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ABSTRACT With the ubiquity of sensor networks and smart devices that continuously collect data, we face
the challenge of analyzing the growing stream of data in real time. In recent years, there has been a huge
need to gain useful knowledge by incrementally analyzing event sequence data. Although episode pattern
mining techniques have existed for years, people have recently become more aware of their practical value
in solving real-life domain problems such as manufacturing records, stock markets, and weather forecasts.
The effective and efficient application of episode pattern mining techniques to analyze complex event data is
becoming increasingly important for solving real-life problems in wide domains. However, few studies have
focused on developing a scalable framework based on episode pattern mining of complex event sequences
for applications in various domains. In this work, we propose a novel framework named SAAF (Scalable
Analytical Application Framework) based on complex event episode mining techniques, including batch
episode mining, delta episode mining, incremental episode mining, and pattern merging, to consider both
efficiency and accuracy. Moreover, to enhance scalability, we adopt the lambda architecture with Apache
Spark and Apache Spark Streaming as the system development framework. Finally, the experimental results
on three real datasets of different domains and two benchmark datasets showed that the proposed SAAF
framework exhibits excellent performance in terms of efficiency, accuracy, and scalability.

INDEX TERMS Complex event sequence, data stream, episode pattern mining, incremental mining, lambda
architecture.

I. INTRODUCTION
Owing to the ubiquity of sensor networks and smart devices,
various types of streaming data are continuously collected,
and there are growing real-life requirements to gain valuable
information by analyzing these data streams. It is very
common for different sources of data to be collected
simultaneously as multiple time-series events, which we refer
to as complex event sequences [1]. Among data mining
techniques, episode mining [2], [3], [4] is a very powerful
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tool that can be applied to discover useful patterns from past
events to foresee the possible events that will occur in the
future. There are many real-life cases around us utilizing
this technique, such as manufacturing improvement [5], [6],
network attack detection [7], biomedical data analysis [8],
high-utility pattern mining [9], news events [10], and stock
trend analysis [11], [12], [13].

Mostly, people want to have the most current information
from the episode patterns mined from the new growing data
instead of the past information learned from historical data
only. To have the most current and valuable information, full
mining of the entire data is the most intuitive and easiest
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way. However, it is not cost-effective; thus, a number of
incremental mining approaches have arisen to address this
subject. A significant portion of existing incremental mining
research arches focused on the mining of association rules
[14], [15], [16] or sequential patterns [17], [18], [19] in static
incremental data such as traditional transaction databases.
According to our surveys, there exist still very few studies
have focused on developing a scalable analytical framework
for complex event episode mining for cross-disciplinary
applications.

The above-mentioned situations motivated us to develop
an analytical application framework to address incremental
episode-mining problems for complex event sequences. Effi-
ciency and accuracy are both crucial factors of an analytical
system designed for incremental mining; they need to be
considered simultaneously. Regarding the scalability of the
system, we adopt the lambda architecture [20] as the system
architecture, and Apache Spark [21], [22], [23] and Apache
Spark Streaming [22], [24], [25], [26] as the development
tools of the batch layer and the speed layer, respectively.
Apache Spark is a unified analytics tools for large-scale
data processing, and Spark Streaming brings Apache Spark’s
language-integratedAPI to stream processing, letting uswrite
streaming jobs the same way we write batch jobs. Otherwise,
it is easier to get started and better cost-efficient comparing
with other similar tools. The above features are important for
developing the proposed framework, so we chose them as our
development tools.

In this study, we develop a framework named SAAF
(Scalable Analytical Application Framework) by extending
our previous works [27], [28]. Compared to previous
studies, SAAF is the first framework specially designed for
various domain applications with intelligence and scalability.
We designed various new modules to enhance the processing
capacity of streaming complex event sequences and to
improve the system architecture. We also developed a user
interface that allows people to use this framework more
easily.

Specifically, the main improvements and differences with
the previous works are described as the following:

First, we design a new mechanism of the data pipeline
controller module to intelligently balance the data flow for the
speed and batch layers of the lambda architecture. This design
leads to a better processing performance than the previous
designs.

Second, we design a new module, namely, rule access
module, such that application developers can easily obtain the
most updated analytic results to help domain experts retrieve
valuable information in a timely manner.

Third, we design an user interface to make it easier to
accelerate the tasks of episode mining process for solving
real-world problems.

Another contribution of this paper is that we conducted
extended experiments on three datasets of different domains
and two benchmark datasets to validate the proposed
framework SAAF. The results showed that it delivers

excellent performance in terms of efficiency, accuracy, and
scalability.

The remainder of this paper is organized as follows.
We provide a brief description of the problem definitions
in Section II and review related works in Section III. The
design of the proposed system is described in Section IV,
and experimental validation and results are presented in
Section V. The conclusions are presented in Section VI, and
future work is introduced in this section as well.

