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ABSTRACT Device-free localization (DFL) based on wireless sensor networks (WSNs) is a technology that
can detect and locate a person by measuring the changes in received signals without the need for any wireless
devices. As an emerging important technology in WSNs, radio tomographic imaging (RTI) has received
increasing attention. However, there is much room to improve localization accuracy in RTI. To address this
issue, an enhanced channel-selection method and a new distance-based elliptical model are proposed to
improve the localization accuracy. The enhanced frequency channel-selection method selects two channels
with the lowest received signal strength (RSS) variances to collect data. This approach is more robust to
environmental change. The new distance-based elliptical model is based on the distance between the voxels
and sensors. Meanwhile, the communication links are divided into line-of-sight (LOS) paths and nonline-of-
sight (NLOS) paths. Experimental results demonstrate that the proposed algorithm improves the accuracy
of positioning by up to 44.8% over some state-of-the-art RTI methods with low cost.

INDEX TERMS Device-free localization, wireless sensor networks, received signal strength, radio tomo-
graphic imaging, elliptical model.

I. INTRODUCTION
Device-free localization (DFL) is a technology for detecting
and tracking a human in indoor and outdoor environments
without the need for any wireless devices in wireless sensor
networks (WSNs) [1], [2], [3]. DFL has attracted a great deal
of research attention in security and monitoring systems for
indoor and outdoor areas, e.g., emergency rescue systems,
security monitoring systems and health care systems [4], [5],
[6], [7].

There are three main measuring techniques: (1) tech-
nologies on narrowband (NB) [8], [9], (2) ultrawideband
(UWB) [10], [11], [12] and (3) received signal strength
(RSS) [13], [14], [15], [16]. In particular, NB-based DFL
technology is used to detect the moving objects by measuring
the sum of the contributions of all multipaths. However,
narrowband receivers cannot provide the individual multipath
information, and localization via signal delay is very difficult
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[8], [9]. In [10], UWB-based DFL technology has the advan-
tages of a high data rate, and high positioning accuracy by
utilizing a nanosecond pulse to deliver information, and the
high memory and computing resources for accurate localiza-
tion performance are needed. Compared with NB and UWB
technologies, RSS-based DFL can be used to locate a person
with low cost and low power consumption.

There are five Classical algorithms extensively used in
DFL systems, e.g., the fingerprint (FP) [17], [18], [19], [20],
radio tomographic imaging (RTI) [1], [15], [21], [22], [23],
[24], the support vector machine (SVM) [25], [26], [27], the
Bayesian system [16], [28], [29], and compressed sensing
(CS) [30], [31], [32]. Algorithms studied in the literature
are presented, as summarized in Table 1. Among the above
techniques, RSS-based RTI systems have been widely inves-
tigated in recent years due to low power consumption and
cost.

As for RTI, the authors in [1] proposed the RTI system
by measuring shadowing losses on links between pairs of
nodes in WSNs for the first time, and the RSS on many
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TABLE 1. Algorithms, literatures, measurements and position dependence.

different paths was measured through a medium to derive an
image estimator. The communication links were mathemati-
cally described as elliptical weight models with a Gaussian
image prior. The monitoring area was divided into voxels.
The weightings of voxels inside one elliptical weight mode
were the same, which was not consistent with the actual
situation. Consequently, several researchers studied the ellip-
tical weightmodel for improvement in localization estimation
accuracy in RTI. A linear mixed elliptical model was pro-
posed in [21], and LOS-only signal strength was measured.
In other words, the voxels along the direct NLOS between
transmitter and receiver nodes received zero weight. A novel
outdoor RTI method was proposed in [22], where the RSS
signal was time-variant, e.g., due to rainfall or wind-driven
foliage. The sensitivity area of the ellipse was expressed as
the component of the elliptical weight model. Authors in [33]
divided the communication link into LOS path and NLOS
paths, and the localization accuracy was improved. To adap-
tively select the voxel weightings, a distance attenuation-
based elliptical weight model was proposed in [23], which
was based on the distance between each voxel inside the
ellipse and the LOS path. However, the distance between
voxels and sensor nodes was not studied, which is not con-
sistent with the actual situation. Meanwhile, the localization
accuracy could be further improved.

