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ABSTRACT To address the problem of low efficiency of the existing hill-climbing algorithm in Bayesian
network structure learning, this paper proposes a Bayesian network structure learning algorithm based
on probabilistic incremental analysis and constraints. The algorithm constructs a suitable measure for
representing the degree of node association in Bayesian networks based on the principle of random forest
feature extraction; then uses the method to construct the initial Bayesian network structure and constrains
the search space by setting a corresponding threshold for the probability increment centered on each node;
finally takes the initial Bayesian network as the starting point and learns it by the forbidden hill-climbing
search and BIC scoring method to obtain the optimal Bayesian network structure. Experimental results show
that the correlation degree measure and mutual information proposed in this paper have an approximate
correlation expression effect; compared with other Bayesian network structure learning algorithms of the
same type, the method in this paper has a faster operation speed while ensuring the quality of the learned
network. The experimental results show that the Bayesian network structure learning algorithm based on
probabilistic incremental analysis and constraints is an effective and efficient Bayesian network structure
learning algorithm.

INDEX TERMS Probability increment, Bayesian network structure learning, constrained search space, Hill-
climbing algorithm.

I. INTRODUCTION
The interconnection between different things is the basis for
nature to become a whole, and the interconnected nature
of each element in the data set is the basis for forming a
whole system. Therefore, studying the correlation between
things belongs to the basic content of scientific research.
In recent years, data analysis has been widely used in count-
less fields such as financial analysis [1] and medical research
[2]. It can be seen that data analysis has penetrated all aspects
of people’s lives. Correlation is an important indicator in
data analysis, which can present the degree of correlation
between two different events in numerical form. So far,

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano .

many correlation metrics have been proposed, such as mutual
information (MI) estimation [3], [4], maximum correlation
coefficient [5], and maximum information coefficient [6].
Correlation analysis methods are also often used in the pro-
cess of learning Bayesian network structure and have good
results. For example, use the chi-square test, MI to establish
an initial network, use conditional independence test to estab-
lish the parent-child node set, etc., and then combine with
search algorithms, such as hill-climbing algorithm, genetic
algorithm [7], particle swarm algorithm [8], etc. to build a
complete Bayesian network structure.

Bayesian Networks (BN), also known as Belief Network
or Directed Acyclic Graphical Model (DAGM), consists of a
Directed Acyclic Graph (DAG) and the corresponding con-
ditional probability table, the nodes in the directed acyclic
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graph represent random variables, the directed edges between
nodes represent the dependencies relationships between
nodes, the direction of the edges is from the parent node
to the child node, the two nodes The strength of the rela-
tionship between the nodes is expressed by the conditional
probability, and the information of the nodes without parent
nodes is expressed by the prior probability. In recent years,
Bayesian networks have been applied in many fields such as
causal analysis [9], artificial intelligence [10], fault diagno-
sis [11], [12], and medical research [13], [14]. At present,
Bayesian network structure learning has been proven to be an
NP (Non-deterministic Polynomial Hard, NP-hard) problem.
For this reason, many scholars have been concerned about
how to learn the correct Bayesian network structure accord-
ing to the data set. An in-depth study was carried out on
the issue.

Tsamardinos et al. [15] proposed the Max-Min Hill-
Climbing (MMHC) algorithm, which first uses the condi-
tional independence criterion to obtain a network skeleton,
and then obtains the final network through hill climbing to
narrow the search space. The method improves the efficiency
of the algorithm, but when the conditional independence is
applied, its complexity will increase exponentially with the
increase of the number of nodes, which makes its effect
in large networks not ideal; Gámez et al. [16], [17] Con-
strained Hill Climbing (CHC) algorithm, Fast Constrained
Hill Climbing (Fast-CHC) algorithm and their improved
algorithms, these algorithms limit the subsequent search
space by dynamically changing candidate structure sets to
improve the search rate, but are limited by the Due to the
defects of the constraint method itself, these algorithms are
easy to exclude the correct structure from the candidate struc-
ture, which leads to the reduction of the accuracy of the
algorithm; Liu et al. [18] proposed an improved hill-climbing
algorithm (Simplify Hill-Climbing, SHC), The algorithm
builds the maximum weight spanning tree (MWST) through
MI, and then finds the optimal Bayesian network structure
through the combination of the hill-climbing algorithm with
only edge addition and edge rotation operations and the BIC
score. Since there is no edge reduction operation in this algo-
rithm, the final result is prone to multilateral situations, more-
over, the algorithm uses prior knowledge for initial network
orientation; Liu et al. [19] proposed a hill-climbing algorithm
based on the combination of V-structure & log-likelihood
function orientation and tabu search. This algorithm greatly
improves the performance indicators of the hill-climbing
algorithm, but it uses MI. The method of establishing
the MWST forces all nodes to be connected as a whole
in the Car network, and there will inevitably be at least
two redundant edges in the initial network, which brings
unnecessary trouble to the subsequent mountain climbing
search.