II. PROBLEM DEFINITIONS
In this subsection, we adopt the notations used in [29] for
problem definitions and properties related to this study. For
more details about episode mining, readers can refer to [2],
[3], [4], [29], [30], [31], [32], and [33].
Definition 1(Simple Event Sequence): This is a sequence

of events in which every event occurs at its respective time
point. Given a set E of event types, a pair (e, t) represents an
event where e ∈ E is an event type and t is the time point at
which e occurs. An event sequence S on E is a triple (s, Ts,
Te), where s =< (e1, t1), (e2, t2), . . . , (en, tn) > is an ordered
sequence of events such that Ai ∈ E for all i = 1, . . . , n and
ti ≤ tj for all 1 ≤ i ≤ j ≤ n. Furthermore, Ts and Te are the
starting and ending times of S respectively, and Ts ≤ ti ≤ Te
for all i = 1. . .n.
Definition 2 (Simple Episode): A simple episode α is a

non-empty totally ordered set of events of the form < (E1),
(E2),. . . , (Ek ) >, where event Ei appears before event Ej for
all 1≤ i < j ≤k.
Definition 3 (Simultaneous Event Set A): simultaneous

event set SE= (E1, E2,. . . , Em) is composed of a set of events,
where each event Ei∈ε in SE occurs at the same time point
t for all 1 ≤ i ≤ m. The length of the SE is denoted by
|SE| and is equal to the number of events in SE. Given two
simultaneous event sets SE1 = (E1, E2 ,. . . , En) and SE2 =
(E ′1, E

′

2,. . . , E
′
m), where m ≤ n, SE2 is the subset of SE1 and

SE1 is the superset of SE2 iff SE2⊆SE1.
Definition 4. (Complex Event Sequence): A complex event

sequence CS =< (SE1, T1), (SE2, T2),. . . , (SEn, Tn) > is
an ordered sequence of simultaneous event sets, where each
simultaneous event set SEi is linked to a time point Ti ∈ N+

and Ti < Tj for all 1 ≤ i< j ≤ n.
Definition 5 (Episode with simultaneous events): An

episode with simultaneous events is an ordered tuple of
simultaneous event sets with the form<SE1, SE2, . . . , SEk >;
SEi appears before SEj for all i, j (1 ≤ i < j ≤ k). Based
on this definition, there are two different relationships among
episodes: simultaneous and serial relationships. The length of
α is denoted by |f |, and is equal to the number of events of f .
Definition 6 (Prefix of Episode): Given an episode

f =<SE1, SE2, . . . , SEk >, its sub-episode < SE1, SE2,
. . . , SEm−1, SE’m > (m ≤ k) is called the prefix of f if
SE’m is a sub-simultaneous event set of SEm and the events in
(SEm – SE’m) are alphabetically after those in SE’m.
Definition 7 (Support of an Episode): Given an event

sequence S, the support of an episode f is denoted by sup (f ),
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and it is formally defined as sup(f ) = |sc (f )|/N , where N is
the number of sliding windows of S and sc(f ) is the support
count of f.
Definition 8 (Frequent Episode): Given a user-specified

minimum support threshold minsup, episode f is said to be
frequent if sup (f ) is no less than minsup. Minimum support
count is given as the product ofminsup and N , where N is the
size of S.

The aim of this work is to develop a scalable framework
that mine frequent episode patterns for various domain
applications considering both accuracy and efficiency.

III. RELATED WORK
Frequent episode mining has been a widely used technique
in data mining and knowledge discovery since it was first
introduced by Mannila et al. [4]. It was used to mine frequent
subsequences as episodes from time-series data, which is
referred to as the event sequence. Each event was linked to
the time point that it occurred, and they can be presented as
a pair (e, t), where stands for that event e occurred at time t .
Fig. 1 is an illustration of a single-event sequence. e1, e2, e3
and e4 are different events that occur at a specific time. For
example, pair (e4, t4) indicates that event e4 occurred at time
point t4. Frequent episode mining helps us identify patterns
known as episodes that are partially ordered sets of events.

FIGURE 1. An illustration of a single-event sequence.

Frequent episode mining has been applied in different
kinds of domain applications and to analyze various forms
of data like time-stamped fault reports in sales transactions
[9], financial stock data [12], [34], power usage [27], power
plant facility maintenance [28] telecommunication network
alarms [35], healthcare [36], sports data [37] and user location
prediction [38], to name a few. In recent years, episodemining
technique has been utilized inmore domain applications, such
like recommender systems [39], workload prediction [40],
[41], high utility mining [29], [42].

Cheung et al. proposed the algorithm FUP [14] and
extended FUP to FUP2 [15]. FUP and FUP2 are both
renowned incremental mining algorithms based on the
Apriori mechanism to update the association rules when
new transaction records are inserted or removed from the
database. Ayan et al. proposed an algorithm UWEP [43] with
the concept of negative borders to enhance the efficiency
of FUP-based algorithms. The above algorithms are not
practical to be used in the environment of continuous
streaming data, because of the following problems, namely,
a). high possibility of large set of candidate itemsets; b). the
need for multiple scans in a database.

