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ABSTRACT Federated learning (FL) goes beyond traditional, centralized machine learning by distributing
model training among a large collection of edge clients. These clients cooperatively train a global, e.g.,
cloud-hosted, model without disclosing their local, private training data. The global model is then shared
among all the participants which use it for local predictions. This paper proves that FL systems can be
turned into covert channels to implement a stealth communication infrastructure. The main intuition is that,
during federated training, a malicious sender can poison the global model by submitting purposely crafted
examples. Although the effect of the model poisoning is negligible to other participants and does not alter
the overall model performance, it can be observed by a malicious receiver and used to transmit a sequence
of bits. We mounted our attack on an FL system to verify its feasibility. Experimental evidence shows that
this covert channel is reliable, efficient, and extremely hard to counter. These results highlight that our new

attacker model threatens FL infrastructures.

INDEX TERMS Federated learning, adversarial attacks, machine learning security, covert channel.

I. INTRODUCTION

Federated learning (FL) [48], [49] has emerged as the lead-
ing technology for implementing distributed, large scale and
efficient machine learning (ML) infrastructures. The main
idea is that multiple clients connect to the FL system, and
collaboratively train a shared, global model. Frequently FL
networks consist of a centralized, e.g., cloud-hosted, server
and many edge clients that iteratively run FL rounds. Each
round consists of the following steps.

1) The server sends the current, global model to the clients
and appoints some of them for training.

2) Each selected client locally trains its copy of the global
model with its own private data. Then it sends the
resulting local model back to the server.

3) The server updates the global model by applying an
aggregation function to the local models of the clients.
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FL allows clients to concurrently train a shared global
model, without disclosing private training data. Hence,
FL provides great benefits in terms of both scalability and
privacy. Since this process smoothly integrates with ubig-
uitous, distributed infrastructures, it has been applied to
IoT [77], Fog computing [84], autonomous vehicles [61],
smartphones [81], and wearable devices [15]. Thus, nowa-
days, billions of devices are connected to one or more FL
systems.

The growing adoption of FL also raises security concerns,
for instance, about the confidentiality, integrity, and avail-
ability of FL systems. As a consequence, several authors
considered attack scenarios such as data poisoning, where an
adversary pollutes the training set with maliciously crafted
examples [32], and model poisoning, in which the attacker
directly attempts to tamper with the global model parame-
ters [6]. Also, a large body of work deals with privacy leakage
that may expose the local data of some clients [50]. However,
very little research has been done for studying the emerging
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exploitation opportunities, i.e., new attacks carried out by
means of FL systems.

In this paper, we discuss a recent attack scenario that
we originally reported in [16]. Briefly, it consists of an
adversary implementing a covert channel [37] over an FL
system. Covert channels allow an attacker to establish illicit
communication between two agents (e.g., two devices) that
should stay isolated. In theory, since no trust relationship
exists among the clients, FL should not be intended to support
the creation of covert channels. In practice, being shared
among the participants, the global model can be turned into
a communication channel. More specifically, two FL clients,
i.e., a sender and a receiver, can agree on an aimed poisoning
strategy that allows them to transfer one bit. In this way, they
exploit the global model updates as a physical communication
medium.

We start by describing our attacker model and the covert
channel implementation strategy. Our attacker only requires
limited capabilities and, thus, it appears very realistic. As a
matter of fact, communications are established by poisoning
the training set of a single client, i.e., the sender. Poisoned
examples are crafted by modifying benign input examples
through simple, effective and efficient heuristics.

We show how to implement our attack on an FL system,
where clients collaboratively train a global model to recog-
nize handwritten digits of the popular MNIST dataset [39].
In our FL system, private training data is represented by
a subset of the MNIST dataset that is randomly assigned
to each client. Such an implementation is often given as a
template of a generic FL system in official tutorials.' Also,
we demonstrate the feasibility on another image recognition
task, i.e., for the CIFAR-10 dataset [36].

Our experiments highlight that FL-based covert channels
are an actual threat that, to the best of our knowledge, has
been neglected so far. Moreover, we show that channel per-
formance in terms of capacity and quality can support real
communications. Since parallel covert channels can exist in a
single FL system, the channel bandwidth can also scale up.
Finally, experiments confirm that covert channels imple-
mented in this way are hard to detect and counter.

The main contributions of this paper are listed below.

« A novel attacker model for FL-based covert channel.
o A general attack implementation strategy.

« A prototype applied to image classification tasks.

« Experiments on the performance of the channels.

« A discussion of possible mitigation mechanisms.

The rest of the paper is organized as follows. Section II
describes the main background concepts used in this work.
In Section III, we revise the literature about FL security and
application-level covert channels. Section IV introduces our
attacker model, and Section V details the implementation of
the covert channel. In Section VI, we describe the properties
of our covert channel. Section VII presents our experiments.

TFor example, see https://www.tensorflow.org/federated/tutorials/
federated_learning_for_image_classification

VOLUME 10, 2022

In Section VIII, we discuss detectability, countermeasures,
and exploitability. Finally, Section IX concludes the paper.

Il. BACKGROUND
In this section, we provide the reader with the essential con-
text needed to understand the subject of this work.

A. MACHINE AND FEDERATED LEARNING

We consider the supervised learning task as the reference
example of a typical ML problem. The goal of supervised
learning is to estimate a function that maps an input to an
output, based on a sample of observed input-output pairs,
called examples, which is usually referred to as training set.

More formally, let D = {(x;, y;)}?_; be a training set of
n examples. Eachx; € X C R4 is a d-dimensional vector
of features representing the i-th input and y; € ) is its
corresponding output value. Here, we focus on classification
problems where )V = {I1,..., ¢} and each y; is known as
the class label (as opposed to regression problems where
Y c R).