To improve the efficiency of the existing Bayesian network
structure learning algorithm while ensuring the accuracy of
the hill climbing algorithm, this paper proposes a Hill Climb-
ing Algorithm Based on Probabilistic Incremental Analysis

and Constraints (PHC). The main research contents of this
paper are as follows:

Based on the principle of random forest feature selection,
a correlation measure with good correlation capability and
suitable for learning the Bayesian network structure is estab-
lished. The average probability increment percentage (APIP)
of each state between node pairs is obtained by changing
the state of one node and observing the probability change
of each state of other nodes through the method of control
variables, and the value is used as an index to measure the
degree of association between nodes.

The PHC algorithm is constructed in three steps. Firstly,
theMWST [18], [20] is constructed based on the APIP values
among the nodes in the data set. Then, a threshold is set for the
APIP values to constrain the search range. Finally, a modified
hill-climbing algorithm and a forbidden search strategy are
used as the starting point to construct the structure of the ex-
optimal Bayesian network.

In this paper, we experimentally demonstrate that APIP
is more suitable for constrained Bayesian network structure
learning algorithms than the currently used MI, and also
demonstrate that the PHC algorithm has comparable or even
higher rates of effectiveness than other improved hill climb-
ing algorithms.

II. RESEARCH ON PHC ALGORITHM
A. THE STRUCTURE OF BAYESIAN NETWORKS AND THE
INPUT AND OUTPUT OF THE PHC ALGORITHM
The Bayesian network is a directed acyclic structure graph,
usually denoted byG = (V ,E).V denotes the set of all nodes
in the network, V = (X1,X2, · · · ,Xn), and E denotes the set
of all directed edges in the network, each edge starts from one
node and points to another node.

The PHC algorithm we study is applicable to the learn-
ing of Bayesian network structures under discrete variables.
Therefore, we define an n×mmatrixDATA as the input data,
DATA can be expressed as a combination ofm column vectors
with the expression DATA =

(
XT
1 XT

2 · · · X
T
m
)
, where each

column vector is a complete data with the expression XT
k =(

x1k x2k · · · xnk
)T , among them, k ∈ (1, 2, · · · ,m), xik

represents the state value of the node Xi in the k th set of
data, i ∈ (1, 2, · · · , n). xik is a state variable with t possible
state values, that is, the values of xik are discrete.xik takes the
value shown in equation (1):

xik =


s1, p1
s2, p2
...

st , pt

(1)

among them, sl represents the state value that xik (l ∈
(1, 2, · · · , t)) may take, and pl represents the probability that
node i is in state sl . In summary, the expression of DATA is
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shown in Equation (2).

DATA =


x11 x21 · · · x1m
x21 x22 · · · x2m
...

...
. . .

...

xn1 xn2 · · · xnm

 (2)

among them, xij is the value that has been determined.
The output results in a Bayesian network structure, usually

represented by a matrix named DAG. The size of the DAG is
determined by the number of nodes in the Bayesian network
structure. If the number of nodes in the Bayesian network is n,
the size of the corresponding DAG is n×n. The only elements
in the DAG are the numbers 0 and 1, and its expression is
shown in formula (3):

DAG =

 g11 · · · g1n
...

. . .
...

gn1 · · · gnn

 (3)

among them,i, j ∈ (1, 2, · · · n). if gij = 0 and gji = 0,
it means that there is no connection between nodeXi and node
Xj, that is, there is no edge connection between node Xi and
node Xj; if gij = 1 and gji = 0, it means that node Xi is The
parent node of node Xj, that is, there is an edge connection
between node Xi and node Xj, and the direction of the edge
is from node Xi to node Xj; if gij = 1 and gji = 1, it means
that there is an edge connecting node Xi and node Xj, But this
edge has no direction.