Hung and Chang proposed the algorithm EMMA [31] for
mining frequent episodes from complex sequences, but it

only works for static datasets, not for streaming data. Wu et
al. proposed UP-Span [9] for mining high utility episodes in
complex event sequences. The restriction of UP-Span is that
it targeted for mining high utility episodes, so that might lose
other important information in sequences.

The pattern mining technique of data streams has become
more and more welcome in recent years. Manku proposed a
lossy counting approach for approximate frequency counting
over streams with no assumptions regarding the stream [44].
Patnaik et al. presented an approach for mining frequent
episodes over a window of recent events in a stream [45].
These approachesmaywork properly for a single data stream,
but they are not appropriate and applicable for the complex
event sequence analytic process; therefore, they are restricted
in solving real-world problems around us.

Recently Ao et al. proposed a big data algorithm for
episode mining called LA-FRMH [46], but this algorithm did
not handle the case of simultaneous events. Ouarem et al.
proposed an algorithm called NONEPI [47] for episode rule
mining using the concept of non-overlapping frequency. The
primary goal of NONEPI is to find rules that are easier to
interpret as occurrences must be non-overlapping, but this
algorithm did not consider complex event sequences that are
very common in real-world problems.

Lin et al. proposed the algorithm POERM [48], and then
extended it as POERMH [49]. Those two methods focused
on finding partially-ordered episode patterns, which mean
a small set of rules instead of numerous episode rules.
However, it is not practical for various kinds of real-world
applications without finding all rules for users.

Guyet et al. proposed the algorithm Re-DPFE [50], which
focused on privately frequent episode mining over event
streams. However, Re-DPFE was not designed for solving
public problems of various domains and it is not scalable for
big data problems. Guyet et al. presented the incremental
mining algorithm IncSeq [51], which was based on counting
the minimal occurrences of the sequential patterns over the
course of itemsets stream. However, it cannot be scalable for
big data applications either.

However, most existing studies on episode mining have
focused on mining a single event sequence and are not
applicable to mining complex sequences. In our previous
work [27], we proposed an analytical system named CEAS
(Complex Event Analytical System) to aid people to accelerate
the process of episode pattern mining for complex event
sequences, and designed an EM-CES (Episode Mining over
Complex Event Sequence) for episode pattern mining over
complex event sequences. In CEAS, we took SAX [52] as the
symbolic transformation method and extended the episode
mining algorithms of WINEPI [4] and MINEPI [2] to be
integrated into an analytical system for multivariate complex
event sequences. In another previous work [28], we proposed
a new analytical system named SICEM (Scalable Incremental
Complex Event Mining), that adapted the lambda architecture
[53] designed to process massive data by taking advantage
of both batch-processing and streaming-processing methods.
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In SICEM we developed a series of modules within the four
components and designed three algorithms: batch episode
mining, delta episode mining, and pattern merging. Table 1 is
a comparison table of related methods in terms of pros. and
cons.

FIGURE 2. The conceptual model of proposed analytical framework.

IV. THE PROPOSED FRAMEWORK
Fig. 2 shows the conceptual model of our newly proposed
analytical application framework, denoted as SAAF, based
on complex event episode mining. The input data here are
complex event sequences, and most of them are contin-
uous streaming data from various types of data sources,
for example, digital sensors or intelligent meters. The
raw streaming data collected from data sources must be
appropriately pre-processed before being dispatched to the
batch and speed layer processes. The batch layer has a
mechanism for periodic re-computing, which is a type of re-
mining for all data, to maintain the accuracy of the mining
result.

Between every two time points of full-mining, stream
processing and incremental computing of the speed layer can
help speed up mining efficiency. The merge layer works for
consolidating the results of the batch views and incremental
views to have the most current episode patterns with good
accuracy. The final results of episode patterns or rules are
output in JSON format to be accessed and applicable by other
applications.

In our proposed framework, the source data of com-
plex event sequence are injected through Apache Kafka
[54]. Kafka is one of the most widely adopted tool to
accomplish the tasks of capturing, retaining, and processing
overwhelmingly rapid flow of information. Then, the input
streaming data is kept in the HDFS [55], which is well
integrated inApache Spark environment and designed to store
large datasets reliably to ensure the overall data integrity
of completeness and consistency. As discussed in [20], our
design of Lambda architecture provides advantages in data
consistency and fault tolerance to guarantee the data safety
and information trust.

The limitation of the proposed framework lies in that it is
based on Apache Spark and Apache Streaming environments,
thus it will take some efforts for the administrator to set

TABLE 1. Comparison of related methods.

and tune the run-time environment for complying with the
requirements of Apache Spark and Apache Streaming.
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TABLE 2. Segment set of the complex event sequence.

A. MODULES
In this study, we developed a framework named SAAF
by extending our previous works [27], [28]. Fig. 3 shows
the system architecture of the proposed framework SAAF.
It shows that there are 16 modules in the SAAF, respectively,
eight modules in the pre-processing layer, two modules in the
batch layer, two modules in the speed layer, two modules in
themerge layer, and two independent modules. The following
are the descriptions of these modules.

