IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 18 November 2022, accepted 8 December 2022, date of publication 14 December 2022,
date of current version 22 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3229182

==l RESEARCH ARTICLE

Static Call Graph Combination to Simulate
Dynamic Call Graph Behavior

ZOLTAN SAGODI, EDIT PENGO, JUDIT JASZ", ISTVAN SIKET, AND RUDOLF FERENC

Department of Software Engineering, University of Szeged, 6720 Szeged, Hungary

Corresponding author: Judit Jdsz (jasy @inf.u-szeged.hu)

This work was supported in part by the European Union Project Within the Framework of the Artificial Intelligence National Laboratory
under Grant RRF-2.3.1-21-2022-00004; in part by the Ministry of Innovation and Technology of Hungary from the National Research,

Development and Innovation Project Implemented through Funding Scheme under Grant TKP2021-NVA; and in part by the University
of Szeged Open Access Fund under Grant 5894.

ABSTRACT Call graphs are fundamental for many higher-level code analyses. The selection of the most
appropriate call graph construction tool for an analysis is not always straightforward and depends on the
purpose of the results’ further usage. The choice of call graph construction tool has a great effect on the
following tasks’ execution time, memory usage, and result quality. This research compares the resulting
static and dynamic Java call graphs to assist in the selection of the most appropriate tools. Static call graphs,
as their name suggests, are constructed by static analysis, based on the source code or the bytecode, without
executing tests or any code parts. This means that the project can be analyzed in its early stages and with
fewer resources, but there is concern that this will result in less accurate, noisier graphs since the dynamic
behavior of the programs will be estimated by static algorithms. Inaccuracies can greatly affect analyses
based on call graphs. On the other hand, dynamic call graphs are created during the actual execution of the
program. The calls that are included as edges in the graph are exactly those that were executed during the
run, so you can expect the result to be more accurate. However, dynamic analysis requires more resources
and the execution of code via test cases which provide high test coverage. In this work, we investigated
the relationship between dynamic and static call graphs. Is the graph generated by dynamic analysis really
better? Can static graphs approximate or even complement dynamic call graphs with sound results? In order
to find the answers to these questions, we compared the results of five static and one dynamic analyzer.
They were evaluated on three projects of different sizes and test coverage. We included in the comparison a
merged graph created by ourselves by combining different static analyzer outputs. Not only did we compare
static graphs to the dynamic results, we also validated the calls in a dynamic graph and found that these
graphs could mislead the user. The results show that dynamic graphs should be considered good, although
not a golden standard since they contain phantom calls, calls that are not present in the source code. Such
calls are not limited to synthetic calls. Static analyzers could not be applied without consideration either, but
a combination of static call graphs does tend to contain similar calls to the dynamic graphs with no phantom
calls.

INDEX TERMS Call graph, dynamic analysis, java, static analysis.

I. INTRODUCTION

Call graphs are directed graphs that contain the methods
of a program as nodes. If method A calls method B it is
represented by a directed edge from node A toward node B

The associate editor coordinating the review of this manuscript and

approving it for publication was Hui Liu

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

in the graph. In software quality assurance there are many
techniques that rely on call graphs. It is essential that the call
graphs used for these quality assurance methods are suitable
for the purpose as different call graphs highly impact the
results [30]. For this reason, it is important to study the differ-
ences between call graphs produced by different approaches.
In this study, we discuss Java call graphs, so the following

131829

https://orcid.org/0000-0001-6176-9401
https://orcid.org/0000-0001-8897-7403
https://orcid.org/0000-0002-3267-6801

IEEE Access

Z. Sagodi et al.: Static Call Graph Combination to Simulate Dynamic Call Graph Behavior

statements refer mostly to Java-based call graphs. Call graphs
can be generated in two ways, by static or dynamic analysis.
Static analysis is based on the source code or the byte code,
therefore, unlike dynamic analysis, it does not require the
execution of the program. This is both an advantage and a dis-
advantage. Static analysis can be performed easier and faster,
but dynamic analysis can detect exactly which calls have
been executed. A perfect example is the case of unreachable
code. A static analyzer might add the calls starting from the
unreachable code part making its result less sound, however,
the dynamic analyzer would not add that part since unreach-
able code is never executed and thus cannot be reached by the
analyzer. Detecting a call is achieved by code instrumentation
in most cases. Instrumentation adds code to the program
that helps to trace which methods are calling each other at
runtime. This usually affects the performance of the program
negatively. Another disadvantage of the approach is that only
those calls will appear in the resulting call graph that have
occurred during execution. Therefore, in order to get a more
exhaustive call graph, large test coverage is needed for the
analyzed project. Based on the above presumptions, a naive
approach is that although dynamic analysis is costly, the
produced call graphs are better than static ones [34], [39].
Neville et al. [17] stated that static analyses are unsound
and this unsoundness is relevant for every language that
has reflection, native code or dynamic loading. Languages
based on JVM are highlighted considering this problem.
We test this hypothesis (i.e. that dynamic analysis pro-
duces better call graphs) by answering the following research
questions:

« RQ1: Is it possible to approximate dynamic call
graphs using only static call graphs?

+ RQ2: Is it possible to cover the dynamic call graphs
using static call graphs but with more soundness?

« RQ3: Can dynamic call graphs be considered a
“golden standard” for call graphs?

As can be seen, RQ1 and RQ2 are very similar but they
differ in a major factor. Static tools can generate a complete
graph that covers all the edges between nodes that are present
in both graphs. So RQ1 asks if it is possible to find similar
static nodes and edges as dynamic ones, while RQ2 asks if it
is possible to find those similar nodes and mostly those nodes
without any “additional” nodes.

To answer these questions, we investigated the similarity
between the two types of call graphs produced by static
and dynamic analysis. We have already shown in an earlier
work [23] that static call graphs themselves can be very
different. In that work, we evaluated 6 open-source call
graph-building tools on multiple larger-scale, open-source
projects. The results showed that the structure of the gen-
erated call graphs is strongly influenced by the capabili-
ties and the processing method of the static analyzer tools.
In the current study, we have included a dynamic ana-
lyzer for the call graph comparison. The analyses were
carried out on three Java projects that vary in size, test

131830

coverage, and their usage of Java-specific features. The
raw results of these comparisons are available in an online
appendix, which also contains the static call graph genera-
tors and the source code of the call graph comparator pro-
gram. The appendix is available at this link: https://
doi.org/10.5281/zenodo.7003920. The source of
the dynamic analyzer is located in a separate repository avail-
able at https://github.com/sed-szeged/java—-
instrumenter.

The rest of the paper is organized as follows. In Section II,
we discuss the related work. Section III introduces the
five static analyzer tools altogether with 6 different settings
that we used for our research, while the dynamic analyzer
(instrumenter) is described in Section IV. Section V briefly
describes the tool we have developed to pair and compare call
graphs. Our heuristic algorithm to generate new call graphs
based on already existing ones is included too. In Section VI,
we evaluate the analyzers on three Java projects. Section VII
lists the threats to validity, while Section VIII summarizes our
work.

Il. RELATED WORK

Call graphs are the basis of many software analysis algo-
rithms, such as control flow analysis, program slicing,
program comprehension, bug prediction, refactoring, bug-
finding, verification, security analysis, and whole-program
optimization [9], [16], [44], [46]. The precision and recall
of these applications depend largely on the soundness and
completeness of the call graphs they use. Moreover, call
graphs can be employed to visualize the high-level control
flow of the program, thus helping developers understand how
the code works. There are several studies about dynamic
call graph-based fault detection, like the work of Eichinger
et al. [15], who created and mined weighted call graphs to
achieve more precise bug localization. Liu et al. [27] con-
structed behavior graphs from dynamic call graphs to find
non-crashing bugs and suspicious code parts with a classifi-
cation technique.