B. FORMULA DERIVATION OF APIP
Commonly used methods to measure the correlation between
two nodes are MI, conditional entropy, chi-square test, etc.
This paper proposes a new correlation measurement method
APIP. The calculation principle is shown in formula (4):

PI (X ,Y ) =
|P (X)− P (X |Y )|

P (X)
(4)

among them, PIXY represents the probability increment of
event X when event Y is known; P (X) represents the prob-
ability of event X occurring; P (X |Y ) represents the prob-
ability of event X when event Y has already occurred the
probability of the event occurring. The value of PIXY can
reflect the degree of influence of event Y on event X , and
the degree of influence is positively correlated with the value
of PIXY . Equation (4) can be simplified to Equation (5):

PI (X ,Y ) =

∣∣∣∣1− P (X |Y )
P (X)

∣∣∣∣ (5)

similarly, the calculation formula of PIYX can be obtained as
shown in formula (6):

PI (Y ,X) =

∣∣∣∣1− P (Y |X )
P (Y )

∣∣∣∣ (6)

according to Bayes’ theorem

P (Y |X )P (X) = P (X |Y )P (Y ) (7)

we can get:

P (X |Y )
P (X)

=
P (Y |X )
P (Y )

(8)

substitute equation (11) into equation (8) to get:

PI (Y ,X) =

∣∣∣∣1− P (Y |X )
P (Y )

∣∣∣∣ (9)

therefore:

PI (X ,Y ) = PI (Y ,X) (10)

It can be seen that the correlation obtained by the proba-
bility incremental analysis method is symmetrical, and this
property is consistent with the results obtained by other cor-
relation calculation methods. The results are consistent.

If each node of the Bayesian network is regarded as an
event, then occurrence and non-occurrence are all its states.
Equation (5) is sufficient for correlation analysis, but in prac-
tical application analysis, the state of the node There are often
more than two. Therefore, to facilitate the calculation, the
formula (5) needs to be extended to be used for the correlation
calculation of nodes with more states.
Definition 1: The possible states of the node X are

x1, x2, · · · , xt1 , Y node may be in the state of y1, y2, · · · , yt2 ,
There are N state combinations between nodes X and Y . The
calculation formula of N is shown in formula (11):

N = t1t2 (11)

in this case, the degree of association between nodes X and
Y should be expressed in the form of an average probability
increment percentage, its calculation formula is shown in
formula (13):

APIP (X ,Y ) =

t1∑
i=1

t2∑
j=1

∣∣∣1− P(xi|yj )
P(xi)

∣∣∣
N

× 100% (12)

among them, X 6= Y , xi indicates that node X is in the ith
state (i ∈ (1, 2, . . . , t1)); yj indicates that node Y is in the jth
state (j ∈ (1, 2, . . . , t2)), APIPXY represents the average of
probability increment percentage between node X and node
Y .
From formula (13), it can be determined that APIPXY takes

values in the range[0.+∞), and only when APIPXY is equal
to zero, node X and node Y are independent of each other.
The above are the same theoretical properties as MI, and the
calculation of MI is shown in formula (14) – (16):

H (X) = −
t1∑
i=1

P (xi) logP (xi) (13)

H (X ,Y ) = −
t1∑
i=1

t2∑
j=1

P
(
xi, yj

)
logP

(
xi, yj

)
(14)

MI (X ,Y ) = H (X)+ H (Y )− H (X ,Y ) (15)

Among them, H (X) denotes the conditional entropy of vari-
able X and H (X ,Y ) denotes the joint entropy of variable X
and variable Y .
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Analyzed from the point of view of the principle, MI cal-
culates the magnitude of information between two variables,
which can also be equated to the Kullback-Leibler Diver-
gence (DKL) of the joint and marginal distributions between
two variables, which is calculated in formula (17):

MI (X ,Y ) = DKL (P (X ,Y ) ‖P (X)P (Y ) ) (16)

in contrast, APIP measures the extent to which a change in
one variable causes a change in the probability distribution
of another variable.

