Next, TDA Mapper constructs a mapper graph with clus-
tered trees as vertices that represent each set in the cover of
the projected space. An edge exists between two vertices if the
two sets (due to the overlapping intervals) share some trees in
common. Finally, we use different strategies to select decision
trees from each cluster to discover a more representative tree
ensemble with fewer trees. Our experimental results show
that trees in a cluster make similar predictions on out-of-bag
samples, which makes TDA Mapper well-suited to our tree
selection problem.

In particular, we list the contributions of this paper as
follows:

• We propose a new machine learning model called
Topological Forest, which uses a significantly smaller
number of decision trees than traditional random for-
est models while achieving similar prediction quality
(within 2%). This reduction in the number of decision
trees allows for a smaller model size and improved
computational efficiency.

• We introduce a novel graph representation of decision
trees that can be used in various applications to take
advantage of tree features and decision tree similarities.
This graph representation allows for more effective anal-
ysis and interpretation of decision trees and can be used
in a variety of contexts.

• We use TDA Mapper to map similar decision trees
into the same clusters, allowing us to construct a more
effective random forest by applying various ensemble
selection strategies.

• From our experiments on several binary classification
tasks, we find that the Topological Forest model signif-
icantly improves computational efficiency during infer-
ence, with minimal compromise on prediction quality.

The structure of this paper is as follows: The next
section provides an overview of related work in the field.
In Section III, we introduce the Topological Forest model
and its training process. Section IV presents our experimental
results. Finally, in Section V, we provide our conclusions and
discuss potential future work.

II. RELATED WORK
Random Forest is a popular ensemble-based Machine Learn-
ing model that is used for classification or regression tasks.
It works by constructing a prediction value from indi-
vidual decision trees, using different aggregation policies
such as majority voting, computing the mean, or median,
depending on the type of problem. Because of its sim-
plicity and efficiency, the Random Forest model has been
applied successfully to many practical problems, such
as patient health prediction, image classification, emo-
tion recognition, malware detection, and user response
prediction.

A significant advantage of Random Forest comes from
its interpretability [17], [18], and there have been several
works [19], [20], and [21] to improve the explainability of
Random Forest. For example, decision tree split rules in Ran-
dom Forest can easily be converted into human-readable rule
format [22] to understand the relationship between feature
space and the predicted outcome.

Parallelization of training and inference processes [23],
[24] is another significant advantage of Random Forest.
We can train all decision trees in parallel, and during the
inference, we can invoke all decision trees concurrently to
compute predicted outcomes. This makes Random Forest
very efficient and suitable for large-scale applications that
require processing big data [16], [25], [26], [27].

While Random Forest has the advantages mentioned
above, the ensemble size can be unnecessarily large with-
out a significant contribution to the prediction performance.
Previous attempts to limit ensemble size focused on tuning
the number of decision trees during the training process [10],
[12], [28], [29]. Although these approaches yield improve-
ments in the run-time efficiency of Random Forest, they
don’t analyze the individual quality of decision trees or the
similarity between decision trees to boost quality.
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We use topological data analysis to analyze our decision
trees and make the random forest more efficient in com-
putational costs of inference with a small compromise on
prediction accuracy. TDA considers that data has a shape
and aims to investigate the underlying manifold structure of
the data rather than just using the statistical description [30].
TDA is mainly powered by persistent homology [31], which
can capture topological differences across various scales and
depict them in persistent diagrams. This novel data analy-
sis approach is rapidly developing for different purposes in
machine learning research.

TDA can be used to extract topological features from data
to use them as inputs for the machine learning models, or it
can be used to improve the model’s design and study some
aspects of the model [32]. In terms of TDA feature extraction,
Harer et al. [33] used total persistence of a persistence dia-
gram, Chen et al. [34] applied p-norm, and Atienza et al. [35]
used persistent entropy as a topological descriptor input fea-
ture. Rieck et al. [36] used Betti curves [37] to summarize the
features. Chevyrev et al. [38] utilized this representation and
persistent diagrams to develop a classifier using a random for-
est and support vector machine. Bubenik et al. presented per-
sistent landscape, a new topological descriptor for mapping
the persistent diagram to function space [39]. Zhao et al.used
TDA features for graph classification [40]. These studies
showed that TDA features could be well-suited as inputs for
machine learning models to improve their accuracy.