Regardless of whether the examined language is low-level
and binary or high-level and object-oriented, call graph con-
struction can always lead to some difficulties [5], [33]. A call
graph is accurate if it contains exactly those methods and
call edges that might get utilized during an actual execution
of the program. However, in some cases, these can be hard
to calculate. For example, if several call targets are possible
for a given call site, then a deeper examination is needed to
determine which ones to connect as precisely as possible.
This examination can be done in a context-dependent or
context-independent manner; naturally, the choice influences
the generated call graph [18]. Context-dependent methods are
more accurate in return for greater resource usage. To miti-
gate the resource demands of such methods, the analysis of
the programs often only starts from the ma i n method or a few
entry points instead of starting from every method. This might
result in a less accurate call graph. To improve the accuracy
of context-independent methods, the following algorithms

VOLUME 10, 2022

https://doi.org/10.5281/zenodo.7003920
https://doi.org/10.5281/zenodo.7003920
https://github.com/sed-szeged/java-instrumenter
https://github.com/sed-szeged/java-instrumenter

Z. Sagodi et al.: Static Call Graph Combination to Simulate Dynamic Call Graph Behavior

IEEE Access

can be used for object-oriented languages: Class Hierarchy
Analysis (CHA) [11], Rapid Type Analysis (RTA) 5], Hybrid
Type Analysis (XTA) [42], Variable Type Analysis (VTA) [40].

Another important question during call graph creation is
the handling of library calls [2]. Including library calls not
only makes the call graph bigger, it also requires the analy-
sis of the libraries, which can be quite resource-consuming.
However, the exclusion of library elements may cause inac-
curacies when developers implement library interfaces or
inherit from library classes. The analysis of library classes
might involve private, inaccessible methods as well. Michael
Reif et al. [33] discussed the problem that the often-used algo-
rithms, such as CHA and RTA, do not treat libraries differently
than applications. However, this can lead to inaccuracies,
such as unnecessary edges or important edges being missed.
The recommended algorithm in this work can reduce the
number of call edges drastically depending on the analyzer
and the project itself. The tools we selected for our com-
parison represent library calls and library methods at various
levels of detail.

As mentioned in Section I, many comparative studies are
available about call graph creation. Grove et al. [19] imple-
mented a framework for comparing algorithms for call graph
creation and assessed the results with regard to precision and
performance. Murphy et al. [29] carried out a study similar
to ours about the comparison of five static call graph creators
for C. They identified significant differences in how the tools
handled typical C constructs like macros. Hoogendorp gave
an overview of call graph creation for C+4 programs in
his thesis [20]. Antal et al. [4] conducted a comparison of
JavaScript static call graph creator tools. They collected five
call graph builders and analyzed the handling of JavaScript
language elements and the performance as well. As a result,
they provided the characterization of the tools that can help
in selecting the one that is most suitable for a given task.
Tip et al. [42] tried to improve the precision of RTA by intro-
ducing a new algorithm. On average, they reduced the number
of methods by 1.6% and the number of edges by 7.2%,
which can be a considerable amount in the case of larger
programs. Lhotdk [26] compared static call graphs generated
by Soot [37] and dynamic call graphs created with the help of
the *J [36] dynamic analyzer. He built a framework to com-
pare call graphs, discussed the challenges of the comparisons,
and presented an algorithm to find the causes of the potential
differences in call graphs.

In other papers, In this paper, we show these differences
and, unlike in any other paper known to us, try to figure
out how static results could approximate dynamic call graphs
with high soundness in case dynamic call graphs can be taken
as ground truth.

Ill. STATIC CALL GRAPH CONSTRUCTION TOOLS

We studied numerous static analyzer tools for Java to decide
whether they could generate — or could be easily mod-
ified to generate — call graphs. We searched for widely
available, open-source programs from recent years, which

VOLUME 10, 2022

could analyze complex, real-life Java systems. We discarded
many plug-in-based tools, as they produced only a visual
output (e.g., CallGraph Viewer [7]), while other promising
candidates were not robust enough on larger systems (e.g.,
Java Call Hierarchy Printer [6]). In some cases, the call
graphs had to be extracted directly from the inner repre-
sentation of the analyzer. However, we eliminated any tool
that did not provide enough information to reconstruct the
caller-callee relationships between compilation units without
major development (e.g., JavaParser [10]). The descriptions
of the five tools that met our selection criteria are presented
below.

A. soot

Soot [37] is a widely used language manipulation and opti-
mization framework developed by the Sable Research Group
at McGill University. It supports analysis up to Java 9 and
works on the compiled binaries. Although its latest official
release was in 2012, the project is still active on GitHub, from
where we acquired the 4.2.1 release, which was the latest
version at the time. Soot has a built-in call graph creator func-
tionality that can be parameterized with multiple algorithms.
We employed the CHA algorithm and the SPARK analyzer
with VTA enabled during construction. These algorithms dif-
fer in their handling of polymorphic calls. When using CHA,
Soot creates the inheritance graph of a program, and during
call graph construction only the inherited classes are used
in polymorphic calls, thus reducing the number of infeasible
calls. In the case of the VTA [40] algorithm, Soot creates an
inner representation where the flow of object references can
be followed. This information is used to resolve polymorphic
method calls.

B. OPENSTATICANALYZER

OpenStaticAnalyzer (OSA) [12] is an open-source, multi-
language static analyzer framework developed by the Uni-
versity of Szeged. It calculates source code metrics, detects
code clones, performs reachability analysis, and finds coding
rule violations in Java, JavaScript, Python, C#, and C/C++
projects. We extracted the call graph of our project by travers-
ing its Abstract Syntax Tree' (AST) internal representation
and collecting every available invocation information.

C. SPOON

SPOON [31] is an open-source, feature-rich Java analyzer
and transformation tool for research and industrial purposes.
It is actively maintained, supports Java up to version 9, and
while several higher-level concepts (e.g., reachability) are
not provided,,out of the box”, the necessary infrastructure
is accessible for users to develop their own. SPOON per-
forms a directory analysis of the source code and builds an
AST-like metamodel, which is the basis for further anal-
yses and transformations. Similar to the above-mentioned

1 Abstract Syntax Tree represents the syntactic structure of the source code
in a hierarchical tree-like form.

131831

IEEE Access

Z. Sagodi et al.: Static Call Graph Combination to Simulate Dynamic Call Graph Behavior

OSA implementation, the call information can be obtained
by processing the AST-like inner representation of SPOON.
The library is well-documented and provides a visual rep-
resentation of its metamodel, which helped us thoroughly
study its structure. We used the 7.0.0 version for our
research.

D. WALA

WALA [45] is a static and dynamic analyzer for Java
bytecode (supporting syntactic elements up to Java 8)
and JavaScript. Originally, it was developed by the IBM
T.J. Watson’s Research Center; now it is actively developed
as an open-source project. Similar to Soot, it also has a
built-in call graph generation feature with a wide range of
graph-building algorithms. We used the ZeroOneContain-
erCFA graph builder for our research, as it performs the
most complex analysis. It provides an approximation of the
Andersen-style pointer analysis [3] with unlimited object sen-
sitivity for collection objects. The generator had to be param-
eterized with the entry points, from which the call graphs
would be built. To make the results similar to the results
of the other tools, we treated all not-private, non-abstract
methods as entry points (instead of just the main meth-
ods). For other configuration options, we used the default
settings provided in the documentation and example source
codes.