Supervised learning assumes the existence of an unknown
target function g : X +— ) that maps any feature vector to
its corresponding output. The goal is therefore to estimate a
function m*, namely a parametric model, that best approx-
imates g on D. More specifically, the optimal parametric
model m* is the one that minimizes the value of a loss function
L, which measures the cost of replacing the true g with m*
on the training set. In other words, learning m* reduces to the
following optimization problem, also known as empirical risk
minimization (ERM) [74].

m* = argmin,, L(m, D) )

Depending on the supervised learning task, different loss
functions can be adopted. For example, cross-entropy is com-
monly used for classification [52], whilst mean squared error
is typically employed in regression settings [29].
The standard framework above assumes that the actual
training procedure, i.e., the optimizer used to solve (1), runs
on a centralized location where the whole dataset D is stored.
In the case of FL, instead, the learning process is distributed
among several clients that collaboratively train a shared,
global model with a centralized server acting as an orchestra-
tor. Thus, the FL framework consists of a centralized server S
and a set of distributed, federated clients C, such that |C| = n,.
Each client ¢ € C has access to its own private training set D,
namely the set of its local labeled examples.
The generic ¢-th round of FL runs the following steps.
1) S sends the current, global model m") to every client
and selects a subset C") C C, such that 1 < |C?| < n,.

2) Each selected client ¢ € C® trains its local model
mg) by optimizing the same objective of (1) on its own
private data D, starting from m"); the resulting m(ct) is
sentto S.

3) S computes m+D = p({m” | ¢ € C1}) as the updated
global model, where ¢ is an aggregation function
(e.g., FedAvg [48] or one of its variants [43]).
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FIGURE 1. Binary memoryless covert channel.

In the beginning, m®) may be randomly initialized. Then,
FL rounds as the one described above are iteratively executed
until convergence of the global model, i.e., until r = T such
that m™) = m*. In practice, though, many FL models are
continuously trained due to the highly dynamic nature of the
infrastructure (e.g., new clients joining or leaving the system
and fresh local data generated over time).

To simplify the notation, in the following we refer to m as
the global model and to m, as the local model of client c.
Furthermore, we call m(x) =y € Y (resp., m.(x) = y. € ))
the global (resp., local) model prediction on input x.

B. CHANNELS AND COMMUNICATION QUALITY

In this paper, we are interested in binary memoryless channels
(BMC) [47]. Briefly, an BMC has discrete input b and output
b’ such that b,b’ € {0, 1}. We describe the relationship
between channel’s input and output through the conditional
probability P(b|b), where b = {0, 1}. Figure 1 depicts a
generic BMC in which P(1|0) = p; and P(0|1) = p» are the
probabilities for input/output bit inversion errors. Thus, their
complements give the probability of receiving the correct bit,
e.g., P(0|0) = 1 — p;. For a BMC, the channel capacity
C is the maximum communication rate that the sender and
receiver can reach over the channel. Following [47], C is
computed as

P
€ = maxI(x ) = Y PP log (%) @)

xeb
yeb

where I(x; y) is the mutual information between the input x
and output y. From (2), we obtain the channel capacity as

1
C=1+)Y 5 Pi+ (1= p)logy(1 = pi))
i=1,2
H(@p)) H@pi1) Hp)
-y e NG
i=1,2 2 2 2

where H is the binary Shannon entropy function.
Communication quality is typically measured in terms of
bit error rate (BER) and signal-to-noise ratio (SNR). In gen-
eral, BER is obtained as the number of bit inversions, e.g., due
to channel noise, over the total number of transmitted bits.
Instead, SNR is defined as the ratio of signal power to the
noise power, i.e., s> /n”, where s is the channel signal and n is
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the noise. In general, when signal and noise are modeled by
means of two random variables, called S and N respectively,
we have that s> = E[SZ] andn? = E [N2], where E[-] denotes
the expected value. Moreover, when N has zero mean, i.e.,
E[N] = 0, n? reduces to 0> = Var(N) = E[N?] — E[N]?,
that is E[N?] is equal to the variance of N.

IIl. RELATED WORK

The attacker model presented in this paper was originally put
forward in our previous work [16]. Subsequently and inde-
pendently, the very same attacker model was also reported
in [30]. There the authors implement a spread spectrum overt
channel via model poisoning. Their work confirms the rel-
evance of our attacker model and outlines that there exist
multiple exploitation techniques that real attackers can even
combine.

To the best of our knowledge, our attacker model is not
listed among the security challenges of FL, e.g., see [35].
In the following, we revise some related work about adver-
sarial attacks to ML, and application level covert channels
which are closer to our proposal.

A. ADVERSARIAL ATTACKS TO ML

There exists a large body of work investigating the security
of both traditional, i.e., centralized, and federated ML against
so-called adversarial attacks [9], [17], [25], [31], [33], [44],
[53], [60], [72]. Adversarial attacks can have different targets.
For instance, model inversion attacks [21], [22], membership
inference attacks [50], [62], [66], and property inference
attacks [2], [24] aim to violate the confidentiality of user’s
private training/test data. Also, an attacker can compromise
the confidentiality/intellectual property of a model provider
by stealing its model parameters and hyperparameters [41],
[73], [75].

From this perspective, our attacker model belongs to
adversarial attacks that tamper with the integrity and the
performance of a predictive model [4]. These attacks are
classified according to the stage(s) of the ML pipeline in
which they occur. In particular, attacks can happen at training
time only, both at training and at test time, or at test time only.
Those are called poisoning, backdoor, and evasion attacks,
respectively.

From another viewpoint, depending on the attacker’s goal,
adversarial attacks can be further classified as untargeted (or
random) [8], [32], [40], [63], [78], [80] or targeted [1], [28],
[54], [65]. The former aims to reduce the overall accuracy
of the learned model at inference time, regardless of what
specific testing examples get incorrectly classified. The latter
forces the learned model to output attacker-desired labels for
certain testing examples, e.g., predicting spam messages as
non-spam, while not altering the output for other examples.
Since targeted attacks have to do with a specific goal, they
usually require the attacker to have rather strong capabilities.

In the following, we provide a detailed overview of the
most prominent adversarial attacks.