Some studies applied TDA to design a machine learning
model or improve some aspects of a model. Moor et al.
presented a topological auto-encoder for low-dimensional
representation of input data features [41]. Yuvaraj et al.
used TDA to study complex multilayer networks [42] and to
cluster them based on topological approaches, and Bulauan
et al. [43] clustered complex multilayer networks with topo-
logical approaches. Chen et al. [44] introduced an approach
for measuring the classification boundary of a classifier by
using a topological complexity, and Hofer et al. [45] devel-
oped topological constraint to improve the generalization
performance of their model. Our method is categorized in the
second area of research on topological data analysis. TDA
helps improve our Random Forest quality and considerably
increases the model’s performance.

Our proposed approach is unique because topological ran-
dom forests can reduce the ensemble size and improve the
speed of predictions compared to vanilla Random Forest at
the cost of reducing at most 2% in the AUC metric. Topo-
logical Forest also keeps the diversity of decision trees by
selecting individual decision trees that belong to different
similarity classes.

III. TOPOLOGICAL RANDOM FOREST
In this section, we’ll explain the details of the Topological
Forest: We present a high-level overview of the training pro-
cess for the Topological Forest. After that, we briefly describe
a vanilla Random Forest and introduce the notation we use
throughout the paper. Next, we explain the graph encoding of

decision trees and discuss how a Random Forest ensemble is
constructed from a topological clustering of encoded decision
tree representations.

A. OVERVIEW OF THE TRAINING PROCESS
Building a Topological Forest from the training data is a
multi-step process, as shown in Figure 1. In the first step,
we train a vanilla random forest by using the original dataset
with all its features. After that, each decision tree in vanilla
random forest is transformed into the graph representation
by using relationships between features. In the next step,
we extract features from the graph representation of decision
trees as N-dimensional vectors. These vectors have topolog-
ical features like the number of edges or the average degree
of vertexes.

Once feature extraction is completed, we use TDAMapper
to transform and cluster N-dimensional feature vectors into a
topological network that has a cluster of nodes (each node
represents a decision tree). TDA mapper step first invokes
a feature embedding task by leveraging TSNE as a filter
function to transform N-dimensional feature vectors in 2D.
Once compressed features in 2D space are computed, TDA
mapper generates a mapper graph with clustered trees as
vertices by leveraging a set cover of the projected space in
the form of overlapping intervals with fixed lengths.

As Figure 1 shows, we employ two types of graphs to build
Topological Forest: a graph representation of a decision tree
and a TDA Mapper produced graph (aka mapper graph) to
cluster decision trees. The first graph is relatively smaller than
the mapper graph and it contains parent and child relation-
ships of features. On the other hand, the mapper graph is a
topological network of soft decision tree clusters, and an edge
between two clusters exists if they share common decision
trees. In the final step of the entire process, we employ an
ensemble selection task to build a topological forest from the
mapper graph. In the ensemble selection task, we used dif-
ferent selection algorithms to pick decision trees to construct
a topological forest from the cluster of decision trees in the
mapper graph. In the following sections, we give details of
each step.

B. TRAINING VANILLA RANDOM FOREST
We consider a binary classification scheme for ease of expo-
sition, but our approach can be trivially generalized to multi-
label classification. Let {xn}n∈Z+ be a set of data points, and
let each point xn be associated with a pair (Exn, yn), where
Exn ∈ RD is a feature vector and yn ∈ {0, 1} is a label. There
are D features for each data point xn, and a total of N data
points in the training set.
Definition 1 (Random Forest): A Random Forest is a clas-

sifier consisting of a collection of decision tree classifiers
{h(X ,Y ,2k ), k = 1, . . . ,N } where the 2k are independent
identically distributed random vectors [1].

Each tree in Random Forest is trained on a randomly
selected subset of data through data bagging. Once the
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Random Forest is constructed, each tree casts a unit vote for
a class of a given input Exn ∈ X .

