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ABSTRACT Lion swarm optimization (LSO) inspired by the natural division of labor among lion king,
lionesses and lion cubs in a lion group, i.e., lion king guarding, lionesses hunting and lion cubs following, is a
relatively novel swarm intelligent optimization technique. Due to its remarkable performance, the canonical
LSO has been extensively researched. However, how to balance contradictions between the exploration and
the exploitation and alleviate the premature convergence are two critical concerns that need to be dealt with
in the LSO study. To address these two drawbacks, enhance the optimization performance, and broaden its
application domain, an improved lion swarm optimization algorithm with chaotic mutation strategy and a
boundary mutation strategy (CBLSO) is proposed in this paper. In the proposed algorithm, a chaotic mutation
strategy based on chaotic cubic mapping is designed to enhance the exploration ability of the algorithm, while
the boundary mutation strategy based on the concept of multilevel parallel is adopted to manage boundary
constraint violations, which is beneficial for improving the exploitation ability of the algorithm. The proposed
CBLSO is evaluated on 56 classic test functions and 30 CEC2014 benchmark functions, and is compared
with quite a few state-of-the-art algorithms regarding often-used performance metrics. The experimental
results demonstrate the superior performance of the embedded strategies on balancing the exploration and
the exploitation. Furthermore, the proposed CBLSO is applied to the optimal dispatch problem of cascade
hydropower stations based on a novel constraints handling method designed in this paper to validate its good
practicability and performance. The experimental results of a case study on the optimal dispatch problem
of China’s Wujiang cascade hydropower stations indicate that the proposed CBLSO can produce better and
more reliable optimal results than the canonical LSO and other comparison algorithms with competitive
speed. Thus, we can conclude that the proposed CBLSO is a competitive and effective alterative tool to
solve complex numerical optimization problems and real-world optimization with complicated constraints.

INDEX TERMS Meta-heuristic optimization algorithm, lion swarm optimization (LSO) algorithm, swarm
intelligence, optimal dispatch, cascade hydropower stations.

I. INTRODUCTION

Global optimization problems (GOPs) that concern a large
number of decision variables and complex constraints exist
extensively in various fields of science [1], [2], engineering
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design [3], [4], business and economics [5], which cannot
be solved well within adequate time or specific accuracy by
traditional deterministic methods. In order to address such
optimization problems, a lot of computational intelligence
methods, especially the meta-heuristic optimization algo-
rithms that inspired natural organisms, social behaviors, bio-
logical behaviors and physical phenomena have emerged
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FIGURE 1. Classification of meta-heuristic algorithms.

in the past few decades. Roughly, the main branch of
meta-heuristic algorithms can be broadly classified into
six main categories: stochastic-based algorithms, evolution-
based algorithms, swarm-based algorithms, physics-based
algorithms, human-based algorithms, and ecosystem-based
algorithms [6], [7], [8], [9], [10], [11], [12], [13], [14], which
are shown in Fig. 1.

Stochastic-based algorithms use randomness to perform
non-deterministic behaviors, usually different from the
purely deterministic procedures. The most famous stochastic-
based algorithms are Adaptive Random Search (ARS) [15],
Random Search (RS) [16], Tabu Search (TS) [17], Hill
Climbing (HC) [18], Local Search (LS) [19], and Guided
Search (GLS) [19]. Evolution-based algorithms imitate the
evolutionary behaviors, i.e., reproduction, mutation, recom-
bination and selection of creatures found in nature. The search
process in these algorithms usually starts with a randomly
generated population, which further evolves over succes-
sive generations. For evolution-based algorithms, the main
strength point is the best individuals are always combined
together to form the new generation since it can promote the
improvement of population over the course of iterations. Evo-
lution Strategy (ES) [20], [21], Evolutionary Programming
(EP) [22], Genetic Algorithm (GA) [23], Genetic Program-
ming (GP) [24], Evolutionary Algorithm (EA) [25], and Dif-
ferential Evolution (DE) [26], [27] can be considered as the
most standard form of evolution-based algorithms. Swarm-
based algorithms are swarm intelligence-based techniques,
which simulate the intelligent social and individual behaviors
of swarms, animals, herds, teams, or any group of creatures.
Ant Colony Optimization (ACO) [28], Particle Swarm Opti-
mization (PSO) [29], [30], Artificial Bee Colony (ABC) [31],
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Cuckoo Search (CS) [32], and Bat Algorithm (BA) [33] can
be described as representative algorithms in Swarm-based
algorithms. Some of the recent Swarm-based algorithms are
Grey Wolf Optimizer (GWO) [34], Lion Swarm Optimization
(LSO) [35], Squirrel Search Algorithm (SSA) [6], and Harris
Hawks Optimization (HHO) [36]. Physics-based algorithms
are motivated by the basic physical rules that exist in universe.
The inspiring physical systems range from metallurgy, music,
the interplay between culture and evolution, science (chem-
istry, physics, mathematics), and complex dynamic systems.
Generally, a physics-based algorithm is a combination of
local search techniques and global search techniques. Some
of the prevailing algorithms of this category are Simulated
Annealing (SA) [37], [38], Big Bang-Big Crunch (BB-BC)
[39], Gravitational Search Algorithm (GSA) [40], and Atom
Search Optimization (ASO) [41], [42]. Human-based algo-
rithms are inspired by the human behaviors, while ecosystem-
based algorithms are mainly based on the natural ecosystem.
The most state-of-the-art Human-based algorithms are Har-
mony Search (HS) [43], Imperialist Competitive Algorithm
(ICA) [44], League Championship Algorithm (LCA) [45]
and Teaching-Learning-Based Optimization (TLBO) [46],
[47], while the most well-known ecosystem-based algorithms
are Invasive Weed Optimization IWO) [48], Biogeography-
Based Optimization (BBO) [49], and Multi-species optimizer
based on PSO (PS20) [50].

Apart from the aforementioned algorithms, various
improved versions based on the basic versions of existing
meta-heuristic optimization algorithms are also proposed and
have been successfully applied to almost all areas of oper-
ational research, data mining, neural networks, image and
video processing, machine intelligence, and many other fields
of knowledge. Thousands of research papers and dozens of
books have been published [51], [52].

In spite of the rapid development of meta-heuristic opti-
mization algorithms, to learn from the nature for developing
a better algorithm to solve new and more complex GOPs is
still in progress and new meta-heuristic optimization algo-
rithms are still emerging, such as Marine Predators Algorithm
(MPA) [53], Slime Mould Algorithm (SMA) [54], Golden
Eagle Optimizer (GEO) [55], Artificial Hummingbird Algo-
rithm (AHA) [56], and so on. In addition, according to the
“no free lunch” (NFL) theory [57], there is no single meta-
heuristic optimization algorithms best suited for dealing with
all GOPs. This means that a particular optimization method
may show competitive outcomes on a set of optimization
problems, but may not provide promising results on the other
set of optimization problems. The NFL theory, certainly,
forms the basis for the researchers to improve the existing
algorithms or design new and powerful algorithms for better
optimization now and then.

Lion swarm optimization (LSO) proposed by
Liuetal. [35], is a new entrant in the domain of meta-heuristic
algorithms based on the natural division of labor among lion
king, lionesses and lion cubs in a lion group, i.e., lion king
guarding, lionesses hunting and lion cubs following. Due to
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advantages, e.g., simple structure, few control parameter, ease
of implementation, good robustness, and fast convergence
speed, LSO has been widely used in solving various real-
world optimization problems and many variants of LSO are
also developed. Some excellent works have been reported:
Yang and Wei [58] proposed an improved LSO algorithm
for optimizing the long short-term memory recurrent neural
network problem. In this algorithm, the chaos theory was
introduced for accelerating the global convergence speed
of the algorithm. Zhang and Jiang [59] presented a par-
allel discrete lion swarm optimization (PDSLO) algorithm
for solving the traveling salesman problem (TSP). In the
PDLSO, discrete coding and order crossover operators were
firstly used to form a discrete lion swarm optimization
(DLSO). And then, the complete 2-opt (C2-opt) algorithm
was employed to enhance the local search ability of the
PDLSO algorithm. In addition, the PDLSO has multiple
populations and each sub-population independently ran the
DLSO algorithm in parallel as well as transferred information
among them by using the ring topology. Qiao et al. [60]
proposed a novel hybrid lion swarm optimization algorithm to
optimize the traditional least squares support vector machine
model by combing lion swarm optimization algorithm and
genetic algorithm. Guo and Jiang [61] presented an improved
lion swarm optimization algorithm for solving the job-shop
scheduling problem. In this algorithm, chaos search and
gaussian perturbation strategy were added to the position
of lions in the past dynasties, which could improve the
optimization efficiency of the algorithm in the optimization
process. Although these researches demonstrate that LSO has
greater application potential, LSO stills has some noticeable
deficiencies in solving some GOPs. Specially, when tackling
the complex GOPs that have a high eccentric ellipse, a narrow
curving valley, or GOPs characterized with multimodality,
high-dimension and the existence of several local minima
and many global minima, like most nature-inspired meta-
heuristic optimization algorithms, LSO fails to effectively
find near-optimal solutions. This is mainly because of their
stochastic nature, which may erect barriers for them to tackle
some types of complex GOPs.

To address this weakness, chaotic mutation strategy based
on chaotic cubic mapping and boundary mutation strategy
based on the concept of multilevel parallel maybe two alterna-
tive technologies as they have been studied experimentally in
multi-objective PSO for handling multi-objective optimiza-
tion problems (MOPs) [62] and PSO for handling GOPs [63],
respectively, and proven to be two effective and efficient tech-
nologies to improve the performance of PSO when tackling
various categories of GOPs. Hence, it is reasonable to believe
that the chaotic mutation strategy and the boundary mutation
strategy can be introduced into LSO to address its premature
convergence problem and improve the robustness as well as
population diversity when tackling different types of GOPs.

In this paper, a novel LSO algorithm with a chaotic muta-
tion strategy and a boundary mutation strategy (CBLSO) is
proposed for GOPs and optimal dispatch problem of cascade
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hydropower stations. Compared with the standard LSO and
other meta-heuristic optimization algorithms, the main fea-
tures of our CBLSO algorithm can be stated as follows:

(a) The CBLSO can achieve good performance with vari-
ous updating strategies of the population which inherit from
the standard LSO. Broadly, adaptability and choice of the
fittest are two distinct features of nature that imitated by
all meta-heuristic optimization algorithms. The population is
recursively updated at each iteration according to the suitable
updating mechanism. As previously stated, there are many
meta-heuristic optimization algorithms inspired by animal
social behaviors. Like PSO, ACO, ABC, BA, GWO, and SSA
et al, imitating animal foraging behavior is also the solution
updating strategy of the CBLSO. However, there are some
evident differences between CBLSO and other algorithms.
Similar to PSO and BA, a new direction for movement of
lion individual is generated by considering the local best posi-
tion (pbest) and the global best position (gbest) obtained by
lion individual and lion group so far, while other algorithms
(ACO, ABC, GWO, and SSA) do not adopt. Besides, PSO
and BA update the population by using a single strategy,
while CBLSO utilizes different strategies for different lion
group. Thus, the position updating mechanism of CBLSO
differs from PSO and BA. Although CBLSO, ABC, GWO,
and SSA work on the effective division of labor, i.e., the
whole population is divided into various regions. Different
from ABC and GWO, CBLSO initially sorts the whole popu-
lation in ascending order of fitness values and then divides it,
which is controlled by the user. Although the dividing mode
of CBLSO and SSA looks quite similar, they technically
present some differences. In CBLSO, the highest hierarchy
is the lion king and the number of lion king is only one,
while the number of the highest hierarchy in SSA is the
least ones. Besides, in CBLSO, for a certain hierarchy (lion
cubs), the updating strategy is diversified, while the updating
strategy used by SSA for a certain hierarchy is single. Hence,
as discussed previously, we are confident that our CBLSO
will be a good competitor for existing nature-inspired meta-
heuristic optimization algorithms.

(b) The introduced chaotic mutation strategy. In the stan-
dard LSO, both lionesses and lion cubs use gbest information
possessed by the lion king to update the hunting behavior,
directly or indirectly. Through this mechanism, the whole
lion group may be easily trapped into a poor zone once
the lion king is located around a local optimum. However,
a chaotic mutation strategy based on chaotic cubic mapping
is designed herein could improve the exploration ability of the
CBLSO, since the regions where the lion king is located will
be explored many times by lionesses and lion cubs. Hence, the
whole lion group may be pulled toward the sparsest region.
Its execution is determined by a pre-defined threshold, i.e.,
when the lion king’s fitness value does not change or changes
little in three consecutive generations, the chaotic mutation
strategy is executed. The advantages of this lie in two aspects:
(1) exploring more near-optimal solutions and (2) retaining
the balance of the exploration ability and the exploitation
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ability of the algorithm. The efficiency of the chaotic muta-
tion strategy is experimentally tested in Section 4.2.

(c) The introduced boundary mutation strategy. Different
from the common boundary constraint approach used in the
standard LSO, a boundary mutation strategy based on the
concept of multilevel parallel is introduced in CBLSO for
managing boundary constraint violations, which is beneficial
for the maintaining of the population diversity and improving
the global search ability. The advantage of the boundary
mutation strategy is experimentally invested in Section 4.2.

Based on the above three main features, we are confident
that the CBLSO will be effective and competitive. To eval-
uate the performance of the proposed algorithm, a com-
prehensive experiment study is conducted to compare the
CBLSO with various state-of-the-art optimization algorithms
on fifty-six classic test functions, encompassing Uni-modal,
Multi-modal, Separable, Non-separable and Multi-dimension
problems, and thirty 30-dimensional benchmark functions
from the CEC 2014 test suite. The experiment results indicate
that the CBLSO can provide better global optimal solutions
with high quality. Besides, the results of non-parametric sta-
tistical tests demonstrate that the CBLSO performs signifi-
cantly better than or at least comparable to the well-known
algorithms and can be taken as a promising alternative opti-
mization tool to solve GOPs. Finally, to validate the great
potential of the CBLSO for real-world application, based on
the novel constraints handling method designed in this paper,
the CBLSO is applied to solve the optimal dispatch problem
of cascade hydropower stations in Section 6. The obtained
results show that the proposed algorithm can produce com-
petitive results when compared with the standard LSO and
other comparison algorithms.

The remainder of this paper is organized as follows.
In Section 2, the mathematical model of the canonical LSO is
presented. Details of the CBLSO are described in Section 3.
In Section 4, the effects of the chaotic mutation strategy
and the boundary mutation strategy are first well studied
through a comparative experiment, and then a series of com-
parative experiments between the CBLSO and other state-
of-the-art optimization algorithms, comparative statistical
analysis of simulation results on 56 test problems are pre-
sented and discussed. Thereafter, In Section 5, the CBLSO is
further compared with other well-known optimizers on
56 classic functions as well as other competitive opti-
mization algorithms on the benchmark functions from the
CEC 2014 test suite. Section 6 provides the application on
real-world optimization problems. Finally, in Section 7, dis-
cussions, conclusions and some future works are given. All
classic test functions are listed in the Appendix.

Il. CANONICAL LSO

Lion swarm optimization (LSO) algorithm is a Swarm-based
optimization algorithm inspired by the hunting behavior of
the lion group. In LSO, just as in real life, there are three kinds
of lions: lion king, lionesses and lion cubs. Starting from an
initial position of the search space to be optimized, the lion
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with the best fitness value is assumed to be the lion king.
Then, a certain proportion of lions are selected as hunting
lions (usually are lionesses) and they hunt together with other
lionesses of the group. Once a prey found is better than the
prey currently occupied by the lion king, the position of the
prey will be possessed by the lion king. The lion cubs follow
the lionesses to learn how to hunt or forage for food near the
lion king. After reaching sexual maturity and they are not
stronger than the lion king, the lion cubs will be driven out
of the group and become nomadic lions. In order to survive,
the nomadic lions will try to approach the best position in his
or her memory. According to the natural division of labor and
cooperate with each other, the lions of the group repeatedly
search for the optimal of the objective function.

A. RANDOM INITIALIZATION

In LSO, each lion position represents a potential solution to
the considered problem, and the quality of prey corresponds
to the quality (fitness) of the associated solution. Specifically,
for a D-dimensional GOP, an initial population P called lion
group containing » solutions (lion positions) will be randomly
generated in search space in the beginning. The position of the
ith lion will be generated through the following equation:

g = Sing + 1300 0. 1) (e~ o) (D)

where x; ; represents the jth dimension of the ith lion; i =
1,2,--- ,m;j=1,2,---,Dandrand (0, 1) is arandom num-
ber that distributed uniformly in the range [0,1]. x,,; and
Xmax,j are the lower and upper bounds of the jth dimension,
respectively. Up to now, the initialization of the population is
completed.

Thereafter, the number of adult lions, i.e., lion king and
lioness, nLeader(2 < nLeader < n/2) will be defined
through the following equation:

nLeader = [n - B 2)

where B is a random number in the range [0,1] that is
acknowledged as the proportion factor of the adult lions
(including lion king and lionesses). In LSO, the proportion of
the adult lions in a group has an important effect on the final
optimization result. The bigger the proportion of the adult
lions, the fewer the number of the lion cubs. However, the
updating pattern of the lion cubs’ position is various, which
may increase the otherness of the group and improve the
exploration of the algorithm. To balance the exploitation and
the exploration of LSO, the proportion factor of adult lions
B is considered to be less than 0.5 for all cases in this paper
[35]. Here, B is set to be 0.2 suggested by literature [64].

The number of lion cubs is n — nLeader .

After the population initialization, the fitness value of
position for each lion is calculated by putting the values
of decision variable (solution vector) into the user-defined
fitness functions. The fitness value of each lion’s position
represents the quality of prey searched by it, i.e., optimal
prey (possessed by lion king), normal prey (possessed by
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lioness) and little prey (possessed by lion cubs) and hence
their probability of survival also.

B. SORTING AND DECLARATION

After calculating the fitness values of each lion’s position,
we sort the fitness values in ascending order. The lion with
minimal fitness value is considered to be the lion king.
The next best nLeader — 1 lions are declared as lionesses.
The remaining lions are supposed to be lion cubs. Next, all the
lions can conduct hunting behavior by adopting the position
updating mechanism.

C. HUNTING BEHAVIORS OF LIONS

As mentioned previously, the LSO works on the effective
division of the natural labor, i.e., the whole group is divided
into various regions (including lion king, lioness and lion
cubs). In each generation, it is assumed that different lions
conduct different hunting behaviors to update their position.
The dynamic hunting behavior can be mathematically mod-
eled as follows:

Lion king: To ensure the priority for prey than the other
lions, the lion king may move in the range of the best food,
i.e., the position that has the minimal fitness value. In this
case, the new position of lion king can be obtained as follows:

xi (1 + 1) = gbest (t) - (1 + y - [|pbest; (1) — gbest (1)]])
3

where y is normally distributed random number in the range
[0,1], ¢ is the current iteration value, pbest; (t) is the histor-
ically best position of the ith lion at the current iteration,
gbest (t) is the global best position of the lion group at the
current iteration.

Lionesses: Recognizing the position of prey, encircling
them, and then attacking towards the prey is the usually hunt-
ing behavior of lioness. When lioness conducts the hunting
behavior, they usually cooperate with another lioness. In this
case, the new position of lionesses can be obtained as follows:

pbest; (1) —|2—pbestc (1) _ (1 top )/) @
where pbest,. () is the historically best position of the coop-
eration lioness at the current iteration, oy is moving range
disturbance factor of lionesses, defined as follows:

X+ 1) =

;A\ 10
oy = step - exp (—30 . —) (@)

max
where 4, 18 the maximum iteration value, step denotes the
maximal step value of the lioness’ activity range computed as
follows:

step = a - (Xmax — Xmin) (6)

where X4 and Xx,;;;, are maximal mean value and minimal
mean value of each dimension, respectively.

Lion cubs: As discussed above, three situations may occur
during the dynamic hunting of the lion cubs. Note that the
lioness followed by lion cubs is randomly selected from the
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lioness group, which means that the followed relationship
between the lioness and the lion cubs is randomly established.
In this case, the new position of lion cubs can be obtained as
follows:

xi(t+1)
best (t) + pbest; (t) 1
& 2[’ l (I4oc-y), QSg
besty, (t) + pbest; (t) 1 2
= | Zp — (I4acy), 3<9<3
best (t best; (t 2
ges()-gpes,().(1+ac.y)’ 55451
@)

where ¢ is a random number in the range [0,1], pbest,, (t)
is the historically best position followed by lion cubs at the
current iteration, o, is the moving range disturbance factor of
lion cubs, gbest (1) is the position that ith lion cub is driven
out of the scope of hunting. At the position that far from lion
king, it is an elite opposition-based learning (OBL) strategy
that has been verified to be an effective method for solving the
optimization problems [65], [66]. The introduction of OBL
can enlarge the search space of nomadic lion cubs and is
helpful to improve the global exploration of the LSO.
o, is defined as follows:

Imax — 1

o = step - ; (8)
max

where step denotes the maximal step value of lion cubs’
activity range computed by Eq. (6):
gbest (t) is defined as follows:

gbest (1) = Xpax + Xmin — gbest (t) )

Ill. PROPOSED CBLSO ALGORITHM

In meta-heuristic optimization algorithms, generally, the opti-
mization process may be divided into two conflicting mile-
stones: the exploration and the exploitation, where enhancing
one may result in degrading the other. In the early phase
of the optimization process, the candidate solutions should
be encouraged to explore the whole search space instead
of clustering around the local optima, which is beneficial
for improving the population diversity and causing a high
exploration of the whole search space. In the later phase, the
candidate solutions have to exploit the information gathered
to converge towards the global optima, which is aimed at
enhancing the quality of the solutions. Although there are
various improvement methods to balance the two milestones
and promote local optima avoidance, the works of literatures
[62], [63] indicate that the chaotic mutation strategy and the
boundary mutation strategy are better in tackling this issue.
In the following subsections, the chaotic mutation strategy
and the boundary mutation strategy are firstly described in
detail, respectively. Then the CBLSO algorithm is proposed.

