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ABSTRACT Increased electric vehicle demand and uncertain electricity generation from solar photovoltaics
lead to fluctuating and inefficient operation in the Distribution Network (DN). MicroGrids (MG) connecting
to the DN with suitable energy trading is an effective way to solve this issue. However, proper energy
trading considering grid constraints with a low computational burden is a significant challenge for solving the
Optimal Energy Management (OEM). Therefore, this paper proposes an OEM using Deep Neural Networks
developed as surrogate models to assist the Deep Reinforcement Learning Optimization for reducing the
computational burden. The proposed method is deployed to a bi-level OEM for multi-MGs connected in the
DNwith real-time pricing consideration, represented as the proposed strategy. The power system parameters
of the MG estimated by probabilistic power flow are predicted by well-trained surrogate models to mitigate
the computational time for finding the optimal solution of Deep Reinforcement Learning. To validate and
demonstrate the proposed method and strategy, the modified IEEE-33 bus system and a residential low-
voltage distribution system defined as the DN andMG, respectively are utilized. Simulation results show that
the proposed method can reduce computational burden by 89.23% compared with the Differential Evolution
algorithm. Furthermore, the proposed strategy can provide the optimal purchased energy price offered to each
MG. Also, it can decrease the total cost of DN between 0.01% to 0.44% compared with the cost estimated
by the strategies using fixed purchased energy prices.

INDEX TERMS Deep neural network, deep reinforcement learning, electric vehicle, microgrid, optimal
energy management, photovoltaics, probabilistic power flow.

I. INTRODUCTION
Many countries regard climate change and global warming
affected by internal combustion vehicle usage, especially
carbon emissions. Hence, Electric Vehicle (EV) usage is
increasingly supported by the government because it can
reduce carbon emissions in the city. However, massive EV
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integration in Distribution Networks (DN) and MicroGrid
(MG) increase electricity demand exponentially, which can
cause negative impacts on DN and MG, such as voltage
violation, and reliability problem [1], [2]. In addition, the
increased EV demand also impacts the generation planning
of electricity utility, which has to generate more power
from fossil fuel power plants, causing an increase in carbon
emissions. Therefore, it does not guarantee that increased
EV usage in DN and MG can reduce carbon emissions.
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However, Renewable Energy Resources (RERs) are increas-
ingly used for power generation, especially solar Photo-
Voltaic (solar PV) and wind turbine, which can reduce power
generation from fossil fuel power plants [3], [4].

Solar PV can generate clean energy, and its cost is contin-
uously decreasing. Therefore, the solar PV system is widely
used for power generation. In Thailand, the Alternative
Energy Development Plan 2018 (AEDP 2018) [5] created by
the ministry of energy has set the target for solar PV installed
capacity in 2037 as 9,290 MW. However, the uncertainty of
solar PV generation harms power quality issues such as volt-
age and line limit violations [6], [7]. One of the approaches
that can mitigate the issues is transforming the conventional
grid to a self-sufficient distribution system or MG. Generally,
the small power system (low or medium voltage) that has Dis-
tributed Generators (DGs), Battery Energy Storage Systems
(BESS) with the EnergyManagement System (EMS) and can
sufficiently supply its demand is developed as the MG [8].
However, only alone MG may not alleviate the negative
impacts of solar PV generation and increased EV demand.
Thus, manyMGswill group to becomemulti-MGs connected
to DN for energy exchange to sufficiently supply the demand
for both DN andMGs and to solve those negative impacts [9].
This situation can increase energy exchange between DN and
MGs, decreasing the receiving energy from the main grid.
The BESS controlled by EMS is employed for energy man-
agement in the situation. Therefore, the EMS is an important
mechanism for finding Optimal Energy Management (OEM)
solutions in DN with multi-MGs. Besides, the strategy for
EMS design is a major challenge for solving OEM problems.

For the EMS framework, there are four types of archi-
tectures of the EMS for DN with multi-MGs: centralized,
decentralized, hybrid, and nested structures [9]. Commonly,
The Distribution System Operator (DSO) and MG Operators
(MGOs) are for-profit entities. The DSO cannot access to
control the in-depth operation of MG. MGOs transfer only
necessary information to DSO, which can protect their private
information. The type is called a hybrid EMS or bi-level
EMS [10]. A bi-level EMS is very popular for the EMS
design in DN with multi-MGs. Several researchers designed
the bi- level EMS as follows: Toutounchi et al. [11] and
Haseeb et al. [12] applied a bi-level EMS to the test system
to increase power exchange between DN and multi-MGs
and to plan day-ahead and real-time frames for scheduling
energy storage devices and controllable generators in DN
and all MGs. Also, DSO tries to find a fair price for pur-
chased energy from multi-MGs. Khavari et al. [13] proposed
the bi-level EMS for energy management in multi-MGs. The
first level is modeled for maximizing MG profits under the
Point of Common Coupling (PCC) line capacity, which is
the connection points between each MG, whereas the second
level is modeled to find a fair energy price for all MGs. From
the above literature, energy trading is essential for motivating
power exchange between DN and MG. Nevertheless, the
above literature has not considered the uncertainties of RERs
generation and overall demand in the OEM.

Uncertainty factors are an essential part of EMS training
to guarantee OEM solutions. There are many uncertainty
factors in OEM problems, such as solar PV power fluctuation
and EV demand. Solar PV power is varied due to ambient
temperature and solar irradiance. In contrast, EV demand
is evaluated by the uncertainties of vehicle types, departure
time, arrival time, and daily travel distance. There are many
methods to deal with those uncertainties. In reference, [14]
author applied the budget of uncertainty method based on
the forecasted concept to deal with the solar PV power
fluctuation. Marzband et al. [15] proposed Taguchi’s orthog-
onal array testing method for considering the uncertainty
of solar PV generation, wind turbine power, and demand.
Aghdam et al. [16] and Nagpal et al. [17] adapted the chance-
constrained programming approach to adjust all device con-
straints, which can mitigate the negative impacts of RERs
and demand uncertainties. Moreover, EMS operating under
operation constraints of power system using power flow cal-
culation is essential and can guarantee the OEM solution.
However, the power system constraints were not taken into
account by the above works of literature.

The Deterministic Power Flow (DPF) is an efficient way to
evaluate AC power parameters. For example, Liu et al. [18]
and Du et al. [19] applied the path following the interior point
algorithm and the linearized optimal power flow to calculate
the DPF in the DN, respectively. Nevertheless, the DPF may
estimate the parameters with low accuracy when the system
has high uncertain parameters. A Probabilistic Power Flow
(PPF) is taken into account in several EMS research works to
solve this problem. The PPF is an iterative method relying on
a large DPF result to create probability distributions of power
system parameters. Scenario generation for DPF calculation
is an essential part of the PPF. There are many methods
for scenario generation. For example, in references [20],
[21], and [22], authors applied the PPF using Monte Carlo
Simulation (MCS) method to create the scenarios. More-
over, Srithapon et al. [23] presented Zhao’s Point Estima-
tion Method combined with Nataf transformation (PEMN).
Numerical results showed that the PEMN can provide the
parameters with a high confidence level which is used to guar-
antee OEM solutions. Also, the MCS has to generate more
scenarios than the PEMN to improve PPF accuracy. Thus,
the MCS consumes a high computational burden. However,
the DPF result of these methods is estimated by an iterative
approach such as Newton Raphson approach. If the approach
is still employed to calculate the DPF, the computational
burden may not be able to decrease.

To deal with the above problem, Machine Learning (ML)
is adopted as a surrogate model to evaluate the power param-
eters instead of the iterative approach. In references, [24]
and [25] authors developed a radial basis function and deep
belief network, respectively, as a surrogate model to predict
the power parameters. Srithapon et al. [23] proposed Deep
Neural Networks (DNNs) as the surrogate model to deal with
the problem that can decrease the OEM calculation time by
88.76%. However, the above research works only adapted the
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surrogate model to predict the parameters of a single power
system, which has not been developed for various power
systems such as multi-MGs connected in DN.

There are many numerous optimization approaches for
solving the OEM problem in DN with multi-MGs. Com-
monly, a rule-based control approach is applied to man-
age electrical energy within the DN or MG. For example,
Bogaraj et al. [26] applied the approach to schedule energy
storage devices and controllable generators, which can
provide the optimal action with low computational time.
Although the approach can reduce the computational burden
because it controls the devices using the if-else concept,
it may be trapped to the local optimum. Authors in refer-
ence [27] have proposed a Branch and Bound algorithm to
minimize energy losses, and lifetime degradation of energy
storage devices. In references, [28], [29], [30], and [31]
authors presented a new combined control algorithm based
on the mixed integer linear programming concept to solve
the OEMproblems.Moreover, metaheuristic algorithmswere
employed in the OEM task. The algorithms can solve com-
plex nonlinear problems with a high dimension of inputs and
outputs [32]. Lv et al. [33] solved the OEM problems using a
hybrid approach based on a genetic algorithm to achieve sus-
tainable DN and multi-MGs interaction. Nikmehr et al. [34]
employed the Particle Swarm Optimization (PSO) to deal
with the uncertainties of RERs and loads, and to solve the
scheduling problem. Tan et al. [35] utilized a bi-layer solution
approach, which consists of adaptive multi-objective evolu-
tionary and Differential Evolution (DE) algorithms to solve
the bi-layer OEM both DN and multi-MGs. Although many
metaheuristic algorithms have the opportunity to provide the
global optimum more than others, they consume a high cal-
culational time to solve the complex OEM problem [36].