FIGURE 3. System modules of proposed analytical framework SAAF.

1) MODULES IN PRE-PROCESSING LAYER
a. Cleaning: The main goal of this module is to clean

the noise in the data and convert the data into a
format adequate for further mining processes. Different
devices often generate various data in diverse data
format of different frequencies, so we must preprocess
the new input data properly and then save them as the
transformed database for the next step of the pattern
mining process. As for numeric data, they need to be
transformed to a symbolic presentation, or we cannot
pass the data to the mining phase.

b. Clustering: Event attributes are labeled according to
event groups that user specified. The data input to
this module consists of a table with categorical event
attributes and user-specified event groups. The output
is a recoded table.

c. Merging: Merge the input data and sort the records
in ascending order. The input of this module consists

of several tables with the same attributes, including a
timestamp attribute. The output is a merged table sorted
by its timestamp.

d. Splitting: Splitting the table into several subtables
based on event attributes. Because events in different
groups may be irrelevant in the intended applications,
we must separate the records belong to different event
groups. The input of this module is a table with event
attributes and the output includes several tables, each
representing an event group.

e. Dimension reduction: Reduce the dimensions of the
table. Similar to table splitting, some specific attributes
that are determined irrelevant to the event groups are
removed from the table of a specified event group.
The input of this module is a table that stands for
an event group and the attribute sets that will be
retained for the event group. The output was a reduced
table.

f. Transformation: Discretize numeric variables into
categorical ones using SAX [52]. It first calculates the
average value and the variance value for each numeric
variable, and then divides the scope of the variable into
several lumps with the same probability, according to
the properties of the normal distribution. The input of
this module is a table with numeric variables, and the
output is a transformed table. The parameters for each
numeric variable consist of a number N , which is the
number of output symbols after the transformation, and
a valid range, out of which the values are not considered
and are transformed into other predefined symbols, for
example, outliers.

g. Sequencing: Transform the table into sequence form.
Each record in the input table was transformed into
an itemset. The input of this module is a table with a
timestamp, and the output is the transformed complex
event sequence.

h. Segmentation: Set segmentation flags into a complex
event sequence for episode mining in the batch
and speed layers. The user provides criteria for the
segmentation, for example, 15 min after a specified
event occurs. The segmentation symbols are then
inserted into the input long sequence. The input
of this module is a complex event sequence, and
the output is a sequence with segmentation symbols
inserted.

Because most of the real-world datasets are highly
susceptible to be missing, inconsistent and noisy due to their
heterogeneous origin, we design the above eight modules
to make the raw data ready for the next mining steps.
These modules can be roughly decomposed as the tasks of
data cleaning, reduction, integration, and transformation. All
these preprocessing steps are important in different aspects:
Cleaning has high impact on the correctness on the mining
results, while the other steps dealing with the data reduction,
integration and transformation will affect the efficiency of the
mining execution.

130676 VOLUME 10, 2022



J. C. C. Tseng et al.: Scalable Analytical Framework for Complex Event Episode Mining

2) MODULES IN BATCH LAYER
a. Batch updating: Fetch the data stored in the speed

layer into the batch layer and reset the storage of the
speed layer. This ensures that whenever the batch layer
works, the most updated data are contained within
batch episode mining. The input of this module is the
data storage of the speed layer, which is merged into
the batch layer storage as the output.

b. Batch episode mining: Mine episode patterns in
batches. The input of this module is a complex event
sequence with segmentation symbols stored in batch
layer storage. The output is episode patterns with
support. The parameter of this module is the minimum
support that user specified.

3) MODULES IN MERGE LAYER
a. Pattern merging: Merge the respective episode patterns

from the batch episode mining module and those from
the delta episode mining module, then find the patterns
for the whole. This algorithm is described in the next
section. The input of this module is the patterns with
their support from the batch and speed layers, and the
output is the merged pattern.

b. Rule generation: Rules are generated from merged
patterns. The default rule generation mechanism is
to split a k-pattern (k itemsets in the pattern) into a
(k-1)-prefix pattern and a 1-postfix pattern, for exam-
ple, a pattern <A, D, C > will bring a rule <A,
D>→<C>. Then, calculate the confidence of the rule
using the ratio of the supports of the k-pattern and
the (k-1)-prefix pattern. Rules with low confidence,
that is, confidence less than a user-specified minimum
confidence, will be discarded.

In this module, the input is the merged patterns, and the
output is the rule set presented in JSON format for further
applications. A simple output sample is illustrated in Fig. 4.
A rule is a set of elements, and each rule is composed of four
parts: LHS, RHS, sup and conf, where LHS and RHS represent
the segments of the rule, with support and confidence. For
example, the first rule in Fig. 4 is <A, D> →<C>, whose
support is 0.55 and confidence is 0.75. The second rule in
Fig. 4 is <(B,C),(A,C,E),(D)>→ <A,E>, whose support is
0.60 and confidence is 0.9.