A. CHAOTIC MUTATION STRATEGY
Recently, following various realm of humans, a large number
of chaotic maps developed by researchers, physicians and
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mathematicians are available in the optimization field. Out
of all these available chaotic maps, the bulk of them has been
applied widely in optimization algorithms for enhancing the
local search ability of the algorithms and avoiding premature
convergence effectively [67], [68], [69], [70]. To avoid the
degeneration of the candidate solutions caused by an irreg-
ular random variation, a chaotic mutation strategy based on
chaotic cubic mapping with exquisite internal structure is
introduced to the LSO as the local exploitation, defined as
follows [67], [68]:

XM =xi@)-1+n-z) (10)

where x7°¥ (t) and x; (¢) are the state of the ith candidate
solutions before and after mutation at the current iteration,
respectively; n denotes the control factor of mutation, defined
as follows:

n=1-—— (11)

It should be noted that the value of 1 significantly affects the
effectiveness of the chaotic mutation strategy. From Eq. (11),
we can conclude that the value of 1 constructs an arithmetic
progression with 1 as the first term, O as the last term, and
—1/ (tmax — 1) as the tolerance. n = 1 represents chaotic
mutation plays the most vital role, while = 0 represents
chaotic mutation plays the least vital role.
The chaotic sequences of z; are calculated as follows:

z1 = 1—=2-rand (1, D) (12)
i1 =42 —4-z,—-1<z<1 (13)

B. BOUNDARY MUTATION STRATEGY

Each GOP has various boundary constraints that limit the
search space. When an individual moves out of the search
space, an approach to managing boundary constraint viola-
tions will be employed. However, different boundary con-
straint approaches on the performance of the algorithm are
different, which have been validated in works of literatures
[71], [72]. When individuals move outside the predefined
bounds of the multi-dimensional asymmetric search space,
using the unified boundary constraint approaches to manage
boundary constraint violations may lead to new boundary
constraint violations or weak the search ability of individuals.
To solve this problem, based on the idea of a hierarchical
GA, introduce the concept of the multilevel parallel, set the
asymmetrical search spaces and the layer’s parameters sepa-
rately, and operate them in parallel style. If an individual’s
position violates the asymmetrical boundary for a specific
dimension, it conducts mutation near the respond bound-
ary and maintains the individual among the effective search
space. Mathematically, the boundary mutation strategy is
defined as:

if Xij > Xmax.js

if Xij < Xmin,j»

Xij = Xmax,j — ¢ -1and (0, 1) (14)
Xij = Xminj +c-rand (0, 1)  (15)
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where  X;x = [xmax,l, Xmax,2, " " » xmax,D] is the
upper bounds of decision variables, while x; =
[xm,-nJ,xm,-,,,z,n- ,xm,-n,D] is the lower bounds of deci-
sion variables, respectively. ¢ is the parameter in the range
[1072,1074].

C. FRAMEWORK OF CBLSO

The aforementioned subsections have described the main
procedures of the LSO, the chaotic mutation strategy, and
the boundary mutation strategy in detail, which compose
the main components of the CBLSO. The main steps of the
CBLSO are summarized as follows:

In the initialization stage, a population with n lions are
randomly generated by using Eq. (1). Then, set the numbers
of the lion king, the lionesses, and the lion cubs. After eval-
uating the fitness value of each lion’s position, the sorting,
declaration, and random selection procedures are performed
to sort the positions of lions in ascending order based on
their fitness value and declare the lion king, the lionesses
and the lion cubs. Then, the lionesses’ pbest. and pbest,, as
the cooperation partner and the mother lioness followed by
lion cub are selected, respectively. And the CBLSO turns to
the main loop of the evolutionary process until the iteration
value ¢t or the number of function evaluations (denote as
NFEy) reaches the predefined maximum iteration value f,,,
or the maximum NFEs (denote as maxNFEs), defined as
maxNFEs = n X tyax.

During the evolutionary stage, the LSO search is first
conducted. The values of the related parameters, i.e., oy, step,
and o, are calculated according to Eq. (5), Eq. (6), and
Eq. (8), respectively. The hunting behaviors of the lion king,
the lionesses, and the lion cubs are updated by using Eq. (3),
Eq. (4), Eq. (7), and the boundary mutation strategy illustrated
in Section 3.2 is adopted at the same time. After the positional
information for each lion is renewed, the fitness values of new
lions are evaluated. Once the absolute value of difference for
the lion king between zth iteration and ¢ + 3th iteration is
smaller than the predefined value (denote as u), usually is
considered in the range [10_6, 10_4]. The chaotic mutation
strategy and the boundary mutation strategy introduced in
Section 3.1 and Section 3.2 are called, respectively. Then, the
fitness values of the mutant solutions are computed and the
lionesses pbest. and pbest,,, the values of related parameters,
ie., ar, stepy, a., and step, are updated again. Moreover,
the lion king, the lionesses, and the lion cubs are sorted with
10 increments in the iteration. The above evolutionary phase
will be repeated until the predefined termination condition
is satisfied. At the end of the algorithm, the lion is reported
as the final near-optimal solution. For the sake of clarity, the
pseudo-code of the CBLSO is outlined in Fig. 2. and the
complete flowchart of the CBLSO is described as Fig. 3.

D. EQUATIONSTIME COMPLEXITY ANALYSIS

Any meta-heuristic optimization algorithms should have less
computational complexity so that the real-world optimiza-
tion problems can be solved in less computational efforts.
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01: Initialize the parameters values

02:t=0;

03: fori=1ton do

04: Randomly initialize the position x; of lion i by using Eq. (1);

05: Evaluate the fitness of x;;

06: end for

07: Sort the positions of lions in ascending order depending on their fitness
value;

08: Declare the lion king, lionesses and lion cubs based on the proportion factor
of adult lions;

09: Record the pbest; of lion i as noted by and the ghest of the lion group;

10: while (1 <= t,,,,) do

11: t=¢t+1;

12: Calculate the value of o a, 7;

13: Randomly generate the value of y;

14: fori=1ton do

15: ifi==1 (lion king) then

16:  Update the position of lion king by using Eq. (3);

17: else if i == 2 to nLeader (lionesses) then

18:  Select the lionesses pbest, as the cooperation partner;

19:  Update the position of lionesses using Eq. (4);

20: else i ==nLeader + 1 to n (lion cubs) then

21: Randomly generate the value of ¢;

22:  Select the lionesses pbest,, as the mother lioness followed by lion cub;

23:  Update the position of lion cubs using Eq. (7);

24:  Execute the boundary mutation strategy described in Section 3.2;

25:  Evaluate the fitness value of the new solution;

26: endif

27: end for

28: if abs (fit'(lion king) - fi#(lion king)) < u then

29: Execute the chaotic mutation strategy described in Section 3.1;

30: Execute the boundary mutation strategy described in Section 3.2;

31: Evaluate the fitness value of the new solution;

32: end if

33: Update the pbest; of lion i as noted by and the gbest of the lion group;

34: if t mod 10 == 0 then

35: Sort the positions of lions in ascending order depending on their fitness
value;

36: Declare the lion king, lionesses and lion cubs;

37: end if

38: end while

39: Report the position of gbest as the final optimal solution.

FIGURE 2. The pseudo code of the CBLSO algorithm.

To investigate the effectiveness of the CBLSO on optimiza-
tion problems, the time complexity analysis between the
CBLSO and the LSO is carried out. The population size n
is analyzed in the time complexity. The corresponding time
complexity of each procedure in the CBLSO in terms of the
worst-case of the computational time can be calculated as
follows:

(1) Initializing the parameters of the CBLSO takes the time
complexity O(1).
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FIGURE 3. The flowchart of the CBLSO algorithm.

(2) Initializing the population needs O(n).

(3) Calculating the fitness value of all individuals requires
O(n).

(4) Sorting the population into a three-layered hierarchical
population structure (i.e., the lion king, the lionesses and the
lion cubs) costs O(nlogn).

(5) The pbest individual and the gbest individual are
recorded. The time complexity of this operation at most is
20(n).

(6) The cooperation partner and the mother lioness fol-
lowed by lion cub are selected, respectively. This process at
most requires 20(n).

(7) The values of the oy, o, 1, y and g are determined,
which costs O(1).

(8) The positions of all individuals are updated, which
requires O(n).

(9) Justifying the boundary of population needs O(n).

(10) Calculating the fitness value of all individuals requires
O(n).
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(11) Executing the chaotic mutation strategy and the
boundary mutation strategy and calculating the fitness value
of all individuals again. This operation at most requires
20(n) + O(n) + O(n).

(12) Updating the pbest individual and the gbest individual
as well as the cooperation partner and the mother lioness
followed by lion cub, which needs 20(n) and 20(n).

(13) Sorting the population into a three-layered hierarchi-
cal population structure (i.e., lion king, lionesses and lion
cubs) again. This process costs O(nlogn).

Consequently, the total time complexity of the CBLSO
under the termination criterion is calculated as follows:

O(1)+ O ((n)+ O (n) + O (nlogn) + 20 (n) + 20 (n)
+tmax
oM +0m+0m+0m)+200 + 00
+0 (n) + 20 (n) 4+ 20 (n) + O (nlogn)
= (fmax + 1) - O (nlogn) + (111,45 + 6)
O + (tmax +1) - O () (16)

To be simplified, the total time complexity can be regarded
as O (T - nlogn) + O (tyax - 1).

After calculating the time complexity of the LSO, we find
that it possesses the same time complexity O (T - nlogn) +
O (tmax - ). The results show that the time complexity of the
LSO and the CBLSO is identical, indicating that the chaotic
mutation strategy and the boundary mutation strategy not
only improve the performance of the CBLSO but also does
not decrease its computational efficiency.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, a series of experimental studies are performed
for rigorous assessing the performance of the CBLSO. Firstly,
the related preparation works about the simulations are sum-
marized, including the well-known classic test functions and
the corresponding parameter settings. Secondly, to show the
effect of the chaotic mutation strategy and the boundary
mutation strategy introduced in CBLSO algorithm. The per-
formance of the CBLSO is compared against three LSO
variants: (1) the CLSO that only uses the chaotic mutation
strategy and (2) the BLSO that replaces the unified boundary
constraint approach with the boundary mutation strategy,
while (3) the LSO uses no strategy at all, making it a standard
LSO. Thirdly, the performance of the CBLSO is compared
with some state-of-the-art optimization algorithms (GA [23],
PSO [29], [30], ABC [31], CS [32], GSA [40], GWO [34],
ASO [41], [42], and SMA [54]). Finally, in order to verify
the optimization performance of the CBLSO further, more
state-of-the-art algorithms are compared with CBLSO on
CEC2014 test suite.

A. TEST FUNCTIONS AND EXPERIMENTAL SETUP

From the NFL theory [57], we can conclude that if we com-
pare two searching methods or algorithms with all possible
functions, the performance of any two algorithms will be,
on average, the same. However, if the size of the functions
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used for a test is too small, it will be impossible to give a
generalized and meaningful conclusion. Meanwhile, it also
has a potential risk that the method is biased (optimized)
towards the small size of test functions used for a test while
such bias might be meaningless for other problems of interest
[73]. In this study, a large enough set of test functions with-
out any equality or inequality constraints, including 56 test
functions collected from the related works of literature, are
used for evaluating the performance of CBLSO. The detailed
description of the set is given in the Appendix. These test
functions can be classified into four categories on the basis
of their functional features: Uni-modal (U), Multi-modal (M),
Separable (S), and Non-separable (N). Functions FO1 to FO4
are US functions. Functions FO5 to F17 are UN functions.
Functions F18 to F27 are MS functions. Functions F28 to F56
are MN functions.

The values of the common control parameters for the
CBLSO and other algorithms used for comparison are pop-
ulation size, maxNFEs or t,q. Different population size
and maxNFEs or t,,, are set as for different experiments.
Moreover, to balance the exploration and the exploitation of
the CBLSO, ¢ = 1072 and u = 107 are adopted for all
experiments as in [63] and [68]. In the following subsections,
the effects of the chaotic mutation strategy and the boundary
mutation strategy are shown first, and then, to validate the
performance of the CBLSO in a convincing way, we compare
the CBLSO with some other state-of-the-art algorithms. For
each experiment, the best results are identified with boldfaced
through the paper.

All the experiments are implemented on the environment
of Microsoft Windows 10 (64 bit) on Intel (R) Core (TM)
i7-8700K CPU with 3.20 GHz 3.19 GHz and 64.0 GB
(RAM). The programming software is MATLAB R2018b,
and the software for Wilcoxon Signed Ranks Test (WSRT)
is IBM SPSS Statistics 23.

B. EFFECTS OF THE IMPROVED STRATEGY

In this section, the advantages of the chaotic mutation strategy
and boundary mutation strategy introduced in the CBLSO
algorithm are investigated by a simulation experiment. Three
variants of the CBLSO called CLSO, BLSO, and LSO are
adopted for comparison. Due to the space limitation, only
23 test functions shown in the Appendix is tested in this
section, these functions include three US functions, i.e., FO1,
FO02, and F04, four UN functions, i.e., F13, F14, F15, and
F16, three MS functions, i.e., F18, F21, and F23, thirteen
MN functions, i.e., F28, F30, F34, F35, F36, F37, F38, F41,
F42, F43, F44, F45, and F46. For all algorithms, to ensure
the convergence rate of CBLSO, CLSO, BLSO and LSO, the
population size is respectively set to be 50 for all experiments.
The maximum number of iterations is fixed to 4,000.

To make a comparison, all experiments are repeated for
30 independent runs and the results, including mean best
solutions (Mean) and standard deviations (Std), are all sum-
marized in Table 1.
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TABLE 1. Experimental results of 30 independent runs obtained by LSO, CLSO, BLSO, and CBLSO on 23 test functions.

Function Metrics LSO CLSO BLSO CBLSO
Fol Mean 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Fo2 Mean 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Fo4 Mean 5.3878E-06 3.3087E-05 6.4666E-06 2.7587E-06
Std 4.8861E-06 3.0648E-05 5.8589E-06 2.2407E-06
FI3 Mean 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Fl4 Mean 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
FI5 Mean 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Fl6 Mean 2.3477E-03 1.4981E-03 3.0963E-03 1.7710E-03
Std 3.0247E-03 1.4405E-03 3.5549E-03 1.5095E-03
Fi8 Mean 0.39809 0.39789 0.39874 0.39789
Std 4.8371E-04 3.4144E-08 2.5916E-03 2.6179E-08
1 Mean 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F23 Mean -12555.0769 -12561.2726 -12561.8512 -12565.9686
Std 37.5656 23.1461 25.1102 7.3258
28 Mean 3.8121E-11 0.998 0.998 0.998
Std 1.6218E-07 6.0559E-12 2.5583E-10 4.2229E-12
F30 Mean -1.0316 -1.0316 -1.0316 -1.0316
Std 6.4556E-10 8.7435E-11 2.7427E-08 4.0552E-10
P34 Mean 3 3 3 3
Std 2.4886E-05 1.3081E-07 5.4345E-05 1.9048E-06
35 Mean 0.00039585 0.00030753 0.00045092 0.00030754
Std 2.9895E-04 6.4651E-08 3.7761E-04 5.7674E-08
F36 Mean -10.1532 -10.1532 -10.1532 -10.1532
Std 1.1794E-06 1.8906E-06 1.7410E-06 1.5725E-06
F37 Mean -10.4029 -10.4029 -10.4029 -10.4029
Std 1.321E-05 1.3285E-05 2.1912E-05 1.1777E-05
38 Mean -10.5364 -10.5364 -10.5364 -10.5364
Std 1.3112E-05 1.0617E-05 2.4531E-05 1.8364E-05
Fal Mean -3.8129 -3.8627 -3.8131 -3.8627
Std 3.0271-02 7.2212E-05 4.2866E-02 5.7317E-05
F42 Mean -2.7839 -3.3101 -2.8694 -3.3143
Std 2.4182E-01 3.6835E-02 3.0304E-01 3.0057E-02
F43 Mean 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Fa4 Mean 8.8818E-16 8.8818E-16 8.8816E-16 8.8818E-16
Std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F45 Mean 5.1098E-03 1.5179E-04 4.9903E-03 1.4808E-04
Std 6.8793E-03 1.0642E-04 4.9817E-03 8.0745E-05
F46 Mean 1.1856E-03 4.5598E-04 1.1357E-03 3.9092E-04
Std 1.4669E-03 3.7230E-04 1.3245E-03 3.0625E-04

From Table 1, on the US functions, we can find that
CBLSO provides the best results in terms of the Mean values
and the Std values, followed by CLSO and BLSO, suggest-
ing the positive effect of introducing the chaotic mutation
strategy and the boundary mutation strategy in our CBLSO
framework. In detail, all of the four algorithms have equal
performance on functions FO1 and F02. On F04, all algo-
rithms cannot obtain a global optimum, but the Mean value
provided by CBLSO outperforms the results of the other three
algorithms, while the results obtained by the LSO and the
BLSO are better than the results of the CLSO. The reason
may be that FO4 (Quartic function) is padded with noise and
the random noise makes sure that the algorithm never gets the
same value on the same point. For this function, the chaotic
mutation may weaken the exploration ability of algorithm but
combining the chaotic mutation and the boundary mutation
can enhance the exploration ability of the algorithm. On the
UN functions, we can see that on functions F13, F14, and
F15, all algorithms have equal performance, whereas CBLSO
cannot perform the best for F16. For this function, CLSO
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performs the best both in terms of the Mean and the Std.
The reason may be that F16 (Rosenbrock function) is a
function with a narrow curving valley. For this function, the
boundary mutation is unfavorable for the algorithm to explore
the space properly and keep up the direction changes, while
the randomness of the chaotic system makes it more favor-
able for improving the exploration ability of the algorithm.
However, it demonstrates that the chaotic mutation strategy
and the boundary mutation strategy used in CBLSO indeed
improves the performance of LSO. It also manifests that
CLSO performs better than LSO and BLSO on F16 in terms
of the Mean, which shows that the chaotic mutation strategy
achieves better influences than the boundary mutation strat-
egy. On the MS functions, all of the four algorithms show
equal performance on F21, while CBLSO outperforms LSO,
CLSO, and BLSO on all the remaining functions. On the MN
functions, the results reported in Table 1 show that CBLSO
performs the best for all MS problems. For all algorithms,
there is no difference on functions, i.e., F30, F34, F36, F37,
F38, F43, and F44 in terms of the Mean values. Besides, when
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we pay attention to Table 1, it is apparent that CBLSO has a
good performance in comparison with the other algorithms
on US functions but its performance decreases on the UN,
MS, and MN functions. This is because US functions and
UN functions are the easiest test problems that have no local
optimum and there is only one global solution, and they are
often used to examine the convergence rate of optimization
algorithms. However, MS functions and MN functions usu-
ally have many or a few local optima and they have often
employed the ability of the algorithms to escape from poor
local optima and obtain the near-global optimum. Different
algorithms have different advantages in dealing with these
functions. Thus, the performance of the algorithm on solving
these functions is different.

C. FIXED-ITERATION RESULTS BETWEEN CBLSO AND
OTHER NATURE-INSPIRED ALGORITHMS

In this part, the CBLSO is compared with eight meta-heuristic
optimization algorithms, namely, GA [23], PSO [29], [30],
ABC[31],CS [32], GSA [40] and GWO [34], ASO [41], [42],
and SMA [54] on all 56 functions listed in the Appendix. For
all algorithms, the population size is set to 50. In GA, the
crossover, mutation probabilities, and generation gap value
are set to 0.8, 0.01, and 0.9, respectively [74]. In PSO, ¢; =
¢y = 2 and inertia weight w is 0.9 [4]. In CS, p, = 0.25 as
recommended in [32]. In ABC, limit = n x D [74]. In GSA,
Gy issetto 100, « is set to 20, andKis set tonand is decreased
linearly to 1 [40]. In GWO, ri = rp, = rand,a = 2 —
2%t [tmax, A = 2*a*r; — a, and 2*rp. In ASO, @ = 50 and
B = 0.2 [41], [42]. In SMA, z = 0.03 [54].

The maximum number of iterations is set to be 6,000. For
every benchmark function, all algorithms are repeated for 30
independent runs. The experimental results of Mean, Std, and
standard errors of means (SEM) are presented in Tables 2-5.

Firstly, we describe the results for US functions. It is appar-
ent from Table 2 that the CBLSO is the most competitive
algorithm that provides the best Mean values for all test
functions, and then they are GWO and SMA that obtain the
best Mean values on 3 of 4 test functions. GA, ABC, CS,
GSA, and ASO perform similarly on function FO1, while PSO
gives poor results in terms of this indicator. It is also shown
that, on FO4, all algorithms cannot give a global optimum but
the results provided by CBLSO outperform the results of the
other six algorithms.

Next, we analyze the simulation results for UN functions
(Table 3). In this case, CBLSO and SMA are the best algo-
rithms that provide the best Mean values on 8 of 13 test
functions. PSO, CS, and GWO obtain the best Mean values on
5 of 13 test functions. Roughly, ABC and GSA produce com-
petitive results regarding this indicator only on 3 functions,
while ASO provides the best Mean values on 2 of 13 test
functions. GA gives worse results compared with the other
peer algorithms. It is also observed from Table 3 that CBLSO
performs better than GA on all test functions. On 3 functions
(F06, FO7, and F14) CBLSO and PSO show equal perfor-
mance but on 7 functions (FO5 and F11 to F17) CBLSO
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outperforms PSO, while PSO outperforms CBLSO only on
3 functions (FO8 to F10). Only on 1 function (F06), there
is no significant difference between CBLSO and CS but on
8 functions CBLSO outperforms CS, while CS outperforms
CBLSO only on 4 functions. The result between CBLSO
and ABC is identical to the result between CBLSO and CS.
On F14, CBLSO and GSA show equal performance but on
9 functions CBLSO is better than GSA while GSA is better
than CBLSO only on 3 functions. The CBLSO algorithm
and GWO show equal performance on 4 functions (F06, FO7,
F11, and F14) but on 8 functions CBLSO outperforms GWO,
while GWO outperforms CBLSO only on 1 function. There
are no functions that CBLSO and ASO show equal perfor-
mance, however, CBLSO outperforms ASO on 9 functions
(F06, FO7, and F11 to F17), while ASO outperforms CBLSO
only on 4 functions (F05, FO8, F09, and F10). On functions
(FO7, F09, F11 to F15), CBLSO and SMA show equal per-
formance, and on functions (F06, F10, and F16) CBLSO
outperforms SMA, while SMA outperforms CBLSO only on
3 functions (F05, FO8, F09, F10, and F17).

