IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 4 November 2022, accepted 2 December 2022, date of publication 12 December 2022,
date of current version 20 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3228962

==l RESEARCH ARTICLE

A Scalable Analytical Framework for
Complex Event Episode Mining With
Various Domains Applications

JERRY C. C. TSENG™', SUN-YUAN HSIEH™", (Fellow, IEEE),
AND VINCENT S. TSENG 2, (Fellow, IEEE)

! Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan City 701, Taiwan
2Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan

Corresponding author: Vincent S. Tseng (vtseng@cs.nycu.edu.tw)

This work was supported in part by the National Science and Technology Council, Taiwan, under Grant 110-2221-E-A49-078-MY3 and
Grant 111-2221-E-A49-124-MY3.

ABSTRACT With the ubiquity of sensor networks and smart devices that continuously collect data, we face
the challenge of analyzing the growing stream of data in real time. In recent years, there has been a huge
need to gain useful knowledge by incrementally analyzing event sequence data. Although episode pattern
mining techniques have existed for years, people have recently become more aware of their practical value
in solving real-life domain problems such as manufacturing records, stock markets, and weather forecasts.
The effective and efficient application of episode pattern mining techniques to analyze complex event data is
becoming increasingly important for solving real-life problems in wide domains. However, few studies have
focused on developing a scalable framework based on episode pattern mining of complex event sequences
for applications in various domains. In this work, we propose a novel framework named SAAF (Scalable
Analytical Application Framework) based on complex event episode mining techniques, including batch
episode mining, delta episode mining, incremental episode mining, and pattern merging, to consider both
efficiency and accuracy. Moreover, to enhance scalability, we adopt the lambda architecture with Apache
Spark and Apache Spark Streaming as the system development framework. Finally, the experimental results
on three real datasets of different domains and two benchmark datasets showed that the proposed SAAF
framework exhibits excellent performance in terms of efficiency, accuracy, and scalability.

INDEX TERMS Complex event sequence, data stream, episode pattern mining, incremental mining, lambda
architecture.

I. INTRODUCTION

Owing to the ubiquity of sensor networks and smart devices,
various types of streaming data are continuously collected,
and there are growing real-life requirements to gain valuable
information by analyzing these data streams. It is very
common for different sources of data to be collected
simultaneously as multiple time-series events, which we refer
to as complex event sequences [1]. Among data mining
techniques, episode mining [2], [3], [4] is a very powerful

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita

tool that can be applied to discover useful patterns from past
events to foresee the possible events that will occur in the
future. There are many real-life cases around us utilizing
this technique, such as manufacturing improvement [5], [6],
network attack detection [7], biomedical data analysis [8],
high-utility pattern mining [9], news events [10], and stock
trend analysis [11], [12], [13].

Mostly, people want to have the most current information
from the episode patterns mined from the new growing data
instead of the past information learned from historical data
only. To have the most current and valuable information, full
mining of the entire data is the most intuitive and easiest

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

130672

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 10, 2022

https://orcid.org/0000-0003-0637-7792
https://orcid.org/0000-0003-4746-3179
https://orcid.org/0000-0002-4853-1594
https://orcid.org/0000-0002-5169-9232

J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

IEEE Access

way. However, it is not cost-effective; thus, a number of
incremental mining approaches have arisen to address this
subject. A significant portion of existing incremental mining
research arches focused on the mining of association rules
[14], [15], [16] or sequential patterns [17], [18], [19] in static
incremental data such as traditional transaction databases.
According to our surveys, there exist still very few studies
have focused on developing a scalable analytical framework
for complex event episode mining for cross-disciplinary
applications.

The above-mentioned situations motivated us to develop
an analytical application framework to address incremental
episode-mining problems for complex event sequences. Effi-
ciency and accuracy are both crucial factors of an analytical
system designed for incremental mining; they need to be
considered simultaneously. Regarding the scalability of the
system, we adopt the lambda architecture [20] as the system
architecture, and Apache Spark [21], [22], [23] and Apache
Spark Streaming [22], [24], [25], [26] as the development
tools of the batch layer and the speed layer, respectively.
Apache Spark is a unified analytics tools for large-scale
data processing, and Spark Streaming brings Apache Spark’s
language-integrated API to stream processing, letting us write
streaming jobs the same way we write batch jobs. Otherwise,
it is easier to get started and better cost-efficient comparing
with other similar tools. The above features are important for
developing the proposed framework, so we chose them as our
development tools.

In this study, we develop a framework named SAAF
(Scalable Analytical Application Framework) by extending
our previous works [27], [28]. Compared to previous
studies, SAAF is the first framework specially designed for
various domain applications with intelligence and scalability.
We designed various new modules to enhance the processing
capacity of streaming complex event sequences and to
improve the system architecture. We also developed a user
interface that allows people to use this framework more
easily.

Specifically, the main improvements and differences with
the previous works are described as the following:

First, we design a new mechanism of the data pipeline
controller module to intelligently balance the data flow for the
speed and batch layers of the lambda architecture. This design
leads to a better processing performance than the previous
designs.

Second, we design a new module, namely, rule access
module, such that application developers can easily obtain the
most updated analytic results to help domain experts retrieve
valuable information in a timely manner.

Third, we design an user interface to make it easier to
accelerate the tasks of episode mining process for solving
real-world problems.

Another contribution of this paper is that we conducted
extended experiments on three datasets of different domains
and two benchmark datasets to validate the proposed
framework SAAF. The results showed that it delivers

VOLUME 10, 2022

excellent performance in terms of efficiency, accuracy, and
scalability.

The remainder of this paper is organized as follows.
We provide a brief description of the problem definitions
in Section II and review related works in Section III. The
design of the proposed system is described in Section IV,
and experimental validation and results are presented in
Section V. The conclusions are presented in Section VI, and
future work is introduced in this section as well.

Il. PROBLEM DEFINITIONS

In this subsection, we adopt the notations used in [29] for
problem definitions and properties related to this study. For
more details about episode mining, readers can refer to [2],
[31, [4], [29], [30], [31], [32], and [33].

Definition 1(Simple Event Sequence): This is a sequence
of events in which every event occurs at its respective time
point. Given a set E of event types, a pair (e, t) represents an
event where e € E is an event type and ¢ is the time point at
which e occurs. An event sequence S on E is a triple (s, Ty,
T,), where s =< (ey, 11), (€2, 1), ..., (en, t,) > is an ordered
sequence of events such that A; € E foralli =1, ..., nand
t; < tjforall 1 <i <j < n. Furthermore, Ty and 7T, are the
starting and ending times of S respectively, and Ty < t; < T,
foralli=1...n.

Definition 2 (Simple Episode): A simple episode « is a
non-empty totally ordered set of events of the form < (Ej),
(E2)...., (Ex) >, where event E; appears before event E; for
all 1<i <j <k

Definition 3 (Simultaneous Event Set A): simultaneous
event set SE = (Ey, E»,. .., E;,) is composed of a set of events,
where each event Ejee in SE occurs at the same time point
t for all 1 < i < m. The length of the SE is denoted by
|SE| and is equal to the number of events in SE. Given two
simultaneous event sets SE; = (E1, E» ..., E;) and SE; =
(E{, E),...., E,,), where m < n, SE; is the subset of SE| and
SE is the superset of SE, iff SE,CSE].

Definition 4. (Complex Event Sequence): A complex event
sequence CS =< (SEy1, T1), (SE», T>),..., (SE,, T) > is
an ordered sequence of simultaneous event sets, where each
simultaneous event set SE; is linked to a time point 7; € N T
and7; < Tjforall 1 <i<j<n.

Definition 5 (Episode with simultaneous events): An
episode with simultaneous events is an ordered tuple of
simultaneous event sets with the form <SE|, SE», ..., SEx >;
SE; appears before SEj for all i, j (1 < i < j < k). Based
on this definition, there are two different relationships among
episodes: simultaneous and serial relationships. The length of
« is denoted by |f|, and is equal to the number of events of f.

Definition 6 (Prefix of Episode): Given an episode
f =<SEj, SE», ..., SE; >, its sub-episode < SEi, SE»,
eery SEj—1, SE’yy > (m < k) is called the prefix of f if
SE’,, is a sub-simultaneous event set of SE,,, and the events in
(SE,, — SE’) are alphabetically after those in SE’,.

Definition 7 (Support of an Episode): Given an event
sequence S, the support of an episode f is denoted by sup (f),

130673

IEEE Access

J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

and it is formally defined as sup(f) = |sc (f)|/N, where N is
the number of sliding windows of S and sc(f) is the support
count of f.

Definition 8 (Frequent Episode): Given a user-specified
minimum support threshold minsup, episode f is said to be
frequent if sup (f) is no less than minsup. Minimum support
count is given as the product of minsup and N, where N is the
size of S.

The aim of this work is to develop a scalable framework
that mine frequent episode patterns for various domain
applications considering both accuracy and efficiency.

lll. RELATED WORK

Frequent episode mining has been a widely used technique
in data mining and knowledge discovery since it was first
introduced by Mannila et al. [4]. It was used to mine frequent
subsequences as episodes from time-series data, which is
referred to as the event sequence. Each event was linked to
the time point that it occurred, and they can be presented as
a pair (e, t), where stands for that event e occurred at time .
Fig. 1 is an illustration of a single-event sequence. e1, ez, €3
and ey are different events that occur at a specific time. For
example, pair (e4, #4) indicates that event e4 occurred at time
point #4. Frequent episode mining helps us identify patterns
known as episodes that are partially ordered sets of events.