Recently, many researchers applied Reinforcement Learn-
ing (RL) to solve OEM problems. The RL provides efficient
solutions for complex problems with low time consumption.
The RL has a training process that allows agents to inter-
act with the environment to find global decision control.
Foruzan et al. [37] employed the RL to develop the OEM
strategy without prior information. Du et al. [38] developed
the DNN as the environment to predict the behavior of DN
with multi-MGs, which can protect user privacy. The RL
was applied to minimize the demand-side Peak-to-Average
Ratio (PAR) and increase the DSO profit from selling energy.
In addition, Guo et al. [39] employed a Deep RL (DRL)
to manage the power exchange between the DN and multi-
MGs. Also, the DNN was modeled as an agent which can
interact together, learn overall solutions, and remember the
optimal solution. Numerical results showed that the DRL
can minimize the overall cost of DSO and MGOs less
than the cost obtained by metaheuristic algorithms. How-
ever, the environment needs to have excellent and quick
responses in interacting and reducing the computational bur-
den. Furthermore, the above research works do not con-
sider power system constraints and RERs uncertainties in the

optimization process. Thus, the optimal solution may violate
the DN and MGs constraints.

To deal with many limitations in the previous research
works, this paper proposes a multi-agent bi-level OEM with
Real-Time Pricing (RTP) framework using the DRL. The
proposed framework is designed following a hybrid EMS
assuming that the DSO and MGO are for-profit entities.
Deep Deterministic Policy Gradient (DDPG), one of the DRL
types, is employed to solve the OEM problem of a single
DN and three MGs. Solar PV generation and EV usage
are considered in each MG. To improve the computational
burden, MG behaviors are developed as a DNN surrogate
model. In addition, DSO and MGO behaviors are modeled
as the DNN agents and trained simultaneously. The first
level aims to minimize each MGO cost through BESS dis-
patching, whereas the second level aims to reduce the DSO
cost by proposing the purchased energy price to each MGO.
The main contributions of this paper are summarized as
follows:

1) This paper introduces the architecture of the EMS
framework with the PPF for solving the OEM problem
of a single DN with three MGs considering the impacts
of EV demand and uncertain solar PV generation,
which have not been studied in previous works.

2) The DNN surrogate model is developed for estimating
the power system parameters of each MG instead of
using PPF calculation and utilized to assist the DDPG
algorithm in discovering the optimal solution. This
method can reduce the computational burden of solving
the OEM problem. Also, the performance of the pro-
posed method is compared with one of the best tools of
metaheuristic algorithms named Differential Evolution
which was employed to solve many problems in the
past [40], [42], [43].

3) The novel bi-level OEM with real-time pricing using
DNN surrogate-assisted multi-agent DDPG algorithm
is proposed to improve the mechanism for handling the
OEM problem of a DN with three MGs under the DN
and MG operational constraints.

This paper is organized as follows: Section II presents
the description modeled of EMS framework which is
the hybrid EMS. Section III presents the probabilistic
power flow used to evaluate the power system parameters.
The problem formulation for this work is represented in
Section IV whereas Section V shows the proposed method-
ology. The simulation results and discussion are presented in
Sections VI and VII, respectively. Finally, the conclusion is
presented in Section VIII.

II. EMS FRAMEWORK DESCRIPTION
In this section, the introduction architectures of the EMS
framework for DN with the multi-MGs are described in the
first subsection. Then, the hybrid EMS framework applied to
this work is presented in the second subsection.
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FIGURE 1. The proposed EMS framework for single-DN with three-MGs.

A. ARCHITECTURES OF THE EMS FRAMEWORK
The operation of muti-MGs in networked MGs is an efficient
way to improve the reliability of the DN [44]. For the popular
EMS frameworks, there are three types of the frameworks
for DN with multi-MGs namely centralized, decentralized,
and hybrid frameworks [9]. A centralized EMS is commonly
employed for controllable networked MGs. The DSO can
control the operation of storage energy devices and con-
trollable generators of multi-MGs independently. However,
the centralized EMS cannot be applied for uncontrollable
networked MGs such as the DSO and multi-MGOs which
are for-profit entities. If two and more MGs connected in
the DN are different entities, a decentralized EMS is utilized
for this strategy. Multi-MGOs can independently manage
their demand and supply to obtain a high profit. Also, they
can generate energy trading in the DN. Nevertheless, poor
stability of the DN may occur due to the energy trading
without considering DN operation constraints. To deal with
the problem, the hybrid EMS is employed to optimize energy
trading under the DN operation constraints. Therefore, the
hybrid EMS is applied to manage the energy and create
optimal energy trading for DN with multi-MGs. The detail
is presented in the following subsection.

B. A HYBRID EMS FRAMEWORK
In this work, a hybrid EMS is applied to define the OEM
problem with the RTP. The proposed EMS framework is
shown in Fig. 1. Distribution Network (DN), supervised by

a DSO, has threeMGs. A bi-level EMS is developed using the
hybrid EMS framework. Each MG is controlled by the MGO
under solar PV and EV uncertainties. The MGO manages
electric energy within the MG through BESS control. More-
over, the MGO must coordinate with the DSO to prevent
violated situations that may occur within DN. For the role of
DSO, it controls the power flowwithin the DN and exchanges
power with MGOs in real-time. The DSO and multi-MGOs
can send/receive general information through the interac-
tion between DSO and MGO under the EMS framework to
analyze and provide the optimal decision. Even though the
energy exchange of the MG cannot be controlled directly
by the DSO, it can be motivated by proposed energy prices
using the RTP, which can increase the attention of MGOs to
exchange their energy.

III. PROBABILISTIC POWER FLOW
The DN and MG operation constraints are taken into account
in the EMS training to guarantee the OEM solution without
any constraint violations. A Deterministic Power Flow (DPF)
is an essential step of a Probabilistic Power Flow (PPF)
because the PPF is an iteration method relying on a large
DPF result to create the probability distribution of desired
power parameters. Since solar PV generation and EV usage
are integrated into each MG, which have high uncertainties,
thus the PPF is utilized to evaluate the power parameters of
MG. In contrast, the DPF is employed to evaluate the power
parameters of DN. This section explains the stochastic model
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TABLE 1. The expected EV charging probability following the time-of-use
rate [48], [49].

of the uncertainty variables for the PPF defined in the first
subsection, whereas the PPF procedure is described in the
second subsection.

A. STOCHASTIC MODELS
Uncertainty variables are an essential input to generate the
scenarios. Usually, the distribution of each uncertainty vari-
able is modeled as a Probability Density Function (PDF).
In this research work, overall demands such as home baseload
and EV demand are denoted as uncertainty variables. Also,
power generation of solar PV integrated into each MG is
uncertain. Firstly, the stochastic models of home baseload and
solar PV generation are presented. Then, the stochastic model
of EV demand is defined in this subsection.

1) HOME BASELOAD AND SOLAR PV GENERATION
Since the residential low-voltage distribution network is mod-
eled as the MG. Thus, the home baseload within the MG is
considered in this work. The baseload behavior is commonly
modeled as a normal PDF [45] which can be written as the
following equation:

f (x : µn, σn) =
1

σ
√
2π

exp
(
−
(x − µn)2

2σ 2
n

)
(1)

where f (x : µn, σn) is the normal PDF of the uncertainty
variable x whereas µn and σn are the mean and standard
deviation of the PDF, respectively.

An ambient temperature and solar irradiance are uncer-
tainty variables for evaluating the output power of solar PV.
The ambient temperature is modeled as a normal PDF similar
to the home baseload whereas the solar irradiance is modeled
as a beta PDF [45], [46]. The beta PDF can be formulated by
the following equation:

f (r : α, β) =
0(α + β)
0(α)+ 0(β)

rα−1(1− r)β (2)

where f (r : α, β) is the beta PDF of the uncertainty variable
r which is the solar irradiance (W/m2). 0is the gamma func-
tion. Then, α and β are the exponents of random variable and
control deviation, respectively.

The solar PV output power has an inherent uncertainty that
depends on the ambient temperature and solar irradiance [23],

which is expressed as follows:

Rt =


r2t / (rcrstd ) rt < rc
rt/rstd rc ≤ rt ≤ rstd
1 rt > rstd

(3)

TC,t = Ta,t + Rt (Tn − 20) (4)

PPV ,t = ηgPPV ,rRt
[
1+ αP

(
TC,t − TC,STC

)]
(5)

where PPV ,t is the solar PV output power (kW) at time
t . ηgand PPV ,r are the overall efficiency of the solar PV
generation system and the rated solar PV output power (kW),
respectively. αP is the coefficient of the output power due to
the temperature (kW/◦C) whereas TC,t and TC,STC are the
temperature of the PV cell (◦C) at time t and Standard Test
Conditions (STC) temperature (◦C) which is set as 25 ◦C,
respectively. Ta,t is the ambient temperature (◦C) at time
t . Tn denotes the nominal operating cell temperature (◦C)
which is usually set as 41 ◦C. rt and rstd denote the solar
irradiance (W/m2) at time t and the STC solar irradiance
which is commonly assigned as 1,000 W/m2, respectively.
Then, rc is a certain radiation point which is usually defined
as 150 W/m2.