We now pay attention to MS functions (Table 4). Regarding
the best Mean values, SMA is the best algorithm providing
the best Mean values on 7 out of 10 functions, followed
by CS, GWO, and CBLSO, which obtains the best Mean
values on 5 functions. PSO and ABC can be the third-best
algorithm, which performs the best Mean values on 4 func-
tions. And then GSA, ASO, and GA are the worst best
algorithm which give the best Mean values only on 3, 3,
and 2 functions, respectively. For all algorithms, it is clear
from the results listed in Table 4 that there is no evident
difference on F25. Only on 3 functions (F23, F26, and F27)
that GA outperforms CBLSO but CBLSO outperforms GA
on 6 functions (F18 to F22 and F24). On 3 functions (F18,
F19, and F25) CBLSO and PSO show equal performance
but on 5 of the remaining 7 functions CBLSO outperforms
PSO while PSO outperforms CBLSO only on 2 functions
(F20 and F27). The number of functions that CBLSO and CS
show equal performance is the same as the number of CBLSO
and CS show equal performance, but on 4 of the remaining
7 functions CBLSO outperforms CS while CS outperforms
CBLSO only on 3 functions (F20, F26, and F27). The results
between CBLSO and ABC as well as the results between
CBLSO and GSA are identical to the results between CBLSO
and CS as well as the results between CBLSO and PSO,
respectively. It is evident from the results that CBLSO and
GWO show equal performance on 5 functions but 4 of the
remaining 5 functions CBLSO performs better than GWO
while GWO performs better than CBLSO only on 1 function
(F20). On functions (F18, F19, and F25) CBLSO and ASO
show equal performance, however, on functions (F21 to F24
and F26) CBLSO outperforms ASO, while on functions (F20
and F27) ASO outperforms CBLSO. On functions F18, F19,
F21, F22, and F25, CBLSO and SMA can show equal per-
formance, and CBLSO outperforms SMA on function F26,
while SMA outperforms CBLSO on functions F20, F22, F23,
and F27.
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TABLE 2. Experimental results obtained by GA, PSO, ABC, CS, GSA, GWO, ASO, SMA, and CBLSO on US test functions.

Function GA PSO ABC CS GSA GWO ASO SMA CBLSO
Mean  0.0000E+000 (=) 3.3333E-002 (+) 0.0000E+000 (=) 0.0000E+000 (=) 0.0000E+000 (=) 0.0000E+000 (=) 0.0000E+000 (=) 0.0000E+000 (=) 0.0000E-+000
Fo1 Std 0.0000E+000 1.7951E-001 0.0000E+000 0.0000E+000 0.0000E+000 0.0000E+000 0.0000E+000 0.0000E+000 0.0000E+000
SEM 0.0000E+000 1.8257E-001 0.0000E+000 0.0000E+000 0.0000E+000 0.0000E+000 0.0000E+000 0.0000E+000 0.0000E+000
Mean 1.1995E-001 (+) 2.7980E-118 (+) 5.1185E-028 (+) 3.7243E-035(+) 8.1403E-018 (+) 0.0000E+000 (=) 1.5086E-026 (+) 0.0000E+000 (=) 0.0000E+000
F02 Std 4.4828E-002 1.3640E-117 2.5786E-027 2.7528E-035 1.6344E-018 0.0000E+000 2.1096E-026 0.0000E+000 0.0000E+000
SEM 1.2805E-001 1.3924E-117 2.6289E-027 4.6313E-035 8.3028E-018 0.0000E+000 2.5935E-026 0.0000E+000 0.0000E+000
Mean 1.8335E-002 (+) 1.6736E-120 (+) 3.5101E-030 (+) 7.2206E-036 (+) 7.4250E-017 (+) 0.0000E+000 (=) 4.8977E-025(+) 0.0000E+000 (=) 0.0000E+000
F03 Std 6.5971E-003 4.0971E-120 8.2097E-030 6.8698E-036 2.5358E-017 0.0000E+000 2.0794E-024 0.0000E+000 0.0000E+000
SEM 1.9485E-002 4.4257E-120 8.9286E-030 9.9666E-036 7.8461E-017 0.0000E+000 2.1363E-024 0.0000E+000 0.0000E+000
Mean  1.9875E-002 (+) 2.1160E-003 (+) 2.8609E-002 (+) 6.5289E-003 (+) 1.2969E-002 (+) 6.9173E-005 (+) 1.3580E-002 (+) 1.5959E-005 (+) 2.2957E-006
F04  Std 6.5016E-003 7.1960E-004 5.8639E-003 1.8134E-003 2.8669E-003 3.3174E-005 5.7535E-003 1.4114E-005 1.9012E-006
SEM 2.0911E-002 2.2350E-003 2.9204E-002 6.7761E-003 1.3283E-002 7.6716E-005 1.4748E-002 2.1305E-005 2.9807E-006
+/-/= 3/0/1 4/0/0 3/0/1 3/0/1 3/0/1 1/0/3 3/0/1 1/0/3
TABLE 3. Experimental results obtained by GA, PSO, ABC, CS, GSA, GWO, ASO, SMA, and CBLSO on UN benchmark functions.
Function GA PSO ABC [ GSA GWO ASO SMA CBLSO
Mean 2.0033E-001 (+) 5.0805E-002 (=) 2.5204E-012(-) 0.0000E+000 () 9.6271E-022 (=) 5.0515E-010 (+) 3.3979E-031 (=) 5.2059E-013 (-) 5.3139E-011
F05 Std 3.6944E-001 1.9009E-001 2.4626E-012 0.0000E+000 1.1672E-021 5.0971E-010 7.8670E-031 7.0941E-013 9.1496E-011
SEM  4.2026E-001 1.9677E-001 3.5238E-012 0.0000E+000 1.5130E-021 7.1762E-010 8.5694E-031 8.7992E-013 1.0581E-010
Mean  —0.5644 (+) -1() -1() -1() ~0.98705 (-) -1(-) -0.068773 (+) -0.99535 (+) -1
F06 Std 4.9350E-001 0.0000E+000  0.0000E-+000  0.0000E+000  6.9763E-002 1.3799E-009 2.2206E-001 1.3073E-02 2.2298E-008
SEM  6.5825E-001 0.0000E+000  0.0000E-+000  0.0000E+000  7.0956E-002 2.3351E-009 9.5734E-001 1.3875E-02 2.4866E-008
Mean  1.9745E-003 (+) 0.0000E+000 (=) 4.4127E-015 (+) 2.8314E-130 (+) 7.9593E-023 (+) 0.0000E+000 (=) 7.1227E-033 (+) 0.0000E+000 (=) 0.0000E-+000
F07 Std 1.6359E-003 0.0000E+000 4.6895E-015 1.4367E-129 6.2243E-023 0.0000E+000 1.3526E-032 0.0000E+000 0.0000E+000
SEM  2.5642E-003 0.0000E+000  6.4392E-015 1.4643E-129 1.0104E-022 0.0000E-+000 1.5287E-032 0.0000E+000 0.0000E-+000
Mean 4.8984E+000 (+) 1.1318E-016 (-) 1.5209E-005 (=) 0.0000E+000 (-) 7.1192E-004 (-) 2.4398E-001 (=) 1.4867E-022(-) 1.0787E-005(-) 6.2741E-005
FO8 Std 5.9690E+000 1.8174E-016 2.0710E-005 0.0000E+000 3.8338E-003 5.4759E-001 3.0506E-022 2.4126E-005 1.1968E-004
SEM 7.7216E+000 2.1410E-016 2.5695E-005 0.0000E+000 3.8993E-003 5.9949E-001 3.3936E-022 2.6428E-005 1.3513E-004
Mean  —49.8717 (+) -50 () -50 () -50 () -50 (-) -50 (-) -50 (-) -50 (-) -49.9999
F09 Std 6.6131E-002 2.9296E-014 3.0644E-014 3.5527E-014 3.0644E-014 5.8860E-007 2.6395E-014 7.7352E-006 6.5361E-005
SEM 1.4434E-001 1.3531E-013 1.3729E-013 1.7053E-013 1.5217E-013 1.0029E-006 1.5739E-013 9.6689E-006 1.2723E-004
Mean -196.0927 (+) -210 (-) -210 (-) -210 (-) -210 (-) —194.7858 (=) =210 (-) =209.9992 (-) —209.9067
F10 Std 7.7300E+000 4.4946E-012 4.1246E-013 0.0000E+000 4.5070E-013 3.3499E+001 4.2884E-013 4.3330E-004 6.7367E-002
SEM 1.5911E+001 1.1523E-011 8.6282E-013 2.7285E-012 2.3775E-012 3.6792E+001 2.4629E-012 9.0276E-004 1.1509E-001
Mean  1.7215E+000 (+) 6.5616E-199 (+) 5.0728E-009 (+) 4.9007E-059 (+) 1.6566E-018 (+) 0.0000E+000 (=) 4.1373E-028 (+) 0.0000E+000 (=) 0.0000E+000
Fl11 Std 1.2504E+000 0.0000E+000  4.1515E-009 5.5441E-059 5.3076E-019 0.0000E+000  3.7132E-028 0.0000E+000 0.0000E-+000
SEM  2.1277E+000 0.0000E+000  6.5550E-009 7.3996E-059 1.7395E-018 0.0000E+000  5.5592E-028 0.0000E+000 0.0000E-+000
Mean  5.6065E-002 (+) 6.5655E-006 (+) 1.4189E-003 (+) 1.6370E-006 (+) 4.7948E-006 (+) 3.9101E-007 (+) 2.7013E-006 (+) 0.0000E+000 (=) 0.0000E-+000
F12 Std 2.3576E-002 3.0647E-006 2.8694E-004 7.5655E-007 2.2361E-006 5.4400E-007 9.2033E-007 0.0000E+000 0.0000E+000
SEM  6.0821E-002 7.2456E-006 1.4476E-003 1.8034E-006 5.2906E-006 6.6995E-007 2.8538E-006 0.0000E+000 0.0000E-+000
Mean  7.4688E+003 (+) 2.5103E+003 (+) 7.3283E+003 (+) 7.3989E+003 (+) 1.2244E+003 (+) 2.0789E+002 (+) 3.4566E+003 (+) 0.0000E+000 (=) 0.0000E-+000
F13 Std 3.8436E+003 1.1554E+003 1.3663E+003 1.6659E+003 4.3436E+002 4.2950E+002 1.1989E+003 0.0000E+000 0.0000E-+000
SEM  8.3998E+003 2.7634E+003 7.4546E+003 7.5841E+003 1.2992E+003 4.7717E+002 3.6586E+003 0.0000E+000 0.0000E+000
Mean  4.3878E-001 (+) 0.0000E+000 (=) 2.8917E-292 (+) 1.1028E-089 (+) 0.0000E+000 (=) 0.0000E+000 (=) 2.4182E-301 (=) 0.0000E-+000 (=) 0.0000E-+000
F14 Std 3.5844E-002 0.0000E+000  0.0000E+000  4.9217E-089 0.0000E+000  0.0000E+000  0.0000E-+000 0.0000E+000 0.0000E+000
SEM  5.6657E-002 0.0000E+000  0.0000E+000  5.0438E-089 0.0000E+000  0.0000E+000  0.0000E-+000 0.0000E+000 0.0000E+000
Mean  1.3989E-001 (+) 2.8883E-068 (+) 6.6502E-024 (+) 1.5092E-014 (+) 1.4801E-008 (+) 9.4688E-253 (+) 9.4463E-013 (+) 0.0000E+000 (=) 0.0000E+000
F15 Std 1.8882E-002 5.5719E-068 1.1916E-023 9.0339E-015 2.2046E-009 0.0000E-+000 1.0089E-012 0.0000E+000 0.0000E-+000
SEM  1.4115E-001 6.2760E-068 1.3646E-023 1.7589E-014 1.4965E-008 0.0000E-+000 1.3821E-012 0.0000E+000 0.0000E+000
Mean  1.0196E+002 (+) 1.3750E+001 (+) 2.4691E+001 (+) 4.5483E+000 (+) 1.9101E+001 (+) 2.6008E+001 (+) 1.5338E+001 (+) 3.9313E-003 (+) 1.2973E-003
F16 Std 3.8712E+001 1.3961E+001 1.0733E+001 2.4774E+000 2.8623E-001 7.7327E-001 4.0408E-001 2.7648E-003 2.3935E-003
SEM 1.0906E+002 1.9595E+001 2.6923E+001 5.1792E+000 1.9103E+001 2.6019E+001 1.5343E+001 4.8062E-003 2.7224E-003
Mean 2.6010E+000 (+) 6.6667E-001 (+) 6.6667E-001 (+) 6.6667E-001 (+) 6.6667E-001 (+) 6.6667E-001 (+) 6.6667E-001 (+) 1.3216E-002 () 2.1610E-001
F17 Std 1.4524E+000 8.5998E-017 4.0825E-008 8.6381E-008 1.3896E-008 3.6565E-009 2.8666E-017 6.5583E-003 2.2768E-002
SEM 2.9791E+000 6.6667E-001 6.6667E-001 6.6667E-001 6.6667E-001 6.6667E-001 6.6667E-001 1.4753E-002 2.1730E-001
+/-/= 13/0/0 6/5/2 8/5/0 8/5/0 7/5/1 6/2/5 8/4/1 2/5/6

Finally, we compare CBLSO with GA, PSO, ABC, CS,
GSA, and GWO on MN functions (Table 5). Definitely,
in terms of best Mean values, CS performs the best on
24 functions. Other promising algorithms are CBLSO, SMA,
ASO, and ABC, obtaining the best on 16, 16, 15, and 14 func-
tions, respectively. At last, GWO, PSO, GSA, and GA are
four algorithms performing the worst results regarding this
indicator which gives the best results only on 9, 7, 7, and
3 functions, respectively. By observing the results listed in
Tables 5, we can conclude that all algorithms achieve success
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in finding the best Mean values on F30. On F28, only GA,
ABC, CS, ASO, SMA, and CBLSO can reach the global
optimum region and other algorithms fail. On F29, the results
provided by CS, GWO, SMA, and CBLSO are better than
the other three algorithms. On F31 and F32, PSO, CS, GSA,
GWO, ASO, SMA, and CBLSO are superior to both GA
and ABC. On F33, only PSO, CS, ASO, SMA, and CBLSO
achieve success in reaching the global optimum and other
algorithms fail. On F34, the performance of GA is far worse
than other peer algorithms. Moreover, the same pattern occurs
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TABLE 4. Experimental results obtained by GA, PSO, ABC, CS, GSA, GWO, ASO, SMA, and CBLSO on MS benchmark functions.

Function GA PSO ABC CS GSA GWO ASO SMA CBLSO
Mean  0.39822 (+) 0.39789 (-) 0.39789 (-) 0.39789 (-) 0.39789 (-) 0.39789 (=) 0.39789 (-) 0.39789 (-) 0.39789

FI18  Std 5.6391E-004 0.0000E+000  5.9024E-013 0.0000E+000  0.0000E+000  3.2201E-009 0.0000E+000 1.2692E-010 2.5267E-008
SEM  6.5665E-004 3.5773E-007  3.5773E-007  3.5773E-007  3.5773E-007 3.6032E-007 3.5773E-007 3.5776E-007 3.6744E-007
Mean  1.5325E-001 (+) 0.0000E+000 (=) 0.0000E+000 (=) 0.0000E+000 (=) 0.0000E-+000 (=) 0.0000E+000 (=) 0.0000E+000 (=) 0.0000E-+000 (=) 0.0000E-+000

F19  std 1.5328E-001 0.0000E+000  0.0000E+000  0.0000E+000  0.0000E+000  0.0000E-+000  0.0000E+000 0.0000E-+000 0.0000E-+000
SEM  2.1675E-001 0.0000E+000  0.0000E+000  0.0000E+000  0.0000E+000  0.0000E+000  0.0000E+000 0.0000E-+000 0.0000E-+000
Mean  2.2203E-003 (+) 0.0000E+000 (-) 3.4935E-017 (-) 0.0000E+000 (-) 2.3323E-021(-) 8.6939E-010 (=) 1.5777E-031(-) 8.4417E-013(-) 1.3930E-009

F20  Std 2.7178E-003 0.0000E+000  5.2873E-017 0.0000E+000  2.2940E—021 9.2937E-010 3.1554E-031 1.2590E-012 2.5772E-009
SEM  3.5094E-003 0.0000E+000  6.3372E-017 0.0000E+000  3.2714E-021 1.2726E-009 3.5279E-031 1.5158E-012 2.9296E-009
Mean  6.1261E-002 (+) 3.6449E+001 (+) 1.7474E+002 (+) 2.6984E+001 (+) 1.1741E+001 (+) 0.0000E+000 (=) 1.9966E+001 (+) 0.0000E+000 (=) 0.0000E-+000

F21  Std 1.9602E-002 1.1412E+001 1.3355E+001 5.9131E+000  2.5741E+000 0.0000E+000  5.0140E+000 0.0000E+000 0.0000E+000
SEM  6.4321E-002 3.8194E+001 1.7525E+002 2.7624E+001 1.2019E+001 0.0000E+000  2.0586E+001 0.0000E+000 0.0000E-+000
Mean  6.1008E-002 (+) 4.7000E+000 (+) 1.8354E+002 (+) 2.2011E+001 (+) 1.8388E+001 (+) 0.0000E+000 (=) 2.7967E+001 (+) 0.0000E+000 (=) 0.0000E+000

F22  Std 2.2589E-002 4.5982E+000 1.6190E+002 2.7284E+000  4.3250E+000 0.0000E+000  7.8845E+000 0.0000E+000 0.0000E-+000
SEM  6.5056E-002 6.5752E+000 1.3138E+001 2.2180E+001 1.8890E+001 0.0000E+000  2.9057E+001 0.0000E+000 0.0000E+000
Mean  -12569.1321 (=) -7101.717 (+)  —6469.6355 (+) -10628.3791 (+) -2704.2987 (+) —6468.9457 (+) -7463.0405(+) —12569.4861 (-) —12562.8834

F23  std 1.3425E-001 6.1536E+002 3.3860E+002 2.1770E+002  4.4836E+002 5.7428E+002 6.3980E+002 3.7911E-004 2.4517E+001
SEM  3.9167E-001 5.5023E+003 6.1093E+003 1.9533E+003 9.8754E+003 6.1275E+003 5.1464E+003 1.3908E-002 2.5394E+001
Mean  3.8546E-001 (+) 5.4593E+003 (+) 6.3319E+003 (+) 2.0276E+003 (+) 9.9001E+003 (+) 6.2288E+003 (+) 4.9754E+003 (+) 5.7605E-004 (-) 3.4081E-001

F24  Std 1.7629E-001 7.0274E+002 37671E+002  2.4644E+002  4.2672E+002 7.1331E+002 5.9839E+002 4.1107E-004 9.0185E-001
SEM  4.2386E-001 5.5043E+003 6.3431E+003 2.0425E+003 9.9093E+003 6.2695E+003 5.0113E+003 7.0768E—-004 9.6409E-001
Mean  -1.8013 (+) -1.8013 () -1.8013 (-) -1.8013 (-) -1.8013 () -1.8013 (=) -1.8013 (-) -1.8013 (-) -1.8013

F25  Std 6.3960E-005 8.8818E-016  8.8818E-016 8.8818E-016 8.8818E-016 8.2762E-009 8.8818E-016 1.0372E-011 2.6672E-008
SEM  7.3242E-005 3.4101E-006 3.4101E-006 3.4101E-006 3.4101E-006 3.4008E-006 3.4101E-006 3.4101E-006 3.3981E-006
Mean  -4.6873 (-) -4.5417 (+) -4.6877 (-) -4.6877 (-) -4.5695 (+) -4.4107 (+) -4.5450 (+) -4.6228 (=) -4.6283

F26  Std 4.5923E-004 1.0672E-001 2.1143E-015 1.8130E-015 7.4435E-002 3.4949E-001 7.7494E-002 1.4477E-002 6.5202E-002
SEM  5.9070E-004 1.8085E-001 1.7909E-007 1.7909E-007 1.3968E-001 4.4590E-001 1.6235E-001 1.5862E-002 8.8200E-002
Mean  -9.6577 (-) -9.0577 (-) -9.6241 (-) -9.6432 () -9.2857 (-) -8.1586 (=) -9.0184 (-) -8.8822 (-) -8.2197

F27  Std 2.3394E-003 3.1848E-001 6.5841E-002 2.0432E-001 2.1364E-001 7.2776E-001 2.5701E-001 5.1944E-001 6.1022E-001
SEM  3.3677E—003 6.8149E-001 7.5050E-002 2.6565E-002 43111E-001 1.6686E+000 6.9126E-001 9.3540E-001 1.5644E+000

+/-/= 7/2/1 5/4/1 4/5/1 4/5/1 5/4/1 3/0/7 5/4/1 0/6/4

for GSA on F41. All algorithms could not find the global
optimum on F35, F39, F40, F46, F52, F53, and F56, but
results provided by CS are better than other algorithms. The
reason is that the Lévy flight employed by CS to generate
exemplars for an evolving population can effectively enhance
the exploration strength and local optimum avoidance ability
of the algorithm. Besides, the same pattern occurs for SMA
and CBLSO on F44, ABC on F45, CS and ABC on F49, ASO
on F50 and F55, and PSO and CS on F54. On F36, ABC and
CS are two best algorithms in terms of the best Mean values.
On F37, the worst algorithms are GA and PSO, while on F38,
the worst algorithms are GA, PSO, and GSA. On F42, ABC,
CS, GSA, and ASO are four algorithms providing the best
Mean values, while ABC, CS, ASO, SMA, and CBLSO are
five competitive algorithms obtaining the best Mean values
on F42, FA8, and F51. On F47, the results provided by ABC,
GWO, SMA, and CBLSO are obviously better than other peer
algorithms.

To intuitively analysis the performance of the CBLSO
algorithm for solving Uni-modal problems and Multi-modal
problems, the convergence progress of the average best-so-far
solutions over 30 independent runs are plotted in Figs. 4, 6,
8, and 10, while the box-and-whisker diagrams of obtained
optimal solutions over 30 independent runs are depicted in
Figs. 5, 7, 9, and 11. Due to the space limitation, some
representative curves of them are selected for illustration.