In this paper, we focus on improving the localization
accuracy in RTI. For this purpose, an enhanced channel-
selection method and a new distance-based elliptical model
are proposed. Based on the data provided by Neal Patwari [1],
in the data-collecting procedure, two links with the highest
average RSS are selected, which is robust to environmen-
tal change [3]. The RSS variances of all channels on the
two links are computed. One channel with the lowest RSS
variance on one link is selected, and two channels with the
lowest RSS variances are selected. For the new distance-
based elliptical model, LOS and NLOS path information are
used to locate a person. The distance between each voxel and
sensors is smaller, and the weight of the elliptical model is
higher.

In addition, most DFL schemes require high memory and
computing resources for accurate tracking performance, and
thus may not be suitable for resource-constrained applica-
tions. The proposed elliptical weighting model only focus on
the distance between voxels and sensor nodes, which would

reduces the algorithm’s storage and computational resource
requirements resulting in fast execution times.

The main contributions of this paper are summarized as
follows:

1) An enhanced channel-selectionmethod is proposed. The
data selected from the two links with the highest average
RSS is robust to environmental change [3]. In addition, the
data with the lowest RSS variance would contribute to the
detection and localization problems [22]. Only two channels
are utilized to collect data, and the complexity of this method
is low.

2) A new distance-based elliptical model is proposed.
We prove that the smaller the voxel’s distance to the sensor
node is, and the larger the value of the distance-based weight
should be. Voxels that are closer to the sensor node are
assigned higher weights compared to other voxels, which
improves the localization accuracy.

The rest of this paper is organized as follows. Section II
discusses the data-collecting method, which consists of
link-channel pair selection and enhanced channel selection.
In Section III, the distance-based elliptical model is intro-
duced. Experimental results are presented in Section IV.
Finally, Section V draws conclusions.

II. DATA-COLLECTING METHOD
As shown in Fig. 1, there areN sensor nodes in themonitoring
area, and each sensor node is assigned a number from the
sequence 1, 2, 3, . . . ,N . The communication link is set up
by any two sensor nodes that can communicate directly.
Consequently, there are C2

N links in this monitoring area. The
experimental data r can be described as:

r = [RSS1,1, . . . ,RSS1,C , . . . ,RSSl,c, . . . ,RSSL,C ]T , (1)

where l is the index of communication links, l =

1, 2, 3, . . . ,L,L ∈ N+; c is the index of frequency
channels; C is the number of frequency channels, c =
1, 2, 3, . . . ,C,C ∈ N+; and T represents the transpose of
a given matrix. When a person enters a network area, some
transmitted power is absorbed, reflected, or diffracted, which
creates shadowing losses [1]. The received signal strength can
be mathematically described as:

yl = Pl − Ll − Sl − nl, (2)
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FIGURE 1. The display of sensors in the DFL system.

where Pl represents transmit power; Ll is the static losses due
to the distance, antenna patterns, device inconsistencies, etc;
Sl represents shadowing loss, which be approximated as a
sum of attenuation that occurs in each voxel; and nl is the
noise.

A. LINK-CHANNEL PAIR SELECTION
Avoiding the negative influence of the shadowing losses
is an alternative way of improving localization accuracy.
To address this issue, several researchers have focused on
the improvement of data-collecting methods. In [22], the
authors proposed a link-channel pair selection method, which
selects one link-channel pair with the lowest RSS variance
to collect data. First, the average RSS of all link-channel
pairs are computed, and the link-channel pairs with highly
average RSS are selected. Then, RSS variances of the link-
channel pairs selected are computed, and the link-channel
pair with the lowest RSS variance is selected, which is shown
in Fig. 2. The data with a higher RSS variance would be in
deep fade, which would hardly contribute to the detection and
localization problems.

B. ENHANCED CHANNEL SELECTION
The data with the lowest RSS variance is robust to the envi-
ronmental change, so it can achieve better localization accu-
racy [22]. However, only one link-channel pair is selected.
When the environment changes markedly, the selected chan-
nel is not sufficient enough to improve of the localization
accuracy.