2) EV DEMAND MODEL
The EV charging demand is considered in the residential
networks and evaluated based on many uncertainty variables.
The stochastic model of EV demand is constructed based on
the type of vehicle, departure time, arrival time, and daily
travel distance [18]. Based on the data from the National
Household Travel Survey (NHTS) [47], the uncertainties of
the arrival and departure times are modeled as normal PDFs.
In contrast, the daily travel distance ismodeled as a lognormal
PDF that can be written by the following equation:

f (d : µl, σl) =
1

dσl
√
2π

exp

(
−
(ln d − µl)2

2σ 2
l

)
(6)

where f (d : µl, σl) is the lognormal PDF of the uncertainty
variable d that is the daily travel distance (km) whereas µl
and σl are the mean and standard deviation of the PDF,
respectively.

However, predictive EV demand is a massive challenge
for the OEM task because EV demand is high and uncer-
tain. Hence, governments of many countries apply Time-Of-
Use (TOU) rate to decrease the uncertainty of EV charging
demand. The TOU can create several EV charging percent-
ages [48], [49] shown in Table 1. The stochastic model of EV
demand can be generated in the following steps:
Step 1: From Table 1, the number of EVs (nEV ,t ) that start

charging at time t for 24 hours is defined below:

nEV ,t = Pt · NEV t = 0, 1, 2, . . . , 23 (7)

where Pt and NEV are the expected EVs probability at time t
and the total number of EVs in the test system, respectively.
Step 2: Random EV types to label the ith EV for 24 hours.
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Step 3: Random the daily travel distance to evaluate the
required charging duration (TCHd,i) of the ith EV for 24 hours
which can be calculated by the following equation [23]:

TCHd,i =
εidi

ηev,iPr,i
(8)

where εi and di are the consumption rate (kWh/km) and daily
travel distance (km) of the ith EV, respectively. ηev,i denotes
the charging efficiency whereas Pr,i is the charger power
rating (kW) of the ith EV.
Step 4: In this work, EVs are simultaneously charged at the

rated power. From step 3, TCHd,i of each EV at time t may
require more than an hour. For 24 hours, the number of EVs
(NEV ,t ) charged at time t can be evaluated as follows:

NEV ,t = nEV ,t + nrEV ,t−1 + nrEV ,t−2 + . . . (9)

where nEV ,t denote the number of EVs from step 1 whereas
nrEV ,t−1 is the number of EVs that is not fully charged at
time t − 1.
Step 5: The Monte Carlo Simulation (MCS) is applied to

generate EV charging scenarios by repeating 10,000 times for
steps 1 – 4. Therefore, the stochastic model of EV demand is
presented through probability values which is a ratio between
NEV ,t and NEV .

B. PPF PROCEDURE
The PPF calculation is an efficient way to estimate the power
system parameters of the power systemwith high uncertainty.
In this subsection, the Nataf Transformation (NT) combined
with the Point EstimationMethod (PEM) is employed to gen-
erate DPF scenarios and evaluate the desired power parame-
ters. Thus, DPF scenario generation is described in the first
part whereas the PPF evaluation is represented in the last part.

1) DPF SCENARIO GENERATION
Random variables are necessary inputs for scenario gener-
ation. The dependence on those variables is essential for
the sampling process. Joint Probability Distribution (JPD) of
all variables is one of the models to illustrate their depen-
dence. Nevertheless, the JPD is generated using complete
statistical information which is not easy.Marginal Probability
Distribution (MPD) is an efficient way to construct the JPD
of those variables with limited information. The NT is one
of the methods to construct the JPD of random variables
using the MPD concept [50], whereas the sampling points are
determined by Zhao’s PEM [51]. Hence, the above method is
applied to create the DPF scenarios in this work, shown as
follows:
Step 1: Evaluate the Correlation Coefficients (CC) in

the Original Distribution Space (ODS) of the n input ran-
dom variables using Spearman’s Rank-order Correlation

Method [52]. The CC can be show as the following equation:

RX =


ρX ,11 ρX ,12 · · · ρX ,1n
ρX ,21 ρX ,22 · · · ρX ,2n
...

...
. . .

...

ρX ,n1 ρX ,n2 · · · ρX ,nn

 (10)

where RX denotes the CC in the ODS whereas ρX ,ij is the
correlation coefficient of the ODS input variables Xi and Xj,
respectively.
Step 2: Transfer RX in the ODS to the Correlated Nor-

mal Space (CNS). More explanation of the transfer method
can be found in [23]. The tranfer method satisfies the
following equation:

RZ =


ρZ ,11 ρZ ,12 · · · ρZ ,1n
ρZ ,21 ρZ ,22 · · · ρZ ,2n
...

...
. . .

...

ρZ ,n1 ρZ ,n2 · · · ρZ ,nn

 (11)

where RZ represents the CC in the CNS. ρZ ,ij is the correla-
tion coefficient of CNS input variables Zi and Zj.
Step 3: Evaluate the Lower triangular matrix (L) of the.

using the Cholesky Decomposition as follows:

RZ = LLT (12)

Step 4: Given m points of each input variable are sampled
in the Standard Gaussian Space (SGS) using the Gaussian
Points to estimate the mean and standard deviation of desired
output parameters. Thus, the points can be shown as follows:

Um×n =


u11 u12 · · · u1n
u21 u22 · · · u2n
...

...
. . .

...

um1 um2 · · · umn

 (13)

where Um×n is the SGS sample matrix which has m × n
dimensions, whereas uki is the SGS sample at the k th point
of the ith variable.
Step 5: Transfer Um×n in the SGS to the CNS using the

Lower triangular matrix (L) from step 3 which can be shown
in the below equation:

Zm×n = LU =


z11 z12 · · · z1n
z21 z22 · · · z2n
...

...
. . .

...

zm1 zm2 · · · zmn

 (14)

where Zm×n is the CNS sample matrix which has m × n
dimensions whereas zki is the CNS sample at the k th point
of the ith variable.
Step 6: Transfer Zm×n in the CNS to the ODS which can

be represented in the below equations [23]:

Xi = F−1 [f (Zi)] = [x1i, x2i, x3i, . . . , xmi]T (15)

Xm×n =


x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...

xm1 xm2 · · · xmn

 (16)
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where Xi is the ODS sample vector of the ith variable mapped
from Zi by using the Cumulative Distribution Function (CDF)
f (Zi) and the inverse CDF F−1 of Zi. Xm×n denotes the ODS
sample matrix which hasm×n dimensions whereas xki is the
ODS sample at the k th point of the ith variable.
Step 7: Generate the DPF scenarios based on the principle

of Zhao’s PEM which can be shown below:

S =


S1
So
...

S(m−1)n+1

 =

xk1 µx1 · · · µxn
µx1 xki · · · µxn
...

...
. . .

...

µx1 µx2 · · · xkn

 (17)

where

o = 1, 2, 3, . . . , (m− 1)n+ 1

k = 1, 2, 3, . . . ,m

i = 1, 2, 3, . . . , n (18)

where S is the DPF scenario matrix. So denotes the oth sce-
nario. xki andµi are the k th sampling point of ith input variable
and the mean of ith input variable, respectively. From the NT
with Zhao’s PEM concept, the number of scenarios S equal
to (m− 1)n+ 1 [53].

2) PPF EVALUATION
From the previous part, the S is generated by the NT with
Zhao’s PEM. Then, the evaluation of desired power parame-
ters is represented in this part.
G is defined as a structural response function of desired

power parameters in the system such as bus voltage, line
current, and real/reactive power of the transformer. Therefore,
G is represented as a function of random input variables as
follows:

Y = G
([
S1, S2, . . . , S(m−1)n+1

]T) (19)

where Y is the output vector from (m − 1)n + 1 scenarios
elevated in the G.
µy and σy are defined the mean and standard deviation

values of the output variable, respectively. These parameters
can be evaluated using the following equations [53]:

µy =

∫
G (S)f (S) dS (20)

σy =

√∫ (
G (S)− µy

)2 f (S) dS (21)

where f (S) is the JPD function of random input variables.
However, if µy and σy are calculated by using (20) and (21),
respectively, it leads to the computational burden [53]. Since
S is created by the NT with Zhao’s PEM, it can solve the
problem, decrease the number of scenarios, and provide a
high accuracy comparable with (20) and (21). Thus, the µy
and σy are evaluated as follows [23]:

µy = G
(
Sµ
)
+

n∑
i=1

[
µi − G

(
Sµ
)]

(22)

σy =

√√√√ n∑
i=1

σ 2
i (23)

µi =

m∑
k=1

wkG (Ski) (24)

σ 2
i =

m∑
k=1

wk [G (Ski)− µi]2 (25)

where G
(
Sµ
)
is the DPF result when all inputs are set to

the mean value Sµ. µi and σi denote the mean and standard
deviation values of all DPF results from scenarios created
using sampling points of ithvariable, respectively. The Ski is
the scenario created from the k th sampling point associated
with ith variable whereas other variables are set as the mean
value. G (Ski) represents the DPF result of the scenario Ski in
k th scenario. Then, wk is the Gaussian coefficient weight.

IV. PROBLEM FORMULATION
In this work, the bi-level Optimal Energy Management
(OEM) for a single DN with three MGs is proposed to
be adopted into the EMS. The bi-level OEM based on the
hybrid EMS framework is developed to minimize the overall
cost of DSO by offering the purchased energy price to the
MGOs. In contrast, the MGOs try to control the BESS to
reduce its overall cost at the same time. Moreover, AC power
parameters using both PPF and DPF calculation are subjected
in the OEM task. Therefore, this section presents objective
functions and constraints of both DSO and MGO. Also, the
bi-level OEM strategy is formulated in this section.