We first take a look at the convergence process graphs
of average best-so-far solutions (Figs. 4, 6, 8, and 10). For
Uni-modal problems, which usually have no local optimums,
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the convergence rate of the algorithms is more meaningful
than the final optimization results, because there are some
other methods or algorithms that designed for optimizing
Uni-modal problems, specifically. From Fig. 4 plotted on
US problems (including F02, FO3, and F04), we can see
that CBLSO converges quickly thorough the whole stage of
search process towards the best solution, while other eight
algorithms converge slowly and finally traps into the local
minimum in the late stage of search process, indicating that
CBLSO possesses superior performance on such optimiza-
tion problems. Different from the convergence characteristic
shown in Fig. 4, according to Fig. 6 plotted on UN problems
(including F06, FO8, F10, F12, F13, and F16), it is observed
that the convergence speed in the early stage of search process
of CBLSO is not remarkable among all the nine algorithms,
but it finally obtains the global optimal minimum in the late
stage of search process, implying that CBLSO can effectively
avoid a premature convergence and significantly improve
the accuracy of solution. Thus, we can conclude that the
chaotic mutation strategy and the boundary mutation strategy
used in CBLSO indeed improve the algorithm’s exploration
and exploitation abilities. For multi-modal problems, which
usually have many local optimums and almost are often
difficult to be optimized, the final optimization results are
usually more significant since the optimization results are the
standard to measure the exploration and exploitation abilities
of the algorithm in getting rid of local optimums and finding
a better solution in a short time. From Fig. 8 depicted on
MS problems (including F21, F22, F23, F24, F26, and F27),
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TABLE 5. Experimental results obtained by GA, PSO, ABC, CS, GSA, GWO, ASO, SMA, and CBLSO on MN benchmark functions.

Function GA PSO ABC CS GSA GWO ASO SMA CBLSO
Mean  0.998 (+) 2.5425 (+) 0.998 (+) 0.998 (-) 1.4493 (+) 2.2442 (+) 0.998 (-) 0.998 (-) 0.998

F28 St 4.4928E-007 2.3316E+000 1.2259E-010 0.0000E+000  5.1539E-001 2.4465E+000  0.0000E+000  4.8223E-016 2.8564E-012
SEM  4.5222E-007 2.7968E+000  1.6212E-007 1.6221E-007 6.8508E-001 2.7456E+000 1.6221E-007 1.6221E-007 1.6220E-007
Mean  1.6717E-002 (+) 1.9432E-003 (+) 1.1211E-004 (+) 0.0000E+000 (=) 1.1757E-002 (+) 0.0000E+000 (=) 6.4773E-004 (=) 0.0000E+000 (=) 0.0000E+000

F29  Std 1.6355E-002 3.8864E-003 1.1388E-004 0.0000E+000  6.8497E-003 0.0000E+000  2.4236E-003 0.0000E+000  0.0000E+000
SEM  2.3387E-002 4.3451E-003 1.5980E-004 0.0000E+000  1.3607E-002 0.0000E+000  2.5086E-003 0.0000E+000  0.0000E+000
Mean  -1.0316 (+) -1.0316 () -1.0316 () -1.0316 () -1.0316 (-) -1.0316 (=) -1.0316 (-) -1.0316 (-) -1.0316

F30  Std 8.7199E-005 4.4409E-016  4.4409E-016  4.4409E-016  4.4409E-016  3.9376E-011 4.4409E-016 7.4043E-014 1.1551E-010
SEM  1.1503E-004 4.6510E-008  4.6510E-008  4.6510E-008  4.6510E—008  4.6555E-008 4.6510E-008 4.6510E-008 4.6590E-008
Mean  1.6197E-001 (+) 0.0000E+000 (=) 3.7007E-018 (=) 0.0000E+000 (=) 0.0000E-+000 (=) 0.0000E+000 (=) 0.0000E+000 (=) 0.0000E+000 (=) 0.0000E+000

F31 Std 1.0121E-001 0.0000E-+000 1.3847E-017 0.0000E+000  0.0000E+000  0.0000E+000  0.0000E-+000  0.0000E+000  0.0000E+000
SEM  1.9099E-001 0.0000E+000 1.4333E-017 0.0000E+000  0.0000E+000  0.0000E+000  0.0000E-+000  0.0000E+000  0.0000E+000
Mean ~ 9.9344E-002 (+) 0.0000E+000 (=) 2.5274E-012 (+) 0.0000E+000 (=) 0.0000E-+000 (=) 0.0000E+000 (=) 0.0000E+000 (=) 0.0000E+000 (=) 0.0000E+000

F32  Sud 7.7771E-002 0.0000E+000  2.5450E-012 0.0000E+000  0.0000E+000  0.0000E+000  0.0000E-+000  0.0000E+000  0.0000E+000
SEM  1.2617E-001 0.0000E+000  3.5868E-012 0.0000E+000  0.0000E+000  0.0000E+000  0.0000E+000  0.0000E+000  0.0000E+000
Mean -186.7214 (+)  -186.7309 (-)  -186.7306 (+)  —186.7309 (-)  -186.3725(+)  -186.7305(=)  -186.7309 (-)  -186.7309 (-)  -186.7309

F33 S 1.1589E-002 3.7057E-014 3.3261E-004 1.7210E-014  3.5348E-001 1.3079E-003 3.1988E-014 1.1595E-008 3.7438E-006
SEM  1.4967E-002 8.8310E-006 4.4141E-004 8.8310E-006 5.0342E-001 1.3606E-003 8.8310E-006 8.8267E-006 7.8155E-006
Mean  5.8642 (+) 30) 30) 3() 3() 3(4) 30) 30) 3

F34  Std 8.6177E+000  2.0431E-015 2.0431E-015 3.5342E-016  9.4901E-016 7.9312E-008 1.2871E-015 1.2827E-014 3.4759E-007
SEM  9.0812E+000  7.8504E-014 7.5555E-014  8.0543E-014 7.7913E-014 1.3116E-007 7.8339E-014 4.8190E-014 3.6019E-007
Mean  0.0096435 (+)  0.0011781(=)  0.00060429 (+)  0.00030749 ()  0.001064 (+) 0.0023514 (=) 0.00059419 (+)  0.00032443 (+)  0.0003075

F35  Std 1.6954E-002 3.5915E-003 6.3233E-005 1.6383E-019  2.1710E-004 6.0063E-003 1.4056E-004 5.8244E-005 1.2551E-008
SEM  1.9355E-002 3.6955E-003 3.0347E-004 1.1219E-010  7.8701E-004 6.3445E-003 3.1931E-004 6.0658E-005 1.9217E-008
Mean  -5.302 (+) -5.9006 (+) -10.1532 (-) -10.1532 (-) -7.8838 (+) -9.6449 (+) -9.9848 (-) -10.1532 (+) -10.1532

F36  Std 3.0898E+000  3.3572E+000  7.1054E-015  7.1054E-015  2.6202E+000 1.5249E+000  9.0694E-001 1.3612E-006 7.0982E-007
SEM  5.7516E+000  5.4181E+000  3.2094E-007  3.2094E-007  3.4664E+000 1.6073E+000  9.2244E-001 2.3649E-006 1.3269E-006
Mean  -5.0891 (+) ~7.8028 (=) -10.4029 (-) -10.4029 (-) -10.4029 (-) -10.4029 (-) -10.4029 (-) -10.4029 (-) -10.4029

F37  Std 3.0544E+000  3.4855E+000  0.0000E+000  3.2432E-016 1.0256E-015 1.2367E-006 3.2432E-016 1.8486E-006 1.2053E-005
SEM  6.1291E+000  4.3485E+000  2.4663E-005  2.4663E-005  2.4663E-005  2.7795E-005 2.4663E-005 2.6978E-005 3.8766E-005
Mean  -5.2716 (+) -7.396 (+) -10.5364 (-) -10.5364 (-) ~7.7861 (+) -10.5364 (-) -10.5364 (-) -10.5364 (-) -10.5364

F38  Std 3.0269E+000  3.4109E+000  3.9721E-015 3.5527E-015 1.8440E+000 1.4856E-006 4.2903E-015 1.2914E-006 7.2077E-006
SEM  6.0729E+000  4.6364E+000  3.3153E-005 3.3153E-005 3.3113E+000  3.0662E-005 3.3153E-005 3.1242E-005 2.6616E-005
Mean  1.1445E+001 (+) 5.4394E-002 (+) 2.6239E-002 (+) 1.7766E-003 (=) 1.9889E+000 (+) 2.2619E-001 (=) 3.5108E-002 (+) 3.3471E-002 (=) 2.0576E-003

F39 St 1.5580E-+001 9.5554E-002 1.8339E-002 2.2342E-003 1.5629E+000  5.5216E-001 9.5036E-002 8.2367E-002 1.7234E-003
SEM  1.9332E+001 1.0995E-001 3.2012E-002 2.8545E-003 2.5295E+000  5.9669E-001 1.0131E-001 8.8908E-002 2.6840E-003
Mean  8.2427E-001 (+) 1.8532E-004 () 2.7513E-003 (+) 4.9219E-005 (-) 1.5796E-002 (+) 5.2936E-002 (=) 1.4655E-004 (-) 2.0318E-004(-) 9.4025E-004

F40 St 1.0245E+000 1.7726E-004 2.1419E-003 5.6481E-005 1.1542E-002 1.9494E-001 1.7307E-004 1.6169E-004 1.5109E-003
SEM  1.3149E+000  2.5645E-004 3.4868E-003 7.4917E-005 1.9564E-002 2.0200E-001 2.2678E-004 2.5966E-004 1.7795E-003
Mean  -3.8628 (=) -3.8628 () -3.8628 () -3.8628 () -3.8628 (-) -3.8625 (-) -3.8628 (-) -3.8628 () -3.8628

F41 Std 9.8200E-006 2.9823E-015 2.9098E-015 2.8654E-015  3.1086E-015 1.3853E-003 3.0810E-015 1.8874E-010 2.5370E-005
SEM  1.2550E-005 2.1267E-007  2.1267E-007  2.1267E-007  2.1267E—007 1.4091E-003 2.1267E-007 2.1267E-007 3.0136E-005
Mean  -3.2628 (=) -3.2906 (=) -3.3224 () -3.3224 () -3.3224 () -3.2620 (=) -3.3224 () -3.2230 (+) -3.3063

F42  Std 5.9605E-002 5.2715E-002 8.5422E-016 8.4260E-016  8.8818E-016 6.6566E-002 8.6569E-016 4.4425E-002 4.0848E-002
SEM  8.4303E-002 6.1559E-002 1.9886E-006  1.9886E-006  1.9886E-006  8.9897E-002 1.9886E-006 1.0882E-001 4.3909E-002
Mean  1.7221E-001 (+) 1.6225E-002 (+) 0.0000E+000 (=) 0.0000E-+000 (=) 3.2858E-004 (=) 2.5049E-004 (=) 0.0000E+000 (=) 0.0000E+000 (=) 0.0000E+000

F43 S 4.3531E-002 1.6570E-002 0.0000E+000  0.0000E-+000  1.7694E-003 1.3489E-003 0.0000E+000  0.0000E+000  0.0000E-+000
SEM  1.7763E-001 2.3191E-002 0.0000E+000  0.0000E+000  1.7997E-003 1.3720E-003 0.0000E+000  0.0000E+000  0.0000E+000
Mean  9.9868E-002 (+) 4.4681E-002 (+) 7.6383E-015(+) 1.6517E-010 (+) 2.2949E-009 (+) 7.7568E-015(+) 8.4140E-014 (+) 8.8818E-016 (=) 8.8818E-016

F44 S 1.9674E-002 2.4061E-001 1.4062E-015 73517E-010  2.9784E-010 8.8620E-016 4.8985E-014 0.0000E+000  0.0000E+000
SEM  1.0179E-001 2.4473E-001 7.7667E-015 7.5349E-010 2.3141E-009 7.8072E-015 9.7361E-014 8.8818E-016 8.8818E-016
Mean  1.8041E-003 (+) 9.1147E-002 (=) 1.5306E-022 (-) 6.4272E-018 (-) 3.0426E-019 (-) 9.6024E-002 (+) 2.8504E-028 (-) 4.4584E-005(-) 2.0642E-004

F45  Std 6.3112E-004 1.8958E-001 3.0328E-022  2.9307E-017 8.4230E-020 1.8938E-002 2.4388E-028 7.6939E-005 8.0646E-004
SEM  1.9113E-003 2.1035E-001 3.3972E-022  3.0004E-017 3.1570E-019  9.7873E-002 3.7514E-028 8.8923E-005 8.3246E-004
Mean  9.8688E-003 (+) 4.3949E-003 (=) 1.7829E-026(-) 4.8668E-032 (-) 8.8745E-019 (-) 2.7011E-001(+) 1.1910E-027 (-) 1.1022E-005(-) 2.5358E-004

F46  Std 5.4956E-003 8.7898E-003 8.9899E-026 1.7716E-032  2.5469E-019 1.6571E-001 1.9502E-027 6.8267E-006 2.3252E-004
SEM  1.1296E-002 9.8273E-003 9.1650E-026 5.1792E-032  9.2327E-019 3.1689E-001 2.2851E-027 1.2965E-005 3.4404E-004
Mean  8.0292E-001 (+) 8.2465E-001 (+) 0.0000E+000 (=) 3.7493E-002 (+) 2.0184E-004 (+) 0.0000E+000 (=) 6.5815E-012 (+) 0.0000E+000 (=) 0.0000E-+000

F47 St 1.0749E-001 7.9896E-001 0.0000E+000  1.4595E-002 2.0031E-005 0.0000E+000  9.7676E-012 0.0000E+000  0.0000E+000
SEM  8.1008E-001 1.1482E+000  0.0000E+000  4.0233E-002 2.0284E-004  0.0000E+000  1.1778E-011 0.0000E+000  0.0000E+000
Mean  -1.0333 (+) -1.0674 (-) -1.0809 (-) -1.0809 (-) ~1.0784 (+) -1.0809 (-) -1.0809 () -1.0809 () -1.0809

F48  Std 1.1564E-001 4.0593E-002 3.1402E-016  4.4409E-016  2.6398E-003 2.2184E-009 4.4409E-016 9.4594E-012 7.5439E-009
SEM  1.2507E-001 4.2777E-002 3.8442E-005 3.8442E-005 3.6090E-003 3.8441E-005 3.8442E-005 3.8442E-005 3.8436E-005
Mean  —0.72303 (+) ~1.1237 (+) -1.5(-) -1.5(-) -0.82997 (+) -1.0967 (+) ~1.4268 (-) -0.53983 (+) -1.4812

F49  Std 2.9729E-001 3.2473E-001 6.6613E-016  6.6613E-016 1.0504E-001 2.6887E-001 1.8693E-001 4.7999E-001 1.0123E-001
SEM  8.3190E-001 4.9704E-001 7.7665E-007  7.7665E-007  6.7821E-001 4.8469E-001 4.9817E-001 6.4122E-001 1.0296E-001
Mean  -0.35474 (+) -0.58783 (=) ~1.4893 () -1.001 (-) -0.24423 (+) -0.59633 (=) -0.63802 (=) -0.00031006 (+) -0.53132

F50  Std 1.6705E-001 2.6764E-001 1.2893E-002  2.9541E-001 1.3174E-001 2.8286E-001 2.9399E-001 1.0390E-003 1.9078E-001
SEM  6.3271E-001 4.6249E-001 5.2449E-001 2.9759E-001 7.3271E-001 4.6468E-001 9.1074E-001 1.4997E+000  4.7379E-001
Mean  -10.3351 (+) -8.9162 (+) -12.1190 (-) -12.1190 () ~11.9574 (+) -9.1957 (+) -12.1190 (-) -12.1190 (-) -12.1190

F51 Std 2.9660E+000  3.2091E+000 1.5515E-012 6.8951E-015 1.5910E-001 3.1251E+000  6.8415E-015 3.8891E-010 5.2666E-007
SEM  34612E+000  4.5340E+000  9.1620E-005  9.1620E-005  2.2687E-001 4.2793E+000  9.1620E-005 9.1621E-005 9.2016E-005
Mean  -3.2418 (+) -2.3754 (+) -3.6525 (=) -8.0712 (-) ~2.3545 (+) -3.1816 (=) -6.1788 (=) -2.7824 (=) -4.5640
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TABLE 5. (Continued.) Experimental results obtained by GA, PSO, ABC, CS, GSA, GWO, ASO, SMA, and CBLSO on MN benchmark functions.

F52 Std 2.4584E+000 5.4582E-001 9.8587E-001 3.3024E+000 6.9956E-001 3.9404E-001 3.7124E+000 4.8892E-001 3.2123E+000
SEM 7.5738E+000 8.0487E+000 6.8247E+000 4.0442E+000 8.0814E+000 7.2347E+000 5.6256E+000 7.6388E+000 6.6666E+000
Fs3 Mean  -1.4837 (-) -1.4701 (-) -1.4774 (-) —7.8114 (-) -1.4774 (-) -1.8397 () -1.4774 (-) -0.36296 (+) -1.6967
Std 1.0162E-001 3.9269E-002 6.5994E-016 3.4021E+000 8.8354E-016 1.5872E+000 2.4324E-016 7.1226E-003 1.0035E+000
SEM 8.7257E+000 8.7388E+000 8.7314E+000 4.1619E+000 8.7314E+000 8.5183E+000 8.7314E+000 9.8458 8.5710E+000
Mean 1.2061E-002 (+) 0.0000E+000 (=) 1.2622E-014 (-) 0.0000E+000 (-) 2.0477E-018 (-) 1.9449E-004 (-) 1.1309E-027 (-) 5.9862E-011 () 2.3510E+001
Fs54 Std 1.3686E-002 0.0000E+000 1.5307E-014 0.0000E+000 1.7257E-018 8.4069E-004 2.6267E-027 1.1434E-010 1.2661E+002
SEM 1.8242E-002 0.0000E+000 1.9839E-014 0.0000E+000 2.6779E-018 8.6289E-004 2.8598E-027 1.2907E-010 1.2877E+002
Mean 1.5090E+002 (-) 5.4882E+002 (=) 6.7275E-005 (-) 1.6718E-018 (-) 8.0111E-001 (-) 1.1378E+002 (=) 7.3266E-020 (-) 9.7594E+001 (=) 3.2264E+002
F55 Std 5.1591E+002 9.9014E+002 3.0311E-004 8.2351E-018 2.4294E+000 1.0859E+002 2.0049E-019 1.1063E+002 6.6015E+002
SEM 5.3752E+002 1.1321E+003 3.1049E-004 8.4031E-018 2.5581E+000 1.5728E+002 2.1346E-019 1.4752E+002 7.3477E+002
Mean  8.0910E+002 (-) 1.9777E+003 (-) 2.8225E+001 (-) 1.1001E+000 (-) 3.5735E+003 (-) 2.3010E+003 (-) 2.0558E+002 (-) 1.3228E+003 (-) 1.2289E+004
F56 Std 1.4668E+003 2.7065E+003 3.9108E+001 2.3165E+000 5.5238E+003 2.4798E+003 9.2845E+002 1.6073E+003 9.0234E+003
SEM 1.6751E+003 3.3521E+003 4.8230E+001 2.5644E+000 6.5790E+003 3.3829E+003 9.5094E+002 2.0816E+003 1.5246E+004
+/-/= 24/3/2 11/9/9 8/17/4 2/22/5 15/11/3 8/7/14 4/19/6 6/14/9
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FIGURE 5. The box plots of optimal solutions obtained by CBLSO and other nature-inspired algorithms on US problems.

we can see that the convergence speed of CBLSO is superior
on F21, F22, F23, and F24. GA and PSO defeat CBLSO
and other algorithms on F26 and F27 in the early stage of
the search process but the solutions obtained by CBLSO
are better than or similar to the solutions obtained by GA
and PSO. And then according to Fig. 10 depicted on MN
problems (including F29, F36, F42, F43, F45, F47, F49,
F51, and F55), CBLSO defeats other eight algorithms in case
of F36, F45, and F47 by providing very fast convergence
speed and finally offers the best solutions. Although the
convergence speed offered by CBLSO for other functions is
not remarkable among all the nine algorithms, the solutions
obtained by CBLSO are comparable.

We now analysis the box plots of optimal solutions
obtained by each algorithm (Figs. 5, 7, 9, and 11). From
Fig. 5 plotted on US problems (including F02, FO3, and F04),
it is observed that CBLSO maintains the fewer values and
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the shorter distribution of optimal solutions compared with
the other peer algorithms on all problems, indicating its great
superiority for solving US problems. Next, it can be seen
from Fig. 7 plotted on UN problems (including F06, FOS,
F10, F12, F13, and F16) that the performance of CBLSO is
satisfactory for all problems, especially on F16, CBLSO can
provide a better optimal solution than other peer algorithms.
Thus, based on the aforementioned studies, we can conclude
that CBLSO is a more effective algorithm for optimizing
Uni-modal problems. According to Fig. 9 on MS problems
(including F21, F22, F23, F24, F26, and F27), we can find
that CBLSO maintains the fewer values and the shorter dis-
tribution of optimal solutions compared with the other nine
algorithms on F21, F22, F23, and F24. GA, CS, and ABC
defeat CBLSO, PSO, GSA, GWO, ASO, and SMA in the case
of F26 while GA defeats other eight algorithms in the case of
F27. From Fig. 11 depicted on MN problems (including F29,
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FIGURE 7. The box plots of solutions obtained by CBLSO and other nature-inspired algorithms on UN problems.

F36, F42, F43, F45, F47, F49, F51, and F55), the complexity
of the test problems is enhanced. We can find that CBLSO
is superior on F29, F36, F42, F43, F45, F47, F49, and F51
whereas its performance is comparable to GA, CS, ABC,
GSA, ASO, and SMA on F55, denoting a good and steady
performance of CBLSO.

D. ROBUSTNESS ANALYSIS BETWEEN CBLSO AND OTHER
NATURE-INSPIRED ALGORITHMS

The maxNFEs is set as 500,000 and other parameters are
set to be the same as Section C. A trial is considered to be
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“successful” if the following inequality is satisfied [75]:

[FOBJBEsT — FOBJANAL| < €rel IFOBJANAL| + €abs
(17

where FOBJanaL indicates the known analytical minima,
FOBJggsT indicates the best function value provided by the
method or algorithm. Control parameters of accuracy are
considered to be gre] = 107* and ggp. = 1070 in all cases
for the present work.

To compare the convergence speeds, we use the accelera-
tion rate (AR) [76] which is defined as follows, based on the
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number of function evaluations (NFEs) for the two algorithms success rate (SR):
CBLSO algorithm and one comparative algorithm (OCA): __ TUNSSyccess

NFE
AR — OCA

= —— (18)
NFEcbLs0

where AR > 1 means CBLSO is faster. Note that, to minimize
the effect of the stochastic nature of the algorithms on this
metric, the reported NFEs for each problem is the mean value
over 50 runs.