VOLUME 10, 2022
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1) POISONING ATTACKS

To compromise the performance of a predictive model, poi-
soning attacks can target two components of the training
stage, i.e., the training dataset and the learning process. The
former are known as data poisoning attacks [8], [20], [31],
[32], [54]. The latter are referred to as model poisoning
attacks [6], [19].

a: DATA POISONING

These attacks pollute the training dataset by injecting it with
new malicious examples or by corrupting existing ones. There
are two main types of data poisoning attacks, called (i) clean-
label [65] and (ii) dirty-label [27], respectively. In clean-
label poisoning attacks, the adversary has no control over the
labeling process. The attacker simply injects a small number
of slightly perturbed examples (whose labels remain correct)
into the training set of the victim. These attacks have been
proven effective only when the attacker has complete knowl-
edge of the victim’s model, i.e., under white-box assump-
tion [60]. Such knowledge is needed to craft the malicious
examples [69]. More recently, clean-label poisoning attacks
for unknown, i.e., black-box [58], deep image classifiers have
been explored [85].

In dirty-label poisoning, the adversary can introduce a
number of training instances to be misclassified with a spe-
cific label in a targeted way. An example of dirty-label poi-
soning is the label-flipping attack [8], [23]. Here, the labels of
honest training examples of one class are flipped to another
class, while the features of the data are kept unchanged. For
instance, a malicious agent can poison the training set of a
handwritten digit recognition system by flipping all 1s to 7s.

In the FL setting, it is common to assume that the attacker
controls some clients and their training sets. Thus, dirty-label
attacks have been more often considered. In [72], the authors’
study targeted label-flipping attacks on FL. They find that
poisons injected late in the training process are significantly
more effective than those injected early. Other proposals
adopt a bi-level optimization approach for poisoning multi-
task FL [70] and GAN-generated poisons [83].

b: MODEL POISONING

Different from data poisoning attacks, these attacks threaten
the learning process directly, e.g., by changing some model
parameters. Model poisoning is generally perceived as diffi-
cult to implement in centralized ML systems as it requires
the adversary to access the target model, i.e., assuming either
grey-box or white-box knowledge. On the other hand, model
poisoning becomes rather feasible in the case of FL, where a
malicious client has direct influence over the jointly-trained
global model via its local parameters updates [6], [19], [45].
As with any poisoning attack, the adversary’s goal is to cause
wrong predictions of the FL. model. However, she/he aims to
force classification errors at inference time and without modi-
fying test examples. In this respect, it is opposed to backdoor
and evasion attacks (which are discussed below). In model
poisoning, the misclassification results from the adversarial
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corruption of the training process, which can be achieved
either by gradient or learning rule manipulation. In gradient
manipulation, the adversary poisons local model gradients
(or model updates), which are then sent to the central server
for aggregation, thereby jeopardizing the global model per-
formance [10]. In learning rule manipulation, instead, the
attacker corrupts the actual training logic. In some cases,
these model poisoning attacks have proven more effective
than data poisoning, and an attacker can compromise the
global model even when controlling a single client. For
instance, in [6] the authors successfully achieve a stealthy
targeted model poisoning attack by adding a penalty term
to the objective function to minimize the distance between
malicious and benign weight update distributions.

2) BACKDOOR ATTACKS

Backdoor attacks — also known as trojan attacks — exploit
the adversary’s capability of having (limited) access to input
examples also at test time [25]. Hence, backdoor attacks
exceed poisoning attacks, since the adversary can manipulate
both training and test inputs. For this reason they are often
considered more disruptive toward the victim model.

Like for standard poisoning attacks, we can distinguish
between backdoor attacks affecting the data or the model. The
former are referred to as backdoor data poisoning and consist
of adding attacker-chosen examples to the training set. The
attacker examples contain a particular trigger [14], [42], i.e.,
adistinguished feature that activates the backdoor. The model
learned on such poisoned training set will embed a backdoor,
which the attacker exploits at test time by submitting exam-
ples that contain the same trigger. Instead, backdoor model
poisoning requires a stronger threat model, where the attacker
can get direct access to the learning system and change the
model’s internals (i.e., parameters and architecture) to embed
a backdoor [18], [34].

Interestingly enough, backdoor attacks have been proven
ineffective under FL settings [3]. The main obstacle is that
aggregation involves many clients and, assuming that the
attacker only controls a minority, the effect of the adversarial
updates is weakened. To overcome this limitation, the authors
of [3] consider a model replacement approach, where the
attacker scales up a malicious model update to increase its
effect on the aggregation function.

In [79], the authors propose distributed backdoor attacks,
which better exploit the decentralized nature of FL. Specif-
ically, they decompose the backdoor pattern for the global
model into multiple distributed small patterns, and inject
them into training sets, used by up to 40% adversarial par-
ticipants, at each round. Although more effective than global
backdoor trigger injection, this approach comes at the price
of controlling a significant subset of the FL clients.

3) EVASION ATTACKS

Adversarial attacks that occur only at test time are called
evasion attacks. Here, the goal of the adversary is still to fool
an ML model yet without tampering it at training time. In fact,
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evasion attacks use so-called adversarial examples [4], [T1],
i.e., crafted (minimal) perturbations of test instances that
cause prediction errors (either targeted or untargeted) when
input to a legitimately trained model.

Evasion attacks may look similar to backdoor poisoning
attacks [7]. However, the key difference between the two is
that evasion attacks exploit the decision boundaries learned
by an uncorrupted model to construct adversarial examples
that are misclassified by the model. In contrast, backdoor
attacks intentionally shift these decision boundaries as a
result of a jeopardized training process, so that certain exam-
ples get eventually misclassified [25].

Several works have explored evasion attacks in the con-
text of computer vision [11], where adversarial examples
are obtained by adding random noise to test images. Even
though such images look legitimate to a human, they are
wrongly classified by the image recognition system. Also,
more recent works investigate the applicability of evasion
attacks to malware classification [68].

In the FL setting, the global model maintained by the server
suffers from the same evasion attacks as in the conventional
ML setting when the target model is deployed as a service.
Moreover, at each FL training round the global model sent to
the federated clients is exposed as a white-box to any mali-
cious participant. Thus, FL requires extra efforts to defend
against white-box evasion attacks [44].