Combining formulas (14), (15), and (16) yields a formula
equivalent to equation (16), the expression of which is shown
in formula (17):

MI (X ,Y ) =
t1∑
i=1

t2∑
j=1

P(xi, yj) log
P(xi, yj)
P(xi)P(yj)

(17)

equation (13) can also be replaced by an equivalent formula
as shown in formula (18):

APIP (X ,Y ) =

 1
N

t1∑
i=1

t2∑
j=1

∣∣∣∣1− P(xi, yj)
P(xi)P(yj)

∣∣∣∣
× 100%

(18)

let

vij =
P(xi, yj)
P(xi)P(yj)

(19)

from the meaning of APIP (APIP indicates the probability
change of one variable after the change of another variable)
combined with formula (18), it can be concluded that after the
variables X and Y are determined, the probability change of
variable Y after the change of variable X is correlated with vij.
APIP is calculated by summing all the vij and taking the mean
value to indicate the correlation degree of X and Y . However,
MI puts all the vij into a non-linear change function (log vij)
and then multiplies it by a value (P(xi, yj)) that varies with i
and j before summing them, which has disrupted the original
law of change transmission from the principle. Therefore,
by ordering the MI values between a node and other nodes
from largest to smallest, the resulting order of nodes no longer
has the regularity of influence from largest to smallest. But
APIP retains this regularity intact.

C. SCORING FUNCTION
The commonly used scoring functions for Bayesian network
structure learning are AIC [21], BIC [22], and MDL [23].
Among them, AIC and BIC are relatively similar. Usually,
the definitions of AIC and BIC are shown in equations (21)
and (22):

AIC = 2K − 2 ln(L) (20)

BIC = K ln(n)− 2 ln(L) (21)

among them, k represents the number of parameters of
the model, L represents the likelihood function, n repre-
sents the number of samples in the data set, and the first half of

the right side of the equation is the penalty term of the scoring
function. From the perspective of punishment, BIC considers
the number of samples, and its punishment is larger than that
of AIC, which can prevent the model from being too complex
due to too many samples.

The BIC scoring function is also known as the Bayesian
Information Criterion. Its calculation formula is shown in
formula (23):

BIC (G|D) =
n∑
i=1

qi∑
j=1

ti∑
k=1

mijk lg
mijk
mij
−
qi (ti − 1)

2
lgm

(22)

among them, n represents the number of nodes in the network,
qi represents the total number of parent node state combina-
tions of node Xi, ti represents the total number of all values of
the variable Xi, m is the total number of samples, mijk is the
data set D that satisfies Xi = k and the parent The node state

combination is the number of samples of mij =
ri∑
k=1

mijk .

The BIC scoring function can effectively evaluate the
learned Bayesian network structure, and the results are pre-
sented in the form of negative values. The higher the score,
the better the fit between the structure and the data.

D. GENERATE INITIAL NETWORK
The process of learning the Bayesian network structure by the
PHC algorithm requires first obtaining an initial network G
consisting of undirected edges by correlation degree analysis,
which is expressed in the same form as the DAG.

First, the APIP values of each pair of nodes in the input
data are calculated by equation (13) and put into the matrix
W. The expression ofW is shown in formula (23):

W =


w11 w21 · · · w1m
w21 w22 · · · w2m
...

...
. . .

...

wn1 wn2 · · · wnm

 (23)

Among them, W denotes an n × n matrix and wij denotes
the APIP value of the node Xj and the node Xi. To facilitate
subsequent calculations, when i = j, let wij = 0.
Then, the values in W are used as weights to construct

MWST and obtain the matrixG. Because the subsequent pro-
cess of learning Bayesian network structure is equivalent to
the process of continuously changing the values of elements
in G. After the learning of Bayesian network structure is
finished G becomes DAG, so the expression of G is the same
as that of DAG, and the meanings of elements in it are also
the same.

E. INITIAL NETWORK ORIENTATION METHODS
Orientation of G is required before entering the hill-climbing
search phase, and since the V-structure orientation method
is more accurate than the unilateral orientation method [20],
we first use the V-structure orientation method to orient G.
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FIGURE 1. Schematic diagram of V-structure orientation.

TABLE 1. Comparison of relevant elements in G before and after
V-structure orientation satisfying equation (22).

The basic principle of the V-structure orientation method
is shown in formula (25), and the undirected connection
diagrams of nodes X , Y , and Z are shown in Figure 1:

APIP (X ,Y |Z ) > APIP (X ,Y ) (24)

Among them, APIP (X ,Y |Z ) denotes the probability
increment percentage (degree of association) of X and Y in
the presence of known Z , which is calculated as shown in
formula (26):

APIP (X ,Y |Z ) =

c∑
k=1

a∑
i=1

b∑
j=1

∣∣∣1− P(xi|yj,zk )
P(xi|zk )

∣∣∣
Nc

× 100%

(25)

Among them, the two nodes X and Y are defined in the same
way as in formula (13), the possible states of Z nodes take
the values z1, z2, · · · , zc, and zk denotes the value of Z . When
formula (23) is satisfied between X , Y , and Z , the changes of
element values in the corresponding positions inG before and
after orientation are shown in Table 1.