€ € € € e e e € e e €
events

L R A " T "R YV O

time

FIGURE 1. An illustration of a single-event sequence.

Frequent episode mining has been applied in different
kinds of domain applications and to analyze various forms
of data like time-stamped fault reports in sales transactions
[9], financial stock data [12], [34], power usage [27], power
plant facility maintenance [28] telecommunication network
alarms [35], healthcare [36], sports data [37] and user location
prediction [38], to name a few. In recent years, episode mining
technique has been utilized in more domain applications, such
like recommender systems [39], workload prediction [40],
[41], high utility mining [29], [42].

Cheung et al. proposed the algorithm FUP [14] and
extended FUP to FUP, [15]. FUP and FUP, are both
renowned incremental mining algorithms based on the
Apriori mechanism to update the association rules when
new transaction records are inserted or removed from the
database. Ayan et al. proposed an algorithm UWEP [43] with
the concept of negative borders to enhance the efficiency
of FUP-based algorithms. The above algorithms are not
practical to be used in the environment of continuous
streaming data, because of the following problems, namely,
a). high possibility of large set of candidate itemsets; b). the
need for multiple scans in a database.

Hung and Chang proposed the algorithm EMMA [31] for
mining frequent episodes from complex sequences, but it

130674

only works for static datasets, not for streaming data. Wu et
al. proposed UP-Span [9] for mining high utility episodes in
complex event sequences. The restriction of UP-Span is that
it targeted for mining high utility episodes, so that might lose
other important information in sequences.

The pattern mining technique of data streams has become
more and more welcome in recent years. Manku proposed a
lossy counting approach for approximate frequency counting
over streams with no assumptions regarding the stream [44].
Patnaik et al. presented an approach for mining frequent
episodes over a window of recent events in a stream [45].
These approaches may work properly for a single data stream,
but they are not appropriate and applicable for the complex
event sequence analytic process; therefore, they are restricted
in solving real-world problems around us.

Recently Ao et al. proposed a big data algorithm for
episode mining called LA-FRMH [46], but this algorithm did
not handle the case of simultaneous events. Ouarem et al.
proposed an algorithm called NONEPI [47] for episode rule
mining using the concept of non-overlapping frequency. The
primary goal of NONEPI is to find rules that are easier to
interpret as occurrences must be non-overlapping, but this
algorithm did not consider complex event sequences that are
very common in real-world problems.

Lin et al. proposed the algorithm POERM [48], and then
extended it as POERMH [49]. Those two methods focused
on finding partially-ordered episode patterns, which mean
a small set of rules instead of numerous episode rules.
However, it is not practical for various kinds of real-world
applications without finding all rules for users.

Guyet et al. proposed the algorithm Re-DPFE [50], which
focused on privately frequent episode mining over event
streams. However, Re-DPFE was not designed for solving
public problems of various domains and it is not scalable for
big data problems. Guyet et al. presented the incremental
mining algorithm IncSeq [51], which was based on counting
the minimal occurrences of the sequential patterns over the
course of itemsets stream. However, it cannot be scalable for
big data applications either.

However, most existing studies on episode mining have
focused on mining a single event sequence and are not
applicable to mining complex sequences. In our previous
work [27], we proposed an analytical system named CEAS
(Complex Event Analytical System) to aid people to accelerate
the process of episode pattern mining for complex event
sequences, and designed an EM-CES (Episode Mining over
Complex Event Sequence) for episode pattern mining over
complex event sequences. In CEAS, we took SAX [52] as the
symbolic transformation method and extended the episode
mining algorithms of WINEPI [4] and MINEPI [2] to be
integrated into an analytical system for multivariate complex
event sequences. In another previous work [28], we proposed
anew analytical system named SICEM (Scalable Incremental
Complex Event Mining), that adapted the lambda architecture
[53] designed to process massive data by taking advantage
of both batch-processing and streaming-processing methods.

VOLUME 10, 2022

J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

IEEE Access

In SICEM we developed a series of modules within the four
components and designed three algorithms: batch episode
mining, delta episode mining, and pattern merging. Table 1 is
a comparison table of related methods in terms of pros. and
cons.

Master O Batch Batch Layer
Data Batch Views (Apache Spark)
re-computing
pattems Merge Layer
Event Pipeline . rules Domain
S M
Controller €618 Applications
pamcms/'
\ /
Delta A Delta Speed Layer
Data | Incremental | Views (Apache Spark
computing Streaming)

FIGURE 2. The conceptual model of proposed analytical framework.

IV. THE PROPOSED FRAMEWORK

Fig. 2 shows the conceptual model of our newly proposed
analytical application framework, denoted as SAAF, based
on complex event episode mining. The input data here are
complex event sequences, and most of them are contin-
uous streaming data from various types of data sources,
for example, digital sensors or intelligent meters. The
raw streaming data collected from data sources must be
appropriately pre-processed before being dispatched to the
batch and speed layer processes. The batch layer has a
mechanism for periodic re-computing, which is a type of re-
mining for all data, to maintain the accuracy of the mining
result.

Between every two time points of full-mining, stream
processing and incremental computing of the speed layer can
help speed up mining efficiency. The merge layer works for
consolidating the results of the batch views and incremental
views to have the most current episode patterns with good
accuracy. The final results of episode patterns or rules are
output in JSON format to be accessed and applicable by other
applications.

In our proposed framework, the source data of com-
plex event sequence are injected through Apache Kafka
[54]. Kafka is one of the most widely adopted tool to
accomplish the tasks of capturing, retaining, and processing
overwhelmingly rapid flow of information. Then, the input
streaming data is kept in the HDFS [55], which is well
integrated in Apache Spark environment and designed to store
large datasets reliably to ensure the overall data integrity
of completeness and consistency. As discussed in [20], our
design of Lambda architecture provides advantages in data
consistency and fault tolerance to guarantee the data safety
and information trust.

The limitation of the proposed framework lies in that it is
based on Apache Spark and Apache Streaming environments,
thus it will take some efforts for the administrator to set

VOLUME 10, 2022

TABLE 1. Comparison of related methods.

Algorithms Pros. And cons.

FUP /FUP; |The algorithms are based on the Apriori
mechanism to update the rules when new
transaction records are inserted or removed
from the database, but they are not applicable
to the continuous streaming data.

UWEP It is designed with the concept of negative
borders to enhance the efficiency of FUP-
based algorithms, but it is not suitable for the

continuous streaming data.

EMMA It is designed for mining frequent episodes
from complex sequences, but it only works for

static dataset rather than streaming data.

U-Span It is a high utility mining episode algorithm
from complex event sequences, but it may
lose other important information that is

valuable for users.

LA-FRMH | Itis a big data analytical algorithm for episode
mining, but it did not handle the case of

simultaneous events.

NONEPI It is designed to find rules that are easier to
interpret considering that occurrences must be
non-overlapping. However, it does not work
for complex event sequences in real-world

applications.

POERM/
POERMH

It is designed to find partially-ordered episode
patterns, which mean a small set of rules
instead of numerous episode rules. However,
it is not practical for various kinds of real-
world application without finding all rules for
users.

Re-DPFE This algorithm focuses on privately frequent
episode mining over event streams, but it is
not designed for solving public problems of

various domains.

IncSeq It is based on counting the minimal
occurrences of the sequential patterns over the
course of itemsets stream, but it cannot be
scalable for big data applications.

EM-CES It is an episode mining algorithm for complex
event sequence, but it does not consider the
need for incremental mining as the data

Srows.

TEM-SES This algorithm focuses on mining frequent
target episode from complex event sequences,
but it is does not work for the mining within

streaming data.

SAAF This is the algorithm we proposed in this
work, which is based on complex event
episode mining techniques, including batch
and delta episode mining, to meet both of

efficiency and accuracy.

and tune the run-time environment for complying with the
requirements of Apache Spark and Apache Streaming.

130675

IEEE Access

J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

TABLE 2. Segment set of the complex event sequence.

SID Segment
1 <(4,1), (E]1), (D,2), (B,3), (E3), (4,4), (C.4)>
2 <(B,5), (E5), (C,6), (4.,7), (E7), (B.8), (F8)>
3 <(B)9), <D,9), (4,10), (C10), (D,11), (G,11),
(4,12), (C,12)>
4 <(C,13), (E 13), (E14), (B,15), (C,15), (C,16)>
A. MODULES

In this study, we developed a framework named SAAF
by extending our previous works [27], [28]. Fig. 3 shows
the system architecture of the proposed framework SAAF.
It shows that there are 16 modules in the SAAF, respectively,
eight modules in the pre-processing layer, two modules in the
batch layer, two modules in the speed layer, two modules in
the merge layer, and two independent modules. The following
are the descriptions of these modules.

Batch Process

Batch updating

/ Batch Episode
'
i

Preprocessing
Cleaning
Clustering
Merging

~ Pattern
Complex Data - :
Event —P Splitting | |—> | Pipeline o | Merging
Sequences pra— ller Candidate |~ &) - -
Dimension Patterns ule 1l
{_Reduction)

Generatio
Incremental Process

Sequencing
Speed Updating
S tati A
(gmen ation Delta Episode | ___| ccesJ

| Application Platform J

Transformation

RuleBase <77~

FIGURE 3. System modules of proposed analytical framework SAAF.