4) DATA PIPELINE CONTROLLER
This is a module to intelligently balance the data flow for
the speed and batch layers of the lambda architecture. as the
experimental result shows, this module leads to a better
processing performance than the previous designs.

In the lambda architecture, there are two independents
but highly cooperative layers, namely, the batch process
layer and incremental process layer. The processes within
the two layers work independently; however, their respective
results are well merged as the final output. The input data
of the proposed system are complex event sequences used
as streaming data. We observed that the system sometimes

FIGURE 4. A simple sample of rules presented in JSON format.

could not work robustly because of data loss during analytical
processing. We learned that data dispatching is also a key
factor in the system performance in terms of efficiency and
effectiveness. To make the proposed system more robust and
have wider use for diverse domain applications, we designed
a data pipeline controller for users to dynamically adjust
the data dispatching mechanism. In this module, users can
control the frequency and scope of data dispatching to batch
and incremental layers, respectively. The major benefit is that
this module can work as an asynchronous buffer to balance
the data input flow and processing capacity, thus avoiding
data loss during the mining process.

5) RULE ACCESS INTERFACE
This is a module to facilitate application developers to easily
obtain the most updated analytic results and help domain
experts retrieve valuable information in a timely manner.

For the above purpose, to allow users to use the analytical
results more easily, we developed a series of application
programming interfaces. Users can acquire frequent episode
patterns by calling the APIs to obtain the results in
JSON format, and then integrate those patterns with their
applications or other information systems.

B. ALGORITHMS
The algorithms of the proposed framework are composed of
three parts as listed in the following:

a. BatchEpisodeMining (batch layer)
b. DeltaEpisodeMining (speed layer)
c. PatternMerging (merge layer).

In batch episode mining, the patterns of the entire data
are found. Because the cost of every time the batch layer
execution is very high, the speed layer should be fast enough
to meet the response time requirement of the users for real-
time queries. Thus, delta-episode mining finds delta patterns
from the new incoming data in the speed layer. Because the
delta patterns cannot represent the behaviors of the total data,
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we merged the patterns from the batch and speed layers to
find the proper pattern set of the patterns of the total data.

We used PrefixSpan [56] as the basic mining approach and
extended it to the MapReduce [57] framework. As discussed
in [58], PrefixSpan outperforms other Aprori-like algorithms
and can be extended to mining sequential patterns with user-
specified constraints for various domain applications. In [59],
Kijsanayothin et al. stated thatMapReduce is a programming
paradigm that enables parallel and distributed execution of
massive data processing on large clusters of machines, and
thus researchers can focus on building efficient algorithms to
enhance performance.

1) BATCH EPISODE MINING
For batch episode mining, we used the PrefixSpan [56]
approach with MapReduce. Both sliding-window based and
minimum-occurrence based approaches cannot only consider
the events appear around the ‘‘key event,’’ which is highlight
by Segmentation module. Before the mining process, the
batch-updating module fetches the data from the speed-layer
storage. This means that all data at this point are collected in
batch layer storage. Then, the speed layer storage is reset to
collect new incoming data. In batch episode mining, we first
compute the support of each 1-item episode using a pair of
Map and Reduce functions, where the count refers to the
number of segments with different segmentation symbols
and is the super-sequence of the counting 1-item episode.
The 1-episode whose support is less than the user-specified
minimum support is discarded as an unpromising episode.
Then, we choose one of the promising episodes as a prefix and
generate its projected complex event sequence, that is, discard
the items located in segments without the prefix, or appear
before the prefix. Then, we can take the projected complex
event sequence as input to recursively repeat the counting step
by MapReduce functions and find the episode patterns with
the assigned prefix. After taking all the 1-item episode pattern
as prefixes, all episode patterns were found.

To check whether an episode is a pattern or not, there
are two approaches to determine the support of an episode:
1) the number of sliding windows that contain the episode
and 2) the number of minimal occurrences. According to
our study, sliding window is basic and more useful, because
for most real-world applications, users would like to know
‘what’s going on’ within a period. Most existing episode
mining algorithms with sliding windows adopt an Apriori-
like approach that generates candidates and then calculates
the support count. This takes too much time and does not fit
the streaming environment and multivariate complex event
sequences.

Because the Aprori-like approach does not meet our
requirement owing to its low efficiency and re-scanning,
we referred to the PrefixSpan approach and extended the
approach to make it work well for episode pattern mining in
complex event sequences. The basic steps are as follows.

1. Get the segment set from the complex event sequence by
sliding window;

2. Set k = 1 and pref =<>;
3. Find the episode patterns that length equal to k from the

segment set;
4. Generate the projected segment set for each pattern

found in the previous step;
5. Set k = k+ 1 and go to step 2 until no more patterns

found.
First, we cropped copies of the complex event sequence

using a sliding window to obtain the set of complex event
segments, that is, the subsequences of the complex event
sequence that are included in the sliding windows. Before
mining the patterns, we initialize the length parameter k as
1 and the prefix episode pref as an empty sequence.
Then, we count the support of each event to find the

patterns by extending pref with each frequent event from the
segment set and generate the projected segment set for each
pattern with length k . Then, the same process is repeated with
k = k+ 1. If no episode patterns are found in this step,
we choose another prefix episode and mine with its projected
segment set.