After V-structure orientation, therewill be some unoriented
non-V-structure edges left in G. Other methods are needed to
orient the remaining edges. Since the causal phenomenon is
not obvious when only one edge is considered, it is difficult
to determine the direction of this edge when only one edge
is considered. In order to make the initial network have
the initial condition of the hill-climbing search process (all
edges must have directions), we use the common and good
orientation Conditional Relative Average Entropy (CRAE)
[24] orientation method to orient the remaining undefined
edges.

The calculation formula of CRAE [24] is shown in formu-
las (26):

CRAE
(
Xj→ Xi

)
=
H
(
Xi
∣∣Xj )

tiH (Xi)
(26)

among them, ti represents the number of values of node Xi.
H (Xi) and H

(
Xi
∣∣Xj )denotes the entropy and conditional

entropy of Xi, If CRAE
(
Xi→ Xj

)
≥ CRAE

(
Xj→ Xi

)
, the

direction is Xi→ Xj, otherwise the direction is Xj→ Xi.

TABLE 2. Request rules.

F. CONSTRAINT RULE SETTING
To improve the efficiency of hill-climbing algorithm, in addi-
tion to constructing an initial network before conducting the
hill-climbing search, constraints need to be set for the search
range of the hill-climbing search, which can improve the
overall efficiency of the algorithm. However, if the constraint
is too strong it will cause the correct result to be excluded
from the constraint range, which will reduce the accuracy of
the algorithm, so choosing the appropriate constraint method
and constraint strength is the key to ensuring the accuracy
of the algorithm and improve the overall efficiency of the
algorithm.

For a node, in general, the degree of association of the node
directly associated with it is stronger than that of the node
indirectly associated with it. Therefore, from the theoretical
point of view, the constraint matrix can be generated by
setting the threshold value of the degree of association to
exclude the pairs of nodes with weaker degree of association
and then using this matrix to constrain the range of the moun-
tain climbing search, which may obtain a better constraint
effect. To make the constraint more applicable to each node,
we constrain the column with the maximum value of each
column in W as the reference, and the constraint method is
shown in formula (27):{

CMij = 1, Wij ≥ α ×max(Wj)
CMij = 0, Wij < α ×max(Wj)

(27)

Among them, CM denotes a constraint matrix of size n × n,
which does not change as the hill-climbing search proceeds,
where the element values are 0 or 1; CMij denotes the value of
the element in the i th row and j th column in CM; a denotes
the constraint strength; and max

(
Wj
)
denotes the maximum

value of the j th column in W.
To visually represent the process and principle of constraint

validation, we define to consider the hill-climbing search
as an organic combination of three requests, the operation
contents and corresponding symbols are shown in the Table 2:

During the hill-climbing search process, turning the direc-
tion of a currently existing edge or deleting an already exist-
ing edge will not add a new edge to the current network
structure; only when an edge is added to the current net-
work structure, a new edge will be introduced; therefore,
CM only needs to work when a new edge needs to be
added. The CM effective cases correspond to the following
Table 3:
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TABLE 3. CM and request synergy constraint rules.

TABLE 4. Experimental environment configuration table.

The experimental environment is shown in Table 4.
among them, CMij||CMjidenotes the result of taking the log-
ical or operation of CMij and CMji.

As can be seen from Table 3, the add-edge operation is
performed only when ADDij = 1 and one of CMij and CMji
is equal 1. In other cases, no operation will be performed.

In summary, the method proposed in this subsection aims
to limit the search space and reduce the running time of the
algorithm by setting a threshold value for the APIP between
all the node pairs, to exclude the weakly connected node
pairs from the search range and keep the strongly connected
node pairs. In this method, if the value of α (threshold) is
too large, although it can achieve the purpose of reducing the
running time of the algorithm, it may cause some node pairs
that should exist connection relations to be excluded from
the search range, reducing the accuracy of the final result;
if the value of α is too small, although it can ensure that the
accuracy of the final result does not drop, but the effect of
reducing the running time of the algorithm is not obvious.
Therefore, if wewant to weigh the accuracy and running time,
we need to choose a suitable value of α to reduce the running
time of the algorithm as much as possible while ensuring that
the accuracy of the result is not reduced.