The number of runs, for which the algorithm successfully
reaches the accuracy of each test function is measured as the
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SR (19)

TunS7yal

where runsgyc.ss represents the number of runs that success,
runsyy,; represents the total number of the independent runs.
Also, the average acceleration rate (AR,ye) and the average
success rate (SRaye) over m test functions are calculated as
follows:
1 m
ARge = — D AR, (20)

i=1
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FIGURE 10. The convergence graphs of average best-so-far solutions obtained by CBLSO and other nature-inspired algorithms on MN problems.

1 m
SRyve = — > SR @n

i=1

We compare the CBLSO algorithm with GA, PSO, CS,
ABC, GSA, GWO, ASO, and SMA, in terms of convergence
speed and robustness, and the results (i.e., NEFs, SR, AR,
ARgye, and SR,ye) of 56 test problems are presented in Tables
6-7. Besides, to check whether CBLSO saves computation
time, the results of the runtime (T) over 50 runs are also
recorded in Table 7.

From the results in Table 6, it is clear that CS ranks
the first in terms of average NFEs for all test problems,
and then it is ABC. The CBLSO ranks the third. Although
CS and ABC outperform our algorithm in terms of average
NFEs for all test problems, the CBLSO ranks the first best
results than the other six algorithms on NFEs for all test
problems. As can be inferred from Table 6, CBLSO con-
verges much faster than GA, PSO, CS, ABC, GSA, GWO,
ASO, and SMA on 41, 26, 20, 21, 34, 33, 36, and 33 test
functions, while GA, PSO, CS, ABC, GSA, and GWO out-
performs CBLSO on 5, 24, 33, 26, 14, 11, 14, and 16 test
problems, respectively. Besides, CBLSO and GA, CBLSO,
and PSO, CBLSO and CS, CBLSO and ABC, CBLSO and
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GSA, CBLSO and GWO show the same performance on
10, 6, 3, 9, 8, 12, 6, and 7 test functions, respectively.
Although the CBLSO cannot surpass its competitors on
all test functions, The overall average acceleration rates of
CBLSO to GA, PSO, CS, ABC, GSA, GWO, ASO, and SMA
are 347.4107, 118.9409, 127.0125, 133.1074, 210.5751,
21.5300, 239.9045, and 20.3052, respectively, which means
CBLSO is faster than its competitors regarding to the overall
average acceleration rates. Next, we pay attention to the SR
and the execution time of 50 runs. As can be seen from
Table 7 that GWO is the best algorithm in the case of aver-
age execution time and it also gets the first best results on
execution time whereas our CBLSO ranks the sixth and the
third, respectively. Moreover, when regarding the average SR
and the best results on SR, CS performs the best (0.76 and
45), followed by our CBLSO algorithm (0.71 and 39). It also
can be seen that there are 36 functions that CBLSO can solve
100% successfully (92.3% of the best results on SR), while
the number for GA is 5 (71.4% of the best results on SR),
for PSO is 23 (88.5% of the best results on SR), for CS is 40
(88.9% of the best results on SR), for ABC is 36 (94.7% of the
best results on SR), for GSA is 27 (90.0% of the best results
on SR), for GWO is 28 (96.5% of the best results on SR), for
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FIGURE 11. The box plots of average best-so-far solutions obtained by CBLSO and other nature-inspired algorithms on MN problems.
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FIGURE 12. The index map of the Wujiang River basin.

ASO is 33 (82.5% of the best results on SR), and for SMA is
37 (92.5% of the best results on SR),. Thus, although GWO is
better than our algorithm in terms of execution time, CBLSO
achieves much better results than GWO in terms of Mean
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values, which can be seen from Tables 2-5. Besides, although
CS has a superior performance in terms of SR and execution
time, the percent of solving 100% successfully on problems
of CBLSO is higher than CS. On the whole, the CBLSO is

131281



IEEE Access

J. Liu, Y. Wu: Improved LSO Algorithm With CBLSO for Global Optimization

TABLE 6. Experimental results in terms of NFEs obtained by GA, PSO, CS, ABC, GSA, GWO, ASO, SMA, and CBLSO.

Fumction A GA/CBLSO_PSO PSO/CBLSO CS CSICBLSO_ABC ABC/CBLSOGSA GSA/CBLSO GWO GWO/CBLSOASO ASO/CBLSOSMA SMA/CBLSOCBLSO
\neton  NFEs AR NFEs AR NFEs AR NFEs AR NFEs AR NFEs AR NFEs AR NFEs AR NFEs
Fol 15320 3649652 24,332 770000 45,146 1428671 30,068 951519 42,187 1335032 2424 76719 161,083 512.6044 873 27627 316
F02 500,000 1179.2453 22,962 541557 80215 189.1863 71,492 1686132 216951 5116769 5012 118208 296980 7004245 27,631 651675 424
F03 500,000 14409222 21,048 606571 73276 2111700 65,829 189.7089 245896 7086340 4,581 132017 315767 909.9914 15396 443689 347
F04 500,000 13651 500,000 13651 500,000 13651 500,000 13651 500,000 13651 500,000 13651 500,000 13651 484661 13232 366,285
F05 500,000 148697 21,624 0.6427 5,965 01773 3,066 0.0911 145616 43276 263837 78411 220,164 68106 84324 2.5061 33,648
F06 499493 35868 1,676 00120 8,930 0.0641 1,901 0.0137 103479 07431 41,528 0.2982 500,000 35004 397646  2.8554 139,260
F07 500,000 23474178 1282 6.0188 2,895 135915 1,540 7.2300 88,884 4172058 498 2.3380 188299 8840329 385 1.8075 213
F08 500,000 10082 86,714 01748 41,897 00845 488496 0.9850 174,199 03513 499822 1.0078 300,149 06052 453409 09142 495,938
F09 494,501 1.0091 2,420 0.0049 9,203 00188 10,649 0.0217 81,405 0.1661 471,567 0.9622 19L111 03899 215139 04390 490,117
F10 500,000 1.0019 10782 0.0216 20,060 0.0402 57,340 0.1149 78,104 0.1565 492455 0.9867 188,635 03780 333383 0.6680 499,070
FIl 500,000  919.1176 10375 190717 41880 769853 67,119 1233805 219484 4034632 3,083 5.6673 202222 5371728 15874 291801 544
FI2 500,000  959.6929 489,470 9394818 349080  670.0192 500000  959.6920 446,667  857.3263 190257 3651766 415030 7966027 9,028 173282 521
FI3 500,000  490.6771 500,000  490.6771 500000  490.6771 500,000  490.6771 500,000  490.6771 500,000  490.6771 500,000  490.6771 283646 2783572 1,019
Fl4 500,000 7812500 2,696 42125 5,099 7.9672 1,020 15938 12,155 189922 636 0.9938 81,235 1269297 657 10266 640
FIs 500,000 12165450 31,363 763000 158842 3864760 74,634 1815912 414,156 1007.6788 6,718 163455 421,660 10259367 50,349 1225036 411
Fl6 500,000 10000 500,000 1.0000 463,050 0.9261 500,000 10000 500,000 10000 500,000 1.0000 500,000 10000 490,052 09801 500,000
F17 500,000 1.0000 500,000 10000 500,000 1.0000 500,000 10000 500,000 1.0000 500,000  1.0000 500,000 10000 500,000  1.0000 500,000
FI8 352,798 6.9440 1,047 0.0206 2212 0.0435 1310 0.0258 77,824 15318 126984 2.4994 189,060 3.7389 30,843 0.6071 50,806
F19 500,000 6082725 2,527 3.0742 7,136 8.6813 1,657 20158 146,860 178.6618 748 0.9100 246,755 3001886 2,411 29331 822
F20 499,881 2.1259 1,729 0.0074 4234 0.0180 1,528 0.0065 126397 0.5375 363301 15450 227254 09665 124978 05315 235,142
F21 500,000 17421603 500,000  1742.1603 500,000  1742.1603 500,000  1742.1603 500,000  1742.1603 9,026 314495 500000 17422160 20,592 717491 287
F2 500,000 16339869 446212 14582092 500000 16339869 500,000  1633.9869 500,000  1633.9869 223,68 73.0980 500,000 16339869 16,697 545654 306
F23 161432 05431 500000 16822 500,000 16822 500,000 16822 500,000 16822 500,000 16822 500,000 1.6822 25,151 0.0846 297,229
F24 500,000 10000 500,000 1.0000 500,000 10000 500,000 1.0000 500,000 1.0000 500,000 1.0000 500,000 10000 491413 09828 500,000
F25 90302 93191 719 00742 2,099 02166 603 0.0622 83,365 8.6032 91,528 9.4456 177,777 183464 24470 25253 9,690
F26 243,795 04880 340,879 0.6823 23484 0.0470 12,248 0.0245 479,758 0.9603 499,552 0.9999 490,182 09812 466,088  0.9329 499,507
F27 374221 07484 500,000 10002 336,795  0.6736 350,824 07016 500,000 1.0000 500,000 1.0000 500,000 10000 500000  1.0000 500,000
F28 36047 35403 261237 256567 3,072 03017 4614 0.4532 383710 37.6851 244852 240475 69273 6.8035 6,935 0.6811 10,182
F29 500,000 11013216 118,680 2614097 45119 993811 493823 10877159 500,000 11013216 5493 12091 279962 6166564 590 12996 454
F30 195102 559192 878 02516 1,789 05128 806 0.2310 75514 216435 1647 04721 172786 49.5231 22,566 64678 3,489
31 500,000  667.5567 2,603 34753 7,596 10.1415 1,758 23471 144,655 1931308 731 0.9760 245864 3282563 1375 1.8358 749
F32 500,000  764.5260 2,673 40872 6,997 10.6988 2,168 33155 138,044 2110765 785 12003 236454 3615505 64950 993119 654
F33 193254 35851 1431 00265 2,458 0.0456 14,314 0.2655 448991 83293 92,867 17228 196,137 3.638 68369 12683 53,905
F34 342,158 584985 1073 0.1835 3,506 0.6148 1,039 0178 111,033 189832 3,585 0.6129 217,533 37.1915 15815 27039 5,849
35 500,000 27756 153,737 0.8534 35818 0.1988 500,000 27776 500,000  2.7756 231347 12843 422118 23433 207,610 11525 180,139
F36 458212 193583 310972 131378 12,383 0.5232 11,534 0.4873 201,507 123193 495356 209276 240,804 101734 99420 42003 23,670
F37 473767 145972 250945 7.7319 12008 03977 4,997 0.1540 142340 43856 494784 152448 239957  7.3933 102288 3.1516 32,456
38 478351 154952 263093  8.5223 13,851 0.4487 13,166 0.4265 450,021 145775 494519 160189 240250  7.7824 111,107 35991 30,871
F39 500,000 1.0000 385457 0.7709 495989 0.9920 500,000 1.0000 500,000 1.0000 500,000 1.0000 496,330 09927 500,000 1.0000 500,000
F40 500,000 1.0000 461837 09237 488,682 09774 500,000 1.0000 497386 0.9948 500,000 1.0000 484,190 09684 492,046  0.9841 500,000
F4l 36380  0.1861 673 0.0034 2615 0.0134 768 0.0039 122042 0.6243 100352 0.5134 208221 1.0652 35,233 0.1802 195,483
F42 310484 0.6422 210810 04360 1,179 00231 2,962 0.0061 151318 03130 473524 0.979 245591 05080 489076 1.0116 483,491
F43 500,000  941.6196 280,560 5283785 115740 2179661 109496 2062072 177,191  333.6930 5846 11.0094 289263 5447514 29,566 556798 531
F44 500,000 14925373 100,677  300.5284 211271  630.6597 129,579 3868030 373,796 11158090 7,071 211075 400,549 11956687 36,340 1084776 335
F45 500,000 10063 120501 0.2606 175408 03530 165430 03329 177,824 03579 500,000 10063 266756 05369 459100 0.9240 496,869
F46 500,000 10394 174491 03627 97,607 02029 107,882 02243 190,049 0.3951 499938 1.0393 276223 05742 491,694  1.0221 481,054
F47 500,000  553.0973 500,000  553.0973 500000  553.0973 136,692 1512080 500,000  553.0973 8,833 9.7710 487253 5389967 107,193 1185763 904
F48 327364 145211 70914 3.1456 3382 0.1500 1,346 0.0597 461430 204680 20,296 0.9003 164,543 7.2987 164,543 7.2987 22,544
F49 498302 1.0280 241220 04976 41307 00852 11,610 0.0240 500,000  1.0315 495077 1.0213 490,082 10110 494601  1.0203 484,752
F50 500,000 1.0000 480,196 0.9604 490909 09818 500,000 1.0000 500,000 1.0000 500,000 1.0000 481279 09626 500,000  1.0000 500,000
F51 400,170 3.8679 271,110 26204 7,655 0.0740 5,304 0.0513 500,000 48328 385366 37248 242811 23469 75872 07333 103,460
Fs52 500,000 1.0000 500,000  1.0000 500,000 1.0000 500,000 1.0000 500,000 1.0000 500,000 1.0000 500,000 10000 500,000  1.0000 500,000
Fs3 500,000 10000 500,000 10000 200754 05815 500,000 1.0000 500,000 10000 499999 1.0000 500,000 10000 500,000  1.0000 500,000
Fs4 500,000 10198 2,453 0.0050 9,168 0.0187 3,524 0.0072 212,358 04331 499714 1.0192 203446 05985 204202 04165 490,312
Fss 500,000 10000 353403 07068 81,633 0.1633 419006 0.8380 305304 06106 500,000 1.0000 345613 06912 496491  0.9930 500,000
Fs56 500,000 10000 470,151 0.9403 484,096 0.9682 500,000 10000 417,508 0.8350 500,000 1.0000 374087 07482 500,000 1.0000 500,000
Average 430,026 (9) 3474107 214,654 (5) 1189400 166,687 (1) 1270125 194342(2) 133.1074 311,705 (7) 210.5751 270,677 (6) 21.5300 330,742 (3) 2399045  211,466() 203052 209,371 (3)
Total 19) 13(3) 10 (4) 15(2) 3(7) 5(5) 2(8) 4(6) 18 (1)

an effective algorithm with an acceptable convergence speed
and stronger robustness.

E. COMPREHENSIVE SIGNIFICANCE ANALYSIS

The comparison of algorithms does not guarantee the efficacy
and superiority of the proposed algorithm. The possibility of
getting good results, by chance, cannot be ignored. To provide
more accurate conclusions, a non-parametric statistical test
named Wilcoxon Signed-Rank Test (WSRT) [77], [78] is
used to better compare the overall performance of the algo-
rithms. WSRT is a pair-wise test that aims at detecting the
statistically significant difference between the behaviors of
two algorithms. The null hypothesis Hy for a two-sided test
is: “there is no difference between the median of the solutions
provided by algorithm A and the median of the solutions pro-
vided by algorithm B for the same test function” [77], [78].
To determine whether algorithm A achieves a statistically
better solution than algorithm B, or if not, whether the alter-
native hypothesis is valid, the sum of the ranks by produced
by WSRT is examined. When using WSRT, the R and R~
regarding the comparisons between the two algorithms are
computed firstly. Once the R and R~ have been achieved,
the p-values can be computed. Usually, there are two types of
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WSRT: single-problem statistical analysis and multi-problem
statistical analysis. In this part, WSRT at a significant level of
o = 0.05 is used for multi-problem statistical analysis.

For single-problem statistical analysis, the Mean values of
30 runs for each test problem presented in Tables 2-5 are
used for the sample data. The single-problem-based statistical
comparisons between the CBLSO algorithm and one of the
referred algorithms by WSRT as well as the corresponding
statistical results for each test problem in 30 runs are shown
in Tables 2-5, respectively. In these tables, ‘4’ means the case
in which the null hypothesis is rejected and CBLSO shows
a better performance in the single-problem-based statistical
comparisons tests at 95% significance level (¢ = 0.05); -
means the case in which the null hypothesis is rejected and
CBLSO shows a worse performance; and ‘=" means a case
in which no statistically significant difference between LSO
and the other algorithms exists. From the results in Tables 2-5,
we can see that the CBLSO significantly performs better
than GA, PSO, CS, ABC, GSA, GWO, ASO, and SMA on
the US problems. For the UN problems, the CBLSO signif-
icantly outperforms other peer algorithms except for SMA.
For the MS problems, CBLSO significantly improves other
peer algorithms and achieves comparable results compared
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TABLE 7. Experimental results in terms of SR and T obtained by GA, PSO, CS, ABC, GSA, GWO, ASO, SMA, and CBLSO.

Function GA PSO Cs ABC GSA GWO ASO SMA CBLSO

SR Time(s) SR Time(s) SR Time(s) SR Time(s) SR Time(s) SR Time(s) SR Time(s) SR Time(s) SR Time(s)
Fo1 1.00  3.723400 1.00  0.773120 1.00 1.217800 1.00  3.200000 1.00  5.000300 1.00  0.047500 1.00 19.5597 1.00  0.068125 1.00  0.100630
F02 0.00 14.46780 1.00 1.294700 1.00  2.783400 1.00  7.372500 1.00 2598910 1.00  0.135940 1.00  40.6163 1.00 1.933100 1.00  0.088438
F03 0.00 12.63590 1.00 1.193100 1.00  2.488100 1.00  6.990300 1.00 19.47190 1.00  0.102190 1.00  43.0497 1.00 1.105900 1.00  0.049688
F04 0.00 19.62780 0.00 20.49690 0.00 13.56220 0.00 53.82870 0.00 45.18810 0.00 5.921900 0.00 53.7997 0.12 39.29310 0.58 17.75630
FO5 0.00  3.101200 0.96  0.923440 1.00  0.214060 1.00  0.365620 1.00  8.065300 1.00 1.373800 1.00  26.4606 1.00 1.916900 1.00 1.930300
F06 0.02 3.256900 1.00  0.100310 1.00  0.240630 1.00  0.267500 0.92 5.689100 1.00  0.231560 0.00  56.0416 0.30 11.33410 1.00  7.786200
FO7 0.00 3.106300 1.00 0.080937 1.00 0.100310 1.00 0.200310 1.00 5.144400 1.00 0.010000 1.00 23.0494 1.00 0.039063 1.00 0.037500
Fo8 0.00  3.672500 1.00  2.621200 1.00  0.922500 0.06  53.31130 1.00 12.01910 0.38 1.856200 1.00  33.8806 0.56 11.53160 0.16  26.40130
F09 0.02  3.581900 1.00  0.146880 1.00  0.128440 1.00 1.267200 1.00  5.960600 1.00  3.020600 1.00 252131 1.00  6.470300 1.00 3542970
F10 0.00 3.968800 1.00  0.575310 1.00  0.573440 1.00  6.006900 1.00  7.259700 0.82  4.469100 1.00  25.9262 1.00 12.18940 0.50  37.58530
Fl1 0.00 5.048400 1.00  0.432500 1.00 1.110900 1.00  9.450000 1.00 19.04060 1.00  0.047813 1.00 354712 1.00  0.605620 1.00  0.062187
F12 0.00 12.18840 0.16 16.77440 0.98 10.22560 0.00  48.52940 0.38 29.37780 1.00 1.705000 0.66  45.1622 1.00  0.546880 1.00  0.064375
F13 0.00 14.94090 0.00 24.16060 0.00 12.39000 0.00 64.97750 0.00 45.25310 0.00 4.636600 0.00 47.7994 1.00 18.36000 1.00 0.078125
Fl14 0.00 11.18340 1.00  0.140940 1.00  0.265940 1.00  0.142810 1.00  2.074400 1.00  0.026250 1.00 14.8875 1.00  0.075938 1.00  0.086563
F15 0.00 10.95560 1.00 1.586200 1.00  6.193400 1.00  7.127500 1.00  29.97530 1.00  0.123440 1.00  46.1244 1.00 3.126600 1.00  0.050937
Fl16 0.00 10.83250 0.00  22.02120 0.86 11.08590 0.00  46.42810 0.00  33.35940 0.00  4.788800 0.00  44.9931 0.02 30.72130 0.00  21.79440
F17 0.00 12.51530 0.00 12.84060 0.00 7.892800 0.00 55.14560 0.00 43.64500 0.00 3.562800 0.00 38.5913 0.00 45.1809 0.00 31.98870
F18 0.60  2.604700 1.00  0.053750 1.00  0.077188 1.00  0.161870 1.00  4.524100 1.00  0.480630 1.00 19.1347 1.00 1.157200 1.00  3.081900
F19 0.00  2.614100 1.00  0.157810 1.00  0.169690 1.00  0.186880 1.00  9.614100 1.00  0.011875 1.00  23.1928 1.00  0.061875 1.00  0.080312
F20 0.02  2.494100 1.00  0.105940 1.00  0.132190 1.00  0.240630 1.00  7.189100 1.00 1.859700 1.00 18.9272 100 2.736900 1.00 13.52030
F21 0.00 13.30590 0.00 16.91430 0.00 17.35060 0.00  63.67310 0.00  47.64630 1.00  0.196560 0.00  40.4500 1.00 1.602500 1.00  0.032188
F22 0.00 13.45470 0.14 16.86190 0.00 15.66560 0.00  49.51810 0.00  33.76690 1.00  0.199060 0.00  39.1325 1.00 1.102200 1.00  0.044687
F23 1.00 4.702500 0.00 17.94380 0.00 13.93090 0.00 54.92030 0.00 40.07220 0.00 5.153100 0.00 41.4269 1.00 1.797500 0.92 18.42250
F24 0.00 8.881200 0.00  20.74410 0.00 15.31250 0.00  46.23910 0.00 3447750 0.00  5.081200 0.00 353147 0.02  34.68840 0.00  32.25090
F25 1.00 0.730620 1.00 0.056250 1.00 0.038750 1.00 0.094375 1.00 5.282200 1.00 0.295940 1.00 15.0803 1.00 0.596880 1.00 0.711560
F26 0.92 3.111600 0.32 17.10190 1.00 0.725310 1.00 1.084700 0.06 17.95370 0.08 4.018700 0.04 36.53160 0.62 13.13410 0.28 30.69660
F27 0.76 5.443100 0.00 2228910 1.00  6.701200 0.84  33.33060 0.00  27.13880 0.00  3.318100 0.00  32.18870 0.00 2839590 0.00  34.20500
F28 1.00  0.709690 0.48 13.58590 1.00  0.121870 1.00  0.572500 024 22.22440 0.52  3.088800 1.00  7.960600 1.00  0.264060 1.00  0.877190
F29 0.00 3.506900 0.84  5.790900 1.00 1.099700 0.02  57.87130 0.00  25.17910 1.00  0.049375 0.94 19.69130 1.00  0.043750 1.00  0.060312
F30 0.92 1.380000 1.00  0.057813 1.00  0.066562 1.00  0.119370 1.00  6.389100 1.00  0.013750 1.00 13.12780 1.00  0.540000 1.00  0.248750
F31 0.00  2.800000 1.00  0.130310 1.00  0.190620 1.00  0.193750 1.00 8385300 1.00  0.011875 1.00 17.75440 1.00  0.055000 1.00  0.077500
F32 0.00  2.753800 1.00  0.143750 1.00  0.186250 1.00  0.232810 1.00  7.288800 1.00  0.012500 1.00 15.99810 1.00  0.043125 1.00  0.071875
F33 0.96 1.242800 1.00  0.098125 1.00  0.082500 1.00 1.298400 0.12 18.80840 1.00  0.534380 1.00 19.88630 1.00  2.058100 1.00 3274100
F34 0.64  2.407500 1.00  0.074375 1.00  0.102500 1.00  0.102190 1.00  5.656600 1.00  0.027500 1.00  20.58090 1.00  0.509690 1.00  0.430000
F35 0.00  4.283100 0.72 7.671200 1.00  0.940000 0.00  57.52190 0.00  24.77250 0.84 1.595900 0.40  22.88130 1.00 7.000000 1.00 10.98660
F36 0.16 2.743100 0.38 13.79530 1.00 0.213750 1.00 1.038400 0.58 20.64120 0.90 2.711900 1.00 27.97000 1.00 3.624100 1.00 1.104700
F37 0.14  4.453400 0.50 12.37780 1.00  0.304380 1.00  0.550940 1.00 10.54280 098  3.460600 100 22.12750 1.00 3283100 1.00  2.405600
F38 0.08  4.501200 0.48 12.93590 1.00  0.340940 1.00 1.415600 0.14 17.47060 1.00  2.762500 1.00 19.69090 1.00  4.263700 1.00 2294100
F39 0.00  6.169400 0.24 1532160 0.02 9.976600 0.00  43.73030 0.00 16.02970 0.00  3.364400 0.02 28.15250 0.00 17.95970 0.00 2227370
F40 0.00  2.666200 0.08 1526310 0.06  7.841200 0.00 5528160 0.02 28.61030 0.00  2.243100 0.08  38.67000 0.08 15.70560 0.00  37.12620
F41 1.00  0.242810 1.00  0.059062 1.00  0.101250 1.00  0.113750 1.00  9.022500 0.92  0.503750 1.00  23.67750 1.00 1.170000 1.00 12.00030
F42 0.42 2.458400 0.58 7.811600 1.00 0.251880 1.00 0.308440 1.00 8.300600 0.54 2.063400 1.00 18.59750 0.08 13.43880 0.96 26.29740
F43 0.00 14.85720 0.46 13.05410 1.00 4315000 1.00 12.46530 1.00  20.08250 1.00  0.107190 0.90  32.62810 1.00 2253100 1.00  0.071875
F44 0.00 11.79660 0.86  5.279400 1.00  5.850300 1.00 11.98190 1.00  34.78060 1.00  0.081562 1.00  35.76340 1.00  2.556900 1.00  0.046250
F45 0.00 16.21190 0.78 5.818400 1.00 5.997500 1.00 20.02750 1.00 23.84970 0.00 10.41560 1.00 36.12970 0.18 39.66750 0.06 45.22090
F46 0.00  23.20470 0.68 10.15840 1.00  6.074700 1.00 15.75560 100 21.10250 0.10 14.14410 1.00  27.71160 0.08  47.89120 0.06  33.96160
F47 0.00 168.9800 0.00 179.6519 0.00  295.5872 1.00  95.68750 0.00 186.4931 1.00 2732200 1.00 176.4409 1.00  32.06310 1.00  0.390000
F48 0.68 3.267200 0.86  3.733800 1.00  0.143440 1.00  0.209690 0.08 21.33810 1.00  0.207500 1.00 13.25220 1.00  0.447810 1.00 1.599400
F49 0.02 5.701600 0.52 13.11840 1.00 1.260000 1.00 1.089100 0.00 20.44560 0.52 4.880000 0.04 31.02690 0.08 13.31440 1.00 36.15440
F50 0.00  9.197200 0.04 14.91190 0.10 10.62750 0.00  43.59910 0.00 17.81280 0.00  7.143400 0.08 35.37220 0.00 18.91280 0.00  25.20090
F51 036  2.201600 046  8.161600 1.00  0.136870 1.00 0512190 0.00 18.31500 052 2.019700 1.00  23.02250 1.00 1.813700 1.00  3.950600
F52 0.00  3.547200 0.00  20.05720 0.00  9.682200 0.00  39.77370 0.00 17.29030 0.00  3.142200 0.00  35.99280 0.00 17.03250 0.00 3107410
F53 0.00 8.767200 0.00 17.19620 048  9.594100 0.00  48.63880 0.00 16.36720 0.02  4.850000 0.00  29.61280 0.00 18.50530 0.00  22.12970
F54 0.00  3.334100 1.00  0.075313 1.00  0.192810 1.00 0318120 1.00  9.947800 0.58 1.652500 1.00  23.94880 1.00 5.494700 0.18 26.43870
F55 0.00 3.865900 0.32 10.13530 1.00 1.430900 0.44 41.95780 0.94 10.54090 0.00 2.824100 1.00 32.11720 0.26 19.26940 0.00 26.13590
F56 0.00  7.431300 0.10  20.33060 0.14 15.49500 0.00  61.97090 0.46 19.86280 0.00  6.443400 0.94 2771840 0.00  21.19530 0.00 4432030
Average 0.21 (9) 9.479134 (3) 0.59 (7) 11.52126 (5) 0.76 (1) 9.459051 (2) 0.67 (5) 21.93570 (7) 0.55(8) 22.10230 (8) 0.64 (6) 2.424313 (1) 0.68 (4) 32.13410(9) 0.70 (3) 10.35980 (4) 0.71 (2) 13.04571 (6)
Total 7(9)  2(5 26(8) 5(4) 45(1) 16 () 8@ _1(D 30(6) 0(8) 29(7) 191 36(5 08 4012 2(5 393) 1013