In this work, we consider an attack scenario partially
related to the one presented in [3]. As a matter of fact,
our covert channel is implemented by means of mali-
ciously crafted examples that carry a trigger as in back-
door attacks. In particular, our adversary (7) crafts malicious
examples carrying a trigger (see Section V-A), and (i) poi-
sons the federated model to transmit one bit per trigger (see
Section V-B).

B. APPLICATION LEVEL COVERT CHANNELS

In a general sense, a covert channel is any communication
channel that is not intended for information transfer [37].
Although we are not aware of FL-based covert channels,
some authors already investigated the implementation of
covert channels at the application level. Most authors consid-
ered encapsulation of hidden communications in application-
layer network protocols. Being the main application-level
protocol, HTTP is the primary target for covert chan-
nel implementations, e.g., see [5]. Nevertheless, the entire
TCP/IP ecosystem can be at risk, and we refer the inter-
est reader to [51] for a survey. More recently, also web
applications were proposed for the implementation of covert
channels. For instance, in [64] the author considers social
networks such as Facebook and Twitter. However, since these
kinds of covert channels rely on already existing commu-
nications between devices, in practice, they usually do not
break any sandbox policy.> Also, as the authors of [82] point

20n the contrary, they are very relevant, for instance, when considering
inter-process channels as in [13].

130646

crafted crafted
0 example a example c
—_—
>0 we O
Sender ttacker ZZ' Receiver
S —
0 *(covert channel (-~ 0
m = ¢({ms,m1,m2}) K ™ |
Client 1 FL Server k‘ Client 3

Client 2 Client 4

FIGURE 2. Overview of the attacker model.

out, most of these covert channels can be detected and some
effective countermeasures exist, e.g., packet inspection can
be used to detect illegal traffic. Possibly for these reasons,
application-level covert channels are rare in the literature.

Loosely speaking, also our proposal relies on a sort of
encapsulation mechanism. However, here we do not wrap
information inside protocol messages. Rather, we embed
information inside FL. models, which prevents standard detec-
tion techniques based on traffic inspection.

IV. ATTACKER MODEL

In this section, we present our attacker model. The attacker’s
goal is to establish a covert channel between two clients,
namely Sender and Receiver, of an FL infrastructure. In terms
of capabilities, our adversary resembles that of [3]. Here,
we assume that both Sender and Receiver are controlled by
the attacker. For instance, think of Sender as a malware-
compromised device and the Receiver as the malware com-
mand and control server. Although they are compromised,
we assume the attacker does not tamper with the standard FL
infrastructure behavior, i.e., Sender and Receiver follow the
FL client protocol. Furthermore, Sender and Receiver do not
need to inspect nor jeopardize their local models to set up a
covert channel. More precisely, Sender is only allowed to poi-
son its local dataset and Receiver can only classify examples
using its own local model. Intuitively, these assumptions hold
for most FL systems.

The overall attacker model is schematically depicted in
Figure 2. The FL server randomly selects a subset of clients at
each federated round. Selected clients work as expected, i.e.,
they use their own private datasets to train their local models
starting from the last global model received by the server (see
Client 1 and Client 2 in Figure 2). Then, FL clients upload
their newly trained local models to the server, aggregating
them into an updated global model m through the aggrega-
tion function ¢. At the end of each federated round, all the
clients receive a copy of m. When selected, Sender (top left
of Figure 2) poisons its local model m; by training it with
some malicious, attacker-provided examples. Its goal is to
transmit a bit b by inducing a perturbation of the global model

VOLUME 10, 2022
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that the Receiver can test. On the other hand, Receiver (top
right of Figure 2) uses m to classify test examples, e.g., the
same malicious examples used by Sender. According to the
classification outcome, the Receiver deduces whether O or 1
was sent. Implementing such a covert channel is non-trivial
and depends on the underlying FL system. We discuss the
implementation details in the next section.

V. COVERT CHANNEL IMPLEMENTATION
In this section, we detail the implementation strategy for cre-
ating the previously described covert channel. Without loss
of generality, every implementation is based on the abstract
protocol schematically depicted in Figure 3.

A transmission starts with a calibration phase during which
Receiver observes the global model updates m", ..., m®)
(for f FL rounds). Eventually, Receiver computes channel
parameters (see Section V-A) to be shared with Sender.
For instance, these parameters can be provided through a
secondary channel or hard-coded in Sender before its deploy-
ment. Then, Sender and Receiver synchronize on transmis-
sion frames of size f to send a bit b. During each frame,
if selected, Sender trains its local model according to the
channel parameters and the bit to be sent. In the meanwhile,
Receiver monitors the global model updates and, at the end
of the frame, it tests the received bit.

Below, we discuss the implementation of both the calibra-
tion and transmission phases.

A. CALIBRATION OF CHANNEL PARAMETERS

The first parameter to be determined is the size of the
transmission frame f, i.e., the number of FL rounds used
to transmit a single bit. Intuitively, too small values of f
would increase transmission errors (e.g., Sender being never
selected within a frame may result in a bit transmission error).
On the opposite, if f is too large, channel throughput will
be reduced. Finding optimal values of f is non-trivial as
discussed in Section VII. Clearly, when the attacker knows
the details of the target FL system, e.g., client selection proba-
bility (p.), the desired value of f can be obtained analytically.
For instance, when p. = 0.1 and attacker wants Sender to
be selected at least once with probability grater than 0.9, f
is computed so that 1 — (1 — p.)) > 0.9, ie, f = 22.

VOLUME 10, 2022

FIGURE 4. Linear transformation ye of an example with « = 0.3 (middle)
and o = 0.5 (rightmost).

Algorithm 1 Edge Example Binary Search Algorithm

Input: x1,...,x;, >0

Qhigh := H

Qow =L

repeat
Xhigh = V¥ (X1, ..., Xk, Qnigh)
Vhigh 1= my(Xnigh)
Xiow = VY (X1, ..., X, Alow)

Viow := My (Xiow)

if * then Jngh = Jiow Failure: cannot be equal

Omid = (Xlow + Chigh)/2

Xmid := Y(X1, ..., Xk, Omid)

Vmid := My (Xmid)

if Phigh 7# Ymid then aiow := omia else dnigh = Amid
until ooy — Qhigh < €

Output: X := Xpigh, labels & := Jnigh and [ := Jiow

Otherwise, Receiver must estimate f, e.g., by taking advan-
tage of its selection notifications. For instance, it can set f as
the number of rounds that it takes to be selected T times (for a
constant 7).