G. THE FLOW OF THE PHC ALGORITHM
The PHC algorithm is divided into three stages:

In the first stage, the initial network structure is con-
structed. First, the APIP value between each pair of nodes is
calculated according to the input data set, and the probability
increment matrixW is generated. Then, the undirected initial
network structure G is obtained by analyzing W . Finally,
the V-structure orientation method and the CRAE orientation
method were used to orient the G.

In the second stage, a hill-climbing search is performed
starting with G. The hill-climbing search process is imple-
mented step by step, and at each step, all the new structures
that can be generated are recorded and scored. Each of these
steps consists of three operations; the first operation is to add
an edge that is not in the network and is within the constraint;

the second operation is to invert an existing edge; the third
operation is to delete an existing edge. The structure with
the highest rating among all the possible generated structures
within the search range of this step is selected as the starting
point for the next climb. After iterating with this rule until the
scoring value is not rising, the program enters the third stage
of the PHC algorithm.

The third stage is the forbidden climbing search, which still
needs to be performed under the constraints of CM. First, let
G∗ = G, put G∗ into the taboo set TB, record the score of
G∗ as max_score, and then perform a hill-climbing search on
G∗. In each hill-climbing search step of this stage, if there is
no score higher than max_score, replaceG∗ with the network
structure with the highest score among all the results of this
step so as to substitute the new G∗ into the next hill-climbing
in the search. If a structurewith a higher score thanmax_score
is found in the 15-step [19] search, assign it to G and return
to the second stage to continue the hill-climbing search, and
if no network structure with a higher score is found, make
DAG = G and output DAG.

The PHC algorithm pseudo-code is shown as
algorithm 1.

III. EXPERIMENTAL RESULTSLAB
A. LAB EIRONMENT
B. EVALUATION INDICATORS
To verify the effectiveness of the APIP method, we judge
whether the APIP method has the ability to analyze the
degree of correlation between variables through the effec-
tiveness of the initial network constructed by both the APIP
method and the MI method using the MWST strategy.
Since the initial network has no direction, this paper only
considers whether the correlation of the edges in the ini-
tial network is correct. There are three evaluation indica-
tors, namely correct edges, missing edges, and redundant
edges.

To verify the effectiveness of the algorithm, this paper
selects the evaluation indicators F1 (F1-score), Hamming
Distance (HD), and TP (number of correct edges) as mea-
surement tools for judging the quality of the structure. Among
them, the calculation formula for F1 and HD is as follows:

recall =
TP

TP+ FN
(28)

precision =
TP

TP+ FP
(29)

F1 =
2× recall× precision
recall+ precision

(30)

HD = FP+ FN (31)

among them, TP represents the number of edges in the net-
work learned by the algorithm that is the same as those in
the standard network; FN represents the number of edges that
exist in the standard network but not in the network learned
by the algorithm, that is, the number of missing edges and
reverse edges The sum of the number; FP represents the num-
ber of edges that exist in the network learned by the algorithm
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Algorithm 1 DAG = PHC (DATA, ns, α)
Input: DATA: sample data set; ns: set of the total number
of states for each node variable in the sample data set; α:
constraint factor
Output:DAG: the Bayesian network structure corresponding
to the dataset
1: n← size(ns);
2: for each integer i ∈ [1, n] do
3: for each integer j ∈ [1, n] do
4: W ← [Wij]; / ∗Wij represents the APIP value

between node Xi and node Xj∗/
5: end for
6: end for
7: G← Build MWST by W ; /∗ According to the method in

[19] ∗/
8: G←determine the direction of the edge in G; /∗ Refer to

part II, subsection D ∗/
9: CM ←Determine the constraint range according to W

and α;/∗follow the method in equation (27) ∗/
10: r ← 0;
11: while1 do
12: if r = 0 do
13: [G, r]←carry out mountain climbing search with

G as the starting point, and continuously
update the structure of G until the score
does not increase, let r = 1.

14: else if r = 1 do
15: G∗ = G;
16:

[
G∗, r

]
← start a tabu search with G∗ as a starting
point, but update G∗ only if a structure
with a higher score than G is found. Until
the search exceeds the specified step size,
let r = 2; or find a structure with a score
greater than G, let G = G∗ and r = 0;

17: else if r = 2 do
18: DAG← G;
19: break;
20: end if
21: end while
22: return DAG;

but does not exist in the standard network, that is, the sum
of the number of reverse edges and redundant edges; recall
represents the recall rate; precision represents the precision
rate; HD Represents the gap between the network learned by
the algorithm and the standard network.