In this paper, we propose an enhanced channel-selection
method. First, the average RSS of all communication links
is computed. The highest two links are selected, and the
complexity is O(L). The link with the highest average RSS
is more robust to the environmental change [3]. Second, all
channels on those two communication links are sorted by

FIGURE 2. The comparison between the link-channel pair selection
method [22] and the proposed channel-selection method.

Algorithm 1 The Proposed Channel-Selection Method
Input: The RSS data r .
Output: Two channels with the lowest RSS variance.
for the data r = [RSS1,1, . . . ,RSS1,C , . . . ,RSSl,c, . . . ,RSSL,C ]T

do
Compute the average RSS of each link on all frequency chan-
nels.
if AverageRSSl1 = max[AverageRSS1, . . . ,AverageRSSL ], 1 6
l1 6 L then

Select the link l1.
Compute the RSS variance (σ ) [22] of the link l1 on all
frequency channels.
if
{
σ
l1
c1 , σ

l1
c2

}
= min[σ l11 , σ

l1
2 , . . . , σ

l1
C ] then

Select the two channels c1 and c2, 1 ≤ c1 ≤ C , 1 ≤ c2 ≤
C .

end if
end if

end for

the RSS variances. Then, one channel with the lowest RSS
variance on one link is selected, i.e., two channels from the
two links are selected (shown in Fig. 2 and Algorithm 1), and
the complexity is O(C). Compared with the method in [22],
the complexity is not increased, and the proposed channel-
selection method will be more rubust for the environment
change.

III. DISTANCE-BASED ELLIPTICAL MODEL
After the data is collected from the two channels based on
the proposed channel-selecting method, the challenge is then
to increase localization performance. In [23], the monitor-
ing area was divided into voxels. An elliptical weighting
model representing the communication link was proposed in
RTI that adaptively selected the voxel weightings. However,
the localization accuracy could be further improved. In this
paper, a new distance-based elliptical model in RTI systems
is proposed.
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FIGURE 3. Elliptical weighting model in the RTI system.

A. RADIO TOMOGRAPHY IMAGING
When a person within the area absorbs, reflects, diffracts,
or scatters some of the transmitted power, shadowing
losses are created. Meanwhile, the attenuation of differ-
ent links is used by RTI algorithms to locate a person
without the need for any physical devices, e.g., sensors or
tags [1].

As shown in Fig. 3, there are N sensors in the RTI system.
Themonitoring area is divided into voxels, whose dimensions
are I × J . Each communication link is expressed as an
ellipse [1]. Because the contribution of each voxel to the
attenuation of a link is different for each link and all static
losses can be removed over time, the RTI system is described
in the following:

1yl = yl − ȳl =
I∑
i=1

J∑
j=1

W l
ij1xij + nl, (3)

where l is the index of links; L is the number of links, l =
C2
N = 1, 2, 3, . . . ,L,L ∈ N+; 1yl is the change in signal

power in link l; and i and j are the indices of voxels in RTI
systems, i = 1, 2, 3, . . . , I , j = 1, 2, 3, . . . , J , I ∈ N+, J ∈
N+; ȳl is the average value of the1yl ;W l

ij is the weighting of
voxel Vij in link l;1xij is the attenuation change of voxel Vij;
and nl is the noise of link l. Formula (1) can be described in
matrix form:

1y =W1x+ n, (4)

where 1y, 1x, n and W can be defined in the following
relationships [1]:

1y = [1y1,1y2, . . . ,1yL]T , (5)

W =


W11 W12 . . . W1(I×J )
W21 W22 . . . W2(I×J )
. . . . . . . . . . . .

WL1 WL2 . . . WL(I×J )

 , (6)

1x = [1x1,1x2, . . . ,1xI×J ]T , (7)

n = [n1, n2, . . . , nL]T , (8)

where 1y is the variation in RSS of all links; W is the
weighting model vector; 1x is the attenuation of all voxels;
n is the noise vector; I × J is the number of voxels in the
network, I ∈ N+, J ∈ N+; and T represents the transpose of
a given matrix.