A. OBJECTIVE FUNCTIONS
Objective functions of DSO and MGO significantly impact
determining the direction of optimal solutions. This work
has three objective functions: exchanged energy cost, carbon
emission cost, and BESS degradation cost.

1) EXCHANGED ENERGY COST
The MGO tries to push an energy exchange between MG and
DN to minimize the net exchanged energy cost of the MGO,
whereas the DSO tries to reduce the purchased energy cost
from the main grid and multi-MGs. The MGO responds to
the purchased energy price proposed by the DSO to increase
the opportunity for its energy selling. In contrast, they man-
age energy to reduce the received energy cost following the
Time-Of-Use (TOU) rate from the DSO. The TOU of Thai-
land [54], [55] is applied in this work. The exchanged energy
cost of DSO and MGO can be formulated as the following
equations [39]:

F1,t = CTOU
maingrid,t · P

DN
t +

∑3

i=1
Cpursh
DSO,t · P

MGs
i,t (26)

f1,i,t = CTOU
DSO,t · P

MGb
i,t − C

pursh
DSO,t · P

MGs
i,t (27)

whereF1,t is the purchased energy cost ($) from themain grid
and MGs of the DSO at time t . CTOU

maingrid,t and P
DN
t denote

the TOU rate ($/kWh) of the main grid and the received
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power (kW) from the main grid at time t , respectively. f1,i,t
is the net exchanged energy cost ($) of ith MGO at time t .
CTOU
DSO,t and Cpursh

DSO,t are the TOU rate ($/kWh) of DN and
purchased energy price ($/kWh) proposed by DSO at time t ,
respectively. Then, PMGbi,t is the power (kW) that MGO buys
from DSO whereas PMGsi,t represents the power (kW) that
MGO sells to DSO.

2) CARBON EMISSION COST
Carbon emission cost is defined as the cost of capturing
carbon dioxide due to received power from the external grid.
To reduce carbon emissions, theMGO should reduce received
power from the DN whereas the DSO should decrease
received power from the main grid. In this work, the car-
bon emission rate (kg/kWh) and capturing carbon dioxide
rate ($/kg) are evaluated as the emission rates according
to [56], [57]. The carbon emission cost is formulated as a
function of the power which can be defined as follows [23]:

F2,t = Wcarbon,t · Ccapture · PDNt (28)

f2,i,t = Wcarbon,t · Ccapture · PMGbi,t (29)

where F2,t and f2,i,t denote the carbon emission cost ($)
of DSO and ith MGO at time t , respectively. Wcarbon,t and
Ccapture are the carbon emission rate (kg/kWh) and capturing
carbon dioxide rate ($/kg), respectively.

3) BESS DEGRADATION COST
The BESS is an essential element with a high investment
cost in the MG. They may have an increased end-of-life rate
with excessive use. A degradation cost can be modeled to
convey a level of end-of-life rate. The cost can be determined
according to [58]:

f3,i,t =

{
CE (SoCt )− CE (SoCt−1) PB,t > 0
0 PB,t ≤ 0

(30)

CE (SoCt ) =
Ccap
Ncycle,t

(31)

Ncycle,t = β0 × (1− SoCt )−β1 × eβ2×SoCt (32)

where f3,i,t is the BESS degradation cost ($) at time t of
the ith MG. PB,t is the BESS power (kW) at time t . If PB,t
is more than 0, BESS is discharging. Otherwise, BESS is
charging. SoCt represents the State-of-Charge (SoC) of BESS
at time t .CE (SoCt ) denotes the one-cycle degradation cost ($)
at state-of-charge SoCt , whereas the BESS capital cost ($)
is denoted as Ccap. Ncycle,t is the number of cycle life at
state-of-chargeSoCt . Then, β0, β1 and β2 are curve-fitting
coefficients.

B. CONSTRAINTS
To protect against the failure of the power system operation,
the DN and MG constraints are considered to guarantee opti-
mal solutions. The power system operation, transformer, and
BESS constraints are presented in this subsection.

1) POWER SYSTEM OPERATION CONSTRAINTS
There are two types of constraints for power flow calcula-
tion composing of equality and inequality constraints. In the
equality constraints, real and reactive power balance equa-
tions in the power system can be determined as follows [23]:

PG,i − PD,i =
Nbus∑
j=1

ViVj
(
Gij cos θij + Bij sin θij

)
(33)

QG,i − QD,i =
Nbus∑
j=1

ViVj
(
Gij sin θij + Bij cos θij

)
(34)

where PG,i and QG,i denote the real and reactive power (p.u.)
generation whereas PD,i and QD,i are the real and reactive
power (p.u.) demand at the ithbus, respectively. Vi and Vj are
the bus voltage (p.u.) at the ith and jth buses, respectively. Gij
and Bij denote the conductance and susceptance (p.u.) of the
line between the ith and jth buses, respectively. θij denotes as
the difference of the angle between Vi and Vj. Then, Nbus is
the total number of buses within the system.

For the inequality constraints, it is determined as the net-
work operation constraints as follows:

Vmin ≤ Vi,t ≤ Vmax (35)∣∣Il,t ∣∣ ≤ Imax (36)

where Vi,t is the bus voltage (V) of the ith bus at time t .
Vmin and Vmax are minimum and maximum bus voltage (V),
respectively. Il,t denotes the line current (kA) of the l th line
at time t whereas maximum line current (kA) is repre-
sented as Imax.

2) TRANSFORMER CONSTRAINTS
Overloading transformers may lead to a temperature rise. The
situation may cause the failure of insulators which can reduce
the transformer aging. Hottest-Spot Temperature (HST) is
essential factor for predictive aging of the transformer. Trans-
former loading and ambient temperature are the main factors
to evaluate the HST. Then, the HST is used to estimate the
aging acceleration factor (FAAt ) of the transformer. In this
work, the HST and transformer loading in kVA unit are
subjected to the transformer constraints. Moreover, the FAAt
also is evaluated to show the performance of the proposed
method. If the FAAt is more than 1, transformer loss of life
will increase exponentially [59]. The above constraints can
be shown as follows:

θHSx,t ≤ θ
HS
max (37)

Sx,t ≤ Sx,rated (38)
FAAx,t ≤ 1 (39)

where θHSx,t and θ
HS
max are the HST at time t (◦C) and maximum

HST (◦C) of the x th transformer, respectively. Sx,t and Sx,rated
denote the loading at time t and rated loading (kVA) of the
x th transformer, respectively. Then, FAAx,t is the aging acceler-
ation factor (h) of the x th transformer at time t .
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FAAt and θHSt of each transformer can be formulated
according to [59] as follows:

FAAt = exp
(

15000
110+ 273

−
15000

θHTt + 273

)
(40)

θHSt = θ
A
t +1θ

HT
t +1θ

TA
t (41)

where θAt is the ambient temperature (◦C). 1θHTt and 1θTAt
are winding hottest-spot temperature rise over the top-oil
temperature (◦C), and the top-oil temperature rise over the
ambient temperature (◦C), respectively. Moreover,1θHTt and
1θTAt can be estimated as follows:

1θHTt =

(
1θ

HT ,f
t −1θHTt−1

)
(1− exp(−1t/τw))+1θHTt−1

(42)

1θTAt =
(
1θ

TA,f
t −1θTAt−1

)
(1− exp(−1t/τo))+1θTAt−1

(43)

where 1θHT ,ft and 1θHTt−1 are the final and initial winding
hottest-spot temperature rise over the top-oil temperature at

time t and t − 1, respectively. 1θTA,ft and 1θTAt−1 denote
the final and initial top-oil temperature rise over the ambient
temperature at time t and t−1, respectively. τw and τo are the
winding and oil time constant, respectively. Then, 1t is time
interval (h).

The1θHT ,ft and1θTA,ft can be calculated as the following
equations:

1θ
HT ,f
t = 1θHTr k2mt (44)

1θ
TA,f
t = 1θTAr

[
k2t R+ 1
R+ 1

]n
(45)

where 1θHTr and 1θTAr are the winding hottest-spot temper-
ature rise over the top-oil temperature and the top-oil tem-
perature rise over the ambient temperature at rated loading,
respectively. kt is the ratio of transformer between loading at
time t and its rated loading. The ratio between the power loss
at full load and no load is represented as R. Then, m and n are
empirically cooling exponent parameters of winding and oil
which depended on transformer cooling mode, respectively.

3) BESS CONSTRAINTS
To extend the service life of BESS within the MG, charg-
ing/discharging power and State-of-Charge (SoC) of the
BESS should not exceed its limits. These constraints can be
shown as follows [23]:∣∣PB,t ∣∣ ≤ PB,r (46)

SoCmin ≤ SoCt ≤ SoCmax (47)

where

SoCt = (1− γ ) SoCt−1 −
Et
Ecap

(48)

Et =

{
PB,t · ηch charging
PB,t/ηdis discharging

(49)

where PB,t is the charging(-) or discharging(+) power (kW)
of BESS at time t whereasPB,r denotes its power rating (kW).
SoCt is the state-of-charge at time t . SoCmin and SoCmax
are the minimum and maximum limits of SoC, respectively.
γ is a self-discharge coefficient. Et and Ecap are BESS energy
(kWh) at time t and BESS energy (kWh) capacity, respec-
tively. Then, the charging and discharging efficiencies are
denoted as ηch and ηdis, respectively.