Another channel parameter to be determined is the crafted
example X carrying the trigger that Sender will use to poi-
son its local training set. To generate X, Receiver applies a
linear transformation function® ¥ to a subset of k randomly
selected examples from its local training set. Briefly, X =
¥(x1,...,Xxr, @) means that, starting from £k > 0 examples
X1,...,Xy, Y returns a new example X, where o € [0, 1]is a
parameter controlling the transformation.

To provide an intuition of this process, we put forward
an example taken from the MNIST dataset. Consider x to
be the representation of a generic MNIST input image, i.e.,
a 28 x 28 matrix of pixels flatten into a 784-dimensional
vector. We define v.(x, o) as the function erasing, from
left to right, a fraction « of a single example image x
(i.e., k = 1). For instance, when o = 0.3, ¥, sets to O the
235 values associated with the leftmost pixels of the target
image vector. More formally, V.(x, @) = x — x® where
x@ = [xl, L xle 84 o 0] and x' is the i-th element
of x. Figure 4 shows the behavior of ., where we highlighted
the erased part of the example.

Intuitively, the attacker can select a function i based on
some semantic property of the classification domain. For
instance, in the previous example, ¥, encodes the simple fact

3Although we do not explicitly prove it, the reader can easily check that
all the transformation functions presented in the following are linear since
they reduce to finite sums of matrices.
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Algorithm 2 Sender Transmission Algorithm

Input: /, %, h, [

repeat

if » = 1 then

b := nextBit()

v i= m(¥X)

v— :=if v = h then [ else h

if selected by server for training then

vy 1= m(X)

switch b do
case 0 do if v, # v then train(my, X, v)
case / do if v, # v, then train(m;, X, v-)

upload(my)
r:= %)+ 1
until transmission completed

TABLE 1. Sender’s model poisoning cases.

b=0

Upr = UV~

b=1

Vp =0 Vp = vV = U

do nothing  train(ms, @,v) train(ms,Z,v-) do nothing

Algorithm 3 Receiver Bit Test Algorithm
Input: f, %, h, |
repeat
if r = 1 then
| vii=m@)
else if r = f then
vr = m(X)
b:=ifvi = vy then O else 1

received(b)
r:=0%f)+1
until transmission completed

that the right half of a handwritten 8 looks like a 3. In the
experiments of Section VII we consider two slightly different
functions. Others can be found, e.g., in [12].

Receiver repeatedly applies ¥ to the selected exam-
ples until it identifies an edge example X. Formally,
given Receiver’s local model m, and an arbitrarily small
& > 0, we look for X = (xq,...,xt, @) such that
my(Yxy, ..., Xk, @) = hand m-(Y(x1,...,X, 0 + &) =
I, where h,l € Y and I # h. Interestingly, given
x1, ..., Xk, Receiver can efficiently compute o via binary
search, as sketched in Algorithm 1.

The search procedure starts from the predefined interval
[H, L].* At each iteration, two examples, i.e., Xpigh and
Xlow, are generated and classified with Receiver’s model m;.,
so obtaining Jnigh and Yiow, respectively. If Jnigh = Jiow,
the algorithm terminates with a failure and no edge example
is returned. Otherwise, the current search interval is split in
half by computing otmid, X¥mid, and ymiq. Then, if )A)high # Ymids
the algorithm iterates on the first half of the current interval.
Otherwise, if y1ow 7# Ymid, the search procedure continues
on the second half. The loop terminates when the interval
width goes under a threshold ¢, which represents the gran-
ularity of a single position in the example feature vector,
e.g., a single pixel in the case of Figure 4. Eventually, the
algorithm returns the edge example xp;gn, as well as the
two class labels & and [/ associated with the last, smallest
interval.

It is worth noticing that, since it does not explore the
entire feature space, Algorithm 1 might fail to generate edge
examples for some inputs. In general, the effectiveness of this
heuristic method depends on the choice of 1. We empiri-
cally show that Algorithm 1 can generate millions of edge
examples in our experimental settings with only two linear
transformation functions (see Section VII-A).

At the end of the calibration phase, channel parameters
generated by Receiver amount to the tuple (f, X, &, [).

4In our experiments we use H=0and L = 1/2.
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B. BIT TRANSMISSION

The transmission of one bit is based on the variations, during
f FL rounds, of m(X) between h and [. In particular, by poison-
ing its local model, Sender drives m(¥X) to assume the desired
value, while Receiver monitors it to read the transmitted bit.
Transmissions are organized in consecutive frames of size f.
Sender and Receiver are synchronized through an FL round
counter r € {1,...,f}. Sender follows the procedure given
in Algorithm 2.

At the beginning of each transmission frame, i.e., when
r = 1, Sender sets the next bit b, and uses the last received
global model m, = m to classify X, thus obtaining v € {h, [}.
Also, Sender sets v—, € {h, [} sothatv # v—.. Ateachround r,
if selected by the FL server, Sender classifies X with the global
model m, so obtaining v,. Then, depending on b, Sender trains
its local model m; according to Table 1.

Intuitively, the purpose of the operation above is to keep
the label assigned to X by the global model when sending 0
and to flip it when sending 1. This channel implementation
amounts to a Differential Manchester encoding [47]. Eventu-
ally, Sender uploads its local model to the FL server.

Concurrently, Receiver executes Algorithm 3. Receiver
uses the global model m to classify ¥ both when r = 1 and
r = f, so obtaining v and vy, respectively. Finally, Receiver
reads 0 if vi = vy and 1 otherwise.