FIGURE 5. An example of a complex event sequence.

For example, the complex event sequence is illustrated in
Fig. 5, and the slidingwindowwas set to a size of 4 and sliding
distance of 4. Without loss of generality, we assume that the
events appearing within the same timestamp are sorted in
alphabetical order. First, we obtained four segments using
the sliding window, which are listed in Table 2. If minsup is
30%, {<A>, <B>, <C>, <D>, <E>, <F >} are episode
patterns with k = 1. After generating their projected segment
sets, < A > is chosen as the next prefix episode, and its
projected segment set is presented in Table 3.

TABLE 3. Segment set of pref =<A>.

The underlined event is the first end of pref in the segment.
After counting the support, we can find {<B>,<C>,<D>,
<F>, <_C>, <_E>} are frequent episodes in <A>’s
projected segment set, and represent the episode patterns as
{<A, B>, <A, C>, <A, D>, <A, F>, <(A, C)>, <(A,
E) >}. Then, we generate their projected segment sets from
< A >’s projected segment set, choose <A, B > as the new
prefix episode, and proceed with k = 3. After all episode
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patterns with < A > as the first event are found, the process
chooses a new prefix episode from the remaining episodes to
mine the patterns until all patterns are found.

After the frequent episode patterns are mined from the
complex event sequence, rules are generated from the patterns
with at least two complex events to make predictions with
new streaming data. A rule can be presented in the form
of LHS → RHS, which means that a complex event RHS
may occur after a sequence of events LHS. A rule can be
evaluated with its confidence, which is defined as conf(LHS
→ RHS) = sup(<LHS, RHS>) / sup(LHS), where <LHS,
RHS> is a sequence that contains only LHS and RHS and
LHS occurs before RHS. For example, the confidence of rule
<A,E>→ < F > is equal to sup(< A, E >) / sup(< F >).
With a user-specified minimum confidence minconf, we can
only retain the rules whose confidence is no less thanminconf
in the rule pool.

TABLE 4. An illustration of the rule pool.

FIGURE 6. An illustration of the rule tree.

For example, there are three rules in the rule pool listed
in Table 4. The straightforward approach loads these rules
in the order (2, 1, 3), sorted by the keys, and the tree-based
approach builds a rule tree, as shown in Fig. 6. Subsequently,
a new segment < (A, 12), (E , 13), (C , 13)> is obtained.
The straightforward approach finds the first matched rule,
which is rule No. 2, and predicts < F >. The tree-based
approach reaches the end nodes of all three rules and predicts
< B > after voting.

2) DELTA EPISODE MINING
For Delta episode mining, the mining process is similar
to batch episode mining. First, the speed layer storage,
which collects the new incoming data, that is, the data never
been mined by batch episode mining, is reset to the initial
state (empty or a partial segment) based on the criteria
defined in the segmentation module. Whenever new data
come from the pre-processed data stream, they are fetched by
the speed updating module and appended to the speed layer
storage for Delta episode mining. In delta episode mining,

a PrefixSpan-based approach with MapReduce for mining
delta patterns was used. Basically, the main flow of the
algorithm is like batch episode mining, but whenever it finds
an episode, whose support is less than the user-specified
minimum support, it has to check whether the episode is an
episode pattern in batch episode mining. If so, the episode
is still considered a promising pattern. After delta episode
mining is performed, delta episode patterns are found. The
pseudocode of DeltaEpisodeMining is shown in Fig. 7.

FIGURE 7. Pseudo Code of DeltaEpisodeMining.

3) EPISODE MERGING
Once delta episode mining is performed, pattern merging is
initialized. It quickly matches the patterns found in batch
episode mining and delta episode mining. If a pattern appears
in both batch and delta-episode mining, its support can be
computed easily using a weighted average. The weights of
the supports from the batch and delta layers are determined
by the data size of the storage of the batch and speed layers.

If the pattern appears in Delta episode mining only, the
support of the pattern in batch episode mining will be
considered as 0 to compute the weighted average because,
in most cases, the data size and weight of support in the batch
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layer are larger, and it is costly and not necessary to gather the
missing information of the supports in batch episode mining.
The error caused by this assumption is minor when the data
size of the batch layer storage is much larger than that of the
speed layer storage. No episode patterns can appear in batch
episode mining in the batch layer but not in Delta episode
mining in the speed layer, because patterns appearing in the
batch layer are considered promising patterns in the speed
layer, even if their support in Delta episode mining is low.

After matching, the patterns with re-computed supports are
again compared with the user-specified minimum support to
find the final patterns in pattern merging.