C. BI-LEVEL OEM STRATEGY
In this work, the bi-level OEM strategy is proposed to
achieve the objectives under the constraints in the previous
subsection. Since the Deep Deterministic Policy Gradient
(DDPG) algorithm is employed to solve the OEM prob-
lem, thus, the problem is mapped to the Markov Decision
Process (MDP) [39]. The DDPG algorithm tries to find the
optimal policy in MDP domain. Then, the MDP format for
OEM problem of MGO utilized in the first level optimization
is described in the second part. The last part, the MDP format
of DSO utilized in the second level optimization is presented.

1) DDPG WITH MARKOV DECISION PROCESS
The DDPG is a model-free machine learning that allows
an agent to interact with the environment with continuous
action for finding best decision [39]. The training process of
DDPG makes decisions automatically to achieve the Maxi-
mumCumulative Long-termReward (MCLR), which follows
the optimal policy.

In the dynamic MDP for OEM problem, the agent will
interact with the environment in a finite task. A Daily task
(24 hours) is considered in this work. Important factors taken
into account in DDPG with MDP are Current State (St ),
ContinuousAction (At ), Reward (Rt ), andNext State (St+1) at
the step t , and then (St ,At ,Rt , St+1) is stored in the memory
buffer and utilized to update the DNN weight that is embed-
ded in an agent.

There are two processes for agent training, namely
exploitation, and exploration. The processes can help the
agent to discover an optimal policy for mapping from states to
the best actions. In the exploitation, it can be described using
the following equation [39]:

V (St |π ) = E [Rt + γV (St+1 |π )] (50)

where V (St |π ) denotes the state value function used to
estimate the MCLR at the state St followed the policy π . E is
labeled to show the expected value estimation. Then, γ is the
discount factor.

However, the policyπ is not changed if the exploration pro-
cess does not apply to the training. The exploration result is
represented in the state-action value which is called Q-value.
From the agent training in the ithepisode at state St , they
will not take action following the optimal policy (πop) at
the moment but they take new action to provide maximum
Q-value and to increase the opportunity to find the new
policy which leads to discovering the best policy. Hence,
random gaussian noise N (0, σ 2

t ) is added to the action (At )
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for the exploration. The exploration rate is reduced by chang-
ing the standard deviation (σt ) using the decay rate (ϕ) as
follows [39]:

At = At + N (0, σ 2
t ) (51)

σt = e−ϕ×t (52)

Moreover, the Q-value can be formulated by Bellman
Equation as follows [39]:

Q (St ,At) = R (St ,At)+ γV
(
St+1

∣∣πop ) (53)

where Q (St ,At) and R (St ,At)is the Q-value and the reward
of the state-action pair (St ,At), respectively. V

(
St+1

∣∣πop )
denotes the state value function at the state St+1 that followed
the optimal policy πop.
One factor that determines the number of Q-values is the

number of actions. Continuous action task has a lot of actions.
Thus, the number of Q-values will increase exponentially.
Since the DDPG is applied to solve the problem, hence, the
continuous action and Q-value are predicted by using two
Deep Neural Networks (DNNs), which are called actor and
critic networks, respectively, as follows:

At ≈ Actor
(
St
∣∣θµ ) (54)

Q (St ,At) ≈ Critic
(
St ,At

∣∣∣θQ ) (55)

where Actor(St |θµ ) is the actor network for mapping
from state to optimal action using a weight set θµ. Then,
Critic(St ,At

∣∣θQ ) determines as the critic network for map-
ping from the state-action pair to the maximumQ-value using
the weight set θQ.
In the training process, the weights of actor and critic

networks are updated by applying the sampled policy gradient
and minimizing the mean square error, respectively, to find
the well-trained weight set, showing more detail in [39].
Furthermore, the target networks of the actor and critic are
created and applied to accelerate convergence and improve
the stability of DDPG learning. Their networks are generated
using the same as the actor and critic structures. Soft updating
is employed to change the weight set of the target networks.
The soft factor (τ ) is set τ � 1. Then, the weight set of
target actor (θµtar ) and target critic (θQtar ) are updated using
below equations:

θ
µ
tar ← τθµ + (1− τ )θµtar (56)

θ
Q
tar ← τθQ + (1− τ )θQtar (57)

2) FIRST LEVEL
From the objective functions and constraints of the ith MGO,
it can be mapped to state (SMGOi,t ), action (AMGOi,t ), and reward
(RMGOi,t ) in DDPG with MDP format at time t as follows:

SMGOi,t =

[
SoCi,t ,PPVi,t ,P

Tr
i,t , S

Tr
i,t ,C

TOU
DSO,t ,C

pursh
DSO,t ,

Wcarbon,t
]

(58)

AMGOi,t =

[
xBi,t
]

(59)

RMGOi,t = −

(
f1,i,t + f2,i,t + f3,i,t + PNMGO

i,t

)
(60)

PNMGO
i,t = ω

(
PNCurrent

i,t +PNVolt
i,t +PN

HST
i,t +PN

TrLoading
i,t

)
(61)

PN y
i,t = ln

∣∣∣yi,t − ymax
i,t

∣∣∣+ ∣∣∣yi,t − ymin
i,t

∣∣∣(
ymax
i,t − y

min
i,t

) (62)

where PTri,t and STri,t are the real (kW) and apparent (kVA)
power of the transformer in the ith MG at time t , respectively.
PPVi,t denotes the total solar PV power (kW) in the ith MG at
time t . PNMGO

i,t is the constraint penalty value of the ith MGO.
Line current (PNCurrent

i,t ), bus voltage (PNVolt
i,t ), the HST of the

transformer (PNHST
i,t ), and transformer loading (PNTrLoading

i,t )
are considered as the ith MGO penalty values. ω denotes as
the penalty coefficient. PN y

i,t is the penalty value of the y
parameter calculated by using (62). Then, yi,t is the parameter
value with the boundary [ymin

i,t , y
max
i,t ]. Also, each parameter of

the state fed to DNN of MGO agent is normalized within the
range of [−1, 1].

Moreover, xBi,t is charging/discharging factor of BESS
which is determined as an action variable of the ith MGO
agent at time t . The purpose of installing the BESS is to
store the remaining power from solar PV generation and
help reduce the transformer burden appropriately. Therefore,
charging or discharging power (PBi,t ) of BESS in the ith MG
at time t depend on the factor and transformer loading (PTri,t )
which can be defined as follows:

PBi,t = xBi,t · P
Tr
i,t (63)

where xBi,t has the boundary as [0, a] when a is a positive
integer.

3) SECOND LEVEL
From the objective functions and constraints of the DSO,
it can be mapped to state (SDSOt ), action (ADSOt ), and reward
(RDSOt ) in DDPG with MDP format at time t as follows:

SDSOt =

[
PTrDNt ,PTri,t , S

Tr
i,t ,C

TOU
maingrid,t ,Wcarbon,t

]
(64)

ADSOt =

[
Cpursh
DSO,t

]
(65)

RDSOt = −

(
F1,t + F2,t + PNDSO

t

)
(66)

PNDSO
t = α

(
PNCurrent

t + PNVolt
t

)
(67)

where PTrDNt denotes the DN transformer loading (MW) at
time t . PNDSO

t is the constraint penalty value of the DSO
at time t . Line current (PNCurrent

t ) and bus voltage (PNVolt
t )

are considered as the DSO penalty values only because the
DN transformer rating is large enough to supply the total
demand of the DN with three MGs. Moreover, PNCurrent

t and
PNVolt

t can be calculated by using (62). Then, α is the penalty
coefficient. Also, each parameter of the state fed to DNN of
DSO agent is normalized within the range of [−1,1].

For all the above two levels, the DDPG with MDP frame-
work can be shown in Fig. 2.
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FIGURE 2. The DDPG with MDP framework for the bi-level OEM of the single DSO with three MGOs.

V. METHODOLOGY
The OEM problem is more complex when considering
multi-level optimization. Commonly, the OEM problem is
improved by using numerical methods, leading to the com-
putational burden, especially the bi-level OEM problem.
In addition, to guarantee the global optimum, it is necessary
to consider the uncertainties of solar PV generation and over-
all demand using PPF. This situation leads to the computa-
tional burden exponentially. Opting for a robust numerical
method and increased PPF calculation speed can guarantee
the global optimum and decrease the computational bur-
den. Thus, the DNN surrogate-assisted multi-agent DDPG
algorithm is employed to solve the OEM problem in this
work.

A. DNN SURROGATE MODEL
Deep Neural Network (DNN) trained through deep learn-
ing has an impressive capability for learning complex sys-
tem behavior [60], especially the power system with high
uncertainty. Moreover, the performance of MG behavior
learning using the DNN surrogate model is guaranteed by
Xiao et al. [61] that it has good adaptability to predict the MG
behavior required high-dimension inputs and provides high
accuracy for the prediction. To mitigate the computational
burden of solving the OEM problem, DNN surrogate models
are developed and used to substitute the PPF for estimating
the power system parameters of three MGs.

1) DNN ARCHITECTURE
The DNN architecture includes an input layer, a multi-hidden
layer, and an output layer which can be shown in Fig. 3.
The multi-hidden layer is essential for deep learning, which
can remember a complex relationship of the problem. Also,
the number of neurons in each layer can be determined.
In each neuron, all inputs are multiplied by the weight set and
brought together with the bias. Subsequently, the outputs are
determined by the activation function. In deep learning, the
weight set of all neurons are updated to provide the correct
output.

2) MG BEHAVIOR GENERATION
Since deep learning is one of the supervised learning, thus
data generation for the learning is essential. The purpose of
developing the DNN surrogate model is to predict power
system parameters of eachMG instead of the PPF calculation.
Hence, the data is generated by using the PPF calculation.