C. GRAPH ENCODING AND FEATURE EXTRACTION
In this step, we convert each decision tree into a graph struc-
ture. Our decision to convert a tree into a graph is motivated
by two reasons:

• First, creating a graph from a decision tree allows us
to generalize parent-child relations as weighted feature-
feature edges, which create summary, interpretable rep-
resentations of large decision trees (see Figure 5).

• Second, although extracting features of a decision tree is
under-studied in themachine learning community, graph
feature extraction is a well-studied problem. To illus-
trate; graph ML offers features for vertices (e.g., eccen-
tricity [46]), edges (e.g., edge centrality [47]), subgraphs
(e.g., modularity [48]) and graphs (e.g., clustering coef-
ficient [49]) which can encode the trees of a random
forest from various aspect. The encoding brings us closer
to measuring the performance of tree ensembles in a
principled way.

In the graph representation of each decision tree T =
V × E , each vertex v ∈ V corresponds to a feature d ∈ D,
and a directed edge between two vertices e =

〈
vi, vj

〉
∈ E

denotes a parent-child split of di → dj in the decision tree.
A decision tree can split the same feature multiple times into
different levels; however, we do not create a duplicate vertex
for each new split. Instead, we add duplicate edges from the
parent vertex to the child vertex for new parent-child splits.
As a result, the encoded graph may contain duplicate edges
between vertex pairs. We also ignore feature values in splits
during the entire encoding process because traditional graph
features do not utilize attributes of vertexes.

Consider example in Figure 3 to understand how the deci-
sion tree is transformed into a graph representation. Since our
goal here is to show the mapping between the decision tree
and graph representation, we omit the example data set and
hyperparameters that are used to construct decision tree in
Figure 2. In the decision tree, let’s assume that the feature
x1 of the root node has a split value of 25 in Figure 2.
However, we do not retain this information in the graph
representation of this decision tree in Figure 3. The reader
should notice that there is only one node for each feature in
the graph representation in Figure 3. However, there are two
edges between x1 and x2 in Figure 3 since there are two child
nodes that split on x2 of the root node, which splits on x1.
The graph kernel [50] or graph neural network [51]

approaches can incorporate the multi-set of split values
as vertex features in the learning process. However, such
approaches may create high computational costs in the train-
ing process. For this reason, we leave the kernel and graph
neural network approaches as future work.

We detail the process for encoding a graph from a decision
tree in Algorithm 1 where we employ a breadth-first traversal
to discover the parent-child relations in feature splits. The

FIGURE 2. Decision tree built on 100 data points. The tree utilizes
features x1, x2, and x3 and creates five feature splits (10 children nodes,
where 6 of them are leaf nodes). In six of these splits, a further split is
not required (we show them as the gray leaf vertices). On the other hand,
in four splits, a further feature split is required.

FIGURE 3. Graph representation of the decision tree shown in Figure 2.
The four parent-child feature relationships are shown with four directed
edges. Feature x2 has a self-loop because the decision tree uses it in two
consecutive splits.

algorithm takes a decision tree as an input and outputs a
directed graph structure such as the one shown in Figure 3.
In the edge case where the decision tree has only a root
node without any split, the algorithm would create a graph
that consists of one vertex with special empty feature label
without any edges. In all other cases, the algorithm creates at
least one feature vertex since there must be at least one split
at root node. In cases where tree depth is more than 1, the
algorithm creates at least one edge.

We outline three approaches to graph encoding: traditional
features, graph kernel [50], or graph neural network [51].
Traditional features and graph kernel approach are consid-
ered shallow graph encodings because the output is a low-
dimensional feature vector. Graph neural networks create
deep encodings that are high-dimensional feature matrices.
Deep encoders frequently outperform shallow encoders in
ML tasks (see Tables 3 and 4 in [52]); however, the perfor-
mance comes at a great computational cost which we want to
avoid for this task.