E. ECLIPSE JDT

Eclipse JDT [14] is one of the main components of the Eclipse
SDK [13]. It provides a built-in Java compiler and a full
model for Java sources. We created a JDT-based plugin for
Eclipse Oxygen that supports Java 10 code, to extract the call
graph from the extensive, AST-like inner representation.

IV. DYNAMIC CALL GRAPH CONSTRUCTION
A dynamic call graph is a record of a program execution,
therefore, they are built in an entirely different way from
static call graphs [35]. Considering Java, there are two main
methods to generate them: source code-based and bytecode-
based instrumentation [8], [41]. In both cases, the instru-
mentation is done by inserting measurement probes into the
source- or bytecode [24]. They both have drawbacks and
benefits. For example, bytecode-based instrumentation does
not require the source code or a separate build, it can be
implemented more easily. On the other hand, source code
instrumentation can be considered more general, as it does
not depend on the bytecode version and the Java VM [21].
As shown by code coverage measurements, bytecode-based
instrumentation tools may produce different results than
source code-based ones. However, it was proven in Horvath’s
work [21] that with proper filtering settings the difference is
insignificant.

We used a tool> developed at the University of Szeged
to build dynamic call graphs that utilize a common Java

2https:// github.com/sed-szeged/java-instrumenter

131832

agent-based, on-the-fly bytecode instrumentation approach to
collect call chain information that can later be transformed
into a call graph. During the instrumentation process, probes
are inserted into all methods that are relevant to the analysis
(i.e. they belong only to the selected module). These probes
are guarding every method’s entry and exit points i.e., they
trigger every time the execution reaches a method call and
when the execution leaves a method e.g., by reaching a return
or a throw statement. Running these probes on every method
entry and exit can have a huge impact on execution time and
memory consumption. Therefore, selecting relevant methods
is a key point since without this selection every method would
be instrumented, which would result in an exploded call graph
or sometimes even the analysis not being carried out due to
resource limits. We configured the instrumentation tool to
include all methods that are part of the production code of
the actual project, and excluded test code, dependencies, and
built-in Java libraries.

The instrumentation-based approach requires running the
programs with pre-set values and settings that ensure that only
one deterministic flow exists, provided that no randomness
or any kind of failure like memory shortage occurs. For this,
we used the developer-written tests that were included in the
projects’ sources. Typically, one test case executes only a
small part of the possible control flow at a time, therefore,
multiple executions of the program are needed for the most
complete analysis. Every test case adds those calls to the call
graph that were covered during the execution of that particular
test case. If calls are covered by multiple test case executions
then no extra information is added to the call graph. As the
quality of the dynamic call graph depends on the test suit,
we did not add new test cases or remove any of the test cases in
order to maintain the project’s original state. Although we did
not add any test cases for better dynamic results, we selected
the projects evaluated in this work carefully. The projects in
this work reflect the importance of coverage as they differ to a
great extent. We did this measurement with a commonly used
tool, JaCoCo? using branch coverage since it is related to the
number of possible execution paths and is still not too hard to
compute.

We argue that test suites that have higher code coverage
values are better for dynamic analysis, in other words, higher
coverage means higher precision since we can gather more
information. In this paper, the analyzed projects vary in cov-
erage in order to show how much effect different levels of
coverage have on the results.

V. CALL GRAPH COMPARISON AND COMBINATION

A purely manual comparison of the static and dynamic call
graphs is not possible due to their size. Because of the
increasing research interest in extremely large graphs and
their widespread usage, there are a vast number of algorithms
available for comparing general directed and undirected
graphs [1], [25], [28], [43]. However, these methods cannot

3 https://www.jacoco.org/jacoco/

VOLUME 10, 2022

Z. Sagodi et al.: Static Call Graph Combination to Simulate Dynamic Call Graph Behavior

IEEE Access

be directly applied to call graphs, especially if they were pro-
duced by different analyzer tools. They might represent the
same method in different ways, therefore, we developed a call
graph comparison method based on node pairing. We started
the development and implementation of this comparison
algorithm in a previous work [32]. The method name-based
pairing mechanism had to be refined in several steps due to
the different operation of static analyzers. For the current
research, we have enhanced this comparator tool to handle
dynamic call graphs as well and developed other features to
help evaluate the results.

Some examples of the information provided by the com-
parator tool:

« Summary table of the percentage of common calls.

o Graph-to-graph comparison of common and diverse
calls.

o List of calls that are missing from one graph but are
present in the other (where both graphs contain the
methods associated with these calls).

For the purpose of this paper, we added extra functionality
to this tool* thus it is possible to create new call graphs
based on the other already loaded call graphs. This created
graph is also included in our measurements. The created
graph is a heuristically combined graph. In our previous work,
we found that the algorithm CHA can explode graphs so
we had to handle these cases. If a call site calls the same
method multiple times in different classes after a limit it is
considered to be a CHA explosion. For example, if a foo
method calls the clone method of every class then it is
considered a CHA explosion. For this research, the call limit
was set to 5 but it could be tuned if necessary. If such an
explosion is detected we delete every call in the SootCHA'’s
graph and substitute it with another tool’s calls from the
same call site. We include at most two methods from the
other graph. We perform an additional filtering step on this
artificially created graph. SootCHA’s graph is full of calls
that are associated with static class initialization (clinit)
blocks as the algorithm includes them every time a class is
used. Therefore, we exclude the (c1init) nodes from the
graph if only Java library calls are originating from them.

For better understanding, we include a diagram (Figure 1)
about how the data flows in this process. We transform every
graph into a uniform representation and we process those uni-
form graphs. We also create a graph (Uniform UnionGraph)
in this uniform format that contains every node and edge from
every static analyzer. The final calculations are done on the
uniform graphs and in the following parts of this work a graph
is meant to be in the uniform format.

VI. EVALUATION
We have evaluated the static and dynamic call graphs of
three carefully selected Java systems. These systems are

4https://d()i.org/10.5281/zenod0.7003920

VOLUME 10, 2022

TABLE 1. Properties of the analyzed projects.

LOC | Test coverage
Joda-Time 28.7k 81%
Maven-Core | 27.7k 39%
Sortpom 1.8k 96%

Joda-Time,® the Core module of Maven® (Maven-Core), and
the Sorter module of the Sortpom’ project. Joda-Time and
Maven-Core are part of the Defects4J [22] dataset. Sortpom
is an open-source project from GitHub.

We chose these three systems because they differ signifi-
cantly in size (Lines of Code, LOC), functionality, and test
coverage. Table 1 summarizes the properties of the systems.
The coverage values represent branch coverage.

Since dynamic analysis is highly dependent on test cover-
age, we have taken this feature into account in the selection
process. As shown in Table 1, the Maven-Core project has low
coverage, Joda-Time has medium-high coverage, while the
Sortpom project has exceptionally high test coverage. Having
various coverage values allows us to determine how it affects
the results of the dynamic analysis.

The following three subsections compare the dynamic and
static graphs obtained from these three projects. The RQs are
also answered in the analyses.

A. JODA-TIME

As Table 1 showed, Joda-Time is a medium-sized project with
relatively good test coverage. It was the de-facto standard date
and time library before Java 8.

The comparison of the call graphs produced on Joda-Time
is summarized in Table 2. The first line and the first column
of the table depict the names of the analyzer tools. The static
analyzers are highlighted in orange, the dynamic analyzer
(DYN) in pink, and UnionGraph (UG) in blue. UnionGraph
includes every graph created by every static analyzer. There-
fore, it can be considered an upper bound on what static
analyzers can detect in the dynamic analyzer’s graph. Soot
was run with two different configurations: we tested it with
both the VTA (SootVTA) and CHA (SootCHA) algorithms.