with SMA. For the MN problems, the performance of LSO is
not inferior to that of GA, PSO, GSA, and GWO, and it seems
that CBLSO is as competitive as other peer algorithms.

For multi-problem-based statistical analysis, the Mean val-
ues of the best solutions of 30 runs for each test problem
are used for the pair-wise comparisons. In this part, fifty-
six Mean values of all benchmark functions in Tables 2-5
are used for the sample data of WSRT. The multi-problem-
based statistical comparisons between the CBLSO algorithm
and one of the referred algorithms by WSRT as well as
the corresponding statistical results for each test problem in
30 runs are shown in Table 8. According to Table 8§, we can
find that for US and MS problems, there is no statistically sig-
nificant difference between CBLSO and its competitors. For
UN problems, the CBLSO is statistically significantly better
than GA and GWO, and performs as competitive as PSO,
CS, ABC, GSA, ASO, and SMA. For MN problems, CBLSO
performs significantly better than GA, PSO, and GSA, and
shows no statistically significant difference between CBLSO
and ABC, GWO, ASO, and SMA, although the performance
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of CBLSO is inferior to that of the CS. As for all problems,
the CBLSO shows an improvement over GA, PSO, GSA, and
GWO, and achieves comparable results compared with CS,
ABC, ASO, and SMA. Thus, we can conclude that CBLSO is
a superior and competitive algorithm for numerous functions.

F. FURTHER COMPARISON ON CEC2014 TEST SUITE

In this section, the performance of CBLSO is further com-
pared with some renowned algorithms on 30 benchmark
functions from the CEC2014 competition with D = 30
[79]. These functions consist of Uni-modal problems (FCO1-
FC03), Multi-modal problems (FC04-FC16), Hybrid and
Composite type with varying difficulty levels (FC17-FC22
and FC23-FC30). Specifically, the range of the search space
is in [—100, IOO]d. The algorithms used here are listed in
Table 9. In the case of the problems with D = 30, the
population size is set to 50 and the maxNFEs is set to D*5000.
The CBLSO algorithm is run independently 30 times for each
benchmark function, and the values of Mean, Std, and best
solution (Best) of different algorithms are shown in Table 10.
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TABLE 8. Experimental results of the multi-problem-based WSRT
between CBLSO and GA, PSO, CS, ABC, GSA, GWO, ASO, and SMA on
classic test functions.

Uni-modal problems

CBLSOvs.  US problems UN problems
R* R p-value  a=0.05 R" R p-value  a=0.05
GA 0 6 0.250 = 0 91 0.000 +
PSO 0 1 0.125 = 16 39 0.275 =
Ccs 0 6 0.250 = 29 49 0.470 =
ABC 0 6 0.250 = 26 52 0.339 =
GSA 0 6 0.250 = 18 60 0.110 =
GWO 0 1 1.000 = 4 41 0.027 +
ASO 0 1 1.000 = 17 38 0.322 =
SMA 0 1 1.000 = 19 9 0.469 =
Multi-modal problems
CBLSOvs. MS problems MN problems
R* R p-value  a=0.05 R" R p-value  a=0.05
GA 21 24 0.910 = 75 276 0.009 +
PSO 4 24 0.109 = 55 221 0.010 +
Ccs 6 22 0.219 = 110 10 0.003 -
ABC 6 22 0.219 = 98 73 0.609 =
GSA 4 24 0.109 = 83 193 0.098 +
GWO 1 14 0.125 = 75 135 0.277 =
ASO 4 24 0.109 = 95 58 0.404 =
SMA 15 0 0.063 = 52 53 1.000 =
All problems
CBLSOvs.  US problems + UN problems + MS problems + MN problems
R* R p-value a=0.05
GA 241 1085 0.000 +
PSO 185 805 0.000 +
Ccs 405 298 0.428 =
ABC 338 482 0.340 =
GSA 248 787 0.002 +
GWO 139 491 0.003 +
ASO 255 375 0.334 =
SMA 233 145 0.301 =

TABLE 9. List of algorithms used for comparison.

Method Reference
Fitness-Distance-Ration based PSO (FDR-PSO) Peram et al. [82]
Fully informed particle swarm (FIPS) Liang et al. [83]; Mendes et al. [84]

Comprehensive learning particle swarm optimizer (CLPSO) Liang et al. [85]
Self-Adapting Control Parameters in DE (jDE) Brest et al. [86]
Self-Adaptive DE (SaDE) Qin et al. [87]
Teaching-learning-based optimization (TLBO) Rao et al. [47]
Elitist teaching-1 ing-based optimization (ETLBO) Rao et al. [88]
Teaching-learning-based optimization with dynamic group strategy Zou et al. [89]
(DGSTLBO)
Backtracking search optimization algorithm (BSA) Civicioglu [90]

Learning backtracking search optimization algorithm (LBSA)
Sine-cosine algorithm and PSO (SCA-PSO)

Chen et al. [80]
Nenavath et al. [81]

Note that the fitness function is the error between the real
optimal solution and the solution obtained by the algorithm.
Assume that the real global optimal solution is x*, and the
best solution provided by the optimization algorithm is y*.
Then, |[f (y*)—f (x*)| is selected to be the fitness function [80].
In Table 10, the data for these compared algorithms are
provided by Chen et al. [80] and Nenavath et al. [81]. The
best results are shown in bold.

Table 10 shows that CBLSO performs best for functions
FC23, FC24, FC25, FC27, FC28, FC29, and FC30 according
to the value of Mean. jDE performs best for functions FCO03,
FC04, FC08, FC10, FC20, FC21, FC25, and FC26 accord-
ing to the value of Mean. SaDE performs best in terms of
the value of Mean for functions FC02, FC06, FC07, FC18,
FC19, and FC26. The performance in terms of Mean with
LBSA is better than the others for functions FC09, FC12,
FC14, FC16, and FC22, while SCA-PSO is better than the
others for functions FCO1, FC11, and FC17. For function
FC13, the best value of Mean is provided by BSA. For
function FECE15, FDR-PSO has the smallest mean value
among all algorithms. The three TLBOs, SCA-PSO and
CBLSO provide the same mean value for function FC24,
which is the smallest of the twelve algorithms. Considering
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the best solutions, CBLSO performs best for functions FC23,
FC24, FC25, FC26, FC27, FC28, FC29, and FC30. jDE
performs best for 9 functions (FC02, FC03, FCO05, FCO8,
FC10, FC18, FC20, FC25, and FC26), while SaDE performs
best for 6 functions (FC02, FC06, FC07, FC21 and FC26).
For functions FCOS5, the jDE, BSA, LBSA, and SCA-PSO
have the same best solutions, which is the smallest of the
twelve algorithms. For functions FC24, the best solutions
obtained by TLBO, ETLBO, DGSTLBO, and CBLSO can
produce are the smallest. For function FC25, jDE, TLBO,
ETLBO, DGSTLBO and CBLSO provide the smallest best
solutions among all algorithms, while for function FC26, all
the algorithms can obtain the best solutions. FDAR-PSO is
better than other algorithms in terms of the best solutions
for functions FC15, FC16, and FC19. ETLBO outperforms
other algorithms in terms of the best solutions for function
FC14, BSA outperforms other algorithms in terms of the best
solutions for function FC12 and FC13, LBSA outperforms
other algorithms in terms of the best solutions for function
FC04 and FC09, and SCA-PSO outperforms other algorithms
in terms of the best solutions for function FCO1, FC11, and
FC22. When we pay attention to the value of Mean of the
twelve algorithms for 30 functions, we can find that CBLSO,
jDE, and SaDE, rank in first place for seven functions, BSA
and SCA-PSO for six functions, ETLBO for three func-
tions, BSA for two functions, and FDR-PSO, TLBO, and
DGSTLBO for one function. The statistical analysis results
conducted by the multi-problem-based WSRT at a significant
level of « = 0.05 in Table 11 show that CBLSO significantly
outperforms FDR-PSO, FIPS, CLPSO, jDE, SaDE, ETLBO,
DGSTLBO, BSA, and LBSA in terms of p-value, although
the statistical results between CBLSO and TLBO, CBLSO,
and SCA-PSO are not significant, suggesting that CBLSO is
very effective. Thus, it can be concluded that CBLSO can
show strong and competitive performance compared with
other algorithms.

V. REAL APPLICATION ON OPTIMAL DISPATCH OF
CASCADE HYDROPOWER STATIONS

The problem considered in this study is called the optimal dis-
patch of cascade hydropower stations. Traditional optimiza-
tion methods or algorithms may face trouble with problems
that having many equality or inequality constraints as well
as interdependent relationships between decision variables
and may require more NFEs [91]. Many water resources and
hydrological optimal dispatch problems often involve many
equality or inequality constraints as well as interdependent
relationships among decision variables. Moreover, the size of
the decision variables is often large. This paper utilizes these
aspects to investigate the performance of CBLSO in tackling
these problems.

In this section, the optimal dispatch problem of Wujiang
cascade hydropower stations in Guizhou province, southwest
of China [91], is employed to evaluate the great potential of
CBLSO for real application. In this problem, there is often
interdependence among one or more decision variables and
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TABLE 10. Experimental results of 12 algorithms on 30-dimensional CEC2014 problems.