1) MODULES IN PRE-PROCESSING LAYER

a. Cleaning: The main goal of this module is to clean
the noise in the data and convert the data into a
format adequate for further mining processes. Different
devices often generate various data in diverse data
format of different frequencies, so we must preprocess
the new input data properly and then save them as the
transformed database for the next step of the pattern
mining process. As for numeric data, they need to be
transformed to a symbolic presentation, or we cannot
pass the data to the mining phase.

b. Clustering: Event attributes are labeled according to
event groups that user specified. The data input to
this module consists of a table with categorical event
attributes and user-specified event groups. The output
is a recoded table.

c. Merging: Merge the input data and sort the records
in ascending order. The input of this module consists

130676

of several tables with the same attributes, including a
timestamp attribute. The output is a merged table sorted
by its timestamp.

d. Splitting: Splitting the table into several subtables
based on event attributes. Because events in different
groups may be irrelevant in the intended applications,
we must separate the records belong to different event
groups. The input of this module is a table with event
attributes and the output includes several tables, each
representing an event group.

e. Dimension reduction: Reduce the dimensions of the
table. Similar to table splitting, some specific attributes
that are determined irrelevant to the event groups are
removed from the table of a specified event group.
The input of this module is a table that stands for
an event group and the attribute sets that will be
retained for the event group. The output was a reduced
table.

f. Transformation: Discretize numeric variables into
categorical ones using SAX [52]. It first calculates the
average value and the variance value for each numeric
variable, and then divides the scope of the variable into
several lumps with the same probability, according to
the properties of the normal distribution. The input of
this module is a table with numeric variables, and the
output is a transformed table. The parameters for each
numeric variable consist of a number N, which is the
number of output symbols after the transformation, and
a valid range, out of which the values are not considered
and are transformed into other predefined symbols, for
example, outliers.

g. Sequencing: Transform the table into sequence form.
Each record in the input table was transformed into
an itemset. The input of this module is a table with a
timestamp, and the output is the transformed complex
event sequence.

h. Segmentation: Set segmentation flags into a complex
event sequence for episode mining in the batch
and speed layers. The user provides criteria for the
segmentation, for example, 15 min after a specified
event occurs. The segmentation symbols are then
inserted into the input long sequence. The input
of this module is a complex event sequence, and
the output is a sequence with segmentation symbols
inserted.

Because most of the real-world datasets are highly
susceptible to be missing, inconsistent and noisy due to their
heterogeneous origin, we design the above eight modules
to make the raw data ready for the next mining steps.
These modules can be roughly decomposed as the tasks of
data cleaning, reduction, integration, and transformation. All
these preprocessing steps are important in different aspects:
Cleaning has high impact on the correctness on the mining
results, while the other steps dealing with the data reduction,
integration and transformation will affect the efficiency of the
mining execution.

VOLUME 10, 2022

J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

IEEE Access

2) MODULES IN BATCH LAYER
a. Batch updating: Fetch the data stored in the speed

layer into the batch layer and reset the storage of the
speed layer. This ensures that whenever the batch layer
works, the most updated data are contained within
batch episode mining. The input of this module is the
data storage of the speed layer, which is merged into
the batch layer storage as the output.

b. Batch episode mining: Mine episode patterns in
batches. The input of this module is a complex event
sequence with segmentation symbols stored in batch
layer storage. The output is episode patterns with
support. The parameter of this module is the minimum
support that user specified.

3) MODULES IN MERGE LAYER
a. Pattern merging: Merge the respective episode patterns

from the batch episode mining module and those from
the delta episode mining module, then find the patterns
for the whole. This algorithm is described in the next
section. The input of this module is the patterns with
their support from the batch and speed layers, and the
output is the merged pattern.
b. Rule generation: Rules are generated from merged
patterns. The default rule generation mechanism is
to split a k-pattern (k itemsets in the pattern) into a
(k-1)-prefix pattern and a 1-postfix pattern, for exam-
ple, a pattern <A, D, C > will bring a rule <A,
D> —<C>. Then, calculate the confidence of the rule
using the ratio of the supports of the k-pattern and
the (k-1)-prefix pattern. Rules with low confidence,
that is, confidence less than a user-specified minimum
confidence, will be discarded.
In this module, the input is the merged patterns, and the
output is the rule set presented in JSON format for further
applications. A simple output sample is illustrated in Fig. 4.
A rule is a set of elements, and each rule is composed of four
parts: LHS, RHS, sup and conf, where LHS and RHS represent
the segments of the rule, with support and confidence. For
example, the first rule in Fig. 4 is <A, D> —<C>, whose
support is 0.55 and confidence is 0.75. The second rule in
Fig. 4 is <(B,C),(A,C,E),(D)>— <A,E>, whose support is
0.60 and confidence is 0.9.

4) DATA PIPELINE CONTROLLER

This is a module to intelligently balance the data flow for
the speed and batch layers of the lambda architecture. as the
experimental result shows, this module leads to a better
processing performance than the previous designs.

In the lambda architecture, there are two independents
but highly cooperative layers, namely, the batch process
layer and incremental process layer. The processes within
the two layers work independently; however, their respective
results are well merged as the final output. The input data
of the proposed system are complex event sequences used
as streaming data. We observed that the system sometimes

VOLUME 10, 2022

"RULES": [

HLHS": [H(A)"’ H(D)H]’
"RHS": ["(©)"],
"sup": 0.55,
"conf": 0.75

}s

HLHS": [H(B’C)", H(A’C,E)H’ H(D)H]’
"RHS": ["(A,E)"],
"sup": 0.60,
"conf": 0.9
}s

-
}

FIGURE 4. A simple sample of rules presented in JSON format.

could not work robustly because of data loss during analytical
processing. We learned that data dispatching is also a key
factor in the system performance in terms of efficiency and
effectiveness. To make the proposed system more robust and
have wider use for diverse domain applications, we designed
a data pipeline controller for users to dynamically adjust
the data dispatching mechanism. In this module, users can
control the frequency and scope of data dispatching to batch
and incremental layers, respectively. The major benefit is that
this module can work as an asynchronous buffer to balance
the data input flow and processing capacity, thus avoiding
data loss during the mining process.

5) RULE ACCESS INTERFACE
This is a module to facilitate application developers to easily
obtain the most updated analytic results and help domain
experts retrieve valuable information in a timely manner.
For the above purpose, to allow users to use the analytical
results more easily, we developed a series of application
programming interfaces. Users can acquire frequent episode
patterns by calling the APIs to obtain the results in
JSON format, and then integrate those patterns with their
applications or other information systems.

B. ALGORITHMS
The algorithms of the proposed framework are composed of
three parts as listed in the following:

a. BatchEpisodeMining (batch layer)

b. DeltaEpisodeMining (speed layer)

c. PatternMerging (merge layer).
In batch episode mining, the patterns of the entire data
are found. Because the cost of every time the batch layer
execution is very high, the speed layer should be fast enough
to meet the response time requirement of the users for real-
time queries. Thus, delta-episode mining finds delta patterns
from the new incoming data in the speed layer. Because the
delta patterns cannot represent the behaviors of the total data,

130677

IEEE Access

J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

we merged the patterns from the batch and speed layers to
find the proper pattern set of the patterns of the total data.

We used PrefixSpan [56] as the basic mining approach and
extended it to the MapReduce [57] framework. As discussed
in [58], PrefixSpan outperforms other Aprori-like algorithms
and can be extended to mining sequential patterns with user-
specified constraints for various domain applications. In [59],
Kijsanayothin et al. stated that MapReduce is a programming
paradigm that enables parallel and distributed execution of
massive data processing on large clusters of machines, and
thus researchers can focus on building efficient algorithms to
enhance performance.

1) BATCH EPISODE MINING

For batch episode mining, we used the PrefixSpan [56]
approach with MapReduce. Both sliding-window based and
minimum-occurrence based approaches cannot only consider
the events appear around the “key event,” which is highlight
by Segmentation module. Before the mining process, the
batch-updating module fetches the data from the speed-layer
storage. This means that all data at this point are collected in
batch layer storage. Then, the speed layer storage is reset to
collect new incoming data. In batch episode mining, we first
compute the support of each 1-item episode using a pair of
Map and Reduce functions, where the count refers to the
number of segments with different segmentation symbols
and is the super-sequence of the counting l-item episode.
The 1-episode whose support is less than the user-specified
minimum support is discarded as an unpromising episode.
Then, we choose one of the promising episodes as a prefix and
generate its projected complex event sequence, that is, discard
the items located in segments without the prefix, or appear
before the prefix. Then, we can take the projected complex
event sequence as input to recursively repeat the counting step
by MapReduce functions and find the episode patterns with
the assigned prefix. After taking all the /-item episode pattern
as prefixes, all episode patterns were found.

To check whether an episode is a pattern or not, there
are two approaches to determine the support of an episode:
1) the number of sliding windows that contain the episode
and 2) the number of minimal occurrences. According to
our study, sliding window is basic and more useful, because
for most real-world applications, users would like to know
‘what’s going on’ within a period. Most existing episode
mining algorithms with sliding windows adopt an Apriori-
like approach that generates candidates and then calculates
the support count. This takes too much time and does not fit
the streaming environment and multivariate complex event
sequences.

Because the Aprori-like approach does not meet our
requirement owing to its low efficiency and re-scanning,
we referred to the PrefixSpan approach and extended the
approach to make it work well for episode pattern mining in
complex event sequences. The basic steps are as follows.

1. Get the segment set from the complex event sequence by
sliding window;

130678

2.Setk = 1 and pref =<>;

3. Find the episode patterns that length equal to k from the
segment set;

4. Generate the projected segment set for each pattern
found in the previous step;

5.Set k = k+ 1 and go to step 2 until no more patterns
found.