In Figure 5, we show as an example the transmission of
10 bits for the MNIST scenario discussed above, using X
of Figure 4, h = 8, and [ = 3. The top diagram shows
the internal scores assigned by the global model to the edge
example X during the transmission. By classifying ¥, Receiver
observes the alternation of labels 8 and 3 (center). Then,
Receiver interprets it as the sequence of bits 0101001110.

VI. CHANNEL DESCRIPTION
For each edge example, our implementation provides a digi-
tal, broadcast channel supporting half duplex® transmissions.

5Intuitively, Sender and Receiver cannot transmit at the same time, but
they can alternate their roles.
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FIGURE 5. Transmission of bits 0101001110 over a channel.

In Section VII we will show that an attacker can even cre-
ate several channels of this type to enlarge the communi-
cation bandwidth. Below, we detail the features of a single
channel.

In terms of capacity, we treat the covert channel as a
standard BMC (see, Section II). We just notice that the binary
input of the channel is my, with b € {0, 1}. Intuitively,
inputs my, represent Sender’s local models m; uploaded to
the FL server. More precisely, we use my to distinguish
between the two model poisoning cases used to transmit b
(see Table 1).

In terms of communication quality, we consider BER and
SNR, as discussed in Section II. While BER is straightfor-
ward, defining SNR in our context requires more attention.
In general, SNR is computed by periodically sampling the
channel signal s and noise n at the end of each transmission
frame ¢. Here, defining s and n is non-trivial since our channel
does not rely on a physical medium. Indeed, a covert channel
consists of two prediction labels, namely % and /, and a
perturbed example X. For each label i € {, I}, at time t we can
measure the prediction score assigned by the global model
to i when classifying X at each frame’s end. Also, assuming
that prediction scores range within the interval [Z, —Z ],6 we
normalize the prediction scores by linearly scaling them in
[1, —1]. Thus, for each label i, the label signal z;(¢) amounts to
the normalized score described above. We define the overall
received signal z(t) = zp(t) — z(t), i.e., as the differential,
normalized signal.

Since a direct measure of the transmitted signal s() cannot
be computed, we approximate it to the differential signal that
switches its intensity between 1 and —1. Intuitively, this is
equivalent to stating that Sender attempts to transmit 0 by

6Z can be estimated as the maximum score observed during a
transmission.
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FIGURE 6. Signals and noise for the channel of Figure 5.

setting z()-z(t+1) = 1 and 1 by setting z(¢)-z(r +1) = —1.7
Thus, for each frame ¢, we set

1—-2b
s(t) = ms 4

where b is the bit transmitted during frame ¢, and, by con-
struction, s(0) = 1. Then, we define the noise at time ¢ as
n(t) = z(t) — s(¢).

The overall intuition behind our definitions of z(¢), s(¢) and
n(t) is given in Figure 6. There, red and blue dashed lines
denote z, and z; signals, i.e., the normalized version of the
scores of Figure 5. Instead, the purple line denotes z(¢) and
the gray line denotes s(¢). Also, the vertical arrow shows the
value of n(t) at t = 3. From this and (4), we define the SNR
of the covert channel as

2
z(t
snr =2 )
Gll
where o, is the standard deviation of the normalized noise
— " - _ n([)
n(t) defined as n(t) = ax, ]

VII. EXPERIMENTS

In this section, we present our experimental results. The
implementation of our covert channel, called FedExp, is avail-
able at https://github.com/fpinell/sec_federated_learning.

A. EXPERIMENTAL SETTING

All the tests described in this section were executed on
Docker containers running on a dedicated Intel® Xeon®
Gold 5218 2.30GHz CPU with 64 GB of memory. The
implementation is based on the popular ML framework
PyTorch [59]. We implement an FL system for handwritten
digit classification in our testing environment.

1) DATASET DESCRIPTION

The MNIST dataset [39] is one of the most popular datasets
used as a benchmark for training and testing image classifiers.
It contains a total of 70,000 greyscale images of handwritten,

7"Notice that this assumption is more restrictive w.r.t. the actual implemen-
tation, since Receiver only requires z(¢)-z(t+1) < Oand z(¢)-z(t+1) > O to
read 0 and 1, respectively.
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A N q <A A

FIGURE 7. Applications of ¥ to examples #22242 and #7596 (left) and
¥, to examples #32481 and #18198 (right).

single digits. Digit images are taken from American Census
Bureau employees and American high school students. Usu-
ally, 60,000 images are used for training and the remaining
10,000 for testing. Images are represented by 28 x 28 matrices
of bytes, each byte representing a single pixel (where 0 is
for background color, i.e., white, and 255 for the foreground
color, i.e., black).

2) FL SYSTEM PARAMETERS

Our FL system is configured according to three parameters,
i.e., the number of honest FL clients (n.), the client selection
probability (p.), and the neural network architecture (7).

At startup, both the training and the test portions of the full
MNIST dataset are uniformly distributed randomly among
the n. honest clients. At each round, the server sends the
current global model to all the clients; then, it randomly
selects | p.-n.| clients. Thus, selected clients use their portion
of the MNIST dataset to train their own local models. Local
models are then sent back to the server, which aggregates
them and updates the global model using the standard fed-
erated averaging function FedAvg [48].

The FL system we implemented supports two different
types of neural network architectures. The first one is a fully
connected Neural Network (NN) [38], composed of three lay-
ers with 200 neurons each. The second one is a Convolutional
Neural Network (CNN) [39], [55] with two convolutional
layers, each one of size 3 x 3, and one fully connected
output layer. After each convolutional layer, we use a Max
Pool 2D layer with kernel size 2 x 2. Both networks use a
ReLU activation function and are trained by minimizing cross
entropy loss function via stochastic gradient descent [26].

3) ATTACKER PARAMETERS

Receiver is added to the FL system after 200 training rounds.
The frame size f can be manually configured. Otherwise,
during the calibration phase, Receiver estimates f as the
number of rounds it takes to select 7' = 4 times by the server.
Another parameter is the number k of parallel covert channels
to be established. Receiver generates k edge examples, one
for each channel, to be used during the communication. Each
edge example is generated by applying one of the following
two linear transformation functions to the randomly selected
MNIST examples x| and x.

e Y(x1,x2, @) combines the upper « fragment of x; with
the lower (1 — &) fragment of x,.

o Yp(x1,x2, @) combines the leftmost o fragment of
x1 with the rightmost (1 — «) fragment of x;.
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TABLE 2. Parameters of FL system (top) and attacker (bottom).