C. ALGORITHM INTRODUCTION
To verify the effectiveness and advancement of the PHC
algorithm, several other improved hill-climbing algorithms
were selected for comparison, among which are the HC algo-
rithm, CHC algorithm, Fast-CHC algorithm, Tabu algorithm,
MMHC algorithm, and VTH algorithm, Table 5 shows the
profiles of these algorithms.

TABLE 5. Introduction to the contrast algorithm.

TABLE 6. Four kinds of network structure parameters in Asia, Car, Child,
and Alarm.

D. EXPERIMENTAL RESULTS
Asia, Car, Child, Alarm, these four standard networks are
often used to test the effectiveness of the Bayesian structure
learning algorithm. The parameters of the network structure
of these four networks are shown in Table 6.

To test whether the APIP value has the ability to measure
the degree of association between variables, the MI value
was selected as a reference, and a comparative experiment
was conducted on the MWST construct- ed by using the
APIP value and the MI value. We selected four standard
Bayesian networks of Asia, Car, Child, and Alarm. Each
network took 1,000 sets of data, 5,000 sets of data, and 10,000
sets of data, a total of 12 sets of comparative experiments,
and each set of comparative experiments had 45 data sets,
the experimental results are the average of 45 experimental
results. The experimental results are shown in Figure 2.

As can be seen from figure 2, except for the Asia network
and the Alarm network, in the MWST constructed by the
APIP method and the MI method, the numbers of correct
edges, missing edges, and redundant edges are almost the
same in other networks; In the network experimental results,
the number of correct edges obtained by the APIP method is
less than that obtained by the MI method. Since the MWST
strategy can only obtain N-1 edges, where N is the number of
nodes in the network, so a slight decrease in the number of
correct edges leads to an increase in the number of wrong
edges, making the APIP and MI results appear to differ
significantly, but not significantly.; in the experimental results
of the Alarm network, in the case of 10,000 sets of data, the
experimental results of the APIP method are better than the
MI method.

To make the PHC algorithm narrow the search range and
achieve a high running speed while ensuring the effectiveness
of the algorithm, we conducted experiments on the value
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FIGURE 2. Comparison of experimental results using APIP and MI to build an initial network respectively.

of α. In this paper, the value of α is set to the interval of
0.05. The value of α was tested in four networks: Asian,
car, child, and alarm, with 5000 sets of data. In addition to
this, the same constraint strategy was used on MI for the
same experiments, and the experimental results are shown in
Figure 3 and Figure 4.

From Figure 3 and Figure 4, it can be seen that the APIP
constraint method can reduce the running time of the algo-
rithm with a certain degree of guaranteeing the accuracy of
the PHC algorithm and has a more stable constraint effect,
while the MI constraint method cannot reduce the running
time with guaranteeing the accuracy of the PHC algorithm.

From analyzing the learning results of Asia, Car, and
Alarm in Figure 3, it can be concluded that when the value
of α is 0.2, it can make the PHC algorithm’s accuracy not
reduced and greatly improve its efficiency. The inclusion of
the constraint strategy even improves the accuracy of the PHC
algorithm. When the value of α is 0.05, the quality of the
learning results of the PHC algorithm in all the networks

participating in the test can be guaranteed, but at this time
the value of α is too small to act as a constraint. After a
comprehensive analysis of the accuracy of the experimental
results and the running time, the PHC algorithm chooses
0.2 as the value of α, which allows the algorithm to maximize
the efficiency in the structure learning of most networks.
In the following experiments, the α value was all 0.2.

To more visually demonstrate the advanced nature of using
APIP restricted search, under the same constraint strategy,
we plotted the Pareto curves (F1-Time) using APIP and using
MI, respectively, as shown in Figure 5.We can clearly see that
the method using APIP restricted search can spend less time
in Asia’s structure learning and learning the network structure
with higher scores. In the structure learning results of the
Car network, it is easy to see that the method using APIP-
constrained search can get higher-rated network structures at
the same time. In the network structure learning results of
Child and Alarm, the results of these twomethods are similar,
but in this aspect of the stability of the ratings of the network,
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FIGURE 3. F1 and running time of PHC algorithm influenced by a for the case of CM generation using APIP.

FIGURE 4. F1 and running time of PHC algorithm influenced by a for the case of CM generation using MI.

the method using APIP-constrained search is slightly better.
The reason for this experimental result may be that the MI
formula does not preserve the sequential law of influence

degree transmission between nodes, while APIP effectively
preserves the mutual influence degree between nodes (see
Section II, Part B for the detailed analysis of the principle).
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FIGURE 5. Pareto curves of F1 and algorithm runtime Time with APIP and MI as constraints, respectively.