First, we cropped copies of the complex event sequence
using a sliding window to obtain the set of complex event
segments, that is, the subsequences of the complex event
sequence that are included in the sliding windows. Before
mining the patterns, we initialize the length parameter k as
1 and the prefix episode pref as an empty sequence.

Then, we count the support of each event to find the
patterns by extending pref with each frequent event from the
segment set and generate the projected segment set for each
pattern with length k. Then, the same process is repeated with
k = k+ 1. If no episode patterns are found in this step,
we choose another prefix episode and mine with its projected
segment set.

1 2 3 4 6 7 3 9 10 11 12 13 14 15 16

w

FIGURE 5. An example of a complex event sequence.

For example, the complex event sequence is illustrated in
Fig. 5, and the sliding window was set to a size of 4 and sliding
distance of 4. Without loss of generality, we assume that the
events appearing within the same timestamp are sorted in
alphabetical order. First, we obtained four segments using
the sliding window, which are listed in Table 2. If minsup is
30%, {<A>, , <C>, <D>, <E>, <F >} are episode
patterns with k = 1. After generating their projected segment
sets, < A > is chosen as the next prefix episode, and its
projected segment set is presented in Table 3.

TABLE 3. Segment set of pref =<A>.

SID Segment
1 <(_1), (E1), (D,2), (B3), (E3), (44), (C4)>
2 <(.7). (E7), (B.3), (F8)>
3 <(_10), (C,10), (D,11), (4,12), (C,12)>

The underlined event is the first end of prefin the segment.
After counting the support, we can find { , <C>, <D>,
<F>, <_C>, <_E>} are frequent episodes in <A>’s
projected segment set, and represent the episode patterns as
{<A, B>, <A, C>, <A, D>, <A, F>, <(A, C)>, <(A,
E) >}. Then, we generate their projected segment sets from
< A >’s projected segment set, choose <A, B > as the new
prefix episode, and proceed with k = 3. After all episode

VOLUME 10, 2022

J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

IEEE Access

patterns with < A > as the first event are found, the process
chooses a new prefix episode from the remaining episodes to
mine the patterns until all patterns are found.

After the frequent episode patterns are mined from the
complex event sequence, rules are generated from the patterns
with at least two complex events to make predictions with
new streaming data. A rule can be presented in the form
of LHS — RHS, which means that a complex event RHS
may occur after a sequence of events LHS. A rule can be
evaluated with its confidence, which is defined as confILHS
— RHS) = sup(<LHS, RHS>) / sup(LHS), where <LHS,
RHS> is a sequence that contains only LHS and RHS and
LHS occurs before RHS. For example, the confidence of rule
<AE>— < F > isequal to sup(< A, E >)/ sup(< F >).
With a user-specified minimum confidence minconf, we can
only retain the rules whose confidence is no less than minconf
in the rule pool.

TABLE 4. An illustration of the rule pool.

No. LHS RHS Conf. Sup.
1 <A> 66.7% 3
2 <(A,E)> | <F> 100% 2
3 <C> 66.7% 3

FIGURE 6. An illustration of the rule tree.

For example, there are three rules in the rule pool listed
in Table 4. The straightforward approach loads these rules
in the order (2, 1, 3), sorted by the keys, and the tree-based
approach builds a rule tree, as shown in Fig. 6. Subsequently,
a new segment < (A, 12), (E, 13), (C, 13)> is obtained.
The straightforward approach finds the first matched rule,
which is rule No. 2, and predicts < F >. The tree-based
approach reaches the end nodes of all three rules and predicts
< B > after voting.

2) DELTA EPISODE MINING

For Delta episode mining, the mining process is similar
to batch episode mining. First, the speed layer storage,
which collects the new incoming data, that is, the data never
been mined by batch episode mining, is reset to the initial
state (empty or a partial segment) based on the criteria
defined in the segmentation module. Whenever new data
come from the pre-processed data stream, they are fetched by
the speed updating module and appended to the speed layer
storage for Delta episode mining. In delta episode mining,

VOLUME 10, 2022

a PrefixSpan-based approach with MapReduce for mining
delta patterns was used. Basically, the main flow of the
algorithm is like batch episode mining, but whenever it finds
an episode, whose support is less than the user-specified
minimum support, it has to check whether the episode is an
episode pattern in batch episode mining. If so, the episode
is still considered a promising pattern. After delta episode
mining is performed, delta episode patterns are found. The
pseudocode of DeltaEpisodeMining is shown in Fig. 7.

DeltaEpisodeMining(S, minsup, pref)

Input: Complex event sequence with segmentation symbols S, Minimum
support threshold minsup, Prefix episode pref’

Output: Frequent episode patterns P

1 | SegmentRDD «— S.map(SegmentSpilit)
//SegmentSplit() is a map function to split the input sequence by
segmentation symbols
2 | itemFlatRDD <« SegmentRDD flatMap(ItemFlat)
/temFlat() is a flatMap function to flat items in segments and
remove repetitions
3 | itemPairRDD <« itemFlatRDD.mapToPair(toPair)
/ltoPair() is a mapToPair function to make items as (item, count)
4 | pairs
CountRDD «— itemPairRDD.reduceByKey(Counting)
//Counting() is a reduceByKey function to compute the support
5 | counts of items
PromisingRDD «— CountRDD filter(isPromising)
6 | //isPromising() is a filter function to remove non-promising items
foreach 1-episode e/ in PromisingRDD
newPref «pref.append(el)
P — P U {newpref}
ProjSegments < SegmentRDD.map(SegProject)
//SegProject() is a map function to remove non-promising
items and the items appeared before the new prefix
10 ProjComplexSeq «— ProjSements.flatMap(SegFlat)
//SegFlat() is a flatMap function to flat segments into a
complex event sequence with segmentation symbols
12 DeltaEpisodeMining(ProjComplexSeq, minsup, newPref)
13 | end for

FIGURE 7. Pseudo Code of DeltaEpisodeMining.

3) EPISODE MERGING
Once delta episode mining is performed, pattern merging is
initialized. It quickly matches the patterns found in batch
episode mining and delta episode mining. If a pattern appears
in both batch and delta-episode mining, its support can be
computed easily using a weighted average. The weights of
the supports from the batch and delta layers are determined
by the data size of the storage of the batch and speed layers.
If the pattern appears in Delta episode mining only, the
support of the pattern in batch episode mining will be
considered as 0 to compute the weighted average because,
in most cases, the data size and weight of support in the batch

130679

IEEE Access

J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

layer are larger, and it is costly and not necessary to gather the
missing information of the supports in batch episode mining.
The error caused by this assumption is minor when the data
size of the batch layer storage is much larger than that of the
speed layer storage. No episode patterns can appear in batch
episode mining in the batch layer but not in Delta episode
mining in the speed layer, because patterns appearing in the
batch layer are considered promising patterns in the speed
layer, even if their support in Delta episode mining is low.

After matching, the patterns with re-computed supports are
again compared with the user-specified minimum support to
find the final patterns in pattern merging.

C. USER INTERFACE

In addition to the efficiency and effectiveness of finding
frequent episodes over complex event sequences, another
primary goal of this system is to facilitate the episode mining
process for people to use. In our previous work [27], [28],
there was not a good user interface, so it was not easy for
domain experts to make good use of the system. In this work,
we hope to enhance this part to make it more user-friendly,
so we designed a user interface to make it easier to solve real-
world problems.

eoce MainWindow
WEEIEEIEE PreProcessing Analyzing Result

Add New Browse Remove

Choose Sequence Description

AIC_SCO3A Readings from the meter AIC_SC03/
AIC_SCO3B Readings from the meter AIC_SCO3E
AIC_FG088_5 Readings from the meter AIC_FG088

AIC_FH_089_1 Readings from the meter AIC_FG08S

" w o =
<}

M erna A Bandinnn fram bhn mabar AR ERAG
Sequence Chart

AIC_FG088_5

1000 o

950 4

900 4

850 4

800 4

FIGURE 8. An screenshot of user interface.

Fig. 8 shows the user interface of the proposed application
framework, domain experts or application developers can
specify the complex event sequences to be analyzed and
decide how to do the pre-processing jobs via the interface,
instead of using hard-coding. After configuring the pre-
processing jobs, the system will follow the configuration to
process the data and then start the analytical mining process
in the batch and the incremental perspective respectively.

V. EXPERIMENTAL EVALUATION

Since there is few similar study focused on developing a
framework of complex event episode mining for various
domain applications, as we did in this work, we consider
three most relevant frameworks, namely EM-CES [27],

130680

TABLE 5. Experimental environment.

HW Spec.
Roles oy’s CPU M]Zle;':ry
master 1 g;.lsig}ﬁio? 600 MHz 3268
daves |10 | G 600 MH B

SCIEM [28] and TEM-SES [1], for comparative evaluations
with our proposed framework SAAF. To evaluate the per-
formance of the tested frameworks, we used seven different
datasets, namely temporal streaming data and data composed
of multiple fields as typical complex event sequences,
to conduct experiments as illustrated in this section.

The experimental environment is composed of one master
and 10 slaves. Cloudera CDH 6.3.4 with Apache Spark 2.4 is
utilized to facilitate the cluster management job. The detailed
hardware information of the cluster environment is presented
in Table 5.

A. DATASETS AND EPISODE MINING SCENARIOS

The framework we proposed is mainly contributed to find
useful patterns in solving real-life problems. The following
three dataset were provided by different domain users.
We help them find out interesting and useful patterns, and
they take those patterns into their domain application to find
out the valuable information.