The diagonal elements of Table 2 (depicted in bold) show
the number of different calls found by each analyzer tool.
Every other cell in a row is a percentage that displays how
many percent of the given tool’s calls was found by the tool
in the column, respectively. For example, the value of 75.36 in
the second column of the fourth row means that 75.36%
of the calls of the OSA tool were found also by SootCHA
(which is 7,530 calls). If we consider OSA’s calls as the
relevant elements, this value is the same as the recall but in

5 https://github.com/JodaOrg/joda-time/tree/
6ad133837a4c4£8199d00a05c¢3¢16267dbfodebs

6https ://github.com/apache/maven/tree/
cecedd343002696d0abb50b32b54 1b8abba2883f/maven-core

7https ://github.com/Ekryd/sortpom/tree/
Oafd7ae3ecb2bf93be45a45723e467e868404173/sorter

131833

IEEE Access

Z. Sagodi et al.: Static Call Graph Combination to Simulate Dynamic Call Graph Behavior

[Test case #1| [Test case #2| [Test case #N| [source code|
|
D;;u;mic anarl;zer Source based ‘ ‘ \Sf)urce based ‘ ‘ Byte code based ‘ ‘ Byte code based ’
raph creator #1 graph creator #N graph creator #1 graph creator #N
L . I .
Source based Source based Byte code based Byte code based
Eynamic Ca CallGraph #1 CallGraph #N CallGraph #1 CallGraph #N
Unification process
Uniform Uniform Uniform Uniform Unifl;rm‘
Dynamic CG Source based CG #1 Source based CG #N Byte code based CG #1 || Byte code based CG #N
,ZCombination f Uniform
UnionGraph
Replace calls
with
~_|other graph's calls
Combination CG #1‘ !Combination CG #N!
FIGURE 1. How we process the data and graphs.
TABLE 2. Joda-Time comparison results.
SootCHA | SootVTA OSA SPOON | WALA DYN JDT UG

SootCHA 34,161 39.33% 22.04% 22.61% 58.76% | 26.84% | 21.86% 100%

SootVTA 100% 13,436 32.67% 34.05% 60.46% | 26.52% | 32.38% 100%

OSA 75.36% 43.94% 9,992 99.99% 69.97% | 50.81% | 99.17% 100%

SPOON 75.81% 44.91% 98.08% 10,187 70.52% | 49.86% | 97.43% 100%

WALA 97.15% 39.32% 33.84% 34.77% 20,660 38.67% | 33.55% 100%

DYN 93.21% 36.22% 51.62% 51.64% 81.23% 9,836 51.46% | 94.62%

JDT 73.15% 42.60% 97.04% 97.20% 67.88% | 49.57% 10,211 100%

UG 91.12% 35.84% 26.65% 27.17% 55.11% | 24.82% | 27.24% 37,492

a percentage format. In this comparison, we use these two
terms equivalently.

Table 2 compares all static analyzers with each other, with
the dynamic tool, and with UnionGraph as well. It can be
seen that UnionGraph “finds” the most calls in the dynamic
graph (94.62%), the second best is SootCHA with 93.21%.
This result seems exceptionally good, however, note that
SootCHA detects 34,161 edges, while the dynamic graph has
only 10,211 edges. We can conclude that tools that do not
use more advanced algorithms to deal with polymorphism
other than simple static analysis (OSA, SPOON, JDT) have
a relatively small coverage of the dynamic graph. WALA
and SootCHA perform better. Although SootVTA uses the
advanced VTA algorithm it achieves only 36.22% on the
dynamic tool’s graph. This is because Joda-Time is a library
and the algorithm is entry-point-based.

With RQ1, we investigate whether it is possible to approx-
imate dynamic call graphs with static call graphs only. Look-
ing at the 93.21% result for SootCHA, the answer is yes.
However, SootCHA found three times as many edges as
the dynamic tool. The edge number explosion is caused by

131834

the CHA algorithm itself. If one of the test cases uses the
hashCode method of a class, this call will appear as a single
edge in the dynamic graph. In contrast, the CHA algorithm
binds the hashCode method of every class in the class
hierarchy. This can result in numerous call edges in the static
graph that do not necessarily occur in reality.

RQ2 tests whether it is possible to cover the dynamic
graph in such a way that the static graph is as accurate as
possible. To answer this question, we used the combined
graph described in Section V. Our goal was to construct a
graph that contains as few edges as possible that are not
present in the dynamic graph (more sound), but covers the
edges that can be found (precise). The results of the graphs
obtained by combining different static analyzers are summa-
rized in Table 3. The combinations are SootCHA-WALA,
SootCHA-SPOON, SPOON-WALA, and SootVTA-WALA.
The table also includes the results of the original, unmodified
graphs (WALA, OSA, SPOON, JDT, SootCHA, SootVTA,
and UnionGraph). The Recall column is the link between
Table 2 and Table 3 as the graph coverage we used is the
percentage form of the recall. Since the precision value

VOLUME 10, 2022

Z. Sagodi et al.: Static Call Graph Combination to Simulate Dynamic Call Graph Behavior

IEEE Access

TABLE 3. Precision, F1-score and Recall on Joda-Time.

Tool Precision F1 Recall
SootCHA-WALA 0.5242 0.6237 | 0.7696
SootCHA-SPOON 0.5411 0.6200 | 0.7258
SPOON-WALA 0.5822 0.5473 | 0.5164
WALA 0.3867 0.5240 | 0.8123
OSA 0.5081 0.5121 | 0.5162
SPOON 0.4986 0.5073 | 0.5164
JDT 0.4957 0.5050 | 0.5146
SootCHA 0.2684 0.4168 | 0.9321
UnionGraph 0.2482 0.3933 | 0.9462
SootVTA-WALA 0.4388 0.3744 | 0.3265
SootVTA 0.2652 0.3062 | 0.3622

is included in the graph comparison to answer RQ2, the
Fl-score® [38] was used as the primary measure, which is
the harmonic mean of the precision and the recall. Therefore,
the rows are in descending order by Fl-score. We consider
those edges of the static graphs to be true positives that are
also found in the dynamic graph. Edges that are found only
in the static graph are false positives, while edges that occur
only in the dynamic are false negatives. The highest value in
each column is highlighted in green. Naturally, UnionGraph
sets an upper bound on the recall, so, in that column, it will
always be the maximum.

It can be seen that the greatest Fl-score results are
obtained with combined graphs. The best is the filtered
SootCHA-WALA combination. It has a 0.7696 recall on the
dynamic call graph. Although this is lower than SootCHA’s
recall of 0.9321 (93.21% coverage), its precision is signifi-
cantly higher (0.5242 instead of 0.2684, which is almost twice
as high). The SPOON-WALA combination has the highest
precision, but its recall value is relatively low. With this
analysis, we found that it is possible to increase the accuracy
of static graphs by heuristically combining them, but at the
cost of a reduced recall.

1) QUALITATIVE ANALYSIS
Table 3 summarizes which static graphs best approximate
the dynamic graph. Although the filtered SootCHA-WALA
combination performed well, we checked which edges are
missing from the static graph (false negative edges). The
manual analysis revealed that the vast majority of these edges
are associated with properties and Java language elements
(e.g. synthetically generated access methods) that also signif-
icantly influence the construction of static graphs. These were
described in more detail in our previous article [23]. Further-
more, the following two major groups of missing edges can
be distinguished that are related to the dynamic execution.
We refer to these calls as phantom calls, because, in reality,
they are not executed in the form they are represented by the
dynamic graph.

o Phantom calls from constructors (approximately 5% of

all false positive edges)

8h1. __ o . precision-recall
Fl-score = 2 precision+recall *

VOLUME 10, 2022

« Phantom calls for hashCode (approximately 1.9% of
all false positive edges)

Phantom calls from constructors are such calls that are
present in the dynamic graph, but we have not been able
to manually find a source code element for. Their occur-
rence is due to the operation of the JVM (class loading,
optimizations).