To visualize the running time comparison of the PHC algo-
rithm with and without introducing constraints, the exper-
iments were conducted by making a = 0 and a = 0.2 in
four networks with 1000, 5000, and 10000 as the sample
capacity, respectively. The experimental results are shown in
Figure 6. As can be seen from Figure 6, the running time
of the constrained PHC algorithm is significantly shortened.
After the constraints, the average running time of the PHC
algorithm in the Asia network is reduced by about 38.2%; the
average running time of the Car network is reduced by 77.1%
per month; the running time of the Child network is reduced
by about 43.8%; the running time of the Alarm network is
reduced by about 55.1%. It can be seen that the effectiveness
of the constraint strategy is confirmed.

To analyze the performance of the PHC algorithm,
we compared the PHC algorithm with other algorithms on
four networks of Asia, Car, Child, and Alarm. 45 experi-
ments were carried out independently under the conditions
of 1000 sets of data, 5000 sets of data, and 10000 sets of data
for each network, and the average value of the 45 experiments
was taken as the final experimental result under each con-
dition, Car, Child, Alarm standard network generation. The
experimental results of the F1 value, HD, and TP value are
shown in Table 7 to Table 10, and the experimental results of
running time are shown in Figure 7.

It can be seen from Table 7 to Table 10 and Figure 7 that
in the experiments of the Asia and Car networks, the PHC
algorithm performs very well, especially in the case of
5000 groups and 10000 groups of data. The F1 value,

HD value, and TP value of the learned Bayesian network
structure are the best among all the algorithms involved in
the experiment. Because the PHC algorithm is similar to the
VTH algorithm, the reason for this result may be that the PHC
algorithm is climbing a mountain. The process of searching
plays a role in the handling of isolated nodes; from the point
of time, the PHC algorithm is not as fast as HC and MMHC
in the Asia network, and not as fast as MMHC in the Car
network, but its results are much better than those. In the
experimental results of the Child network, the effect of the
PHC algorithm is worse than other algorithms when the data
volume is 1000, but not as good as the TVH algorithm and the
MMHC algorithm when the data volume is 5000 and 10000.
The reason may be that the PHC algorithm adds constraints.
When the amount of data is low, the data cannot accurately
represent the characteristics of the standard network. If the
search range is too large, the wrong local structure will be
difficult to be identified by the scoring function. It has an
adverse effect on the accuracy of hill-climbing search; but as
the amount of data increases, the ability of the data to express
standard network features becomes stronger, and the wrong
local structure within the search range is easily identified
by the scoring function, and it can be seen from Figure 7,
the constraints are not effective in the Child network, so the
PHC algorithm is not as good as the MMHC algorithm and
the VTH algorithm when the amount of Child network data
is large. In the experimental results of the Alarm network,
relatively speaking, the effects of the PHC algorithm and the
VTH algorithm are similar. Although the results of the F1
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FIGURE 6. The relationship between the running time of the PHC algorithm and the amount of data under constraints and
without constraints.

FIGURE 7. Comparison of running time between PHC algorithm and other algorithms.

value, HD value, and TP value of the VTH algorithm are
better, the PHC algorithm only When the F1 value is reduced
by 3.09%, the running time is reduced by about 24.4%;

compared with other algorithms except for VTH, the results
of the PHC algorithm are significantly better than those of
other algorithms.
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TABLE 7. Experimental results of PHC algorithm and other algorithms in Asia network.

TABLE 8. Experimental results of PHC algorithm and other algorithms in Car network.

TABLE 9. Experimental results of PHC algorithm and other algorithms in Child network.

TABLE 10. Experimental results of PHC algorithm and other algorithms in Alarm network.

IV. CONCLUSION
In this paper, the concept of the APIP algorithm and the
PHC algorithm is proposed, the calculation formula of APIP
is deduced, and experiments are used to verify that APIP
has the ability to express the degree of association and the
effectiveness of the PHC algorithm. In Bayesian network

learning, APIP and MI have approximate correlation degree
expression ability; the PHC algorithm has excellent learning
ability, and the threshold of its constraint strategy is suitable
for most networks, but in individual networks, due to con-
straints Excessive force leads to poor algorithm performance.
In the future, other methods can be used to constrain the
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search range of the algorithm, so that the algorithm has better
adaptability.
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