Pandapower tool is an open-source power systems analysis
based on Python programming language. The data structure
of the power system can construct and import to the tool
easily. In addition, power flow results can be evaluated and
exported simply [62]. The unbalance DPF can be calculated
using the tool perfect for the PPF calculation in the low
voltage distribution system such as the MG. Also, the per-
formance of the tool is guaranteed by Thurner et al. [62],
which can improve the computational burden and accuracy
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FIGURE 3. The structure of a deep neural network (DNN) [23].

compared with MATPOWER and others. Hence, the MG is
constructed as an Actual Engineering Model (AEM) for DPF
calculation in Pandapower.

Latin Hypercube Sampling (LHS) method and the NTwith
Zhao’s PEM are applied for the MG behavior generation,
which can be shown in Fig. 4. It starts with the MG construc-
tion in the Pandapower determined as the AEM. In the second
step, the charging/discharging factor of BESS is sampled
in the feasible space to generate 1,000 scenarios per hour
using the LHS. After that, the input variables of the PPF are
imported to calculate the PPF using NT with Zhao’s PEM
for each scenario. The fourth step evaluates the mean of
desired power parameters such as maximum/minimum bus
voltage (V), maximum line current (kA), and transformer
loading in kW and kVA units at time t . Finally, the parameters
are saved to CSV files.

3) MG BEHAVIOR LEARNING
Keras Library based on Python language is the most con-
structed deep learning framework, which has many modules
available for choices, such as layer modules, optimization
modules, and activation function modules [63]. In addition,
those modules can be implemented simply. Therefore, the
DNN developed as the MG behavior is created and learned in
the Keras library. The data set of the MG behavior is divided
into two parts: training 80% and testing 20%, respectively.
The DNN configuration is set according to [23]. Root Mean
Square Error (RMSE) and R-squared are used to guarantee
the performance of the DNN leaning.

B. DNN SURROGATE-ASSISTED MUTI-AGENT
DDPG ALGORITHM
From the previous subsection, the DNN surrogate model is
developed to predict MG behavior completely. Then, in this
subsection, multi-agent DDPG algorithm is assisted by three

FIGURE 4. MG behavior generation using LHS and NT with PEM.

DNN surrogates to improve the computational burden for
solving the OEM problem.

1) THE TRAINING PROCESS
To find the best DNN weight set of the DSO and MGO
agents, the training process is essential to achieve the purpose.
Four agents, such as a single DSO and three MGOs are
trained simultaneously. The agents try to interact with their
environment to learn and remember the best control solution.

The training of the DNN surrogate-assisted multi-agent
DDPG algorithm is shown in Fig. 5. In the first step, DDPG
and DNN-agent parameters are set. Then, the purchased
energy price randomized by the DSO agent in each hour is
proposed to three MGOs. Subsequently, three MGO agents
randomly select the charging/discharging factor to evaluate
the BESS power. Next, the DNN surrogate models predict
the power system parameters by feeding the BESS power
obtained by the previous step into themodels. Also, the objec-
tive functions of each MGO are evaluated in this step. After
that, the objective and penalty values are mapped to theMGO
reward. Next, each MGO transmits the transformer loading
states to the DSO to evaluate power system parameters of the
DN using the DPF calculation in Pandapower. The objective
functions and penalties of the DN are estimated and mapped
to the DSO reward in the next step. Finally, the parameters
associated with the DDPG with MDP of each agent are trans-
mitted into its memory which is used to update the weight set
of the agent. The above steps are repeated 24 times (24 hours)
in each episode to estimate 24 rewards. After that, the rewards
of each agent are summed as the score. The average score
of each agent is calculated by using previous scores of Nep.
Subsequently, the mean of all average scores of Nagent are
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FIGURE 5. The training process for DNN surrogate-assisted multi-agent
DDPG algorithm.

estimated as the average agent score. After that, if the average
agent score at the epth is more than the average agent score
obtained by the previous episode, the weight set of all agents
is saved. Then, the episode is updated to the next episode. The
average scores of all and each agent can be formulated as the
following equations:

Savagep =

∑Nagent
j=1 Savj,ep
Nagent

, Savj,ep =

∑Nep
m=ep−Nep Sj,m

Nep
(68)

where Savagep is the average agent score of Nagent at the epth.
Also, Savj,ep denotes the average score of previous Nep of the

FIGURE 6. The testing process for DNN surrogate-assisted multi-agent
DDPG algorithm.

FIGURE 7. Single-line diagram of the modified IEEE-33 test system.

jth agent whereas Sj,m is the score at the mth episode of the
jth agent.

2) THE TESTING PROCESS
From the training, the single DSO and three MGOs behaviors
are trained to remember the OEM solution. The well-trained
weights saved from the train are loaded to the agents to con-
trol the test system appropriately which is called the testing
process. The process is shown in Fig. 6.

In Fig. 6, the process starts with the well-trained DNN
loading of all agents. Then, the optimal price for purchased
energy in each hour is proposed by the DSO agent. After that,
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FIGURE 8. The distribution of four random inputs of the PPF in MG; (a) Home baseload, (b) Ambient temperature, (c) Solar irradiation and
(d) EV demand [23].

eachMGO agent will select the optimal charging/discharging
factor of its BESS to respond to the price of the DSO. Subse-
quently, three DNN surrogate models predict the power sys-
tem parameters of three MGs and send the MG transformer
loading status to the DSO for the DPF calculation. Then, the
overall cost of DSO and MGO are evaluated and saved. The
above steps are repeated 24 times (24 hours).

VI. SIMULATION RESULTS
A. ASSUMPTIONS
1) DN AND MG DEFINITION
A low voltage distribution network in reference [23] is mod-
eled as the MG. The MG is a village that has 36 buses

and 27 households. Each household is assumed to have
solar PV, a home baseload, and two EVs. Moreover, the
BESS is installed near the transformer of the MG. There
are three MGs in this work. Maximum loads of three MG
are scaled by 100%, 50%, and 25% of the maximum load
according to [23], which are called MG1, MG2, and MG3,
respectively. Three MGs are connected to the DN through
the 100kVA, 22kV/400V distribution transformers located at
the 22nd , 33rd , and 18th buses, which is shown in Fig. 7. The
transformer specification is determined according to [23].
The IEEE 33-bus radial distribution system is modified and
used as a distribution network in this work. The electrical
elements of the DN are modified to conform to a Provin-
cial Electricity Authority (PEA) medium voltage distribution
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FIGURE 9. DN load profile [64].

network standard, such as transformer specification and line
impedance. The network is connected to the main grid
through the 50MVA, 115kV/23.1kV power transformer. All
DN peak loads are scaled by 2.7 times the original load of the
IEEE 33-buses.

In Thailand, the power system load typically peaks in
summer over four months (March - June). This situation
leads to difficulty in energy management and challenges for
the EMS design. Hence, the residential load less than and
more than 150 kWh of summer in Udon Thani, Thailand,
are modeled as load profiles of MG and DN, respectively.
The load data are provided by Provincial Electricity Authority
(PEA) [64] from 2017 – 2020. Moreover, The hourly ambient
temperature and solar irradiation data in summer over three
years (2015 – 2017) used to estimate solar PV power are
obtained from the Thai Meteorological Department [65] and
the Department of Alternative Energy Development and Effi-
ciency in Thailand [66], respectively. The rated power of solar
PV generation is determined as 5 kW for rooftop solar PV of
each home. Furthermore, the stochastic EV demand is gener-
ated using four EV types and random daily travel distance
according to [23] and [47], respectively. The home-rated
charging power of all EV types is defined as 3.3 kW whereas
the charging power factor is determined as 0.95. In this work,
all EVs are assumed to be simultaneously charged by the rated
power. To generate the stochastic EV demand, the MSC with
10,000 iterations is applied to estimate the hourly charging
probabilistic of EVs. All the above data used in the MG can
be represented through the boxplot in Fig. 8, whereas the DN
load profile is shown in Fig. 9.

Vanadium Redox Flow Battery (VRFB) is a popular bat-
tery employed to store/supply electrical energy in the power
system, especially the system with RERs generation, which
is called the commercial BESS. The VRFB can be designed
suitable for each power system with limited power and
capacity, whereas it has a low maintenance cost and a long

TABLE 2. The VRFB specification.

operational life [67]. Therefore, the VRFB is modeled as
the BESS installed in each MG. The VRFB specification,
cost parameters, and curve-fitting coefficients are determined
according to [23], [68], and [58], respectively, which are
presented in Table 2.

Moreover, the hourly carbon emission rate (kg/kWh) is
defined by the International EnergyAgency (IEA) [56]. In the
electricity sector, the capturing carbon dioxide rate ($/kg) is
evaluated using EUR 60 per tonne of carbon price benchmark
defined by the Organization for Economic Co-operation and
Development (OECD) [57].

2) STRATEGY
To demonstrate the performance of the proposed bi-level
OEM using DNN surrogate-assisted multi-agent DDPG algo-
rithm, there are four strategies in this work:

• Rule-based control strategy (the first strategy):
All BESS operations are controlled by rule-based con-
trol. In the strategy, the role of the BESS is defined as
storing the remaining power from solar PV generation
and reducing the transformer burden. The power rating
of the transformer is determined as 80 kVA, expressed
as a rule-based condition. If transformer loading is
more than 80 kVA, BESS will discharge to alleviate the
transformer burden. Otherwise, BESS will charge or not
operate. Also, the original TOU and FIT are used as
the energy selling and purchase prices of the DSO to
propose three to MGOs.