B. DISTANCE-BASED ELLIPTICAL MODEL
To distinguish the difference in path loss in RTI systems,
the authors in [23] proposed an attenuation-based ellipti-
cal model, which focused on the distance between each
voxel inside the ellipse and the LOS path. The weighting is
described as follows:

W l
ij =

{
e−h if d lij(1)+ d

l
ij(2) < d + λ

0 otherwise,
(9)

where h represents the distance between the LOS path and
each voxel inside the ellipse; d is the length of link l; λ
is a parameter that determines the range of the ellipse; and
d li,j(1) and d li,j(2) are the distances between voxel Vij and
the sensor nodes. The proposed ellipse model adaptively
selects the voxel weightings, and the difference in path loss
in the target area is determined [23] (shown in Fig. 4(a) and
Fig. 4(b)). In addition, compared with the algorithm in [1],
the localization accuracy is improved.

However, the distance between voxels and sensor nodes
is not taken into consideration, which is not consistent with
a real-world situation. In practice, the distance between a
person and sensors is smaller, and the interruption of the
signal is greater.

In this paper, a new distance-based elliptical model is
proposed. The new weighting model can be mathematically
described as:

W l
ij =

 e
−min

{
d lij(1),d

l
ij(2)

}
if d lij(1)+ d

l
ij(2) < d + λ

0 otherwise.
(10)

The voxels closer to the sensor nodes should be assigned
a higher weight. In addition, the voxel in the LOS path has
a higher weight than the voxels nearby in the NLOS path.

Compared with the model in [23], e
−min

{
d lij(1),d

l
ij(2)

}
refines

each voxel weighting. In addition, compared with the method
in [33], the ellipse can be divided in a more realistic way
by using the proposed method. However, the complexity
is increased due to the addition of the enhanced channel-
selection method. As shown in Fig. 4(c) and Fig. 4(d), the
voxels’ weightings near the sensor nodes are higher, which is
more in line with reality.

C. IMAGE RECONSTRUCTION
In Formula (4), the weighting matrix W is underdetermined,
i.e., the same set of experiments could lead to multiple dif-
ferent images [1]. Hence, the 1x estimated in Formula (4) is
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FIGURE 4. (a) The 3D weighting elliptical model in [23]; (b) The 2D weighting elliptical model in [23]; (c) The 3D proposed
weighting elliptical model; (d) The 2D proposed weighting elliptical model.

FIGURE 5. Photograph of the deployed network.

not unique, and is considered as an ill-posed inverse problem.
In [1], Tikhonov regularization was utilized. It is described
in the following:

f (x) =
1
2
‖W1x−1y‖2 + α(‖Dxx‖2 +

∥∥Dyx
∥∥2), (11)

FIGURE 6. The difference between the actual position (red rectangle) and
the estimated position (white voxel with blue rectangle).

1x = (WTW+ α(Dx
TDx + Dy

TDy))−1WT , (12)

whereDx is the operator for the horizontal direction;Dy is the
operator for the vertical direction; α is the weighting param-
eter; and f (x) represents the objective function. By utilizing
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FIGURE 7. (a) The experimental result for the localization of one person. (b) As the number of voxels increases, the contrast
between the two algorithms for the localization.

the Tikhonov regularization, the unique position estimated is
achieved.

IV. EXPERIMENTAL RESULTS
The measured data of the experiment are the same as in [1],
and the experiment was conducted at the University of Utah.
As shown in Fig. 5, the monitoring area is 21 × 21 foot
square, and 28 sensor nodes around that. Two trees are in the
deployed network so that static objects exist in the tested RTI
system, which absorbs, diffracts, reflects, or scatters some of
the power of the electromagnetic waves [1]. Each wireless
sensor node operates in the 2.4 GHz frequency band for
communication, utilizing the IEEE 802.15.4 communication
standard. In the experiment, each node is assigned an ID
number and programmed, and all network traffic is listened
by a base station node. When a node transmits, each node that
receives the transmission examines the sender identification
number. Since the base station node is within range of all
nodes, the latency of measurement retrieval to the laptop is
low, on the order of a few milliseconds.