We used two main approaches to encode a graph in tra-
ditional graph features. We extract individual vertex features,
such as vertex degree, in the first approach. Next, we design a
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Input: Decision tree T
Output: Directed multi-graph G(V ,E)
Initialize G as a directed multi-graph;
Initialize S as a multi-set;
r ←the root of T ;
// Insert root into multi-set S
S ← S ∪ {r};
while S is not empty do

rx < − pick the first element in S;
S ← S \ rx ;
if rx is not a leaf then

if rx /∈ G.V then
G.V ← G.V ∪ {rx};

end
if rx .left is not a leaf then

if rx .left /∈ G.V then
G.V ← G.V ∪ {rx .left};
S ← S ∪ {rx .left}

end
G.E ← G.E ∪ 〈rx , rx .left〉;

end
if rx .right is not a leaf then

if rx .right /∈ G.V then
G.V ← G.V ∪ {rx .right};
S ← S ∪ {rx .right};

end
G.E ← G.E ∪ 〈rx , rx .right〉;

end
end

end
return G
Algorithm 1 Graph Creation From a Decision Tree

readout function, which can be as simple as averaging values
to pool vertex features. In the second approach, we ignore
vertex features and directly extract graph-level features such
as graph diameter and the number of strongly connected
components. We follow a combination of both approaches
and extract the following features on both vertex and graph
levels:

• Vertex:

– in-degree of a vertex
– out-degree of a vertex
– degree of a vertex
– vertex path distance to all vertices
– betweenness centrality of a vertex

• Graph:

– diameter of the graph
– number of vertices
– number of edges
– counts (16) of directed three-vertex motifs [53]
– clustering coefficient

Additionally, we have tested several vertexes and graph
features such as numbers of strongly and weakly connected

components and hub/authority scores [54]. For reporting pur-
poses, we only provide features that improve the performance
of Topological Forest on out-of-bag test data.

Computational cost: Extracting graph encodings of an
individual decision tree is a non-trivial operation. Features
like betweenness centrality requires a time complexity of
O(|V | × |E|) [55] and motif counting requires O(|E|) [53].
We use the vanilla clustering coefficient implementation of
the Jung library [56] whose time complexity isO(|V |3). Most
datasets on the UCI repository have less than 50 features.
As a result, the graphs that we extract from decision trees are
quite small, with less than 50 vertices. Furthermore, decision
tree depth is bounded by the number of training data points.
As a result, there are less than 200 parent-child relationships
recorded as edges in these graphs. For these reasons, the
graph representation creates quite small graphs (Figure 5)
(i.e., |V | < 50 and |E| < 200 for most datasets). As a result,
computational costs of graph representation and encoding in
Topological Forest are negligible.

We average vertex features to find the corresponding graph
feature (e.g., average vertex degree in the graph). Combining
five averaged vertex features and 20 graph features, we create
a decision tree representation Ee ∈ RD′ where D′ = 25. This
representation allows us to compare and contrast decision
trees which may use different features, split values, and tree
depth.

D. TOPOLOGICAL CLUSTERING
We employ the highly customizable TDA tool Mapper [57] to
analyze and cluster decision trees in the original vanilla ran-
dom forest. TDAMapper complements traditional clustering,
and projection pursuit approaches with a systematic insight
into data geometry and topology. It uncovers hidden data
patterns that are otherwise inaccessible with conventional
data analytic techniques.

The key idea behind TDA Mapper is as follows: Let T
be a total number of observed trees and {Eet }Tt=1 ∈ RD′

be a data cloud of tree encodings. For our dataset, D′ =
25. We employ the t-distributed stochastic neighbor embed-
ding (t-SNE) [14] as a lens to reduce the data into a two-
dimensional space. The t-SNE converts similarities between
data points to joint probabilities and minimize the Kullback-
Leibler divergence between the joint probabilities of the low-
dimensional embedding and the high-dimensional data. Next,
we select a function ξ : {Eet }Tt=1 → R that filters data in one
of the two dimensions.