The first dataset, denoted as DS1a, contains the electric
power consumption data of a convenience store. The dataset
was collected from 29 intelligent meters within 20 weeks,
and the data collecting frequency was one record per
minute. The total amount of records was almost 6.4 million,
and each record consisted of six attributes: voltage(V),
current(A), power(P), power factor(PF), kilowatt-hour(kWh),
and recording_time. The problem we solved is how to find
the episode patterns of excessive electricity usage. Users
can easily find the episode patterns that led to the excessive
electricity usage via this framework, and they take those
patterns into their electricity monitoring application platform
to help them not to use to more electricity than the contract
allowed.

The second dataset, denoted as DS2a, was an exercise
dataset that collected from wearable devices, including heart
rate and GPS data, which have been collected via wearable
devices over the years. The total amount of records was
more than 13 billion. We only used those records with
higher frequency and better data quality, so the current
analysis of this dataset is approximately 600 million records.
This dataset was provided by a wearable device that
hoped to do healthcare business. The episode patterns were
used in analyzing the relationship between sport behavior
and health status. Our framework was incorporated with
their healthcare platform and then provide information to
their users.

VOLUME 10, 2022

J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

IEEE Access

The third dataset, denoted as DS3, is a type of streaming
data from manufacturing devices. This dataset was collected
in a fossil-fuel power station, and data collecting frequency
was a record per second. The total amount of records was
almost 53 million, and each record consisted of 384 attributes.
This was a special application, and the domain user hoped to
mine the episode patterns of events which are strongly related
to the energy conversion performance.

We also used two benchmark datasets obtained from the
UCI machine repository [60] for the evaluation. The first
benchmark dataset, denoted as DS4, contains the recordings
of 16 chemical sensors exposed to two dynamic gas mixtures
at varying concentrations. For each mixture, signals were
acquired continuously for 12 hours.

The second benchmark dataset, denoted as DS5, was
recorded with two wearable devices: a chest-worn device
(RespiBAN) and a wrist-worn device (Empatica E4). The
RespiBAN device provides the following sensor data:
electrocardiogram (ECG), electrodermal activity (EDA),
electromyogram (EMGQG), respiration, body temperature, and
three-axis acceleration.

Within the category ‘“‘energy-consumption” and ‘‘sports
and healthcare”, other than the real-world dataset DS1 and
DS3, we also found another two benchmark dataset from
the UCI machine repository [60] for further evaluations.
The dataset, denoted as DS1b, consists of measurements of
electric power consumption in one household with a one-
minute sampling rate over a period of almost 4 years. The
second dataset, denoted as DS3b, comprises motion sensor
data of 19 daily and sports activities each performed by
8 subjects in their own style for 5 minutes. Five Xsens MTx
units are used on the torso, arms, and legs.

We used three datasets provided by domain users and four
widely-used benchmark datasets to evaluate the framework in
terms of three aspects: accuracy, efficiency, and scalability.
Table 6 provides a brief description of the seven datasets,
and the experimental results are presented in the following
sections.

B. EXPERIMENT ON THE NUMBER OF EPISODES

AND ACCURACY

In this experiment, we first evaluated the number of episodes
mined by the proposed framework SAAF and compared it
with TEM-SES, SCIEM and EM-CES, which are taken as
the baseline. The experiment was conducted under the same
minconf of 0.8 and varied minimum support thresholds. The
number of episodes mined by the four approaches is listed in
Table 7. In Fig. 9, we can more easily see that the number of
episodes found by different frameworks is very close.

The EM-CES is a basic full-mining framework that mines
all qualified episodes that meet the criteria of minsup
thresholds. Therefore, we take it as the baseline to validate
the other two frameworks. In Table 8, we use the EM-CES
framework as the baseline with 100% accuracy, and it shows
the accuracy matrix among the seven different datasets under
various minimum support thresholds. We found that the

VOLUME 10, 2022

TABLE 6. The experimental dataset and description of the episodes.

application
domain

episodes

records | features .
to be mined

To mine the episode
6.4

DSla| 2 6 patterns of the excessive

million electricity ~ usage for

energy | electric power consumers

consumption|then they can use that

DS1b 2 9 information for the

million management of power
consumption

600 To mine the episode

DS2a million 24 patterns of abnormal

sports and heartbeat o event

healthcare | Seduences, which is very

1.2 1mportant to prevent some

DS2b million | 43 situations that may result

in accidents.

To mine the episodes
which are strongly related
53 manufactur- | to the energy conversion
DS3 o 384 .
million ing performance, such as ash
cleanups and cool system
activities.

To mine the episodes of

63 . that contains an abnormal
DS4 million 12 chemical gas mixture of Methane,
Ethylene and CO.

To mine the episodes for
wearable stress and affect
detection, including
healthcare |physiological and motion
data, recorded from both a
wrist- and a chest-worn
device.

pss |+l 8
million

proposed SAAF performed better than the TEM-SES and
SCIEM framework and was very close to the baseline.

C. EXPERIMENT ON THE EXECUTION TIME

In the second experiment, we evaluated the execution time of
the proposed framework SAAF for mining frequent episodes
under various minimum support thresholds. We provided a
comparison with TEM-SES and the previous frameworks,
EM-CES and SCIEM. The execution times for the four frame-
works are listed in Table 9. In Fig. 10, the proposed SAAF has
a better performance than the other three frameworks. The
results of the first experiment, shown in Table 6, show that
SAAF can consider both execution efficiency and accuracy
simultaneously, as we expected.

D. EXPERIMENT ON SCALABILITY

In the third experiment, we conducted the experiment with
different numbers of slaves (Apache Spark client) of 1, 2,
4, 8 and 10 to validate the scalability of the frameworks
we proposed. The parameter minsup was 0.1 and minconf
was 0.8.

130681

lE E E ACCGSS J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

TABLE 7. Number of episodes mined by four different frameworks
among experimental datasets.

TABLE 8. Accuracy of four different frameworks among experimental
datasets.