Par.  Description Range Example  Default
Ne Number of honest clients N 10, 50 10

Pe Client selection probability [0, 1] 0.1,0.5 0.5
T Neural network type NN,CNN NN NN
f Frame size N 6,8 auto
k Number of channels N 10, 20 1

ny Transmission length (bits) N 10, 100 10
w Transmission pattern (0]1)* 10, 101 auto

0.15 4 B =10
B n. =50
0.10 1

et
€3]
.
N ﬂ _I—-_LI .
0.00 4 % —
=10
B n. =50
0.30
5 0.20

0:00~ i:l ﬁ -;l —|:I

Ch(‘nt sol(‘ctlon probablht} De)

FIGURE 8. Channel BER for NN (top) and CNN (bottom).

Functions v, and v, resemble the example function v,
of Section V. Figure 7 shows two edge examples generated
with Algorithm 1 when executing v, and ¥, on MNIST pairs
(#22242, #7596) and (#32481, #18198), respectively. In the
first case, the two original examples are both classified as 4,
and the resulting edge example is classified between 9 and 4.
In the second case, the two images are classified as 2, and the
edge example is classified between 2 and 4.

For the generation of edge examples, we randomly selected
pairs of pictures from the MNIST dataset, and applied
Algorithm 1 with both v, and . Over 6, 000 considered
pairs, we obtained 101 edge examples. Thus, among all pos-
sible pairs of MNIST examples, approximately 1.7% might
be used to create edge examples. This amounts to millions of
possible channel implementations with ¥, and ¥, over the
whole MNIST dataset.

When Receiver completes the calibration phase, Sender
is configured with the generated channel parameters.
Then, Sender joins the FL client network, consisting of
ne + 2 clients, and starts the transmission. Transmission
parameters include np, i.e., the number of bits to be sent
on each channel. By default, Sender automatically generates
random bit sequences. Optionally, instead of random bits,
one can specify a fixed bit pattern w. Finally, when selected,
Sender trains its local model in the same way, e.g., using the
same training epochs as all the other clients. The only dif-
ference resides in the training examples. That is, we assume
Sender to have the same capabilities as honest clients.
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FIGURE 9. Average BER on NN for 10-bit transmission slots.
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FIGURE 10. Average BER on CNN for 10-bit transmission slots.

Table 2 summarizes the experiment parameters for the FL
system (top) and the attacker (bottom).

B. RESULTS

We assess channel quality in terms of BER and SNR. The
box diagram® of Figures 8 shows single channel BER mea-
sured on NN (top) and CNN (bottom) under different set-
tings. In particular, we consider n. € {10, 50}, p. € {0.1,
0.2,0.3,0.4,0.5}, np, = 100, and f estimated by Receiver as
detailed in Section VII-A. Under the same settings described
above, Figures 9 and 10 show the average BER for 10-bit
transmission slots.

Results show that, when p, > 0.1, BER tends to stay
below 6% already with our simple heuristics for estima-
ting f. Nevertheless, the attacker can achieve better perfor-
mance by searching for optimal values of f (as discussed in
Section V, BER is mainly affected by choice of f). Figures 11
shows the frame size estimated at calibration time for the
NN (top) and CNN (bottom) experiments presented above.
Instead, Figures 12 and 13, depict the cumulative BER for
transmissions with increasing values of f, from 6 to 15. Inter-
estingly enough, NN and CNN exhibit different behaviors,
which confirms our expectation that finding the optimal value

8Each box represents 5 distinct experiments.
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FIGURE 11. Frame length estimation on NN (top) and CNN (bottom).

0.175 + ==em= Average BER

0.150
0.125 1
2 0.100 1
[£3)]
A 0.075 1
0.050 \.{
0.025
{ )
0.000

6 2 13 14 15
Frame size ( )

FIGURE 12. BER vs. frame size (r = NN, np = 100, n¢c = 10, pc = 0.5).

of f is non-trivial. In particular, under the same settings, CNN
tends to behave monotonically, i.e., increasing f reduces
BER, while NN does not exhibit e consistent behavior. The
experiments suggest that the optimal frame size in the con-
sidered interval is f = 7 for NN and f = 12 for CNN.

Transmitted bit sequences may also impact communica-
tion quality. An example of BER for different transmission
patterns is shown in Figure 14. There, we considered five
different patterns of transmitted bytes, i.e., 00, OF, 55, FF,
and Random, for both NN and CNN. In both cases, we set f
to the optimal values above, i.e., 7 and 12 for NN and CNN,
respectively. As one might expect, the 00 pattern results in
the minimum BER. The reason is that, since the FL system is
well-trained, in most cases, Sender does not need to poison
the global model at all. However, different patterns slightly
affect BER in NN, which still stays below 4%, while have
almost no effect on CNN. These results highlight that differ-
ent types of networks may change the behavior of the channel.
In general, finding the optimal channel parameter may require
the attacker to carry out transmission tests, and this operation
is allowed under our attacker model

The number of parallel covert channels an FL system can
support is another crucial aspect, as it multiplies the total
transmission bandwidth. Intuitively, we expect that an FL
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FIGURE 13. BER vs. frame size (z = CNN, np = 100, n¢ = 10, pc = 0.5).

I =NN
0017 gy 7o
®  Average BER (7=NN)

0.034 M Average BER (7=CNN)
g
m 0.02 4

L
0.01 4
° [
0.00 - =———=i— —_ —_— I =
00 0F 55 FF Random

Transmission pattern (w)

FIGURE 14. BER for patterns w € {00, OF, 55, FF, Random} for both z = NN
and 7 = CNN (np = 100, n¢ = 10, pc = 0.5, f =7 and f = 12, for NN and
CNN, respectively).

system can only host a finite number of channels before the
model is saturated and the communication quality decays.
Reasonably, we expect that saturation occurs first in simpler,
shallow models. Figure 15 shows the increase of BER over 20
randomly generated channels in NN (top) and CNN (bottom),
where the average BER increases with k.