Let I be the range of ξ , that is, I = [m,M ] ∈ R, wherem =
min ξ (Eet ) and M = max ξ (Eet ) in the dimension d ′. We place
data into overlapping bins by dividing the range I into a set
S of smaller overlapping intervals of uniform length and let
uj = {t : ξ (Eet ) ∈ Ij} be trees corresponding to features in the
interval Ij ∈ S. For each uj we perform a k-means clustering
to form clusters {tjk}.
We analyze the empirical distribution of edge lengths

where each cluster is merged to find the number of clusters.
The merging criteria are based on the rationale that internal
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FIGURE 4. Mapper network of the Adult dataset with cls = 5,
ncubes = 10 and overlap = 0.6. Each node is a soft cluster of decision
trees from the Vanilla Forest (i.e., a tree can belong to multiple clusters).
Edges indicate shared decision trees between two clusters.

distances (i.e., within a cluster) are expected to be lower than
external distances (i.e., in-between clusters), and distributions
of internal and external distances are disjoint. Let {tjk} denote
the k-th cluster of the j-th interval. We construct a cluster
graph by transforming each cluster into a node and adding
an edge between two nodes k and p if clusters {tjk} and
{tlp} contain overlapping data points, i.e., {tjk} ∩ {tlp} 6= ∅.
Formally, the graph is called a TDA Mapper graph or a
topological network.

After the graph transformation of decision tree clusters,
TDA Mapper produces a low dimensional representation of
the underlying data structure in the form of ‘‘cluster tree’’
graph CT where each ‘‘cluster’’ is a branch of some single
connected component rather than a disconnected component
on its own as in conventional clustering analysis. In Fig. 4,
we show an example of ‘‘cluster tree’’ graph that is con-
structed from Adult Dataset [58].

In the underlying mapper library, we can control the bin
count with the ncubes, and interval overlap with the overlap
parameters. A high overlap value creates more edges between
vertices, whereas higher ncubes and k values create more ver-
tices in the graph. As explained in Section III-E, Topological
Forest allows fine-tuning the inference process on the mapper
network with various selection strategies that consider vertex
sizes and edges. We consistently report good performance
results across various datasets in our experiments with appro-
priate mapper parameters.

E. ENSEMBLE SELECTION
As the previous section III-D explained, the TDAmapper net-
work contains vertices that are clusters of decision trees and
edges that show the relationship between neighbor clusters.
This type of mapper network encodes topological insights

FIGURE 5. Sample graph representation of a single decision tree from the
Adult dataset. Edge labels are the number of parent/child splits in a
single decision tree. Higher numbers on edges show more parent/child
split from the source feature to the destination feature on the tree.

into the trained decision trees. In particular, the network shape
and the positions of vertices on the network convey helpful
information about the diversity and quality of decision trees.
For example, consider the disconnected components of the
mapper graph in Figure 4. Although we use a high overlap
value of 0.6, which increases the probability of establish-
ing an edge between two clusters, three groups of vertices
(i.e., clusters) at the bottom right have no edges to the rest
of the network; they form disconnected components. This
phenomenon is inherently due to the dissimilarity of some
decision trees and their encodings with respect to the rest of
the decision trees. However, this observation of dissimilarity
does not tell us anything about the utility of such isolated
clusters and their decision trees. In one (and most likely)
scenario, trees of the isolated vertices may have been built
on useless features or noisy data points that add no predictive
power to the forest. In a second scenario, the isolated trees
may have been built on the most predictive features and data
points. We design topological cluster selection strategies to
test such hypotheses and evaluate the predictive power of
clusters.

We will use Figure 6 to explain three selection strategies:
random, greedy mapper, and quality. In all three strategies,
we first compute a cluster graph CT with a set of clusters
defined as vertices on the graph. For simplicity, we will use a
graph notation and refer to a cluster k as vk ∈ CT .

1) RANDOM
We randomly select n clusters and build a Random Forest
from the union of the trees of the chosen clusters.

2) GREEDY MAPPER
We select n clusters that yield the highest AUC individually
and create an ensemble from the union of the decision trees.
We build an ensemble from the trees of each cluster and test
the predictive power of the ensemble on validation data. Next,
we test the ensemble on out-of-bag test data.