• Fixed-purchased energy price strategy (the second
strategy): All BESSs are controlled by three MGO
agents to minimize their operation costs. In contrast, the
original TOU and FIT are used as the energy selling and
purchase prices of the DSO to propose to three MGOs.

• Maximum-purchased energy price strategy (the third
strategy): All BESSs are controlled by three MGO
agents to minimize their operation costs. The original
TOU is defined as the selling energy price of the DSO.
In contrast, the TOU of the main grid is utilized as
the maximum price of possible purchased energy of the
DSO to motivate the attention of three MGOs for selling
their energy to the DN instead of purchasing energy
from themain grid. Then, the above selling and purchase
prices of the DSO are proposed to three MGOs.
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FIGURE 10. The mean hourly maximum line current, transformer loading in kW and kVA units using the DNN surrogate model and the PPF in AEM using
Pandapower; (a) – (c) BESS factor is 0.0, (d) – (f) BESS factor is 0.5 and (g) – (i) BESS factor is 0.8.

• Optimal-purchased energy price strategy (the proposed
strategy): All BESSs are controlled by three MGO
agents to minimize their operation costs. The original
TOU and the real-time FIT submitted by the DSO agent
are utilized as the energy selling and purchase prices of
the DSO which are proposed to three MGOs.

B. PREDICTIVE PERFORMANCE OF THE DNN
SURROGATE MODEL
To verify the accuracy performance of DNN surrogatemodels
used to predict the power system parameters of MG, the
performance of the models is compared with the PPF cal-
culation using NT with Zhao’s PEM in the AEM. Spyder
program based on Python language is utilized to develop
the models, whereas the PPF is calculated according to sce-
narios generated by NT with Zhao’s PEM using unbalanced
power flow in the Pandapower library. A personal computer
is used to run the above process. The computer specification
consists of Intel(R), Core (TM) i7-8700, CPU 3.20GHz, and
16.0GB RAM.

The mean hourly power parameters of MG2 are used to
verify the accuracy performance, which is tested using three

different BESS factors. Some parameters, such as hourly
maximum line current (kA) and hourly transformer loading in
kW and kVA units, are shown in Fig. 10. TheMG2 parameter
estimation results are represented in Table 3. The results show
that the maximum absolute errors that occur in 24 hours of
all parameters using the DNN surrogate model are less than
1% compared with the PPF in AEM using the Pandapower.
Moreover, the computational time of the PPF in AEM varies
from about 63 – 66 seconds, whereas the DNN surrogate
model is only 4 seconds, reducing the computational time by
about 93%.

C. DNN SURROGATE-ASSISTED DDPG VERIFICATION
From the previous subsection, the DNN surrogate models can
provide high accuracy and exponentially decrease the com-
putational time for evaluating the power system parameters.
To deal with the computational burden of the optimization
task, the DNN surrogate model has assisted the optimiza-
tion algorithm. In this work, the DDPG algorithm with the
DNN surrogate model is applied to solve the OEM problem,
which is represented as the proposed method. Moreover, the
Differential Evolution (DE) algorithm, guaranteed as one of
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TABLE 3. The comparison of maximum absolute errors and computational times between the DNN surrogate model and the PPF using Pandapower.

TABLE 4. The TOU rates for MG and DN [54], [55].

TABLE 5. The performance of DE and DDPG.

the best tools of metaheuristic algorithms and employed to
solve many problems according to [40], [41], [42], and [43],
is applied with the DNN surrogate model to verify the perfor-
mance of proposed method.

TheMG2 ismodeled as the test system for the optimization
task and is only one MG connected to the DN. The TOU
and FIT rates are fixed as shown in Table 4 [54], [55] and
0.0014 $/kWh [69] for every hour, respectively. Exchanged
energy cost, carbon emission cost, andBESS degradation cost
are modeled as the objective functions. For the DDPG param-
eters, the actor and critic networks have two hidden layers and
400 neurons in each layer. The actor and critic learning rates
are 0.005 and 0.02, respectively. The soft factor is defined
as 0.005, whereas 0.9 is assigned as the discount factor
value. Also, the decay rate is 0.002. For the DE parameters,
A population size is set to 10. Scaling factor and crossover
rate are defined as 0.5. Furthermore, the fitness value is
defined as the sum of all objective and penalty values in
24 hours. The fitness values are evaluated 10 times using
100 episodes per time. From the above condition, the per-
formance results can be shown in Fig. 11 and Table 5,
respectively.

In Fig. 11, the results show that the fitness value using
the DE varies from about 58 – 65, whereas the fitness
value using the DDPG varies in a narrow range from about

FIGURE 11. The distribution of fitness values using DDPG and DE.

59 – 63 compared with the DE. In Table 5, the median of all
fitness values obtained by the DDPG is more than the DE
but does not exceed 2%. However, the DDPG can decrease
computational time by about 89% compared with the DE.
Therefore, the above result can guarantee the accuracy of the
DDPG and significantly reduce the computational burden.

D. THE BI-LEVEL OEM USING DNN SURROGATE-ASSISTED
MULTI-AGENT DDPG ALGORITHM
From the previous subsections, the DNN surrogate-assisted
DDPGoptimization can improve accuracy and computational
burden for solving the OEM problem of a single MG. Here-
after, the proposed method is applied to improve the perfor-
mance of the multi-agent optimization for solving the bi-level
OEM problem within a single DN with three MGs. There-
fore, DNN surrogate-assisted multi-agent DDPG algorithm
is proposed to reduce the computational burden. Also, it is
applied in the last three strategies to solve the problem and to
discover the best strategy for this work. There are three DNN
surrogate models that are developed to predict power system
parameters of three MGs in multi-agent DDPG optimization.
Furthermore, the performance of OEM with RTP presented
as the proposed strategy is compared with the first three
strategies shown in beginning of this subsection.
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FIGURE 12. The average agent score of the three strategies, (a) Second
strategy, (b) Third strategy and (c) Proposed strategy.

In the first strategy, all BESS are controlled using the
rule-based control strategy whereas they are controlled by
three MGO agents designed to follow the DDPG concept in
the last three strategies. In the second and third strategies,
only three MGO agents handle three BESS, whereas DSO
is responsible for ensuring the operation constraints of the
DN. However, the DSO agent can generate and propose the
purchased energy price to three MGO agents in the fourth
strategy (the proposed strategy). The DDPG parameters of

each agent are set the same as in the previous subsection, but
the maximum number of episodes is determined as 2,000.
The average agent score of the last three strategies can be
shown in Fig. 12. Numerical results show that the average
agent score will converge to the best value approximately
in the 300th episode for all the above strategies. However,
the training will continue until it discovers the well-trained
weight set of all agents. In the last three strategies, the well-
trained weight set is saved about the 1700th, 1900th, and
500th episodes, respectively. The best score of the third strat-
egy is more than the score obtained by the second strategy.
Thus, the overall cost of the MGO can reduce more when
applying the purchased energy price as the TOU of the
main grid. Furthermore, the results of the second and third
strategies cannot compare with the fourth strategy because
the average agent score provided by the proposed strategy
is calculated from four agents (three MGOs and a DSO).
In contrast, it is estimated from three agents (three MGOs)
in the second and third strategies. However, the comparison
results of all strategies are shown in the testing result.

In the testing process, well-trained weight sets are loaded
into all agent models to control the system in the last three
strategies, not including the first strategy. For the testing
results, the power state and state of charge of BESS, and
parameters of the transformers can be presented in Fig. 13 and
Fig. 14, respectively. In Fig. 13, it shows that surplus power
(negative red color) stored in the BESS of MG3 is not dis-
charged to reduce the transformer burden when applying
the first strategy because the normal baseload of the trans-
former does not exceed 80 kVA. Also, the BESS of MG2
only discharges the power to decrease the transformer burden
sometimes. Thus, the surplus power of the above MGs is not
utilized as expected, whereas it is completely discharged to
reduce the transformer burden in MG1. Nevertherless, the
surplus power is not adequate to decrease the transformer
burden ofMG1when applying the first strategy, which causes
the transformer limit violation such as transformer overload-
ing, HST violation and increase of aging acceleration factor
during certain hours like Fig. 14. For the last three strategies,
the well-trained weight sets are loaded into all agents to
schedule the charging/discharging power of the BESS in all
MGs appropriately. Also, it can prevent violation problems in
the transformer of MG1, as shown in Fig. 14. Nevertheless,
the above strategies have different BESS dispatch in some
MGs. Still, the BESS dispatch in MG1 has a similar oper-
ation when employing the above three strategies. The total
amount of surplus power within MG1, which is stored in the
BESS, is not enough for supplying to assist the transformer
loading reduction, as noticed in Fig. 13(b). Hence, in the last
three strategies, the power is drawn into MG1 through the
transformer during the surplus power period (07.00 – 14.00)
to charge the BESS with the surplus power. This situation
causes the charged energies of BESS to be more than the
energies due to applying the first strategy.Moreover, applying
the last three strategies can protect the violation scenarios of
the MG1 transformer limitation, as represented in Fig. 14(d)
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FIGURE 13. The power state and state of charge of BESS in each MG; (a) – (d) First strategy, (e) – (h) Second strategy, (i) – (l) Third strategy and
(m) – (p) Proposed strategy.

to Fig. 14(l). For the difference in BESS dispatch, the charged
energies in BESSs of MG2 and MG3 in the second strategy
are more than the energies due to applying the third and pro-
posed strategies, which can be noticed from an increased SoC
on the charging period (07.00 - 15.00) in Fig. 13(e). Addition-
ally, the charged energies of BESSs in MG2 and MG3 are
not completely discharged which causes a daily unbalanced
charging and discharging energy situation noticed from the
end SoC. However, the problem is improved when the DSO
offers the purchased energy price using the TOU of the main
grid (third strategy) and the price presented by the proposed
strategy, as noticed from the end SoC of MG2&MG3 BESS
in Fig. 13(i) and Fig. 13(m).