Accurac ini Support Threshold (%)
Number of e y PP
M Threshold (9 Dataset
Dataset episodes inimum Support Threshold (%) 215¢1 | Framework 10% | 15% [20% [25% | 30% | 35% | 40%
Framework 10% 15% 20% 25% 30% 35% 40% EM-CES(Baseline) | 100.0% | 100.0% [100.0% | 100.0% | 100.0% [100.0% | 100.0%
EM-CES(Baseline) 9982 1200 360 142 60 30 14 Dsla | TEM-SES 93.9% | 94.9% | 93.3% | 972% | 96.7% | 93.3% | 92.9%
Dsla |TEMSES 9375 1139 336 138 58 28 13 SCIEM 98.0% | 92.4% | 95.8% | 95.1% | 83.3% | 86.7% | 92.9%
a
SCIEM 9780 1109 345 135 50 26 13 SAAF 96.6% | 98.8% | 98.1% | 972% | 96.7% | 96.7% | 100.0%
SAAF 9642 1186 353 138 58 29 14 EM-CES(Baseline) | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0%
EM-CES(Baseline) 5638 655 224 85 33 16 8 DSIb TEM-SES 95.7% | 97.3% | 83.5% | 83.5% | 87.9% | 81.3% | 75.0%
DSIb TEM-SES 5398 637 187 71 29 13 6 SCIEM 97.2% | 97.6% | 84.4% | 94.1% | 81.8% | 75.0% | 75.0%
SCIEM 5479 639 189 80 27 12 6 SAAF 98.6% | 98.6% | 95.5% | 95.3% | 90.9% | 93.8% | 87.5%
SAAF 5558 646 214 81 30 15 7 EM-CES(Baseline) 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0%
EM-CES(Baseline) | 138925 | 39982 | 20183 | 8810 | 2530 1205 730 TEM-SES 93.7% | 96.8% | 94.3% | 933% | 97.2% | 95.5% | 93.7%
Dsza [TEM-SES 130149 | 38717 | 19039 | 8224 2459 1151 684 DS2a 1ociEm 97.0% | 89.5% | 97.2% | 95.8% | 99.2% | 98.5% | 97.1%
SCIEM 134788 | 35800 | 19620 | 8443 | 2510 | 1187 | 709 SAAF 992% | 97.1% | 97.8% | 99.4% | 99.6% | 99.0% | 98.9%
SAAF i 137806 | 38804 | 19730 | 8754 | 2520 | 1193 | 722 EM-CES(Baseline) | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0%
EI;AI\’/[CSFS(SB““‘“) i;‘i; ;‘ZS :‘2‘2 j Z ?z 194 j Dsap [TEM-SES 94.5% | 852% | 86.9% | 873% | 72.7% | 64.3% | 66.7%
DS2b sda}u - 6 07 o 5 o 3 3 SCIEM 95.0% | 91.3% | 89.7% | 927% | 77.3% | 57.1% | 50.0%
SAAF 97.5% | 95.1% | 95.2% | 96.4% | 81.8% | 78.6% | 833%
SAAP 3352 424 138 33 18 11 3 EM-CES(Baseli 100 ov/u 100. 00/0 100. otyu 100 00/0 100. wu 100 00/“ 100 00/u
EM-CES(Bascline) | 39044 | 9924 | 2810 530 205 130 63 TE]\'}[E(ascline) o = . ']"° 94'”" 5 ']““ - - . = 5 'zn"
bss TEMESES 36289 | 9732 | 2645 | 504 | 200 123 60 DS3 -SES S% | 981% | S4l% | 95.1% | 57.6% | 94.6% | 932%
SCIEM 31500 | 9650 | 2656 510 187 109 =3 SCIEM 89.1% | 97.5% | 94.5% | 96.2% | 91.2% | 83.8% | 92.1%
. P n 0 n D s n
SAAF 33800 | 9730 | 2738 524 193 22 0 SAAF 99.4% | 98.0% | 97.4% | 98.9% | 94.1% | 93.8% | 952%
s ; n o o " o))
EM-CES(Baseline) 39087 | 10182 | 2692 524 190 127 o4 EM-CES(Bascline) | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% [100.0%
o [TEMSES 34034 | 9200 | 2772 466 73 120 60 Dsq [TEM-SES 87.1% | 91.2% | 103.0% | 88.9% | 91.1% | 94.5% | 93.8%
DS4 o CiEM 34561 | 8457 | 2475 241 179 115 59 SCIEM 88.4% | 83.1% | 91.9% | 84.2% | 94.2% | 90.6% | 922%
SAAF 37846 | 8832 | 2350 436 180 97 61 SAAF 96.8% | 86.7% | 87.3% | 92.7% | 94.7% | 76.4% | 953%
EM-CES(Baseline) 10043 | 1143 336 139 61 29 13 EM-CES(Baseline) | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0%
Dgs | TEM-SES 8694 1062 318 137 53 25 10 s [TEM-SES 86.6% | 92.9% | 94.6% | 98.6% | 86.9% | 86.2% | 76.9%
SCIEM 9221 1117 340 129 49 25 11 SCIEM 91.8% | 97.7% | 101.2% | 92.8% | 80.3% | 86.2% | 84.6%
SAAF 9501 1095 335 134 56 29 12 SAAF 94.6% | 958% | 99.7% | 96.4% | 91.8% | 100.0% | 923%
psta pstb TABLE 9. Execution time of four different frameworks among
- —4~EM-CES(Baseline) ~#-TEM-SES SCIEM SAAF " ~+~EM-CES(Baseline) ~#-TEM-SES SCIEM SAAF eXPerimental datasets-
-
%W‘ Execution Minimum Support Threshold (%)
B DataSet ime(sec)
5 \ Framework 10% 15% | 20% | 25% | 30% | 35% | 40%
2 o EM-CES 49 16 9 7 7 5 4
Zm
‘ , § Dsla [TEM-SES 44 16 8 6 6 4 4
10 I 0% W 2% W 4o SCIEM 36 13 7 5 4 3 2
MINIVUM SUPPORT THRESHOLD (%) MINIMUM SUPPORT THRESHOLD () SAAF 5 m S 3 5 3 3
EM-CES 26 9 5 il 3 3 2
DS2a DS2b Dpsip |TEM-SES 27 9 4 3 3 2 2
e EMLCES(Baseling) - TEMLSES —4-SCIEM < SAAF ~+-EM-CES(Bascling) —~TEMSES —+-SCIEM —SAAT SCIEM 20 8 4 3 2 2 1
160000 A SAAF 14 6 3 2 1 1 1
‘”’w w | 1 EM-CES 665 432 350 292 247 186 164
\ Ds2a [TEM:SES 853 604 526 393 425 317 210
s0000 \ SCIEM 443 302 248 219 189 173 124
\ 500 SAAF 357 248 190 161 141 127 107
40000 L 3 om0 EM-CES 2 7 4 2 3 2 1
Z 20000 500 Y
' «l |) ’ — . N bsap [LEM-SES 21 6 3 2 2 1
0% 1% 20% 2% 30% 35% 40% 0% 1% 20% 25 % 40% SCIEM 16 5 3 2 1 1 0
MINIMUM SUPPORT THRESHOLD (%) MINIMUM SUPPORT THRESHOLD (%) SAAF 10 4 2 1 1 1 1
o = EM-CES 185 9% 75 68 48 38 31
- EMLCES(Buseling) -8-TEMSES ~+-SCIEM < SAAF - EM.CES(Bacline) ~8-TEM.SES ~+SCIEM —<-SAAF Ds3 |[TEM-SES 213 134 103 73 65 55 41
45000 SCIEM 132 76 57 50 40 34 27
. 40000 SAAF 91 49 31 28 2 18 13
EM-CES 190 107 76 58 50 44 34
g4 [TEMSES 208 137 92 64 65 58 35
\ SCIEM 141 80 53 46 35 29 26
\ H SAAF 115 87 48 39 37 29 18
) Z 5o EM-CES 53 16 8 7 7 5 4
" Tion 1% 2w B B0% 550 ek L e ———— e Dss |[LEM-SES 45 14 9 7 7 3 3
MINIMUM SUPPORT THRESHOLD (%) MINIMUM SUPPORT THRESHOLD (%) SCIEM 4] 14 7 5 3 3 2
s SAAF 30 11 6 5 4 2 2

——EM-CES(Bascling) ~8-TEM-SES —&—SCIEM —SAAF
12000

2 10000

000

6000

4000

NUMBER

2000

0% 15% 20% 2% 0% 3% 40%
MINIMUM SUPPORT THRESHOLD (%)

FIGURE 9. Chart of the episode number found by four different
frameworks among seven datasets.

Table 10 shows that the execution time decreased when
more slaves were involved in the mining process. We can see

130682

that the ratio of execution time improvement of dataset DS1a
is not as good as that in DS2a and DS3. This may be because
the data size of DSla is smaller than that of the other two
datasets, so when the number of slaves increases from four to
ten, the improvement ratio is not as good as the others, such
as increasing slaves from two to four.

Fig. 11 shows the scalability of the three frameworks,
which comes from the design and development of these
frameworks based on the development framework of Apache
Spark and Apache Spark Streaming. Although there are only

VOLUME 10, 2022

J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

IEEE Access

DSla DS1b

——EM.CES -8-TEM-SES —&-SCIEM —<-SAAF —+—EM.CES -8-TEM-SES —&-SCIEM —<SAAF

s 20 2 30 35 s 20 25 30 3s
MINIMUM SUPPORT THRESHOLD (%) MINIMUM SUPPORT THRESHOLD (%)

DS2a DS2b

——EM-CES —a—TEM-SES —-SCIEM SAAF ~—EM-CES -=-TEM-SES —4-SCIEM —SAA

EXECUTION TIME (SEC)

15 40 0 15

MINIMUM SUPPORT THRESHOLD (%)

MINIMUM SUPPORT THRESHOLD (%)

DS3 DS4

—~-EM-CES -8-TEMSES —-SCIEM —SAAF —-EM-CES -8-TEMSES —&-SCIEM —SAAF

EXECUTION TIME (SEC)

40

MINIMUM SUPPORT THRESHOLD (%) MINIMUM SUPPORT THRESHOLD (%)

DSla

—-EM-CES -=-TEM-SES —4-SCIEM —SAAF

15 20 25 0 3
MINIMUM SUPPORT THRESHOLD (%)

FIGURE 10. Chart of the execution time of four different frameworks
among seven datasets.

TABLE 10. Execution time of different number of slaves.

Execution Number of slaves (Spark Client)
Dataset ime(sec)
Approach 1 2 4 8 10
EM-CES 221 128 72 53 52
DSla [SCIEM 173 90 58 40 41
SAAF 142 78 44 28 26
EM-CES 3497 2082 1188 638 530
DS2a [SCIEM 2467 1430 793 439 378
SAAF 1835 1008 660 369 320
EM-CES 1183 600 323 182 160
DS3 |SCIEM 885 521 291 142 131
SAAF 528 310 169 96 80

ten slaves in our experiment, this shows that the proposed
framework SAAF can work well with more slaves to achieve
better scalability.

E. EXPERIMENT ON MODULE DATA PIPELINE
CONTROLLER

We designed a module named data pipeline controller for
users to dynamically adjust the data dispatching mechanism.
In this module, users can control the frequency and scope of
data dispatching to batch and incremental layers, respectively.
The major benefit is that this module can work as an
asynchronous buffer to balance the data input flow and
processing capacity, thus avoiding data loss during the mining
process.

VOLUME 10, 2022

DS1a

—-EM-CES —8-SCIEM —&-SAAE

z
S0

2 4 8
NUMBER OF SPARK SLAVES

DS2a DS3

—~-EM-CES ~8-SCIEM —&-SAAF ——EM-CES -8-SCIEM —&-SAAF

2 4 8 0
NUMBER OF SPARK SLAVES

4 8
NUMBER OF SPARK SLAVES

FIGURE 11. Chart of the execution time of different slave number of
three different frameworks.

TABLE 11. Accuracy of different usage of data pipeline controller.

Accuracy Pipeline Usage (%)
Dataset 0% | 25% | 50% | 75% | 100%
DS2a 84.3% | 88.4% | 92.2% | 94.7% | 99.2%
DS3 84.4% | 88.0% | 92.6% | 94.7% | 96.8%
DS4 82.8% | 863% | 91.8% | 95.2% | 97.1%

TABLE 12. Execution time of different usage of data pipeline controller.

Execution Pipeline Usage (%)
ime(sec)
Dataset 0% 25% 50% 75% 100%
DS2a 630 506 435 408 374
DS3 153 126 114 105 96
DS4 192 165 137 118 98

To evaluate the performance of the pipeline controller,
we conducted an experiment using the dataset DS2a, DS3,
DS4 with different usage percentage, from 0 ~ 100%.
Table 11 and 12 shows that the accuracy increases, and the
execution time decreases when data pipeline controller was
utilized more in the mining process. This result also shows
that this module can help make the proposed framework more
robust and efficient as we expected.