C. USER INTERFACE
In addition to the efficiency and effectiveness of finding
frequent episodes over complex event sequences, another
primary goal of this system is to facilitate the episode mining
process for people to use. In our previous work [27], [28],
there was not a good user interface, so it was not easy for
domain experts to make good use of the system. In this work,
we hope to enhance this part to make it more user-friendly,
so we designed a user interface to make it easier to solve real-
world problems.

FIGURE 8. An screenshot of user interface.

Fig. 8 shows the user interface of the proposed application
framework, domain experts or application developers can
specify the complex event sequences to be analyzed and
decide how to do the pre-processing jobs via the interface,
instead of using hard-coding. After configuring the pre-
processing jobs, the system will follow the configuration to
process the data and then start the analytical mining process
in the batch and the incremental perspective respectively.

V. EXPERIMENTAL EVALUATION
Since there is few similar study focused on developing a
framework of complex event episode mining for various
domain applications, as we did in this work, we consider
three most relevant frameworks, namely EM-CES [27],

TABLE 5. Experimental environment.

SCIEM [28] and TEM-SES [1], for comparative evaluations
with our proposed framework SAAF. To evaluate the per-
formance of the tested frameworks, we used seven different
datasets, namely temporal streaming data and data composed
of multiple fields as typical complex event sequences,
to conduct experiments as illustrated in this section.

The experimental environment is composed of one master
and 10 slaves. Cloudera CDH 6.3.4 with Apache Spark 2.4 is
utilized to facilitate the cluster management job. The detailed
hardware information of the cluster environment is presented
in Table 5.

A. DATASETS AND EPISODE MINING SCENARIOS
The framework we proposed is mainly contributed to find
useful patterns in solving real-life problems. The following
three dataset were provided by different domain users.
We help them find out interesting and useful patterns, and
they take those patterns into their domain application to find
out the valuable information.

The first dataset, denoted as DS1a, contains the electric
power consumption data of a convenience store. The dataset
was collected from 29 intelligent meters within 20 weeks,
and the data collecting frequency was one record per
minute. The total amount of records was almost 6.4 million,
and each record consisted of six attributes: voltage(V),
current(A), power(P), power factor(PF), kilowatt-hour(kWh),
and recording_time. The problem we solved is how to find
the episode patterns of excessive electricity usage. Users
can easily find the episode patterns that led to the excessive
electricity usage via this framework, and they take those
patterns into their electricity monitoring application platform
to help them not to use to more electricity than the contract
allowed.

The second dataset, denoted as DS2a, was an exercise
dataset that collected from wearable devices, including heart
rate and GPS data, which have been collected via wearable
devices over the years. The total amount of records was
more than 13 billion. We only used those records with
higher frequency and better data quality, so the current
analysis of this dataset is approximately 600 million records.
This dataset was provided by a wearable device that
hoped to do healthcare business. The episode patterns were
used in analyzing the relationship between sport behavior
and health status. Our framework was incorporated with
their healthcare platform and then provide information to
their users.
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The third dataset, denoted as DS3, is a type of streaming
data from manufacturing devices. This dataset was collected
in a fossil-fuel power station, and data collecting frequency
was a record per second. The total amount of records was
almost 53million, and each record consisted of 384 attributes.
This was a special application, and the domain user hoped to
mine the episode patterns of events which are strongly related
to the energy conversion performance.

We also used two benchmark datasets obtained from the
UCI machine repository [60] for the evaluation. The first
benchmark dataset, denoted as DS4, contains the recordings
of 16 chemical sensors exposed to two dynamic gas mixtures
at varying concentrations. For each mixture, signals were
acquired continuously for 12 hours.

The second benchmark dataset, denoted as DS5, was
recorded with two wearable devices: a chest-worn device
(RespiBAN) and a wrist-worn device (Empatica E4). The
RespiBAN device provides the following sensor data:
electrocardiogram (ECG), electrodermal activity (EDA),
electromyogram (EMG), respiration, body temperature, and
three-axis acceleration.

Within the category ‘‘energy-consumption’’ and ‘‘sports
and healthcare’’, other than the real-world dataset DS1 and
DS3, we also found another two benchmark dataset from
the UCI machine repository [60] for further evaluations.
The dataset, denoted as DS1b, consists of measurements of
electric power consumption in one household with a one-
minute sampling rate over a period of almost 4 years. The
second dataset, denoted as DS3b, comprises motion sensor
data of 19 daily and sports activities each performed by
8 subjects in their own style for 5 minutes. Five Xsens MTx
units are used on the torso, arms, and legs.

We used three datasets provided by domain users and four
widely-used benchmark datasets to evaluate the framework in
terms of three aspects: accuracy, efficiency, and scalability.
Table 6 provides a brief description of the seven datasets,
and the experimental results are presented in the following
sections.