Phantom calls for hashCode is a collective name. This
refers to phantom calls that are caused by the dynamic tool’s
filtering mechanism. The dynamic tool filters out all Java
library calls, so if there is a callback from the library to
the analyzed code the intermediate calls will not be visible
in the graph. For example, if a foo method of class A
calls HashMap’s add method it will call A’s hashCode
method, but because of the filtering, this will appear in
the graph as if foo had called the hashCode method.
Another example is the call of equals methods. In reality,
these edges do not exist, so they do not appear in the static
graphs.

These phantom edges are one of the main reasons why
the recall value of UnionGraph is not 1.000, i.e. the graph
coverage is not 100%. A dynamic graph has edges and nodes
that static tools cannot find.

B. MAVEN-CORE

In this section, we analyze the Maven-Core project, which has
a significantly lower test coverage (see Table 1) than the other
two systems, to examine the effect of test coverage on the
dynamic graph. The coverage between the static and dynamic
graphs is shown in Table 4. Its structure is the same as in the
case of Table 2.

The table shows that the dynamic graph contains very few,
only 1,608 calls. In comparison, static analyzers find at least
4,000 edges. This significant difference was examined in the
qualitative analysis to confirm that it was caused by the low
test coverage. The effect of low test coverage can be clearly
observed in the dynamic graph’s column (column 7) as well.
In this column, the values are significantly lower than in the
case of Joda-Time. The dynamic graph covers only a very
small part of the static graphs. For SootCHA it covers only
1.87% of the calls. This is not surprising, since the graph
generated by the CHA algorithm contains 74,867 edges.
However, despite this large number of edges in SootCHA’s
graph, it cannot cover 100% of the dynamic graph. It only
covers 87% of it (the second column of the seventh row),
which is a bit less than for Joda-Time. Although the dynamic
graph can be considered small because of the low test cov-
erage, it cannot be stated that this automatically ensures
better coverage by static graphs. The coverage of the dynamic
graph increased significantly for SootVTA, SPOON, and JDT
compared to Joda-Time’s results, but decreased for the others.
The varied performance of static graphs can be explained
by our previous article [23] on comparing static call graphs.
In that study, we also evaluated the static call graph creator
tools on Maven-Core and on Joda-Time. Although we used

131835

IEEE Access

Z. Sagodi et al.: Static Call Graph Combination to Simulate Dynamic Call Graph Behavior

TABLE 4. Maven-Core comparison results.

SootCHA | SootVTA OSA SPOON | WALA DYN JDT UG
SootCHA 74,867 47.70% 3.01% 5.30% 5.65% 1.87% 5.44% 100%
SootVTA 99.96% 35,725 4.64% 7.53% 9.88% 2.68% 7.85% 100%
OSA 47.50% 34.87% 4,749 6431% | 40.64% | 12.44% | 61.21% 100%
SPOON 54.91% 37.21% 42.24% 7,230 3420% | 13.57% | 80.17% 100%
WALA 99.51% 83.12% 45.43% | 58.22% 4,248 20.43% | 54.26% 100%
DYN 87.00% 59.51% 36.75% | 61.01% | 53.98% 1,608 62.19% | 87.13%
JDT 58.19% 40.11% 41.56% | 82.87% | 32.96% | 14.30% 6,994 100%
UG 92.99% 44.37% 5.90% 8.98% 5.28% 1.74% 8.69% 80,508

TABLE 5. Precision, F1-score and Recall on Maven-Core.

Tool Precision F1 Recall
SootCHA-WALA 0.2544 0.3937 | 0.8700
SootCHA-SPOON 0.2540 0.3932 | 0.8694
SootVTA-WALA 0.2261 0.3277 | 0.5951
SPOON-WALA 0.1993 0.3004 | 0.6101
WALA 0.2043 0.2964 | 0.5398
JDT 0.1430 0.2325 | 0.6219
SPOON 0.1357 0.2220 | 0.6101
OSA 0.1244 0.1859 | 0.3675
SootVTA 0.0268 0.0513 | 0.5951
SootCHA 0.0187 0.0366 | 0.8700
UnionGraph 0.0174 0.0341 | 0.8713

version 3.6.0 instead of the currently used 3.6.3, the trend
that Maven-Core brings out the differences in static analyzers
much better than Joda-Time was already apparent.

Table 5 shows the results of the combined graphs as
in Table 3. These values are significantly lower than for
Joda-Time because of the high number of false positive
edges (i.e. edges that are only found in the static tools).
Once again, the SootCHA-WALA pairing achieves the best
F1-score. It reaches a 0.8700 recall on the dynamic graph,
which is really close to the upper bound, the 0.8713 recall of
UnionGraph.

1) QUALITATIVE ANALYSIS

Since static graphs do not always cover dynamic graphs as
precisely as would be expected given the large edge differ-
ence, it was important to investigate which edges occur only
in dynamic graphs and only in static graphs. First, we per-
formed a manual check of the false negative edges (edges
only in the dynamic graph). We found types similar to what
Joda-Time has, i.e. 10% of the false negative calls were phan-
tom calls for hashCode and another 10% were connected to
synthetic methods (access methods). Moreover, we detected
new types of phantom edges. The Maven project uses the
Mockito Framework® for testing, which generates stubs and
mock classes. Since the dynamic tool gets the bytecode from
the class loader itself (online instrumentation), it will find
these generated classes and their methods, so nodes that do
not exist in the source code are added to the graph. Naturally,
static analyzers cannot find these nodes and edges. Among
the false negative calls, 25% of them were connected to the

9https://site.mockito.or,&:{/

131836

Mockito Framework. Other libraries and frameworks may
also generate classes at runtime.

We also examined the false positive edges, i.e. the edges
that occur only in static graphs. The study confirmed that
the size difference in graphs is caused by those parts of the
code that are not executed by the tests. That is, test coverage
has a strong influence on the dynamic call graphs. In such
cases, statically generated graphs give a better picture of the
project. This answers RQ3, i.e. that dynamic graphs cannot
be considered as the “golden standard” for call graphs.

C. SORTPOM SORTER

In addition to the two large projects, we also analyzed a
small one, the Sorter module of the Sortpom project. Given
its exceptionally high branch coverage, we expected results
similar to that of Joda-Time. Table 6 confirms this assump-
tion. The column of the dynamic graph shows that it also cov-
ers static graphs better than Maven-Core, although, in most
cases, the extent of this is lower than for Joda-Time. Similar
to the Joda-Time results (see Table 2) SootCHA and WALA
achieve the highest coverage on the dynamic graph. Union-
Graph reaches a score above 90%, but the other static graphs
cover it reasonably well too. JDT is the only exception. The
reason for this difference is that the coverage of methods is
only 43.07%. In contrast, the second worst method coverage
value (achieved by OSA) is 74.91%. JDT has 413 nodes in
its graph, but when the Java library calls are removed, only
169 remain. This is less than the 267 methods found by the
dynamic analyzer. When the impact of low test coverage is
added to this, the graph coverage of only 16.91% becomes
understandable.

Table 7 shows the Fl-score and precision results on
the Sortpom project. The greatest precision values are
around 0.67, which matches what we expected based on
the Jode-Time project perfectly. The highest Fl-score is
0.7638, which even exceeds Joda-Time. It was achieved by
the SootCHA-WALA combinatorial graph. Its recall (0.8863)
is very close to its upper bound (0.9040). This characteristic
is also similar to the results on Joda-Time.