We tested our definition of SNR (see Section VI) as an
indicator of the covert channel quality. To this aim, we com-
pared SNR versus BER and capacity. In both cases, for all
the simulations, (i) we computed the SNR, and (i7) we binned
SNR in 5 dB intervals. Then, we computed the average BER
(capacity, respectively) for each bin. Figure 16 illustrates the
BER when SNR increases, for both NN and CNN, under the
settings presented above. Under the same settings, Figure 17
shows the relation between the SNR and channel capacity C.
Our experiments show that higher values of SNR result in
better communications, both in terms of lower BER and
higher successful transmission rate. This trend follows the
expected behavior of a channel in the classical information
theory [47]. Thus, our experiments confirm that (5) is an
appropriate definition of SNR.

Figure 18 shows the average BER of 5 tests transmit-
ting 100 bits with a different number of clients, ranging
from 100 to 500. The results confirm that average BER stays
below 10% as it does with a lower number of clients.

To show the feasibility of our attack on other tasks, we also
mounted it on a CIFAR-10 [36] FL classifiers. Such a clas-
sifier relies on a neural network implementing (a simplified
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FIGURE 16. SNR versus BER for NN and CNN.

version of) VGGNet [67]. As for MNIST, we tested our
method by measuring the BER for 100 bits transmissions
using different frame sizes (f). This experiment, reported in
Figure 19, confirms that our covert channel attack is general
w.r.t. the used dataset and classification algorithm.

VIil. DISCUSSION AND FUTURE WORK

The main goal of this paper is to prove the feasibility of a new,
covert channel attack on FL systems. Our attack opens a num-
ber of research questions that are worth being investigated in
the future. We briefly discuss them below.

A. CHANNEL THROUGHPUT

Our experiments highlight that covert channels can be instan-
tiated on both NN and CNN networks, although NN provides
better performances in terms of channel quality, transmis-
sion rate (f), and bandwidth. To better understand the actual
throughput, consider a system where FL rounds occur every
hour. If the attacker can implement 20 parallel covert channels
withf = 12, a 128-bit key can be transmitted in 128-12/20 =
76.8 hours, i.e., less than 3 days. Although the transmission
rate may seem low, there can be practical exploitation, e.g.,
by Advanced Persistent Threats. Also, our covert channel
can be combined with others, thus implementing hybrid
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covert channels. Further investigation is necessary to find
techniques to maximize the channel performance.

B. IMPACT ON CLASSIFICATION ACCURACY
Although the goal of the attacker is not to compromise the
accuracy of the classifier, the covert channel might degrade
the performance of the FL system. We compared the accuracy
measured by an honest client when Sender is not transmitting
(k = 0) against that measured during transmissions with 1, 5
and, 10 channels. The results are shown in Figures 20 and 21.
Note that the honest client accuracy when k£ = 0 is stable.
This happens because the network is well-trained by using
the entire MNIST dataset. In real FL systems, this could not
happen, since fresh training examples can appear over time.
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FIGURE 21. Accuracy for k € {1, 5,10}, 7 = CNN, n¢ = 10, pc = 0.5.

For NN, when k& = 0 the average accuracy is 0.983. When
transmitting, the average accuracy slightly degrades, from
0.982 (k = 1) to 0.980 (k = 10). Similarly for CNN, the
accuracy goes from 0.992 (k = 1) to 0.988 (k = 10).
These results confirm that classification accuracy is mini-
mally affected by transmissions. In larger FL systems, trained
with fresh examples, accuracy is likely to be affected even
less.

C. POSSIBLE MITIGATION MECHANISMS

Although the attacker model is new, some existing techniques
might mitigate its effectiveness. For instance, anomaly detec-
tion techniques might identify the sender. Although designed
for countering byzantine adversaries, Krum [10] aggregation
function skips outlier models and could block or degrade the
transmission. In our setting, the FL server can measure the
distance between two models by using matrix norm. With
L2-norm, the distance of a local model m, w.r.t. the global
model m is given by d. = |me.—ml|».” Figure 22 shows
the maximum d,, i.e., the outlier, detected by the server
during 200 FL rounds for both NN (top) and CNN (bottom).

9More precisely, this amounts to computing the L2-norm of the difference
between the vectors of parameters of n and m.
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FIGURE 22. Anomalous local models detected over 200 rounds for
7 = NN (top) and = = CNN (bottom), with k =1, nc =10, pc = 0.5
andf =6.

Red bars correspond to true positives (TP), i.e., rounds
where Sender’s model was detected. Instead, blue bars denote
false positives (FP), i.e., when an honest client was tagged.
Detection precision is 12% and 17% for NN and CNN,
respectively. These values are quite low in a 10-client network
since 10% is the accuracy of a random strategy. Moreover,
to remain undetected, the attacker may try to minimize d.,
e.g., using poisoning data rate control [57].

Another countering approach consists in adopting differ-
ential privacy (DP) [76]. Briefly, in DP mechanisms for FL
both the honest clients and the server inject random noise in
their models to prevent a malicious client from leaking private
information. DP typically does not work against collusion,
i.e., Sender wants to leak information. Nevertheless, at the
price of degrading model accuracy, noise added by the server
may reduce the channel quality.

IX. CONCLUSION

In this paper, we introduced a new covert channel leveraging
FL systems. Our attack allows a malicious agent to estab-
lish stealth communications between FL clients that should
rather stay isolated. We discuss a prototype implementation
and we empirically assess its performance. Our experiments
confirm that the attack is feasible and the covert channel
supports good-quality communications. Since the attack is
new, no specific countermeasures exist, however some exist-
ing countermeasures for poisoning attack, e.g., [10], [47],
and [57], might affect our covert channel and we plan to study
them in the future. Further research directions include those
related to the actual exploitability in real-world systems and
to the costs for an attacker to implement our channel.
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