B. EXPERIMENT ON THE NUMBER OF EPISODES
AND ACCURACY
In this experiment, we first evaluated the number of episodes
mined by the proposed framework SAAF and compared it
with TEM-SES, SCIEM and EM-CES, which are taken as
the baseline. The experiment was conducted under the same
minconf of 0.8 and varied minimum support thresholds. The
number of episodes mined by the four approaches is listed in
Table 7. In Fig. 9, we can more easily see that the number of
episodes found by different frameworks is very close.

The EM-CES is a basic full-mining framework that mines
all qualified episodes that meet the criteria of minsup
thresholds. Therefore, we take it as the baseline to validate
the other two frameworks. In Table 8, we use the EM-CES
framework as the baseline with 100% accuracy, and it shows
the accuracy matrix among the seven different datasets under
various minimum support thresholds. We found that the

TABLE 6. The experimental dataset and description of the episodes.

proposed SAAF performed better than the TEM-SES and
SCIEM framework and was very close to the baseline.

C. EXPERIMENT ON THE EXECUTION TIME
In the second experiment, we evaluated the execution time of
the proposed framework SAAF for mining frequent episodes
under various minimum support thresholds. We provided a
comparison with TEM-SES and the previous frameworks,
EM-CES and SCIEM. The execution times for the four frame-
works are listed in Table 9. In Fig. 10, the proposed SAAF has
a better performance than the other three frameworks. The
results of the first experiment, shown in Table 6, show that
SAAF can consider both execution efficiency and accuracy
simultaneously, as we expected.

D. EXPERIMENT ON SCALABILITY
In the third experiment, we conducted the experiment with
different numbers of slaves (Apache Spark client) of 1, 2,
4, 8 and 10 to validate the scalability of the frameworks
we proposed. The parameter minsup was 0.1 and minconf
was 0.8.
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TABLE 7. Number of episodes mined by four different frameworks
among experimental datasets.

FIGURE 9. Chart of the episode number found by four different
frameworks among seven datasets.

Table 10 shows that the execution time decreased when
more slaves were involved in the mining process. We can see

TABLE 8. Accuracy of four different frameworks among experimental
datasets.

TABLE 9. Execution time of four different frameworks among
experimental datasets.

that the ratio of execution time improvement of dataset DS1a
is not as good as that in DS2a and DS3. This may be because
the data size of DS1a is smaller than that of the other two
datasets, so when the number of slaves increases from four to
ten, the improvement ratio is not as good as the others, such
as increasing slaves from two to four.

Fig. 11 shows the scalability of the three frameworks,
which comes from the design and development of these
frameworks based on the development framework of Apache
Spark and Apache Spark Streaming. Although there are only
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FIGURE 10. Chart of the execution time of four different frameworks
among seven datasets.

TABLE 10. Execution time of different number of slaves.

ten slaves in our experiment, this shows that the proposed
framework SAAF can work well with more slaves to achieve
better scalability.

E. EXPERIMENT ON MODULE DATA PIPELINE
CONTROLLER
We designed a module named data pipeline controller for
users to dynamically adjust the data dispatching mechanism.
In this module, users can control the frequency and scope of
data dispatching to batch and incremental layers, respectively.
The major benefit is that this module can work as an
asynchronous buffer to balance the data input flow and
processing capacity, thus avoiding data loss during themining
process.

FIGURE 11. Chart of the execution time of different slave number of
three different frameworks.

TABLE 11. Accuracy of different usage of data pipeline controller.

TABLE 12. Execution time of different usage of data pipeline controller.

To evaluate the performance of the pipeline controller,
we conducted an experiment using the dataset DS2a, DS3,
DS4 with different usage percentage, from 0 ∼ 100%.
Table 11 and 12 shows that the accuracy increases, and the
execution time decreases when data pipeline controller was
utilized more in the mining process. This result also shows
that this module can help make the proposed framework more
robust and efficient as we expected.

VI. CONCLUSION AND FUTURE WORKS
In this work, we have proposed a scalable analytical
framework called SAAF for complex event episode mining
in various domain applications. We have designed efficient
algorithms consisting of three modules, namely BatchEp-
isodeMining, DeltaEpisodeMining and PatternMerging in
correspondence with batch layer, speed layer and merge
layer respectively. As far as we know, this is the first
work that focuses on developing a scalable and easy-to-
use framework for solving real-world problems in various
domains. We extend the previous works, EM-CES and
SCIEM, by developing new and important modules in SAAF,
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including the data pipeline controller and the rule access
interface.

We adopted the Lambda architecture to ensure the data
safety and information trust, and used Apache Spark and
Apache Spark Streaming as the development framework to
boost the scalability and efficiency. To evaluate the accuracy
and efficiency of SAAF framework, we used three real-world
datasets from different domains and four benchmark datatsets
to conduct the experiments. The results demonstrate that
SAAF significantly outperforms other frameworks. The final
experiment also shows that the proposed framework SAAF
has excellent scalability in processing huge complex event
episode mining jobs.

There exist some directions that we could explore in the
future. First, we plan to develop a set of APIs for users
to perform episode mining jobs with easy programming.
Second, some optimizations can be conducted further to
enhance the performance of the proposed modules.
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