3) QUALITY
The Quality Strategy uses a homogeneity metric-based selec-
tion which we define as the average tree agreements over
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FIGURE 6. Inset of the mapper network shown in Figure 4 (bottom right).
Vertex size is proportional to the number of decision trees in the cluster.
Vertices v2, v3 and v4 each contain a single decision tree. v1 contains
13 decision trees. Vertex colors are trivial artifacts of the Mapper library
(i.e., binned mean ids of the decision trees).

correct and incorrect predictions for all validation data points.
If most trees agree on a label, homogeneity will be high.
However, the trees may agree on true (correctly predicted)
and false (incorrectly predicted) labels. Clusters whose trees
are homogeneous on true labels are preferable to those of false
labels. In both cases, we hypothesize that if decision trees
of a cluster contradict each other in classification (i.e., low
homogeneity), the cluster must have been formed out of ‘‘bad
trees’’.

We split the set of data points in X = {Xi ∪ Xf ∪ Xt } w.r.t.
the random forest classification. Xt comprises data points
classified correctly by the random forest by majority voting,
whereas Xf comprises data points that are misclassified by
random forest by majority voting. Lastly, Xi includes points
where the decision trees vote equally for true and false labels.
Formally, we define true homogeneity as follows:
Definition 2: (True homogeneity of cluster vk where h is the

number of decisions trees in cluster vk that correctly classify
data point x)

HTrue =
1
|Xt |

∑
x∈Xt

|h ∈ vk s.t h(x,2) = y|
|vk |

Similarly, we define false homogeneity as follows:
Definition 3: (False homogeneity of cluster vk where h is

the number of decisions trees in cluster vk that miss classified
data point x)

HFalse =
1∣∣Xf ∣∣ ∑x∈Xf

|h ∈ vk s.t h(x,2) 6= y|
|vk |

We calculate a cluster quality score for all existing clusters
based on the true and false homogeneity scores as follows:
Definition 4 (Cluster Quality Index):

CQI = wTrue × HTrue − wFalse × HFalse,

where

wTrue =
|Xt |
|X |

, wFalse =
|Xf |
|X |

Example 1 (Homogeneity): Consider the two topological
clusters shown in Figure 7. Cluster 1 contains six decision

FIGURE 7. Decision tree votes of two clusters for two data points. Green
circles are correct, and red crosses are incorrect classifications.

trees, where four of them correctly classify data point 1.
Cluster 2 contains four decision trees, and only one of them
misclassifies data point 1. Similarly, only one decision tree
of cluster 1 misclassifies data point 2, whereas three decision
trees of cluster 2 misclassify data point 2.
In true homogeneity computations, we will use data points

1 and 2 for cluster 1, but only datapoint 1 for cluster 2. Dat-
apoint 2 is misclassified by the majority of cluster 2 decision
trees. As a result, datapoint 2 will be used to compute the false
homogeneity of cluster 2.
For cluster 1, HFalse = 0 and HTrue = 1

2 (4/6+5/6) = 3/4.
For cluster 2, HFalse = 1

1 (3/4) = 3/4 and HTrue =
1
1 (3/4) = 3/4.
We compute the cluster quality index for cluster 1 as

CQI1 = (2/2) × 3/4 − (0/2) × 0 = 0.75 whereas CQI2 =
(1/2)× 3/4− (1/2)× 3/4 = 0.0.
As a result, our quality metric favors cluster 1 in its ensem-

ble selection.
Homogeneity does not punish nor reward Tie cases where

decision trees vote equally for correct and incorrect labels.
In Tie cases the number of miss-classifying decision trees
is equal to number of correctly classifying decision trees in
a cluster. After indexing all clusters, we select the highest
quality clusters and create an ensemble out of their trees.
Quality Top-x: Differing from the Quality approach, after
selecting Top-K clusters based on the index score, we limit
tree selection to Top-1, Top-2, or Top-5 best trees based
on the tree score index in each cluster. For calculating the
tree score index inside each cluster, we count the number
of positive and negative collaborations of each tree. If a tree
contributes to true homogeneity, it is rewarded with +1, and
if it contributes to false homogeneity, it is penalized with−1.
The top 1, 2, and 5 trees with the highest rewards are selected
for an ensemble.

IV. EXPERIMENTAL RESULTS
We have released our source code at https://github.com/
cakcora/MultiverseJ where we have developed a complete
classification Random Forest in Java.

A. DATASETS
For the experiments, we selected six classification datasets
from the UCI Machine Learning Repository with two
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TABLE 1. Dataset characteristics.