VI. CONCLUSION AND FUTURE WORKS

In this work, we have proposed a scalable analytical
framework called SAAF for complex event episode mining
in various domain applications. We have designed efficient
algorithms consisting of three modules, namely BatchEp-
isodeMining, DeltaEpisodeMining and PatternMerging in
correspondence with batch layer, speed layer and merge
layer respectively. As far as we know, this is the first
work that focuses on developing a scalable and easy-to-
use framework for solving real-world problems in various
domains. We extend the previous works, EM-CES and
SCIEM, by developing new and important modules in SAAF,

130683

IEEE Access

J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

including the data pipeline controller and the rule access
interface.

We adopted the Lambda architecture to ensure the data
safety and information trust, and used Apache Spark and
Apache Spark Streaming as the development framework to
boost the scalability and efficiency. To evaluate the accuracy
and efficiency of SAAF framework, we used three real-world
datasets from different domains and four benchmark datatsets
to conduct the experiments. The results demonstrate that
SAAF significantly outperforms other frameworks. The final
experiment also shows that the proposed framework SAAF
has excellent scalability in processing huge complex event
episode mining jobs.

There exist some directions that we could explore in the
future. First, we plan to develop a set of APIs for users
to perform episode mining jobs with easy programming.
Second, some optimizations can be conducted further to
enhance the performance of the proposed modules.

ACKNOWLEDGMENT
The authors sincerely thank those who provided the real-
world datasets for the experimental evaluation in this study.

REFERENCES

[1]1 Y. F. Lin, P. W. Jiang, and V. S. Tseng, “Efficient mining of frequent

target episodes from complex event sequences,” in Frontiers in Artificial

Intelligence and Applications, vol. 274. Commack, NY, USA: Nova, 2015,

pp. 501-510.

H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent

episodes in event sequences,” Data Mining and Knowledge Discovery,

vol. 1, pp. 259-289, Sep. 1997.

[3] H. Mannila and H. Toivonen, “Discovering generalized episodes using
minimal occurrences,” in Proc. KDD, 1996, pp. 146-151.

[4] H. Mannila, H. Toivonen, and A. I. Verkamo, ‘“Discovering frequent
episodes in sequences,” in Proc. Int. Conf. Knowl. Discov. Data Mining,
1995, pp. 210-215.

[5] S. Laxman, P. Sastry, and K. Unnikrishnan, ‘“Discovering frequent
generalized episodes when events persist for different durations,” IEEE
Trans. Knowl. Data Eng., vol. 19, no. 9, pp. 1188-1201, Sep. 2007.

[6] T.You,Y.Li,B. Sun, and C. Du, “Multi-source data stream online frequent
episode mining,” IEEE Access, vol. 8, pp. 107465-107478, 2020.

[71 M.-Y. Su, “Discovery and prevention of attack episodes by frequent
episodes mining and finite state machines,” J. Netw. Comput. Appl.,
vol. 33, no. 2, pp. 156-167, Mar. 2010.

[8] G. Casas-Garriga, “‘Discovering unbounded episodes in sequential data,”
in Proc. Eur. Conf. Princ. Data Mining Knowl. Discovery, 2003, pp. 83-94.

[9] C.-W. Wu, Y.-F. Lin, P. S. Yu, and V. S. Tseng, “Mining high utility
episodes in complex event sequences,” in Proc. 19th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Aug. 2013, pp. 536-544.

[10] X. Ao, P. Luo, C. Li, F. Zhuang, and Q. He, “Discovering and learning
sensational episodes of news events,” Inf. Syst., vol. 78, pp.68-80,
Nov. 2018.

[11] A. Dattasharma, P. K. Tripathi, and S. Gangadharpalli, “‘Identifying stock
similarity based on episode distances,” in Proc. 11th Int. Conf. Comput.
Inf. Technol., Dec. 2008, pp. 28-35.

[12] Y. F. Lin, C. F. Huang, and V. S. Tseng, “A novel episode mining
methodology for stock investment,” J. Inf. Sci. Eng., vol. 30, no. 3,
pp. 571-585, 2014.

[13] A.Ngand A. W. C. Fu, “Mining frequent episodes for relating financial
events and stock trends,” in Proc. Pacific-Asia Conf. Knowl. Discovery
Data Mining (PAKDD), in Lecture Notes in Computer Science, vol. 2637.
Berlin, Germany: Springer, 2003, pp. 27-39.

[14] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong, ‘“Maintenance of
discovered association rules in large databases: An incremental updating
technique,” in Proc. 12th Int. Conf. Data Eng., Feb. 1996, pp. 106-114.

[2

130684

[15]

[16]

[17]

(18]

[19]

(20]
(21]

[22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

(40]

D. W. Cheung, S. D. Lee, and B. Kao, “A general incremental technique
for maintaining discovered association rules,” in Proc. Database Syst. Adv.
Appl., Mar. 1997, pp. 185-194.

S. Shan, X. Wang, and M. Sui, “Mining association rules: A continuous
incremental updating technique,” in Proc. Int. Conf. Web Inf. Syst. Mining,
Oct. 2010, pp. 62-66.

M.-Y. Lin and S.-Y. Lee, “Incremental update on sequential patterns in
large databases by implicit merging and efficient counting,” Inf. Syst.,
vol. 29, no. 5, pp. 385-404, Jul. 2004.

B. Mallick, D. Garg, and P. S. Grover, “Incremental mining of sequential
patterns: Progress and challenges,” Intell. Data Anal., vol. 17, no. 3,
pp. 507-530, May 2013.

V. S. Tseng and C.-H. Lee, “Effective temporal data classification by
integrating sequential pattern mining and probabilistic induction,” Expert
Syst. Appl., vol. 36, no. 5, pp. 9524-9532, Jul. 2009.

T. Matyashovskyy, Lambda Architecture With Apache Spark DZone Big
Data. Durham, U.K.: Dzone.Com, 2016.

Apache Spark: A Fast and General Engine for Large-Scale Data
Processing, Spark.Apache.Org, Apache Spark, Berkeley, CA, USA, 2015.
N. Deshai, B. V. D. S. Sekhar, and S. Venkataramana, ‘“MIllib: Machine
learning in apache spark,” Int. J. Recent Technol. Eng., vol. 8, no. 1,
pp. 1235-1241, 2019.

S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big data
analytics on apache spark,” Int. J. Data Sci. Analytics, vol. 1, nos. 3—4,
pp. 145-164, 2016.

G. P. Gupta and J. Khedwal, ““Framework for error detection its localization
in sensor data stream for reliable big sensor data analytics using apache
spark streaming,” Proc. Comput. Sci., vol. 167, pp. 2337-2342, Jan. 2020.
Spark Streaming—Spark 2.4.4 Documentation, Apache Software Founda-
tion, Apache Spark, Berkeley, CA, USA, 2019.

E. B. Johnsen, I. C. Yu, M. C. Lee, and J. C. Lin, “A configurable and
executable model of spark streaming on apache YARN,” Int. J. Grid Utility
Comput., vol. 11, no. 2, p. 185, 2020.

J. C. C. Tseng, J. Y. Gu, P. F. Wang, C. Y. Chen, and V. S. Tseng,
“A novel complex-events analytical system using episode pattern mining
techniques,” in Proc. Intell. Sci. Big Data Eng. Big Data Mach. Learn.
Techn. (IScIDE), 2015, pp. 487—498.

J. C. C. Tseng, J.-Y. Gu, P. F. Wang, C.-Y. Chen, C.-F. Li, and V. S. Tseng,
“A scalable complex event analytical system with incremental episode
mining over data streams,” in Proc. IEEE Congr. Evol. Comput. (CEC),
Jul. 2016, pp. 648-655.

Y.-F. Lin, C.-W. Wu, C.-F. Huang, and V. S. Tseng, “‘Discovering utility-
based episode rules in complex event sequences,” Expert Syst. Appl.,
vol. 42, no. 12, pp. 5303-5314, Jul. 2015.

M. Atallah, R. Gwadera, and W. Szpankowski, “Detection of significant
sets of episodes in event sequences,” in Proc. 4th IEEE Int. Conf. Data
Mining (ICDM), Nov. 2004, pp. 3-10.

K.-Y. Huang and C.-H. Chang, “Efficient mining of frequent episodes from
complex sequences,” Inf. Syst., vol. 33, no. 1, pp. 96-114, Mar. 2008.

N. Tatti and J. Vreeken, “The long and the short of it: Summarising event
sequences with serial episodes,” in Proc. 18th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), 2012, pp. 462-470.

A. Hidri, A. Selmi, and M. S. Hidri, “‘Discovery of frequent patterns of
episodes within a time window for alarm management systems,” [EEE
Access, vol. 8, pp. 11061-11073, 2020.

X. Ao, P. Luo, C. Li, F. Zhuang, and Q. He, “Online frequent episode
mining,” in Proc. IEEE 31st Int. Conf. Data Eng., Apr. 2015, pp. 891-902.
L. Wan, J. Liao, and X. Zhu, “A frequent pattern based framework for
event detection in sensor network stream data,” in Proc. 3rd Int. Workshop
Knowl. Discovery From Sensor Data (SensorKDD), 2009, pp. 87-96.

G. Xiao, A. Garg, D. Chen, D. Jiang, W. Shu, and X. Xu, “AHE detection
with a hybrid intelligence model in smart healthcare,” IEEE Access, vol. 7,
pp- 37360-37370, 2019.