The mean-squared error (MSE) ε of the normalized
image can be defined as:

ε =

∥∥xreal − x̂I×J∥∥2
I × J

, (13)

where I × J is the number of voxels in the monitoring sensor
area; xreal is the actual position for a human; and x̂I×J is
the estimated position. When a person enters the deployed
network, there is more noise, which comes from fading loss,
shadowing loss, and measurement noise in the experiment,all
of which affect the localization accuracy [1].

As shown in Fig. 6, the bright spots represent the esti-
mated positions, the white voxel with a blue rectangle repre-
sents the position estimated by the proposed algorithm, and
the red rectangle represents the actual position. Compared
with the methods in [1] and [23], many extra bright spots
in image reconstruction are eliminated, which decreases the
difficulty of localization. The extra bright spots could come

from fading loss, shadowing loss, and measurement noise
in the experiment, which affected localization accuracy [1].
Method in [22] only select one link-channel pair to collect
experiment data. When the environment changes from time
to time, the localization accuracy will be affected. Compared
with the method in [22], two channels are selected in pro-
posed channel-selectionmethod, whichwould bemore rubust
to the environment change.

In Fig. 7(a), the vertical axis represents the average of
the MSE in position estimation, the horizontal axis shows the
position numbers for one person, the red line represents the
experimental results by using the method in [23], the blue line
represents the effect of the new weighting model when the
image reconstruction method is the same as in [23], the green
line represents the function of the method in [33], and the
black line represents the effect of the newweightingmodel by
using the enhanced channel-selection method in localization
estimation.

Compared with the method in [23], utilizing the new
weighting model improves the positioning accuracy by up to
39.7%, and the proposed algorithm in this paper improves the
localization accuracy by up to 44.8%. As the number of posi-
tions increases, more noise that would come from fading loss,
shadowing loss, and measurement noise in the experiment
could affect localization accuracy. The proposed channel-
selection method would be more rubust to the environment
change than the method in [23], and the localization accu-
racy is improved. In addition, the proposed weighting model
takes the distances between the voxels and the sensor nodes
into consideration, which would be more in accordance with
reality. Compared with the method in [33], the complexity of
the proposed algorithm is increased own to the addition of
the channel-selection method, and the localization accuracy
is further improved.

In Fig. 7(b), the vertical axis shows the MSE in position
estimation, the horizontal axis shows the number of voxels
in the monitoring area, the red line displays the experiment
results in [23], the green line displays the effect of the
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method in [33], and the black line displays the function of
the proposed algorithm. As the number of voxels increases,
the MSE in the three algorithms decreases. The reason is
that the complexity of the three algorithms would increase,
which would improve the localization accuracy. Then, the
MSE in the three algorithms tends toward stability because
of the more noise coming from fading loss, shadowing loss,
and measurement noise in the experiment. Compared with
the method in [23], the proposed algorithm achieves a better
localization effect by up to 44.6% by using proposed channel-
selectionmethod and the new distance-based elliptical model.
Compared with the method in [33], the proposed algorithm
achieves a better localization effect by up to 11.8% own to the
proposed channel-selection method, which would be more
rubust to the environment change.

V. CONCLUSION
In this paper, we propose an enhanced channel-selection
method and a new distance-based elliptical model in RTI.
The enhanced channel-selection method selects two chan-
nels with the lowest RSS variances to collect data. This
approach is more robust to environmental change. By using
the new distance-based ellipticalmodel, localization accuracy
is improved. Experimental results are presented to confirm
the performance improvement.

However, compared with the method in [23], the com-
plexity of the proposed method is increased to ensure the
localization improvement. Meanwhile, this paper focus on
the viability of the proposed algorithm, and the network
was placed in an outdoor environment. When in an indoor
environment, the electromagnetic environment will be more
complex. The objects within the monitoring area will absorb,
reflect, diffract, or scatter some of the transmitted power.

In the future, on the one hand the proposed scheme for
two or more persons in dense signal environment will be
investigated. On the other hand, efficient elliptical model in
RTI will be explored.
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