1) QUALITATIVE ANALYSIS

Due to the large test coverage, it may seem surprising in
Table 6 that the dynamic graph’s edge count is significantly
lower than the static ones’. While the dynamic graph has
only 267 nodes and 343 edges, UnionGraph has 1,826 nodes

VOLUME 10, 2022

Z. Sagodi et al.: Static Call Graph Combination to Simulate Dynamic Call Graph Behavior

IEEE Access

TABLE 6. Sortpom-Sorter comparison results.

SootCHA | SootVTA OSA SPOON | WALA DYN JDT UG
SootCHA 2,265 56.38% 1541% | 19.12% 29.01 13.69% 6.89% 100%
SootVTA 100% 1,277 2435% | 30.54% | 48.63% | 22.47% | 11.67% 100%
OSA 22.83% 20.34% 1,529 25.70% | 21.12% | 11.45% 5.10% 100%
SPOON 75.83% 68.30% 68.83% 571 67.95% | 40.28% | 14.71% 100%
WALA 94.94% 89.74% 46.68% | 56.07% 692 42.20% | 23.55% 100%
DYN 90.38% 83.67% 51.02% | 67.06% | 85.13% 343 16.91% | 90.38%
JDT 22.22% 21.23% 11.11% | 11.97% | 23.22% 8.26% 702 100%
UG 55.10% 31.06% 37.19% | 13.89% | 16.83% | 7.54% 17.08% 4,111

TABLE 7. Precision, F1-score and Recall on Sortpom-Sorter.

Tool Precision F1 Recall
SootCHA-WALA 0.6711 0.7638 | 0.8863
SootCHA-SPOON 0.6734 0.7620 | 0.8776
SootVTA-WALA 0.6778 0.7454 | 0.8280
SPOON-WALA 0.6785 0.6745 | 0.6706
WALA 0.4220 0.5643 | 0.8513
SPOON 0.4028 0.5033 | 0.6706
SootVTA 0.2247 0.3543 | 0.8367
SootCHA 0.1369 0.2377 | 0.9038
OSA 0.1145 0.1870 | 0.5102
UnionGraph 0.0754 0.1392 | 0.9038
JDT 0.0826 0.1110 | 0.1691

and 4,111 edges. UnionGraph covers all the methods of the
dynamic graph, so there are 1,559 methods that only occur
in static graphs. It is worth examining which methods and
calls are missing from the dynamic graph even with such high
test coverage. Out of the 1559 methods, only 615 are strictly
related to the Sortpom project. This is a huge difference
compared to the dynamic graph, from which library calls are
filtered. The next large category of discrepancies is caused by
the test functions (349 methods). Although they are part of
the Sortpom project, they are also filtered from the dynamic
graph. The remaining methods include 69 lambda or nested
class methods, which can be difficult to pair if the analyzers
do not provide the correct line information [32].

It is also crucial to investigate which edges the static tools
could not cover in the dynamic graph, i.e. why the recall
is not 1.000, or in other words, why the SootCHA-WALA
combination achieved a recall of only 0.8863. In this case,
the uncovered dynamic calls’ number was 39. The greatest
part, 51% of these calls were phantom calls generated by the
dynamic tool. An example of a phantom call is the edge point-
ing from method processElement (Wrapper) of class
ToStringOperation of package sortpom.wrapper.
operation to the toString () method of class
AlphabeticalSortedWrapper of package sortpom.
wrapper.content. In the source code, this line of code
belongs to this call: builder.append (baseIndent) .
append (Y“elementContent=") .append (element
Wrapper) .append (“\n”); According to the static
analysis, there is no t oSt ring call because append meth-
ods return with the St ringBuilder object.

About 31% of the calls were connected to language-specific
elements that are handled by static tools with varying

VOLUME 10, 2022

efficiency and in different ways. An example of a
language-specific call is the call from the processOpera-
tion (HierarchyWrapperOperation) method of the
HierarchyWrapper class to the processOtherCon-
tent (Wrapper) method of the HierarchyWrapper—
Operation class. (Both classes are part of the sortpom.
wrapper.operation package.) In the actual source
code, this is a method reference provided for a forEach
method. Soot generated a completely new bootstrap method
for the method reference.

15% of the missing edges were removed during our heuris-
tic combination mechanism when polymorphic edges were
filtered out to handle the CHA explosion.

There was one call out of 39 that could not be matched to
either the source code or the previous categories. It is a call
from the lambda$compareTo$3 (Function,Map.
Entry) method of the ChildElementSorter class to
its lambda$ScompareTo$2 (ChildElementSorter,
Map.Entry) method. The ChildElementSorter
class is part of the sortpom.wrapper.content pack-
age, the Map .Entry and Function classes are part of the
java.util package. The elements such as compareTo,
Function, and Map$Entry are present in the source
code, but it is unclear how the Java compiler and the JVM
created this exact call.

VII. THREATS TO VALIDITY

We used one concrete dynamic analyzer in this work. We did
not include any other dynamic analyzers, however, we stud-
ied them in detail. We found that they use the same API
provided by JVM and they differ only in method filtering.
The filtering mechanism of the dynamic tool we used is
not limited to the fully qualified names of the methods,
it employs the actual location on the disk as well. This way, it
provides a more sophisticated way of filtering, for example,
it can exclude packages from other submodules and test
classes.

In this paper, we included only 3 Java projects and evalu-
ated our heuristic algorithm on these. Although the projects
were carefully selected to be different in size and test cov-
erage, other projects might have produced a bit different
graph-combination results. This is natural, because, as we
have shown in a previous article [23], the efficiency of static
call graph generators is greatly influenced by the language
elements used by the project. Analyzing a project should start

131837

IEEE Access

Z. Sagodi et al.: Static Call Graph Combination to Simulate Dynamic Call Graph Behavior

with analyzing the most used language features and choosing
static analyzers accordingly.

The analyzed projects are libraries, meaning that they
do not have explicit entry points in the code. This could
have influenced the sophisticated call graph constructor algo-
rithms such as Soot’s VTA or WALA’s ZeroOneContainer-
CFA algorithm. However, this is not an issue, considering
that the aim of this paper was not to compare different
methods or to find the best possible combination of static
analyzers but to investigate whether we could create a
combination that may substitute dynamic call graphs. Sim-
ilarly, the parameter of the heuristic combination algorithm
was considered constant. We were not aiming for the optimal
solution.

VIIi. SUMMARY

In this research, we aimed to investigate the relationship
between call graphs produced by dynamic and static anal-
ysis. We collected 5 open-source static analyzers. We used
two configurations of Soot, thus we compared a total of
6 static call graphs with the dynamically generated call graph.
The dynamic graph was created using a Java agent-based,
on-the-fly bytecode instrumenter tool. This instumenter was
executed on the test suite of the three Java projects used in
the comparison, which have varying test coverages and sizes.
In order to compare the dynamic and static graphs, we asked
three research questions. The first two investigated whether
static graphs can be used to approximate dynamic graphs.
In the third RQ, we examined whether dynamic graphs
can be considered superior to static graphs, i.e. whether
they can be a “golden standard” for call graphs. The sum-
mary of the answers to the three research questions are the
following:

e RQ1 - Is it possible to approximate dynamic call
graphs using only static call graphs?: The three com-
parison tables (Tables 2, 4, and 6) show that the edges of
the dynamic graph can be covered by static graphs up to
approximately 90%. The best stand-alone static analyzer
is Soot configured with the CHA algorithm. Naturally,
the best coverage was achieved by UnionGraph, which
contains all edges of all static graphs. This is the upper
limit of coverage. Incomplete coverage is caused by
edges that can only be found by the dynamic analyzer.
The incomplete coverage is partly caused by edges that
can only be found by the dynamic analyzer because they
are caused, for example, by the operation of the JVM.
These are called phantom edges. The other reason for the
discrepancy is the way static analyzers work, which we
discussed in our previous article [23]. With a high cov-
erage of around 90%, it can be said that static graphs are
suitable for approximating dynamic call graphs. How-
ever, the cost is that the size of the static graph is often
several times larger than the dynamic graph. In the case
of Joda-Time, the UnionGraph contains 37,492 edges,
compared to 9,836 in the dynamic graph. For this reason,