V. S. Tseng, C.-H. Chou, K.-Q. Yang, and J. C. C. Tseng, “A big data
analytical framework for sports behavior mining and personalized health
services,” in Proc. Conf. Technol. Appl. Artif. Intell. (TAAI), Dec. 2017,
pp. 178-183.

M. H. Wong, V. S. Tseng, J. C. C. Tseng, S. W. Liu, and C. H. Tsai, “Long-
term user location prediction using deep learning and periodic pattern
mining,” in Proc. Int. Conf. Adv. Data Mining Appl., 2017, pp. 582-594.
S. Moens, O. Jeunen, and B. Goethals, ‘“Interactive evaluation of
recommender systems with SNIPER: An episode mining approach,” in
Proc. 13th ACM Conf. Recommender Syst., Sep. 2019, pp. 538-539.

M. Amiri, L. Mohammad-Khanli, and R. Mirandola, “An online learning
model based on episode mining for workload prediction in cloud,” Future
Gener. Comput. Syst., vol. 87, pp. 83-101, Oct. 2018.

VOLUME 10, 2022

J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

IEEE Access

[41] M. Amiri, L. Mohammad-Khanli, and R. Mirandola, “A new efficient
approach for extracting the closed episodes for workload prediction in
cloud,” Computing, vol. 102, no. 1, pp. 141-200, Jan. 2020.

[42] P.Fournier-Viger, P. Yang, J. C.-W. Lin, and U. Yun, “HUE-span: Fast high
utility episode mining,” in Proc. Int. Conf. Adv. Data Mining Appl., 2019,

pp. 169-184.

[43] N.FE Ayan, A. U. Tansel, and E. Arkun, “An efficient algorithm to update
large itemsets with early pruning,” in Proc. 5th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), 1999, pp. 287-291.

[44] G. S.Manku, “Approximate frequency counts over data streams,” in Proc.
28th VLDB Conf., 2000, pp. 346-357.

[45] D.Patnaik, S. Laxman, B. Chandramouli, and N. Ramakrishnan, ‘‘Efficient
episode mining of dynamic event streams,” in Proc. IEEE 12th Int. Conf.
Data Mining, Dec. 2012, pp. 605-614.

[46] X. Ao, H. Shi, J. Wang, L. Zuo, H. Li, and Q. He, “Large-scale frequent
episode mining from complex event sequences with hierarchies,” ACM
Trans. Intell. Syst. Technol., vol. 10, no. 4, pp. 36:1-36:26, 2019.

[47] O.Ouarem, F. Nouioua, and P. Fournier-Viger, ‘“Mining episode rules from
event sequences under non-overlapping frequency,” in Proc. Int. Conf.
Ind., Eng. Other Appl. Appl. Intell. Syst., 2021, pp. 73-85.

[48] J.Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of
time series, with implications for streaming algorithms,” in Proc. 8th ACM
SIGMOD Workshop Res. Issues Data Mining Knowl. Discovery (DMKD),

2003, pp. 2-11.

[49] Y. Chen, P. Fournier-Viger, F. Nouioua, and Y. Wu, “Mining partially-
ordered episode rules with the head support,” in Big Data Analytics and
Knowledge Discovery (DaWak) (Lecture Notes in Computer Science),
vol. 12925. Cham, Switzerland: Springer, 2021, pp. 266-271.

[50] J. Qin,J. Wang, Q. Li, S. Fang, X. Li, and L. Lei, “Differentially private
frequent episode mining over event streams,” Eng. Appl. Artif. Intell.,
vol. 110, Apr. 2022, Art. no. 104681.

[51] T. Guyet, W. Zhang, and A. Bifet, “Incremental mining of frequent serial
episodes considering MultipleOccurrence,” 2022, arXiv:2201.11650.

[52] J.Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of
time series, with implications for streaming algorithms,” in Proc. 8th ACM
SIGMOD Workshop Res. Issues Data Mining Knowl. Discovery (DMKD),

2003, pp. 2-11.

[53] M. Hausenblas and N. Bijnens. (2013). Lambda Architecture. [Online].
Available: http://lambda-architecture.net/

[54] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging
system for log processing,” in Proc. ACM SIGMOD Workshop Netw. Meets
Databases (NetDB), Athens, Greece, Jun. 2011.

[55] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proc. IEEE 26th Symp. Mass Storage Syst.
Technol. (MSST), May 2010, pp. 1-10.

[56] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M.-C. Hsu, “PrefixSpan,: Mining sequential patterns efficiently by prefix-
projected pattern growth,” in Proc. 17th Int. Conf. Data Eng., Apr. 2001,

pp. 215-224.

[57] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, Jan. 2008.

[58] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal,
and M.-C. Hsu, “Mining sequential patterns by pattern-growth: The
PrefixSpan approach,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 11,
pp. 1424-1440, Nov. 2004.

[59] P. Kijsanayothin, G. Chalumporn, and R. Hewett, ““On using MapReduce
to scale algorithms for big data analytics: A case study,” J. Big Data, vol. 6,
no. 1, pp. 1-20, Dec. 2019.

[60] D.Duaand C. Graff, UCI Machine Learning Repository: Data Sets. Irvine,
CA, USA: Univ. California, School of Information and Computer Science,

2019.

o~ -
-~

» - y

—

VOLUME 10, 2022

JERRY C. C. TSENG received the M.S. degree
from the Department of Computer Science and
Information Engineering, National Central Uni-
versity, Taoyuan, Taiwan, in 1996. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan.
His current research interests include frequent
pattern and episode mining, time-series data
modeling, big data platform, some new topics of
machine learning, and artificial intelligence.

SUN-YUAN HSIEH (Fellow, IEEE) received
the Ph.D. degree in computer science from
the National Taiwan University, Taipei, Taiwan,
in June 1998. Then, he has served the compulsory
two-year military service. From August 2000 to
January 2002, he was an Assistant Professor
with the Department of Computer Science and
Information Engineering, National Chi Nan Uni-
versity. He joined the Department of Computer
Science and Information Engineering, National
Cheng Kung University, in February 2002, where he is currently a Chair
Professor. His current research interests include design and analysis of
algorithms, fault-tolerant computing, bioinformatics, parallel and distributed
computing, and algorithmic graph theory. He is a fellow of the British
Computer Society (BCS) and the Institution of Engineering and Technology
(IET). He has an extremely impressive record of research achievements
in areas of algorithms and fault-tolerant computing for interconnection
networks. His awards include the 2020 ACM Distinguished scientist in
2019 Kwoh Ting Li Honorable Scholar Award in 2016, Outstanding
Research Award of Taiwan Ministry of Science and Technology, President’s
Citation Award (American Biographical Institute) in 2007, Engineering
Professor Award of Chinese Institute of Engineers (Kaohsiung Branch)
in 2008, National Science Council’s Outstanding Research Awards in
2009, IEEE Outstanding Technical Achievement Award (IEEE Tainan
Section) in 2011, Outstanding Electronic Engineering Professor Award
of Chinese Institute of Electrical Engineers in 2013, and Outstanding
Engineering Professor Award of Chinese Institute of Engineers in 2014.
He has served on organization committee and/or program committee of
several dozen international conferences in computer science and computer
engineering. He is also an experienced editor with editorial services
to a number of journals, including serving as an Associate Editor for
IEEE Transactions on Computers, IEEE Transactions on Reliability, IEEE
ACCESS, Journal of Computer and System Science (Elsevier), Theoretical
Computer Science (Elsevier), Discrete Applied Mathematics (Elsevier),
Journal of Supercomputing (Springer), Editor-in-Chiefs of International
Journal of Computer Mathematics (Taylor & Francis Group), Parallel
Processing Letters (World Scientific), Discrete Mathematics, Algorithms
and Applications (World Scientific), and Managing editor of Journal of
Interconnection Networks (World Scientific).

VINCENT S. TSENG (Fellow, IEEE) received
the Ph.D. degree with major in computer science
from the National Chiao Tung University, in 1997.
After that, he was a Postdoctoral Research Fellow
with the Electrical Engineering and Computer
Science Department, University of California
at Berkeley, USA, from 1998 to 1999. He is
currently a Chair Professor with the Department
of Computer Science, National Yang Ming Chiao
Tung University (NYCU). He was the Founding
Director of the Institute of Data Science and Engineering, NYCU (2017-
2020), the Chair of the IEEE CIS Tainan Chapter (2013-2015), and the
President of the Taiwanese Association for Artificial Intelligence (2011-
2012). He also acted as the Director of the Institute of Medical Informatics,
National Cheng Kung University, from 2008 to 2011. He has authored
more than 400 research papers in refereed journals and conferences and
15 patents (held and filed). His research interests include data mining, big
data analytics, machine learning, biomedical informatics, and mobile and
web technologies. He was a recipient of a number of prestigious awards,
including the ACM Distinguished Scientist Member (2019), the Outstanding
Research Award (2015 and 2019), the FutureTech Award by the National
Science and Technology Council Taiwan (2022 and 2018), the Outstanding
I. T. Elite Award (2018), and the K. T. Li Break-Through Award (2014).
He served as the chair/a program committee member for a number of premier
international conferences/institutions. He has been the Steering Committee
Chair of PAKDD, since 2020. He was on the Editorial Board of a number
of top journals, including the IEEE TRANSACTIONS ON KNOWLEDGE AND DaTA
ENGINEERING, the IEEE JoURNAL OF BioMEDICAL AND HEALTH INFORMATICS, I[EEE
Computational Intelligence Magazine, and ACM Transactions on Knowledge
Discovery from Data.

130685