Function FDR-PSO__ FIPS CLPSO __jDE SaDE TLBO ETLBO __ DGSTLBO _ BSA LBSA SCA-PSO__ CBLSO
FCO1 Mean  2.78E+06  1.02E+07  2.92E+07  3.37E+05  441E+05  8.28E+05  3.33E+05  1.04E+07  5.12E106  2.79E+05  2.32E+05  6.52E+07
SD 1.98E+06  2.88E+06  433E+06 298E+05  3.04E+05  7.89E+05  2.02E+05  8.61E+06  4.10E+06  1.6SE+05  233E+05  3.07E+07
Best 1.32E+05  5.60E+06  2.14E+07  1.OGE+05  123E+05  S5.77E+04  1.37E+05 3.15E+06  4.46E+05  7.85E+04  5.68E+04  1.75E+07
FC02 Mean  1.53E+08  1.13E+04  126E+03  1.99E-14  2.84E-15  144E+02  1.19E+02  4.59E+06  8.34E-01 4.83E-14  6.77E+08  5.79E+09
SD 3.61E+08  527E+03  7.40E+02  137E-14  899E-15  1.72E+02  1.56E+02  L1IE+07  148E+00 1.92E-14  2.04E+08  4.41E+09
Best 460E+01  3.63E+03  2.76E+02  0.00E+00  0.00E+00 2.82E+01  329E-01  148E+03  538E-02  2.84E-14  3.35E+01  1.07E+09
FC03 Mean  5.40E+02  6.94E+03  7.67E+02 4.55E-14  430E-12  2.39E+03  2.14E+03  1.44E+01  5.74E-04 227E-13  9.57E+01  3.91E+04
SD 6.05E+02  5.03E+03  120E+03  2.40E-14  125B-11  1.77E+03  1.02E+03  1.68E+01  944E-04  1.00E-13  1.85E+02  8.24E+03
Best 136E+01  1.32E+03  S576E+01  0.00E+00  0.00E+00  2.90E+02  5.59E+02  6.71E-01  3.13E-05 1.14E-13  5.63E+01  2.46E+04
FC04 Mean  9.50E+01  2.67E+01  1.16E+02  2.49E+01  829E+01  9.70E+01  7.53E+01  1.46E+02  9.83E+01  423E+01  4.79E+02  3.97E+02
SD 324E+01  637E-01  133E+01  174E+01  270E+01  336E+01  5.88B+00 3.78E+01  296E+01  3.57E+01  1.62E+01  1.87E+02
Best 6.66E+01  2.53E+01  9.56E+01  1.81E+01  6.73E+01  6.74E+01  6.79E+01  8.79E+01  G81E+01  1.73E-03  4.50E+01  1.07E+01
FCO5 Mean  2.09E+01  2.10E+01  2.05E+01  2.04E+01  2.06E+01  2.10E+01  2.09E+01  2.10E+01  2.04E+01  2.03E+01 2.03E+01  2.09E+0l
SD 1.22E-01  5.71E-02 458E-02 3.56E-02  5.89E-02 523E-02 7.24E-02 434E-02  1.56E-02 3.42E-02 3.92E-02  G.64E-02
Best 206E+01  2.09E+01  2.04E+01  2.03E+01  2.05E+01  2.09E+01  2.08E+01  2.09E+01  2.03E+01  2.03E+01  2.03E+01  2.08E+01
FC06 Mean  7.67E+00  6.19E+00  1.70E+01  1.48E+01  2.61E-01  1.54E+01  1.59E+01  1.67E+01  1.62E+01 837E+00  G6.08E+01  2.75E+01
SD 1.98E+00  222E+00  6.10E-01  3.97E+00  4.92E-01  2.14E+00 2.75E+00  345E+00  9.69E-01  3.22E+00  5.96E-01  4.41E+00
Best 463E+00  275E+00  1.6OE+01  4.01E+00  0.00E+00  1.17E+01  1.OIE+01  1.23E+01  1.47E+01  525E+00  6.06E+01  1.49E+01
FC07 Mean  133E+01  256E-03 3.92E-03  1.71E-13  0.00E+00 6.74E-02 2.75B-02  1OIE+00  4.19E-03  S41E-03  4.08E-03  2.13E+01
SD 131E+01  6.75E-03  1.61E-03  8.04E-14  0.00E+00 8.69E-02 223E-02  1.50E+00  132E-02 826E-03  1.83E-03  2.06E+01
Best 148E-02  7.086-05  1.37E-03  1.14E-13  0.00E+00 7.84E-12 1.02E-12 120E-01  6.62E-07 1.14E-13  2.03E-03  7.20E+00
FC08 Mean  348E+01  6.60E+01  586E-01  1.14E-14 1.99E-01  7.37E+01  8.00E+01  7.67E+01  293E+00  1.14E-03  839E+01  1.32E+02
SD S70E+00  122E+01  620E-01  3.60E-14  420E-01  2.11E+01  1.88E+01  2.45E+01  146E+00  0.00E+00 4.23E+00  3.06E+01
Best 2.19E+01  432E+01  2.65E-04  0.00E+00 0.00E+00  5.07E+01  448B+01  3.48E+01  1.14E+00  1.14E-13  626E+01  8.49E+01
FC09 Mean  5.53E+01  1.53E+02  7.79E+01  5.82E+01  7.70E+01  7.68E+01  8.00E+01  9.84E+01  5.95E+01  432E+01 9.41E+02  1.90E+02
SD 1.54E+01  1.61E+01  149E+01  7.79E+00  1.68E+01  1.0SE+01  142E+01  3.08E+01  7.94E+00  7.61E+00  4.51E+00  3.24E+01
Best 351E+01  121E+02  5.52E+01  4.78E+01  447E+01  5.87E+01  5.87E+01  6AIE+01  456E+01  2.70E+01  9.33E+02  1.34E+02
FC10 Mean  9.70E+02  1.87E+03  2.50E+01  1.69E-01  2.56E+00  1.72E+03  1.57E+03  2.39E+03  3.22E+01  1.08E+01  1.81E+03  4.77E+03
SD 347E+02  444E+02  521E+00  5.12E-01  4.09E+00  7.41E+02  426E+02  4.71E+02  G57E+00  5.07E+00  1.08E+02  9.97E+02
Best 370E+02  135E+03  1.83E+01  0.00E+00 3.39E-02  4.64E+02  9.52E+02  1.59E+03  2.15E+01  S5.12E+00  1.55E+03  2.87E+03
FCl1 Mean  3.08E+03  S5.76E+03  3.24E+03  2.88E+03  4.11E+03  G6.71E+03  6AGE+03  3.39E+03  2.56E+03  231E+03  2.10E+03  5.91E+03
SD 6.19E+02  343E+02  2.18E+02  3.06E+02  4.80E+02  3.92E+02  4.46E+02  SASE+02  2.56E+02  3.17E+02  1.28E+02  8.90E+02
Best 1.77E+03  523E+03  2.98E+03  2.51E+03  3.18E+03  GOIE+03  5.52E+03  242E+03  2.12E+03  1.86E+03  1.75E+03  3.69E+03
FC12 Mean  8.12E-01  2.62E+00  5.42E-01  4.96E-01  1.05E+00  2.64E+00  2.60E+00 2.75E+00  437E-01  4.18E-01 2.63E+00  2.13E+00
SD 6.51E-01  2.82E-01 853E-02 571E-02 124E-01 247E-01  3.32E-01 2.62E-01  7.85E-02 5.15E-02 128E-01  3.31E-01
Best 3.02E-01  197E+00  4.12E-01  3.72E-01  7.98E-01  2.13E+00  193E+00 248E+00  3.05E-01 3.62E-01  220E+00  1.38E+00
FC13 Mean  435E-01  346E-01  4.18E-01 3.10B-01  3.09E-01 4.88E-01 4.11E-01 4.71E-01  2.84E-01 2.90E-01 4.90E-01  7.26E-01
SD 1.07E-01  3.30E-02  7.14E-02 4.77E-02  3.58E-02  1.14E-01  6.86E-02  1.13E-01  4.68E-02 4.34E-02  L.17E-01  5.03E-01
Best 255E-01  2.89E-01  2.77E-01  258E-01  2.62E-01  3.50B-01  2.97E-01  3.09E-01  2.06E-01 2.10E-01  3.60E-01  4.22E-01
FCl4 Mean  891E-01  3.07E-01  3.44E-01 295E-01  28IE-01  2.88E-01  2.78E-01  2.88E-01  245E-01  230E-01 3.17E-01  1.19E+0l
SD 350E-01  3.63E-02  338E-02 2.67E-02 2.64E-02 4.70E-02 442E-02 4.92E-02  4.02E-02 2.69E-02 3.73E-02  1.03E+01
Best 1.88E-01  2.54E-01  2.97E-01  2.56E-01  225E-01  2.11E-01  1.84E-01 226E-01  2.03E-01  1.87E-01  2.64E-01  1.53E-01
FC15 Mean  4.49E+00  1.58E+01  1.09E+01  S5.81E+00  9.71E+00  1.80E+01  1.89E+01  3.75E+01  7.06E+00  5.93E+00  1.63E+01  3.55E+02
SD 6.87E-01  926E-01  9.63E-01  8.14E-01  1.28E+00  5.93E+00  8.66E+00  2.19E+01  1.07E+00  122E+00  829E-01  3.39E+02
Best 3.18E+00  141E+01  9.09E+00  4.24E+00  7.32E+00  1.03E+01  9.75E+00  1.54E+01  5.16E+00  3.87E+00  9.53E+00  3.32E+01
FC16 Mean  1.05E+01  1.I8E+01  L.I1E+01  1.06E+01  1.I5E+01  1.20E+01  L.19E+01  LI11E+01  1.O7E+01  1.02E+01 1.60E+01  1.21E+01
SD 8.64E-01  250E-01  231E-01  1.90E-01  2.07E-01  435E-01  3.94E-01  6.62E-01  271E-01 455E-01 1.62E-01  5.04E-01
Best 8.55E+00  1.I3E+01  1.07E+01  1.03E+01  L.I3E+01  1.I14E+01  L14E+01  1.OIE+01  1.0IE+01  937E+00  1.56E+01  1.09E+01
FC17 Mean  136E+05  3.76E+05  2.07E+06  3.16E+04  1.33E+04  1.91E+05  2.11E+05  1.67E+05  1.54E+05 442E+04  1.16E+04  3.01E+06
SD L.04E+05  LI2E+05  6.62E+05  3.34E+04  6.50E+03  1.73E+05 9.21E+04 2.13E+05  8.75E+04  3.70E+04  4.16E+03  1.80E+06
Best 2.69E+04  244E+05  1.07E+06  249E+03  1.73E+03  3.29E+04  8.02E+04  3.54E+04  4.92E+04  8.62E+03  4.60E+03  7.10E+05
FCI8 Mean  338E+03  1.59E+03  4.92E+02  2.63E+02  6.89E+01  2.93E+03  331E+03  8.71E+02  O.10E+02  1.14E+03  9.69E+02  9.52E+06
SD 421E+03  850E+02  930E+01  S.11E+02  3.43E+01 235E+03  4.11E+03  1.02E+03  1.0SE+03  129E+03  126E+01  2.20E+07
Best 3.03E+02  478E+02  3.44E+02  135E+01  3.09E+01  1.35E+02  L64E+02  6.17E+01  435E+01  623E+01  237E+02  2.44E+04
FC19 Mean  1.57E+01  1.19E+01  1.01E+01  1.41E+01  5.55E+00 2.12E+01  2.12E+01  2.71E+01  691E+00  631E+00  1.90E+01  8.02E+01
SD 233E+01  829E-01  1.02E+00 1.I3E+00  6.59E-01  2.55B+01  2.54B+01  2.86E+01  625E-01  1.01E+00  5.58E-01  2.59E+01
Best 4.44E+00  1.01E+01  820E+00  1.19E+01  4.74E+00  5.77E+00  6.72E+00  9.65E+00  G.O6E+00  4.60E+00  1.90E+01  2.32E+01
FC20 Mean  7.05E+03  S81E+03  5.95E+03  3.17E+01  431E+01  1.54E+03  144E+03  428E+02  1.68E+02  9.02E+01  231E+03  1.76E+04
SD 1.27E+04  2.71E+03  3.35E+03  3.78E+01  2.96E+01  9.69E+02  6.69E+02  1.77E+02  1.91E+02  8.20E+01  125E+02  1.06E+03
Best 1.37E403  2.36E+03  2.48E+03  1.0SE+01  1.91E+01  G.68E+02  341E+02  203E+02  275E+01  3.06E+01  2.10E+03  1.01E+04
FC21 Mean  6.77E+04  1.49E+05 339E+05  3.66E+03  2.49E+03  9.72E+04  1.19E+05 220E+04  6.20E+03  9.86E+03  3.43E+03  5.43E+05
SD 421E+04  640E+04  122E+05 3.15E+03  2.80E+03  9.01E+04  1.00E+05 2.22E+04  3.02E+03  132E+04  3.09E+02  8.09E+04
Best 8.85E+03  847E+04  125E+05  6.53E+02  221E+02  1.89E+04  3.16E+04  4.09E+03  222E+03  122E+03  2.96E+03  4.03E+05
FC22 Mean  227E+02  225E+02  270E+02  2.96E+02  1.36E+02  2.81E+02  3.27E+02  3.14E+02  1.79E+02  1.14E+02 224E+02  4.21E+02
SD 9.97E+01  727E+01  5.98E+01  8.12E+01  7.92E+01  1.08E+02  1.33E+02  141E+02  S8.11E+01  7.56E+01  7.26E+00  1.38E+02
Best 144E+02  1.67E+02  1.59E+02  9.35E+01  2.51E+01  1.64E+02  S5.82E+01  149E+02  5.06E+01  2.41E+01  2.23E+01  2.01E+02
FC23 Mean  3.18E+02  3.14E+02  3.15E+02  3.14E+02  3.15E+02  3.15E+02  3.15E402  3.15E+02  3.15E+02  3.15E+02  3.15E+02  2.00E+02
SD 350E+00  1.57E-04  229E-01  2.89E-13  0.00E+00 123E-11  1.78E-10 4.43E-01  292E-07 144E-13  345E-10  0.00E+00
Best 3USE+02  3.04E+02  3.05E+02  3.04B+02  3.05E+02  3.0SE+02  3.0SE+02  3.05E+02  3.05E+02  3.05E+02  3.15E+02  2.00E+00
FC24 Mean  227E+02  224E+02  227E+02  227E+02  225E+02  2.00E+02  2.00E+02  2.00E+02  227E+02  226E+02  2.00E+02  2.00E+02
SD 258E+00  5.46E-01  1.01E+00  459E+00  521E-01  2.20E-03  2.19E-03  9.68E-04  242E+00  128E+00  2.48E-03  0.00E+00
Best 223E+02  223E+02  225E+02  224E+00  2.24E+02  2.00E+02  2.00E+02  2.00E+02  225E+02  224E+02  2.00E+02  2.00E+00
FC25 Mean  2.06E+02  2.07E+02  2.10E+02  2.00E+02  2.06E+02  2.01E+02  2.00E+02 2.02E+02  207E+02  2.09E+02  2.65E+03  2.00E+02
SD 209E+02  245E+00  1.62E+02  146E-01  249E+00  2.39E+00  5.33E-06 3.62E+00  648E-01  3.10E+00  525E+00  0.00E+00
Best 2.04E+02  2.04E+02  2.08E+02  2.00E+02  2.03E+02  2.00E+02  2.00E+02  2.00E+02  2.06E+02  2.04E+02  2.63E+03  2.00E+00
FC26 Mean  151E+02  1.70E+02  1.00E+02  1.00E+02 1.00E+02  1.10E+02  1.00E+02 1.10E+02  1.00E+02 1.00E+02  1.00E+02  1.01E+02
SD S.I8E+01  4.83E+01  3.00E-02 G.I2E-02  7.09E-02  3.15E+01  1.57E-01  3.15E+01  583E-02 7.52E-02  7.66E-02  9.31E-0l
Best 1.00E+02  1.00E+02  1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02  1.00E+02 1.00E+02  1.00E+02  1.00E+02
FC27 Mean  7.12E+02  434E+02  438E+02  S.65E+02  3.62E+02  SATEH02  6.56E+02  7.94E+02  4.09E+02  434E+02  275E+02  2.00E+02
SD 1.84E+02  3.50E+02  1.33E+01  173E+02  S5.04E+01  1.66E+02  2.13E+02  2.15E+02  3.71E+00  6.71E+01  2.33E+01  0.00E+00
Best 4.02E+02  376E+02  4.17E+02  4.01E+02  3.00E+02  4.02E+02  4.02E+02 4.06E+02  4.04E+02  3.71E+02  2.71E+02  2.00E+00
FC28 Mean  148E+03  398E+02  921E+02 3.83E+02  8.5IE+02  1.24E+03  1.ISE+03  143E+03  8.77E+02  834E+02  923E+02  2.00E+02
SD 370E+02  1.16E+01  3.47E+01  5.59E+00  2.76E+01  3.51E+02  2.30E+02  4.37E+02  1.66E+01  3.87E+01  229E+01  0.00E+00
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TABLE 10. (Continued.) Experimental results of 12 algorithms on 30-dimensional CEC2014 problems.

Best 1.02E+03 3.89E+02  8.64E+02  3.76E+02 8.06E+02 9.20E+02  8.94E+02  9.96E+02 8.54E+02  7.87E+02 8.20E+02 2.00E+00
FC29 Mean 6.65E+06  2.14E+02  3.11E+04  2.15E+02  9.67E+02  3.31E+06  3.93E+06  3.08E+06 1.41E+03 1.29E+03  3.58E+03  2.00E+02
SD 1.10E+07 1.02E+00  1.52E+04  1.39E+00  1.47E+02  5.39E+06  5.14E+06  4.99E+06 1.89E+02  591E+02  1.86E+02  0.00E+00
Best 2.17E+03 2.12E+02  7.11E+03  2.13E+02  6.69E+02  1.25E+03  1.44E+03  9.91E+02 1.21E+03  7.75E+02  3.30E+03  2.00E+00
FC30 Mean 1.82E+04  7.00E+02  7.94E+03  3.87E+02 1.15E+03  3.35E+03  3.37E+03  6.47E+03 2.55E+03  1.93E+03  3.89E+03  2.00E+02
SD 3.03E+04  8.54E+01  2.72E+03  6.82E+01  5.64E+02  1.35E+03  1.75E+03  3.43E+03 7.49E+02  526E+02  7.56E+01 0.00E+00
Best 1.78E+03 5.98E+02 5.62E+03 2.92E+02 5.90E+02 1.62E+03 1.58E+03 3.37E+03 1.42E+03 1.15E+03 3.76E+03 2.00E+00
TABLE 11. Statistical results of the multi-problem-based WRST between =~ oo rmmmmmmmommmmmmmmmmmomm oo oo omo oo ooy
CBLSO vs. its competitors on 30-dimensional CEC2014 test functions.
Upstream Dowstream
CBLSO vs. R* R p-value a=0.05 a0 4> ¢
FDR-PSO 319 116 0.027 -
FIPS 350 115 0.015 - « ‘ ‘ ‘—0
CLPSO 355 110 0.010 - . X
jDE 353 82 0.003 - HID DF SFY WID
SaDE 362 103 0.007 - Reservoir Reservoir Reservoir Reservoir
TLBO 304.5 130.5 0.060 e e
ETLBO 273 105 0.044 - L L
DGSTLBO 304 11 0.020 - FIGURE 13. The schematic diagram of the cascade reservoirs in the
BSA 362 103 0.007 - Waujiang River basin.
LBSA 362 103 0.007 -
SCA-PSO 292 143 0.110 =

TABLE 12. The basic characteristics of the Wujiang cascade hydropower
station.

Reservoir items HID DF SFY  WID Units
Average inflow 150 345 385 502 m’/s

Normal water level 1140 970 837 760 m

Dead water level 1076 936 822 720 m

Total storage 4.5 0.9 0.2 2.1 billion m*
Regulation storage 34 0.5 0.07 1.4 billion m*
Regulation ability multi-year seasonal  daily  seasonal -

Installed capacity 600 695 600 1250 MW

Annual generation 1.6 24 2.0 4.1 billion kW-h
Power coefficient 8.5 8.35 8.5 8.17 -

has a series of equality and inequality constraints, which is
very representative to validate the feasibility and effective-
ness of CBLSO for solving real problems. Finally, the results
obtained by CBLSO are validated and compared statistically
with other well-known optimization algorithms, i.e., GA,
variant of PSO, improved CS and standard LSO.

A. WUJIANG CASCADE HYDROPOWER STATIONS

The Wujiang River lies to the right bank of the upper Yangtze
River and is the largest river in Guizhou province, southwest
of China. The mainstream length of the Wujiang River is
1,037 km and the drainage area is 87,920 km? and 66,849 km?
is in the district of Guizhou province, which accounts for
76% of the drainage area. The index map of the Wujiang
River basin is presented in Fig.12. The rainfall of the Wujiang
River is quite abundant and the annual average rainfall varies
between 900 and 1,400 mm. Because of the representative
continental monsoon climate, the rainfall presents a typical
season characteristic that about 80% of the annual rainfall
centralizes from April to August [92].

The Wujiang cascade hydropower station is one of thirteen
large power generation bases in China. In this paper, 4 cas-
cade reservoirs: Hong jiadu (HID) reservoir, Dong feng (DF)
reservoir, Suo fengying (SFY) reservoir, and Wu jiangdu
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(WJD) reservoir are selected as the object of the case study
shown in Fig.12. Since the SFY is a daily regulation reservoir
and the regulation storage is too small, the optimal dispatch
model used in this paper is only applicable to the optimal
dispatch of the HID, DF, and WID reservoir are shown in
Fig.13.

B. MODEL FORMULATION

The objective function of cascade hydropower stations
adopted here is to maximize the annual energy production
of the cascade hydropower stations, subject to some con-
straints (including technical and physical). Because the water
level has an important impact on the storage capacity of the
reservoir, therefore, the change of the outflow is indicated
by the variation of the water level. Moreover, the output of
hydropower station goes hand in hand with turbine release
and hydraulic head determined by the water level of the
period, dynamically. Based on the above discussion, once we
can determine the upstream water level, we can calculate the
outflow through Eq. (27). Furthermore, the downstream water
level goes hand in hand with the outflow of the reservoir,
if we enhance the outflow, the downstream water level will
be higher, thus will lead the hydraulic head to be lower [91].
The objective function is expressed as follows:

Spum T
maxf = max E = max Z ZAI-H,-,,QmAt
i=1 t=1
Spum T

= max Z ZN,',,AI

i=1 t=1

(22)

where E represents the annual energy production for the
cascade hydropower stations (kW-h); S, is the number for
the hydropower stations; T is the size for the dispatch period;
t denotes the current period; i denotes the current station;
A, is the power coefficient for the station i; H; ; is the average
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TABLE 13. The optimal operation results for three scenarios obtained by GA, PSO, CS, ABC, GSA, GWO, LSO, ASO, SMA, and CBLSO.

Energy production (10° kW-h)

Scheme index Scenario 1 (Wet year)

GA PSO CS ABC GSA GWO LSO ASO SMA CBLSO
1 122.1704 122.5011 122.5663 122.5663 120.6899 122.3403 122.5563 121.9713 122.5637 122.5620
2 122.4386 122.5624 122.5663 122.5663 120.2006 121.8731 122.4832 121.5270 122.5618 122.5200
3 122.1516 122.4931 122.5663 122.5663 120.6084 122.3557 122.5517 121.5017 122.5638 122.4842
4 121.0650 122.5613 122.5663 122.5663 120.4733 122.4783 122.4863 122.2169 122.5648 122.4847
5 121.7500 122.5658 122.5663 122.5663 121.1860 122.4520 122.5437 121.7846 122.5588 122.5319
6 121.8576 122.5630 122.5663 122.5663 119.4894 122.4267 122.4923 121.9961 122.5639 122.4843
7 121.7436 122.5657 122.5663 122.5663 120.3004 122.4195 122.4800 121.9212 122.5641 122.5568
8 122.3979 122.5294 122.5663 122.5663 118.6450 122.1488 122.4874 120.8139 122.5607 122.5072
9 122.4389 122.4892 122.5663 122.5663 120.4641 122.0404 122.4895 122.0306 122.4750 122.5367
10 121.9150 122.5631 122.5663 122.5663 119.7313 122.2148 122.5037 121.0823 122.5629 122.5001
Best 122.4389 122.5658 122.5663 122.5663 121.1860 122.4783 122.5563 122.2169 122.5648 122.5620
Average 121.9929 122.5394 122.5663 122.5663 120.1788 122.2750 122.5074 121.6845 122.5539 122.5168
Worst 121.0650 122.4892 122.5663 122.5663 118.6450 121.8731 122.4800 120.8139 122.4750 122.4842
SD 4.0309E—-01 3.1222E-02 2.7335E-14 2.1460E-09  6.8351E—01 1.9065E—01 2.9007E-02  4.2749E—-01 2.6382E—02 2.7933E-02
Energy production (10° kW-h)
Scheme index Scenario 2 (Normal year)
GA PSO CS ABC GSA GWO LSO ASO SMA CBLSO
1 103.8291 103.9147 103.9147 103.9147 99.9764 103.1928 103.8472 103.7693 103.9132 103.8487
2 103.6733 103.8640 103.9147 103.9147 101.0557 103.5695 103.8529 103.5922 103.9143 103.8264
3 103.7887 103.9147 103.9147 103.9147 99.9685 100.5509 103.8480 101.7254 103.9357 103.8441
4 102.8035 103.9147 103.9147 103.9147 100.4436 102.2900 103.8450 103.5295 103.9022 103.8568
5 103.6833 103.8677 103.9147 103.9147 100.5527 102.8296 103.8320 103.2790 103.8913 103.8483
6 103.3217 103.9010 103.9147 103.9147 99.9562 103.0956 103.8417 103.6952 103.8880 103.8851
7 103.7783 103.9147 103.9164 103.9164 100.2714 101.8911 103.7243 103.1668 103.9285 103.8472
8 102.7886 103.9311 103.9147 103.9147 100.6526 103.2290 103.8435 103.5834 103.9147 103.8451
9 103.7032 103.9147 103.9353 103.9147 100.2779 102.2478 103.8468 103.7172 103.9116 103.8814
10 103.8430 103.8935 103.9147 103.9147 98.7535 103.2622 103.8523 102.6557 103.9113 103.8457
Best 103.8430 103.9311 103.9353 103.9147 101.0557 103.5695 103.8529 103.7693 103.9357 103.8851
Average 103.5213 103.9031 103.9169 103.9147 100.1909 102.6158 103.8334 103.2714 103.9083 103.8529
Worst 102.7886 103.8640 103.9147 103.9147 98.7535 100.5509 103.7243 101.7254 103.8872 103.8264
SD 3.8859E-01 2.0823E-02 6.1428E-03 1.1827E-10  5.8194E—01 8.5689E—01 3.6772E-02  6.0608E—01 1.5575E-02 1.6814E—02
Energy production (10° kW-h)
Scheme index Scenario 3 (Dry year)
GA PSO CS ABC GSA GWO LSO ASO SMA CBLSO
1 99.6737 99.7686 99.8589 99.8589 97.6809 99.1933 99.7282 99.5924 99.8578 99.7393
2 99.4379 99.8519 99.8589 99.8589 97.4248 98.7576 99.5643 99.4269 99.8555 99.7030
3 99.7379 99.7959 99.8589 99.8589 97.7651 98.6948 99.6782 99.6220 99.8445 99.7282
4 99.5559 99.7977 99.8589 99.8223 97.8929 99.0246 99.6855 99.4882 99.7462 99.6907
5 99.5958 99.8347 99.8589 99.8589 97.2935 99.1431 99.7144 99.5505 99.7925 99.7174
6 99.2765 99.6819 99.8589 99.8300 98.0407 99.3091 99.7351 99.5295 99.7889 99.7279
7 99.6643 99.8420 99.8589 99.8589 98.0913 98.4824 99.7591 99.5669 99.7594 99.6987
8 99.7767 99.8094 99.8589 99.8589 96.6846 99.4747 99.6850 99.6700 99.7940 99.7106
9 99.6462 99.6686 99.8589 99.8589 97.6340 99.2425 99.7077 99.6193 99.7762 99.7168
10 99.3645 99.5600 99.8589 99.8231 96.7570 99.0841 99.6707 99.5835 99.7059 99.7071
Best 99.7767 99.8519 99.8589 99.8589 98.0913 99.4747 99.7591 99.6700 99.8578 99.7393
Average 99.5729 99.7611 99.8589 99.8488 97.5265 99.0406 99.6928 99.5649 99.7921 99.7140
Worst 99.2765 99.5600 99.8589 99.8223 96.6846 98.4824 99.5643 99.4268 99.7059 99.6907
SD 1.5587E—01 8.9679E—02 1.2711E-14 1.5596E—02  4.6642E—01 2.9129E-01 5.0454E—02  6.6906E—02 4.6858E—02 1.4180E—02
TABLE 14. Statistical results obtained by the multi-problem-based WSRT for CBLSO vs. GA, PSO, ABC, GSA, GWO, LSO, ASO, and SMA.
CBLSO vs Scenario 1 (Wet year) Scenario 2 (Normal year) Scenario 3 (Dry year)
i ' p-value a=0.05 R R p-value a=0.05 R R p-value a=0.05
GA 55 0 1.95300E-03 - 55 0 1.95300E-03 - 50 5 1.95310E-02 -
PSO 13 42 1.52344E-01 = 55 0 1.95300E-03 - 14 41 1.93359E-01 =
CS 55 0 1.95300E-03 - 55 0 1.95300E-03 - 0 55 1.95300E-03 +
ABC 55 0 1.95300E-03 - 55 0 1.95300E-03 - 0 55 1.95300E-03 +
GSA 55 0 1.95300E-03 - 55 0 1.95300E-03 - 55 0 1.95300E-03 -
GWO 55 0 1.95300E-03 - 55 0 1.95300E-03 - 55 0 1.95300E-03 -
LSO 34 21 5.56641E-01 = 41 14 1.93359E-01 = 43 12 1.30859E-01 =
ASO 55 0 1.95300E-03 - 55 0 1.95300E-03 - 55 0 1.95300E-03
SMA 6 49 2.73440E-02 + 0 55 1.95300E—03 + 1 54 3.90600E—03 +
hydraulic head for the station i in period t(m); Q;, is the (1) Water level constraint
outflow for the station i in period 7(m3/s); At is the dispatch
period (h); N;; is the output of the station i in period #(kW). Zit <Zis <Zi: (23)

C. CONSTRAINTS

In the cascade hydropower stations, the entire cascade
hydropower stations should be subject to the constraints intro-
duced by the interaction of hydropower stations or reservoirs,
while each hydropower station should be subject to their
constraints [93]. Specifically, the constraints can be expressed
as follows:
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where Z; ; denotes the water level for the reservoir i in period
t (m); Z; , and Z;, are lower and upper bounds of water level
for the reservoir 7 in period ¢ (m), respectively.