131838

we examined in RQ2 whether good coverage can be
achieved with static graphs that contain as few edges as
possible.

o RQ2 - Is it possible to cover the dynamic call graphs
using static call graphs but with more soundness?: To
answer this question, we heuristically combined several
static graphs and compared them to the dynamic graph.
The aim of this heuristic combination was to reduce the
number of unnecessary edges in static graphs. The graph
of SootCHA was a good starting point since it covered
the dynamic graph the best, but the CHA algorithm
introduced a large number of polymorphic edges into
the graph that might not be executed in reality. If a
so-called CHA explosion is detected we delete every
call in SootCHA'’s graph and substitute it with another
tool’s calls from the same call site. We tested several
tool combinations, some did not include SootCHA. The
F1-score was used to evaluate the performance of the
combinations, as it is the harmonic mean of accuracy and
recall (to which graph coverage can be related). In all of
the cases, the SootCHA-WALA combination provided
the best results. Although their dynamic graph coverage
was reduced compared to the original SootCHA, the
accuracy of the graphs was significantly increased. RQ2
can also be answered positively, i.e. it is possible to
cover dynamic graphs with higher accuracy and without
a significant decrease in recall.

« RQ3 - Can dynamic call graphs be considered a
‘““golden standard” for call graphs?: To answer this
question, we performed a qualitative analysis to find out
which edges occur only in dynamic graphs and only
in static graphs. The dynamic graph may miss edges
because of insufficient test coverage. JVM actions,
phantom calls, and improper filtering may cause the
occurrence of edges that are not present in the project
according to the source code. On the other hand, static
graphs might contain unnecessary edges that are not
executed in reality (e.g. due to the handling of polymor-
phism) and they miss some edges due to inaccuracies
in their analysis. Based on these results, we concluded
that neither dynamic graphs nor static graphs can be
considered the ‘“golden standard”. It depends on the
subsequent application which is more suitable for the
purpose. Static call graphs might be better if there is no
test suite or it is negligible. They might also be preferred
if an excessive number of call-backs are present in the
code that create the mentioned phantom calls.

REFERENCES

[1] L. A.Zager and G. C. Verghese, *“Graph similarity scoring and matching,”

Appl. Math. Lett., vol. 21, no. 1, pp. 86-94, Jan. 2008.

K. Ali and O. Lhotdk, “Application-only call graph construction,” in Proc.

26th Eur. Conf. Object-Oriented Program. (ECOOP), Berlin, Germany:

Springer-Verlag, 2012, pp. 688-712.

[3] L. O. Andersen, “Program analysis and specialization for the C program-
ming language,” Ph.D. thesis, Dept. Comput. Sci., Univ. Copenhagen,
Copenhagen, Denmark, 1994.

2

—

VOLUME 10, 2022

Z. Sagodi et al.: Static Call Graph Combination to Simulate Dynamic Call Graph Behavior

IEEE Access

[4]

[5]

[6]
[71

[8]

[91

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

G. Antal, P. Hegedus, Z. Toth, R. Ferenc, and T. Gyimothy, ‘‘Static
Javascript call graphs: A comparative study,” in Proc. IEEE 18th Int. Work.
Conf. Source Code Anal. Manipulation (SCAM), Sep. 2018, pp. 177-186.
D. F. Bacon and P. F. Sweeney, “Fast static analysis of C++ virtual
function calls,” ACM SIGPLAN Notices, vol. 31, no. 10, pp. 324-341,
Oct. 1996.

P. Badenski. (2022). Call Hierarchy Printer GitHub Page. Accessed: 2022.
[Online]. Available: https://github.com/pbadenski/call-hierarchy-printer
CallGraphViewer. (2022)/. Callgraph Viewer Home Page. Accessed: 2022.
[Online]. Available: https://marketplace.eclipse.org/content/callgraph-
viewer

X. Chen, P. Du, and W. Srisaan, “SimSight: A virtual machine based
dynamic call-graph generator,” Dept. Comput. Sci. Eng., Univ. Nebraska-
Lincoln, Tech. Rep. TR-UNL-CSE-2010-0010, 2010.

M. Christodorescu and S. Jha, “Static analysis of executables to
detect malicious patterns,” in Proc. 12th Conf. USENIX Secur.
Symp. (SSYM), vol. 12. Berkeley, CA, USA: USENIX Association,
2003, p. 12.

D. V. Bruggen, F. Tomassetti, N. Smith, and C. Maximilien. (2022). Java-
Parser for Processing Java Code Homepage. Accessed: 2022. [Online].
Available: https://javaparser.org/

J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented
programs using static class hierarchy analysis,” in Proc. Eur. Conf. Object-
Oriented Program., M. Tokoro and R. Pareschi, Eds. Berlin, Germany:
Springer, Aug. 1995, pp. 77-101.

DSE University of Szeged. (2022). OpenStaticAnalyzer GitHub Page.
Accessed: 2022. [Online]. Available: https://github.com/sed-inf-u-
szeged/OpenStaticAnalyzer

Eclipse. (2022). Eclipse Home Page. Accessed: 2022. [Online]. Available:
www.eclipse.org/eclipse/

Eclipse JDT. (2022). Eclipse JDT Home Page. Accessed: 2022. [Online].
Available: http://www.eclipse.org/jdt/

F. Eichinger, K. Bohm, and M. Huber, “Mining edge-weighted
call graphs to localise software bugs,” in Machine Learning and
Knowledge Discovery in Databases. Berlin, Germany: Springer, 2008,
pp. 333-348.

Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of Android malware through static analysis,” in Proc.
22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2014,
pp. 576-587.

N. Grech, G. Fourtounis, A. Francalanza, and Y. Smaragdakis, ‘“Heaps
don’t lie: Countering unsoundness with heap snapshots,” 2019,
arXiv:1905.02088.

D. Grove and C. Chambers, ““A framework for call graph construction algo-
rithms,” ACM Trans. Program. Lang. Syst., vol. 23, no. 6, pp. 685-746,
Nov. 2001. [Online]. Available: http://doi.acm.org/10.1145/506315.
506316, doi: 10.1145/506315.506316.

D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call graph con-
struction in object-oriented languages,” in Proc. 12th ACM SIGPLAN
Conf. Object-Oriented Program., Syst., Lang., Appl. (OOPSLA), 1997,
pp. 108-124.

H. Hoogendorp, “Extraction and visual exploration of call graphs for
large software systems,” M.S. thesis, Faculty Math. Natural Sci., Univ.
Groningen, Groningen, The Netherlands, 2010.

F. Horvath, T. Gergely, A. Beszédes, D. Tengeri, G. Balogh, and
T. Gyiméthy, “Code coverage differences of Java bytecode and source
code instrumentation tools,” Softw. Quality J., vol. 27, no. 1, pp. 79-123,
Mar. 2019.

R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing faults
to enable controlled testing studies for Java programs,” in Proc. Int. Symp.
Softw. Test. Anal. (ISSTA), 2014, pp. 437-440.