FIGURE 8. Hierarchical clustering of the 25 features used in graph
encodings on the Adult dataset. The y-axis values are distances between
features. Triad 16 co-clusters with edge count, but other triads mostly
cluster together. Furthermore, the distances are small (e.g., between triads
12 and 13) compared to the distance between edgeCount and triad 16.

selection criteria to ensure robust classification results: the
number of data points in a dataset must be more than 10K,
and the dataset should have six or more features. As Table 1
shows, the selected datasets have diversified population sizes,
attributes, and majority-class percentages. Diabetes, Adult,
and Nursery data sets have binary labels while other datasets
have more than two classes.

Since our focus in this paper is binary classification tasks,
we reduce the number of classes for non-binary datasets in
the following way. For the Poker dataset nothing in hand, one
pair, two pair and three of a kind classes were re-labeled as
low probability to win. Other classes were classified as high
probability to win. In the Connect-4 dataset, draw and loss
were merged in not-win class along with the existing win
class. In the Letter Recognition dataset, the first 13 letters
were merged in a 0 class, and the last 13 letters were merged
in a 1 class.

B. FEATURES AND GRAPH ENCODINGS
During the training phase (See Section III-C), we extract a
graph from each decision tree of the vanilla Random Forest

FIGURE 9. Homogeneity in the adult dataset with a changing cluster
overlap percentage (perc_overlap).

for all data sets. Next, we extract features from each graph
and use the TDA Mapper to create a topological network.

We use hierarchical clustering to show the similarity of
features over trees. Although hierarchical clustering is not
used by proposed approach in the paper, we use graph features
extracted from each decision tree and pass them to the TDA
mapper. If these features are very correlated and clustered
together in the feature space, this will reduce the efficiency
of TDA mapper step as it process these features as an input.
Therefore, visualization of this clustering information is very
critical from experimental results perspective.

In Figure 8 we show the relationship between the features
where we hierarchically cluster the extracted features from
graphs. Triads are the directed 3-vertex motifs [53], and they
co-cluster well, except for triad 16, which is the strongest
(closed) trianglemotif. Unsurprisingly themedian, average in
(avgIn), and average out-degree (avgOut) co-cluster with the
triads 12 and 13, which are closed triangle motifs. However,
these degree-statistics-based features do not co-cluster with
betweenness or edge count. This behavior arises because we
one-hot encode categorical features of the data, creatingmany
vertices (i.e., new features) in the graph. Such graphs have
many edges, but they exhibit low clustering coefficients and
few connected triads.

C. TUNING FOR TDA MAPPER
We have experimented with a set of TDA Mapper param-
eters for each dataset and reached the best overall AUC
performance for n_cubes = 10, perc_overlap = 0.6 and
number_of _clusters = 5. The performance is not sensitive to
the number_of _clusters within a cube or num_cubes. How-
ever, perc_overlap determines how connected the topological
network will be. A more connected network implies more
shared decision trees between clusters. As a result, clusters
include less similar decision trees that create lower classifica-
tion homogeneity (i.e., trees vote differently on data points).

Figure 9 shows that our methods are robust against the
overlap percentage. An increasing overlap percentage low-
ers homogeneity, but the decrease is not drastic (from
0.99 to 0.89), which shows that features of decision trees
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TABLE 2. AUC of different methods using 10% of trees. Greedy Mapper AUC is, in average, 98% of the Vanilla Forest AUC.

are diversified enough to create separate clusters even when
we allow for a higher overlap. As a result, trees in a cluster
are similar and vote similarly. The high homogeneity is a
significant result because, as we show in Section IV-D it will
enable us to use fewer decision trees from a cluster but reach
similar performance in classification.

D. CLASSIFICATION RESULTS
Our experiments partition each dataset into 80% training,
10% validation, and 10% out-of-bag test subsets. We ran each
experiment 30 times, where we used random seeds to select
the partitions in each replica. A vanilla forest has been created
on the training subset in each replica. The vanilla forest has
been tested for any possible overfitting by comparing the
overall accuracy of the train and test set, which were close
to each other.