In addition, the BESS is almost dispatched every hour
when applying the second strategy, as shown in Fig. 13(g)
and Fig. 13(h). In contrast, it is used at certain hours when
employing the third and proposed strategies observed from
MG2 & MG3 power states plotted in Fig. 13(k), Fig. 13(l),
Fig. 13(o), and Fig. 13(p). Thus, the BESS degradation cost
in the second strategy is more than the third and proposed
strategies, as shown in Fig. 15.

The overall cost of each MG is shown in Fig. 15.
In the last three strategies, the overall costs of MG1 have

a similar value. This situation is a consequence of the limited
surplus power and increased demand within MG1. The BESS
can not be dispatched for energy trading, but it is controlled
to decrease the transformer burden only. Hence, the injected
energy cost is equal to 0$ per day. In contrast, MGO2 and
MGO3 agents try to control the BESS for energy trading to
minimize the overall cost. Employing the third and proposed
strategies can motivate the MGO2 and MGO3 to inject an
amount of energy into the DN more than the second strategy,
presented in Fig. 16. For MG2 and MG3, although the drawn
energies and the drawn energy costs in the third and proposed
strategies are more than the second strategy, the net energy
cost of those strategies is still less than the second strategy.

The overall costs of DSO are presented in Table 6. The
results show that the carbon emission costs of all strategies
have approximately the same value which is 83$ per day.
The purchased energy costs from the main grid in the third
and proposed strategies are roughly the same. Also, they are
less than the first two strategies. For the first strategy, the
purchased energy cost from the main grid is high because
the surplus energy within MG2, andMG3 does not inject into
the DN observed from the SoC in the first strategy plotted in
Fig. 13(a). Thus, the DSO greatly receives power from the
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FIGURE 14. The parameters of each MG transformer; (a) – (c) First strategy, (d) – (f) Second strategy, (g) – (i) Third strategy and (j) – (l) Proposed strategy.

main grid. Moreover, the purchased energy costs from three
MGs are equal to 0$ per day in this strategy, whereas it is
increased to 3.50$ per day in the second strategy. Neverthe-
less, the purchased energy costs from the main grid in the
first and second strategies are still high. In contrast, it can be
reduced to about 9,011$ per day when employing the third
and proposed strategies. The purchased energy cost from
three MGs is still increased when applying the third strategy
because the purchased price submitted to three MGOs is
exponentially higher than the original FIT, which increases
the total cost of DSO to about 9,158$ per day.

Furthermore, the purchased energy price presented by the
DSO agent in the proposed strategy is lower than the third
strategy, as shown in Fig. 17, where it can attract the atten-
tion of MGO2 and MGO3 to inject their energies into the
DN approximately equal to the third strategy noticed from
injected energy in Fig. 16. Therefore, the total cost of DSO
when employing the proposed strategy decreases from about
9,158$ to 9,117$ per day compared with the third strategy,
which is the lowest cost in this work. Also, the proposed
strategy can decrease the total cost between 0.01% to 0.44%
compared with the cost provided by the first three strategies.

VII. DISCUSSION
The heavy computational burden and performance of the
EMS for solving the OEM problem within single DN with
multi-MGs, especially dealing with the uncertainty of RERs
generation and DN&MG system constraints, is a significant
problem that should be improved. Thus, MG behavior devel-
oped as a DNN surrogate model is applied to mitigate the
computational time due to the PPF calculation. According to
the verified results in Table 3, the DNN surrogate model can
guarantee the high accuracy of the predicted MG parameters.
The results show that the maximum absolute errors that occur
in 24 hours of all parameters using the DNN surrogate model
are less than 1% compared with the PPF in AEM. Moreover,
the performance of the DNN surrogate-assisted DDPG algo-
rithm (proposed method) is improved and compared with the
DNN surrogate-assisted metaheuristic algorithm, as shown
in Fig. 11. The proposed method can approximately pro-
vide optimal solutions and reduce the computational burden
to 89.23%, as shown in Table 5. Therefore, the proposed
method is guaranteed from the above result that can improve
performance and decrease the computational burden of the
OEM task.
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FIGURE 15. Overall energy cost per day of each MG: (a) Second strategy,
(b) Third strategy and (c) Proposed strategy.

FIGURE 16. Drawn and injected energy per day of each MG; (a) Second
strategy, (b) Third strategy and (c) Proposed strategy.

TABLE 6. The comparison of DSO costs per day in four strategies.

The DNN surrogate-assisted rule-based control is consid-
ered in the first strategy. In addition, the DNN surrogate-
assisted multi-agent DDPG algorithm is applied to solve

FIGURE 17. The purchased energy price for three MGOs.

the OEM problem in the last three strategies. Results in
Table 6 demonstrate that the proposed strategy can reduce the
overall cost of the DSO to about 9,117$ per day. The proposed
strategy can motivate the MGO agent to inject power into the
DN more than or equal to the other strategies under DN and
MG operation constraints. Also, it can provide a minimum
the total cost of the DSO compared with other strategies.
In Fig. 14, threeMGO agents under the proposed strategy can
control the BESS to prevent transformer limit violation, over-
limit of HST, and increased leaps of aging acceleration factor
during certain hours. Furthermore, the BESS controlled by
the MGO agent in the proposed strategy is managed and used
correctly, as represented in Fig. 13, which causes a decrease in
the BESS degradation cost. Therefore, the above results can
confirm the proposed strategy as an efficient way for DSO
to submit the purchased energy price to multi-MGOs, which
canminimize the purchased energy and carbon emission costs
of DSO.

VIII. CONCLUSION
This work presents the EMS frameworks for the DN with the
multi-MGs framework to minimize the overall cost of
the DSO. Two objective functions for DSO are minimiz-
ing the purchased energy and carbon emission costs. In con-
trast, the exchanged energy cost betweenMG andDN, carbon
emission cost, and BESS degradation cost are modeled as
MGO objective functions. The DNN surrogate models are
developed to estimate the power system parameters of multi-
MGs that reduces the computational burden considering the
probabilistic power flow. The DDPG algorithm is guaranteed
as a robust optimization approach and employed to improve
the performance of OEM tasks within a DN with three MGs,
considering the uncertainties of the solar PV and increased
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EV demand integrated into each MG. The purchased energy
price based on real-time pricing is proposed using DNN
surrogate-assisted multi-agent DDPG algorithm to minimize
the overall cost of the DSO. The OEM problem is mapped
to the DDPG with the Markov decision process to create the
environment for agent interaction. In addition, the DNN is
developed as the DSO and MGO agents to interact with the
environment, which leads to discovering the optimal solution
for OEM solving. The BESS installed in eachMG is properly
controlled by the MGO agent to deal with solar PV and
EV uncertainties and to minimize the overall cost of MGO.
Moreover, three DNN surrogate models predict the mean
of three MG power parameters to guarantee the decision of
MGO agents instead of applying the probabilistic power flow
usingNTwith Zhao’s PEM in the actual system. Also, the DN
operation constraints are confirmed using the deterministic
power flow. The modified IEEE 33 bus distribution network
is modeled as a distribution network, and a residential low-
voltage distribution system at Udon Thani in Thailand is
modeled as three MGs.

The numerical results show that the DNN surrogate model
can provide an error for MG power parameters prediction
lower than 1% compared with the results using the proba-
bilistic power flow in the actual system. Moreover, the DNN
surrogate-assisted DDPG algorithm can provide the optimal
solution close to the solution obtained by the DE and decrease
the computational burden by 89.23% compared with the DE.
The DNN surrogate-assisted multi-agent DDPG algorithm
proposed in this work can generate the optimal purchased
energy price, control the BESS appropriately, and prevent
transformer limit violation. Also, the proposed strategy can
obtain the lowest cost of DSO by about 9,117$ per day
and track MGO behavior to inject more energy into the DN
and close to the energy provided using a higher purchase
price. From the above results, the DNN surrogate-assisted
multi-agent DDPG algorithm can decrease the computational
convergence time for solving the optimal energymanagement
task in the DN with multi-MGs.

Besides, wireless communication technologies and electric
elements are continuously developed. This scenario leads to
applying the real-time pricing strategy for managing energy
within the power system, especially the DN with multi-MGs.
Also, the OEM with the real-time pricing strategy needs to
rely on the optimization approach that can provide the deci-
sion accurately and quickly. DNN surrogate-assisted multi-
agent DDPG algorithm is one of the optimization approaches
that have a good capability for improving the computational
burden in OEM solving with a real-time pricing strategy.
Furthermore, the well-trained weight set of all agents can
be easily updated by adding modified power systems data to
the environment, which they are learned more about through
the DDPG training process. In contrast, the DNN surrogate
model can still easily learn more to correct the changed
behavior of MG through deep learning. Therefore, the DNN
surrogate-assisted multi-agent DDPG algorithm can apply to

future studies on optimal energy management tasks in a large
and complex energy system.
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