J. Jasz, 1. Siket, E. Peng6, Z. Sagodi, and R. Ferenc, ““Systematic compar-
ison of six open-source Java call graph construction tools,” in Proc. 14th
Int. Conf. Softw. Technol., 2019, pp. 117-128.

T. Kempf, K. Karuri, and L. Gao, “Software instrumentation,” in Wiley
Encyclopedia of Computer Science and Engineering, B. W. Wah, Ed.
Hoboken, NJ, USA: Wiley, 2008.

D. Koutra, A. Parikh, A. Ramdas, and J. Xiang, “Algorithms for graph
similarity and subgraph matching,” Tech. Rep., 2011.

O. Lhotdk, “Comparing call graphs,” in Proc. 7th ACM SIGPLAN-
SIGSOFT Workshop Program Anal. Softw. Tools Eng. (PASTE), 2007,
pp. 37-42.

C. Liu, X. Yan, H. Yu, J. Han, and S. P. Yu, “Mining behavior graphs for
‘Backtrace’ of noncrashing bugs,” in Proc. SDM, 2005, pp. 286-297.

VOLUME 10, 2022

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]
[36]
(37]
(38]

(39]

(40]

[41]

(42]

(43]

[44]

[45]

[46]

O. Macindoe and W. Richards, “Graph comparison using fine structure
analysis,” in Proc. IEEE 2nd Int. Conf. Social Comput., Aug. 2010,
pp. 193-200.

G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan, “An empirical
study of static call graph extractors,” ACM Trans. Softw. Eng. Methodol.,
vol. 7, no. 2, pp. 158-191, Apr. 1998.

V. Musco, M. Monperrus, and P. Preux, ““A large-scale study of call graph-
based impact prediction using mutation testing,” Softw. Quality J., vol. 25,
no. 3, pp. 921-950, Sep. 2017.

R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“SPOON: A library for implementing analyses and transformations of
Java source code,” Software: Pract. Exper., vol. 46, no. 9, pp. 1155-1179,
Sep. 2016.

E. Pengé and Z. Sdgodi, “A preparation guide for Java call graph compar-
ison: Finding a match for your methods,” Acta Cybernetica, vol. 24, no. 1,
pp. 131-155, 2019.

M. Reif, M. Eichberg, B. Hermann, J. Lerch, and M. Mezini, “Call graph
construction for Java libraries,” in Proc. 24th ACM SIGSOFT Int. Symp.
Found. Softw. Eng., Nov. 2016, pp. 474-486.

H. G. Rice, “Classes of recursively enumerable sets and their deci-
sion problems,” Trans. Amer. Math. Soc., vol. 74, no. 2, pp. 358-366,
1953.

B. G. Ryder, “Constructing the call graph of a program,” IEEE Trans.
Softw. Eng., vol. SE-5, no. 3, pp. 216-226, May 1979.

Sable *J. (2019). Sable *J Home Page. Accessed: 2022. [Online]. Avail-
able: http://www.sable.mcgill.ca/starj/

Sable Research Group. (2022). Sable/Soot GitHub Page. Accessed: 2022.
[Online]. Available: https://github.com/Sable/soot

Y. Sasaki, ““The truth of the F-measure,” Teach Tutor Mater, vol. 1, no. 5,
pp. 1-15, Jan. 2007.

L. Sui, J. Dietrich, A. Tahir, and G. Fourtounis, “On the recall of static call
graph construction in practice,” in Proc. ACM/IEEE 42nd Int. Conf. Softw.
Eng., Jun. 2020, pp. 1049-1060.

V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin, ‘“Practical virtual method call resolution
for Java,” ACM SIGPLAN Notices, vol. 35, no. 10, pp.264-280,
Oct. 2000.

D. Tengeri, F. Horvath, A. Beszedes, T. Gergely, and T. Gyimothy, ‘“Nega-
tive effects of bytecode instrumentation on Java source code coverage,” in
Proc. IEEE 23rd Int. Conf. Softw. Anal., Evol., Reeng. (SANER), Mar. 2016,
pp. 225-235.

F. Tip and J. Palsberg, ‘“Scalable propagation-based call graph construction
algorithms,” in Proc. 15th ACM SIGPLAN Conf. Object-Oriented Pro-
gram., Syst., Lang., Appl. (OOPSLA), 2000, pp. 281-293.

J.R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM, vol. 23,
no. 1, pp. 3142, Jan. 1976.

T. A. Wagner, V. Maverick, S. L. Graham, and M. A. Harrison, “Accu-
rate static estimators for program optimization,” ACM SIGPLAN Notices,
vol. 29, no. 6, pp. 85-96, Jun. 1994.

WALA. (2022). WALA Home Page. Accessed: 2022. [Online]. Available:
http://wala.sourceforge.net/wiki/index.php/Main_Page

K. Gallagher and D. Binkley, ‘“‘Program slicing,” in Proc. Frontiers Softw.
Maintenance, Sep. 2008, pp. 439-449.

ZOLTAN SAGODI is currently pursuing the Ph.D.
degree. He has been working in research during
his B.Sc. and M.Sc. studies. His Ph.D. topic is
detecting vulnerabilities and faults in source code
via static analysis and Al application.

He is currently working at the Department
of Software Engineering, University of Szeged.
Besides his research tasks, he takes his part in
education. This means multiple courses and in his
freetime, he takes effort into automatizing many of

the educational tasks (e.g., creating and correcting exams, and preparation for
the courses).

131839

http://dx.doi.org/10.1145/506315.506316

IEEE Access

Z. Sagodi et al.: Static Call Graph Combination to Simulate Dynamic Call Graph Behavior

EDIT PENGO received the Ph.D. degree from
the University of Szeged, in 2016. Her research
interests include the quality assurance of source
code through static analysis. Topics of her thesis
include symbolic execution, comparison of static
call graphs, and detection of primitive obsession
code smell. The thesis defense process is currently
underway. Besides research, she currently works
at the Department of Software Engineering, Uni-
versity of Szeged, and takes part in research and

development projects. She teaches C++ programming and information

security.

131840

JUDIT JASZ received the Ph.D. degree in com-
puter science from the University of Szeged,
in 2010. She is currently an Assistant Professor
with the Department of Software Engineering,
University of Szeged. Her research interests
include static program analysis and bug prediction.
In addition to research, she is actively involved in
the department’s teaching activities and research
development projects.

ISTVAN SIKET received the Ph.D. degree in
computer science, in 2011. He is currently an
Assistant Professor with the Department of Soft-
ware Engineering, University of Szeged. His
research interests include source code analysis,
measurement, quality assurance, and bug detec-
tion. He has been participating in several research
and development projects related to source code
analysis and quality assurance.

RUDOLF FERENC received the Ph.D. degree in
computer science from the University of Szeged,
in 2005, and the Habilitation degree, in 2015.

He is currently an Associate Professor and act-
ing as the Head of the Department of Software
Engineering, University of Szeged. His research
interests include static code analysis, metrics,
quality assurance, design pattern and antipattern
mining, and bug detection. He leads the Static
Code Analysis Group, which develops tools for
analyzing the source code of various languages. These tools calculate code
metrics and detect coding issues and duplications. He has more than 100
publications in these fields with over 2000 citations. He is leading several
research and development projects, which are related to quality assessment,
improvement, and architecture reconstruction of software systems for major
banks and software development companies in Hungary. He has been serv-
ing as the Program Co-Chair and the Program Committee Member at the
major conferences in this field (ICSE, ICSME, ESEC/FSE, SANER, CSMR,
WCRE, ICPC, SCAM, and FASE), since 2005.

VOLUME 10, 2022