In the next step, we employ the Kepler Mapper [63],
a Python implementation of TDAMapper, with built-in visu-
alization, dimensionality reduction, and clustering options on
the vanilla forest decision trees to create and visualize our
TDA results.

We report our results in terms of ROC AUC and run-time
performance. We compared six ensemble selection strategies
with vanilla random forest. The definition of each strat-
egy is explained in Section III-E. Table 2 shows the mean
and standard deviation of AUC results over the 30 replicas.
As Table 2 shows, we find that Greedy Mapper has the
best AUC on four datasets among all ensemble selection
strategies. Greedy Mapper also loses only 2% of AUC with
significantly smaller (10x, 30 trees) Topological Forest size
compared to the vanilla Random Forest, which has 300 deci-
sion trees. In the Poker and Letter Recognition datasets,
where we have substantial class imbalances (99% and 80%,
respectively), Greedy Mapper and Q Top5 AUC are close to
the Vanilla Forest in terms of AUC,which offers evidence that
selecting the best clusters can also help with class imbalance.

We also reported the prediction quality of three random
forest policies that have 5%, 10% and 100% of decision trees
as proxy for all approaches that tune the number of decision
trees. Table 3 shows the results for randomly picking up
decision trees. Since topological forest has 10% of decision
trees, comparing these three policies gives an idea of the
upper and lower bound on prediction quality when number
of trees is purely tuned. From these new experimental results,
we find that the quality and diversity of decision trees are very
important factors in further improving the prediction quality
of random forest. As shown in Table 3, the Greedy Mapper

TABLE 3. AUC for random tree selection policies.

approach produces random forest with 10% of decision trees,
which is better than random policy that uses 10% of decision
trees.

Table 4 shows the computational cost of the inference task
from our best approach, Greedy Mapper, and the Vanilla
Random Forest when deployed on the test data. Here, the
computational cost during the inference task is defined as
the total CPU time spent for all computations, including the
cost of inference from individual decision trees. In the best
case, Greedy Mapper improves computational cost 217 times
compared to Vanilla Forest in the Adult dataset, whereas the
improvement is around 22 times for the Binary Poker dataset.
On average, Greedy Mapper reduces the inferring time on
the test data with such high values for two reasons. First, the
number of decision trees in the ensemble is reduced by 90%
or more after applying ensemble selection strategies. Second,
trees that are built on low quality features grow too complex
to fit the training data better. However, such deeper trees are
unlikely to appear in the best-performing clusters. As a result,
such trees are excluded in Greedy Mapper, contributing to
better run-time results.

We also compared the computational cost of all approaches
for the training task in Table 5. Here, the computational cost
during the training task is defined as the total CPU time spent
for all computations, including training individual decision
trees and any other downstream steps like graph encoding of
decisions trees or running the TDA Mapper. While, on aver-
age, Greedy Mapper is 4.1 times slower than Vanilla Forest
for the training task, it is 113 times faster than Vanilla Forest
in the inference task. Thus, the trade-off between the cost of
training and the computational performance in the inference
task significantly justifies the use of Topological Forest.

The efficiency of the Topological Forest is mainly related
to the computational time savings in inferral. Topological
Forest uses 10% of the trees and yields comparable per-
formance to Vanilla Forest. Furthermore, Topological Forest
performs better than the Vanilla forest in Nursery and Letter
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TABLE 4. Computational cost for inference (millisecond).

TABLE 5. Computational cost for training (second).

Recognition datasets (Table 2). In this sense, our method has
better AUC performance for some datasets as well.

V. CONCLUSION AND FUTURE WORK
We have developed an open-source implementation of our
novelMLmethod Topological Forest. Our approach builds on
a Vanilla Random Forest implementation but uses topological
methods to create a refined ensemble that has a smaller num-
ber of decision trees and better trees in the forest. On aver-
age, Topological Forest speeds up inference time by more
than 100x for a cost of at most 2% reduction in AUC. The
results of our experiments suggest that the topological forest
is considerably faster than random forest. Moreover it needs
less resources and efforts compared to neural networks.

As a future work, the capabilities of topological forest
in different machine learning tasks will be a good area of
research. We will use the topological forest in our future
research to address the distribution shift problem by devel-
oping more diverse random forest.
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