(2) Power output constraint

For each hydropower station

Nit <N < Ni,t 24)
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FIGURE 14. The convergence graphs of the average power generation obtained by all algorithms on Wet year, Normal year, and Dry year.
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FIGURE 15. The monthly water level processes obtained by all algorithms on Wet year, Normal year, and Dry year.

For the whole system

SVI m
Ny < Z,-_ul Ni

where N; , and N;.; are lower and upper bounds of output for
the station i in period ¢ (kW), respectively; N; and N; are lower
and upper bounds of output for the entire cascade hydropower
station in period ¢ (kW), respectively.

(3) Outflow constraint

<N

(25)

Qi =0is < Qi,t (26)
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where Qi[ and Qi,; are lower and upper bounds of outflow

for the reservoir i in period 7 (m>/s), respectively.
(4) Water balance equation
Vi,t+1 = Vz ¢+ (

—Qir)- A 27

where V;, is the volume for the reservoir i storage at the
beginning of period # (m?);V; 1 is the volume for the reser-
voir i storage at the end of period ¢ (m?); I; , is the inflow for
the reservoir i in period ¢ (m3/s); Qi+ 1s the outflow for the
reservoir i in period t(m3/s).
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FIGURE 16. The monthly water level processes obtained by CBLSO on Wet year, Normal year, and Dry year.

(5) Hydraulic connection equation

liv1: = Qis + qix (28)

where oy is the inflow for the reservoir #+1 in period t(m3/s);
Q. is the outflow for the reservoir # + 1 in period ¢ (m3/s);
qi is the interval inflow into the reservoir ¢ 4 1 in period ¢
(m3/s).

(6) Boundary constraint

Zivn=Zip, Zit+1 =Zie (29)

where Z; , is the initial water level for the reservoir i(m); Z; ,
is the final water level for the reservoir i(m).

Water levels, power outputs, reservoir inflows, and reser-
voir outflows are all variables that will be calculated, Histori-
cal monthly inflow sequences of reservoirs, curve of reservoir
water level- reservoir storage capacity, curve of reservoir
outflow- reservoir downstream water level and values of
control parameters that used for reservoirs or hydropower
stations are all known. Furthermore, we also assume that the
generality loss is ignored and the evaporation loss of water
can be canceled out by rainfall.

VOLUME 10, 2022

D. CONSTRAINTS HANDLING METHOD
The critical step in developing a successful application
for efficiently solving the optimal dispatch of cascade
hydropower stations is appropriately handling equality
constraints and inequality constraints. In this section, to effec-
tively handle the complex constraints of the optimal dis-
patch of cascade hydropower stations without degrading the
optimization method’s computation efficiency, a novel con-
straint handling method according to the characteristics of
the different constraints and the different power generation
mechanisms of hydropower stations or reservoirs is designed.
Water level constraints shown in Eq. (23) are inequality
constraints. For these constraints, the handling method con-
sidering the feasible boundaries is carried out as follows:
Zir’r;in lf Zi,t < Zirr;in

Ziy = ’ i=1,2,..
Zlir;ax if Ziy > Zl-’n;ax,
(30)

Power output constraints shown in Egs. (24) and (25) and
outflow constraints shown in Eq. (26) are inequality con-
straints. For power output constraints Eq. (24) and outflow
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FIGURE 17. The monthly power output processes obtained by CBLSO on Wet year, Normal year, and Dry year.

constraints Eq. (26), the handling method (see Eq. (31))
combined with water balance equation constraints shown in

Eq. (27), hydraulic connection

equation constraints shown in

Eq. (28), and initial and terminal upstream water level con-
straints shown in Eq. (29) will be implemented to adjust the
values of the infeasible solutions to meet the feasible bound-
aries. For power output constraints Eq. (25), the handling
method shown in Eq. (32) is conducted to adjust the values of
the infeasible solutions to meet the feasible boundaries.

M, (Qi,t - Qf"tm)

Ni,t = KiQi,tHi,t
MZ( intax - Qi,t)
Vie = Vii-1

=T, —
Qi it AL

131290

if —oo < Qi <O}

. min max

lf‘ it S Qi,t S it

if Q;ntax < Qi < +00
M;

—Sit + Z (Qk,t—rk, + Sk,t—rk,')

k=1

i=1,2, 0 St =1,2,...,T

Ssum

ZNi,t
i=1

Ssum . Ssum
> Niy =My (N =3 "Ny,
i=1 i=1
Ssum .
> N < N
i=1
Ssum
>N
i=1
Ssum .
l'f Z Ni,t - Ntmm
i=1

i=1,2, .. Samt=1,2,...,T

10 11 12
Operation periods (month)

2 3 4

3L

(32)
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FIGURE 18. The monthly generation processes obtained by CBLSO on Wet year, Normal year, and Dry year.

Through the designed constraint handling method, it is
possible to guarantee that the feasible solutions always have
priorities than the infeasible solutions. What’s more, when the
solutions are out of the feasible regions, Eq. (32) can effec-
tively evaluate the distance between the infeasible solutions
and the bounds of the feasible regions, allowing the search to
move quickly to the feasible regions.

E. SIMULATION SCENARIOS

Suppose the four reservoirs studied here are considered as
a whole. The guaranteed power output for Wujiang cascade
hydropower station should be higher than the minimum of
the power output of the entire cascade hydropower station

VOLUME 10, 2022

(680 MW). Because the interval inflow is quite abundant, the
ecological runoff will be negligible. The basic characteris-
tics of the Wujiang cascade hydropower station are listed in
Table 12.

The simulation about the optimal dispatch of Wujiang
cascade hydropower station for three scenarios is done on a
monthly basis. The dispatch periods are 12 months, which
range from May of the current year to April of the next year.
Based on the hydrological frequency analysis of historical
monthly inflow sequence data, we choose three typical years:
75% guaranteed rates of water supply (from 1951.5 to
1952.4), name as the wet year (Scenario 1), 50% guaran-
teed rates of water supply (from 1985.5 to 1986.4), name
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FIGURE 19. The discharge and power output processes obtained by CBLSO on Wet year, Normal year, and Dry year.
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FIGURE 19. (Continued.) The discharge and power output processes obtained by CBLSO on Wet year, Normal year, and Dry year.
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FIGURE 20. The monthly reservoir storages for each reservoir obtained by CBLSO on Wet year, Normal year, and Dry year.

as the normal year (Scenario 2), 25% guaranteed rates of
water supply (from 1963.5 to 1963.4), name as the dry year
(Scenario 3).

F. PARAMETER SETTINGS

The CBLSO along with the comparison algorithms include
GA [23], PSO [29], [30], ABC [31], CS [32], GSA [40],
GWO [34], LSO [35], ASO [41], [42], and SMA [54] are
applied to solve the optimal dispatch problem of cascade
hydropower stations. For all algorithms, the population size n
is set to be 100, and the maximum number of iterations f,,,4y iS
set to be 60,000. The results composed of best (Best), average
(Average), worst (Worst), and standard deviation (Std) values
for 10 independent runs on three scenarios (wet year, normal
year, and dry year) are presented in Table 13, respectively.
In addition, the details of default parameter settings for GA,
PSO, ABC, CS, GSA, and GWO, ASO, and SMA are kept
the same as in Subsection I'V. The details of default parameter
settings for LSO, and CBLSO are recommended by [64].

G. RESULTS ANALYSIS AND DISCUSSION
From Table 13, we can find that, compared with other peer
algorithms, the Average and Std values provided by the
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CBLSO algorithm are quite competitive, indicating its effec-
tive and steady performance. In detail, CBLSO presents the
Average values of generation on three scenarios are 122.5168,
103.8529, and 99.7140 (10% kW-h), respectively. By observ-
ing Table 13, we can find that the results on three scenar-
ios obtained by CBLSO are also obviously better than the
results provided by LSO. In addition, the worst solutions
obtained by CBLSO on three scenarios are also relatively the
least, indicating that the premature convergence’s influence
on CBLSO is limited owing to its effective structure and
updating strategies. What’s more, it is worth mentioning that
the inflow of Scenario 3 is limited, making it more challeng-
ing to allocate the water resources rationally than Scenarios 1
and 2. However, the results yielded by CBLSO are compa-
rable to the results yielded by other comparison algorithms,
suggesting the superior search ability of CBLSO. To arrive at
more precise conclusions, the WSRT at a significant level of
o = 0.05 is used for statistical analysis is conducted, and the
statistical results are shown in Table 14. It can be seen from
this table that although CBLSO cannot outperform GA, CS,
ABC, GSA, GWO, and ASO on Scenario 1, GA, PSO, CS,
ABC, GSA, GWO, and ASO on Scenario 2, and GA, GSA,
GWO, and ASO on Scenarios 3, CBLSO shows a statistical
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FIGURE 21. The stack of colors of monthly power output for each reservoir obtained by CBLSO on Wet year, Normal year, and Dry year.

significance over SMA on the three scenarios, CS and ABC
on Scenario 3, and, achieves comparable results with PSO on
Scenario 3 and Scenario 3, with LSO on all three scenarios.
implying that CBLSO is capable of performing comparably
well to other comparison algorithms.

To intuitively show each optimization algorithm’s conver-
gence characteristic and check whether the constraints of
the problem are met or not, the average best-so-far power
generations for three scenarios (wet year, normal year, and
dry year) of all algorithms, the monthly mean water level
processes of 10 schemes for the HJD reservoir, the DF reser-
voir, and the WJD reservoir obtained from three scenarios
(wet year, normal year, and dry year) of CBLSO are plotted
in Fig. 14 and Fig. 15, respectively. Meanwhile, to present
the rationality and the correctness of the operation results,
the monthly water level processes, the monthly power out-
put processes, the monthly power generation processes, the
discharge and power output processes, the monthly reservoir
storages of each reservoir, and the stack of colors of monthly
power out for each reservoir on 3 representative schedule
results (i.e., scheme 1, scheme 5, and scheme 10) obtained
by DMSDL-HHO are shown in Figs. 16-21, respectively.

Firstly, we describe the results obtained in the convergence
graphs of the average power generation (Fig. 14). From
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Fig. 14, we can find that CS, ABC, GWO, and ASO converge
slowly in the early stage of the search process for all three
scenarios, while CBLSO presents a different convergence
characteristic, i.e., it consistently converges in the early stage
of the search process and finally achieves the best solution
in the early half stage of the search process for all three
scenarios, indicating that it is more effective. In particular,
the convergence speed of CBLSO is faster than almost all
other peer algorithms in the early stage of the search process.
Thus, we can conclude that CBLSO can effectively alleviate
the premature convergence and significantly enhance its opti-
mization performance during its execution compared with
other peer algorithms.

Next, we compare the algorithms in terms of the monthly
water level processes obtained by CBLSO and comparison
algorithms (Figs. 15 and 16). From Figs. 15 and 16, we can
find that the water levels of each reservoir all locate in
the rational ranges, indicating that the constraint handling
method designed in this study can meet the practical require-
ment of the multi-reservoir system. It also can be seen from
Figs. 15 and 16 that the water level of the HID reservoir
decreases suddenly and then gradually rises in the initial stage
of the dispatch periods. This is because the HID reservoir’s
inflow in the initial stage of the dispatch periods is quite
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limited (only 88 m3/s). To meet the guarantee power output
requirement of the whole cascade system (680 MW), the
HJD reservoir must increase the outflow to compensate the
downstream reservoirs, which results in a lower water level of
itself. However, in the following dispatch periods, the inflows
of the three reservoirs are abundant enough. In the precon-
dition of meeting the guarantee power output requirement
of the whole system, the HID reservoir’s outflow can be
decreased to increase the storage volume of its own. Thus, the
reservoir can use its storage volume to generate more energy
in the following dispatch periods. In addition, it also can use
the water stored during the wet seasons to compensate for the
downstream reservoirs during the dry seasons. Meanwhile,
from Fig. 16, we can see that the water levels of the three
reservoirs are nearly identical for the wet year and are slightly
different for the normal year and the dry year. The reason may
be that the water supply of the wet year is abundant, which
is helpful for optimal dispatch, but the water supply of the
normal year and the dry year is relatively short, which make
it more difficult to allocate the water resources than the wet
year.

Thirdly, we pay attention to the results obtained in the
power output processes and the power generation processes
(Figs. 17 and 18). The optimal results indicate that the power
output and the power generation on April, July, and August
for the wet year, on April, June, and July for the normal
year, and on June, July, and August for the dry year are near
zero. The reason may be that the HID reservoir’s inflows in
these dispatch periods are abundant, the reservoir needs to
decrease the outflows of itself to rapidly increase its storage
volume, which not only can utilize the higher hydraulic head
to generate more output and more power generation during
the following dispatch period but also can utilize the stored
water resources to compensate for the downstream reservoirs
in the dry periods. This phenomenon can also be explained
by the variations in the water levels shown in Figs. 15 and 16.

We now analyze the results obtained in the discharge and
power output processes (Fig. 19). From Fig. 19, we can
find that the water discharge rate and the power output
are all within the boundaries of constraints, suggesting that
the proposed constraint handling method is reasonable and
effective. In addition, the changes of the water discharge
rate processes and the power output processes are all fol-
lowing the variations of the water levels, the power out,
and the power generation, which further indicating the ratio-
nality and effectiveness of the proposed constraint handling
method.

Finally, we compare the results obtained in the monthly
reservoir storages and the Stack of colors of monthly power
output for each reservoir (Figs. 20 and 21). It is shown by
Fig. 20 that the monthly reservoir storages of the 3 schemes
for Wet year, Normal year, and Dry year are all within the
boundaries of the constraints. What’s more, the results dis-
played in Fig. 21 show that the monthly power outputs all
meet the whole system’s guarantee power output require-
ment. That is to say, the dispatch results provided by CBLSO
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are reasonable, and the constraint handling method proposed
in this study is effective.

VI. CONCLUSION

In this paper, a novel LSO with a chaotic mutation strategy
and boundary mutation strategy (CBLSO) is presented to
enhance the performance of LSO from the viewpoint of muta-
tion strategy. Since some shortcomings of the standard LSO,
such as premature convergence and limited global search
ability, CBLSO is designed to address these issues. In this
proposed algorithm, a chaotic mutation strategy based on
chaotic cubic mapping is used to effectively improve the
exploration ability for avoiding premature convergence and
a boundary mutation strategy based on the concept of mul-
tilevel parallel is designed to manage boundary constraint
violations for keeping and maintaining the population diver-
sity. A comparative experiment is implemented to explore
the effectiveness of the chaotic mutation strategy and the
boundary mutation strategy. When compared with three vari-
ants of LSO algorithms (standard LSO, CLSO, and BLSO),
the experimental results demonstrate that the effect of the
chaotic mutation strategy is more evident than the effect of the
boundary mutation strategy but introduces the two strategies
in our CBLSO can achieve better positive effects.

The CBLSO is evaluated on 56 test functions and com-
pared with 8 state-of-the-art algorithms: GA, PSO, CS, ABC,
GSA, GWO, ASO, and SMA. The experimental results in
terms of some often-used performance indicators and statisti-
cal analysis illustrate that our CBLSO is the most salient algo-
rithm since it performs best on most of the test problems. The
experiment results of the robustness analysis, the comprehen-
sive significance analysis, and the study of high-dimension
functions demonstrate that CBLSO can provide comparable
results with remarkable convergence behavior compared to
the other reported algorithms. Sequentially, the time com-
plexity analysis of CBLSO shows that it is the same com-
putational efficiency in contrast to standard LSO. Moreover,
the results obtained by CBLSO on CEC 2014 are further
compared with those provided by some well-known algo-
rithms. It is shown by the experiment results that the proposed
CBLSO performs better than or at least comparable to other
algorithms and can be taken as a promising alternative opti-
mization tool to solve GOPs. Finally, CBLSO is applied to
the optimal dispatch problem of cascade hydropower stations
to investigate its great potential for real-world applications.
The obtained results show that the algorithm can produce
competitive results when compared with standard LSO and
other outstanding algorithms.

Summarizing, according to the test problems, the robust-
ness analysis, the comprehensive significance analysis, the
comparative experiments and the real-world application, the
CBLSO is the most promising algorithm in our study. In our
future work, the following future research can be focused on:
(1) LSO can be further improved according to employ other
strategies or operators used by other algorithms. (2) Other
real-world engineering and practical problems can be used to
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determine whether the CBLSO can present good results with
the parameter settings provided in this study. (3) Other heuris-
tic algorithms should be reinforced by the chaotic mutation
strategy and boundary mutation strategy used in this paper.
(4) The CBLSO can be developed for solving optimiza-
tion problems with nonlinear constraints. (5) Extending the
proposed CBLSO for handling multi-objective optimization
problems and many-objective optimization problems is also
meaningful work.

APPENDIX

The test functions are described by the following format:
No. Name (Symbol, Characteristic (C): Uni-modal (U),

Multi-modal (M), Separable (S), Non-separable (N)).
Description of the benchmark functions:

A. US TEST FUNCTIONS (F01-F04)
1. Step function (FO1, US)
D
£ =Y (Lxi+0.5))% —100 < x; < 100,
i—1

i=1,2,---,30
Jmin =f (xf) =0,-0.5 < x < 0.5,
i=1,2,---.,30

2. Sphere function (F02, US)

D
f ()= "xF —100 < x; < 100,

i=1,2,---,30
i=1
fmin :f(0,0,-~- ,0) =0
3. Sum Squares function (F03, US)
D
f)=>ix,-10<x5<10, i=12---.,30

i=1
fmin =f(0,0, ,O) :O
4. Quartic function (F04, US)
D
fx) = Zi-}cl4 + random [0, 1) ,

i=1
128 <x <1282,i=1,2,---,30

fmin Zf(O,O, 70)20

B. UN TEST FUNCTIONS (F05-F17)
1. Beale function (FO5, UN)

2
f@x) =005—x +x1x2)2 + (2.25 — X1 +x1x22)

+ (2.625 — X +x1x§>2
—45<x;<45,i=1,2
Jmin =f(3,0.5) =0
2. Easom function (FO6, UN)

f () = = cos (1) cos (w2) exp (= (x1 = 1)? = (12 = 7)?),
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—100 <x; <100,i=1,2
fmin =f(7l,7t) =-1

3. Matyas function (FO7, UN)

£ () =026 (x4 x3) - 0.48x1,
—10<x,<10,i=1,2
fmin :f (0, O) =0

4. Colville function (FO8, UN)
2
f 0 =100 (x = x2) " + (1 = 2+ (3 = 1)?

+90 (x32 - x4)2 +10.1 ((xz — 124 (o — 1)2)
$19800 — 1) (u— 1),
—10<x <10, i=1,2,34

Jmin =f 1,1,1,1) =0

5 and 6. Trid (Trid 6, Trid 10) function (FO9 and F10, UN)

D D
f&x) = Z(xi —1)* - inxiflv -D*<x; <D’
i=1 =2

i=1,2,---, 60r10
Jmin =f (((n+1—10)=-nn+4)(n-1)/6,
i=1,2,---, 60r10
7. Zakharov function (F11, UN)
2 4

D D D
fa) =Y 7+ (Z 0.5ix,-> + (Z O.5ix,-) ,
i=1 i=2 i=2
—5<x<10,i=1,2,---,10
fmin :f(ls 17”' ) 1)20
8. Powell function (F12, UN)

D/4
F) = Z (x4i—3 + 10x4i-2)% + 5 (xgj—1 — x47)*
|+ a2t 2x4i-1)* 4+ 10 (xai—3 — x4)* |’

—4<x<5 i=12---,24
fmin =f(0,0, ,0) =0
9. Schwefel 1.2 function (F13, UN)
2

D i
fO=)>x%].

i=1 \j=1
—100 < x; <100,

fmin Zf(O,O,"' ,0) =0
10. Schwefel 2.21 function (F14, UN)

i=1,2,---,30

fx) =max{|x|,1 <i<D},
—100 <x; <100,i=1,2,---,30
fmin =f0,0,---,00=0
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11. Schwefel 2.22 function (F15, UN)

D D
F =) kil +] ]l
i=1 i=1
—10 <x; <10,
fmin =f(0,0, 70) =O
12. Rosenbrock function (F16, UN)

i=1,2,---,30

D-1

=3 [100 (i —x3)2 + (i — 1>2],

i=1

—30 <x; <30,
fmin =f(0,0, ,O)ZO

13. Dixon-Price function (F17, UN)

D
Fe =0 -0 Y (2 —xi)

i=2
—10<x; <10, i=1,2,---,30

win =f (27CD2) =0, i=1.2, .30

i=1,2,---,30

C. MS TEST FUNCTIONS (F18-F27)
1. Branin function (F18, MS)

4

+ 10 <1 — L) cosxy + 10,
8
—5<x=<10,0<x <15
fmin = f (x*) = 0.397887,
x* = (=m, 12.275), (7, 2.275) , (3w, 2.475)
2. Bohachevsky1 function (F19, MS)

f ) = x? +2x3 — 0.3 cos 3mx;) — 0.4 cos (4mxy) + 0.7,
—100 < x; < 100,i=1,2
Jmin = f(0,0) =0
3. Booth function (F20, MS)

f@) =1 +20 -7+ Qx +x,— 57,
—10<x; <10, i=1,2
Jmin =f(1,3) =0
4. Rastrigin function (F21, MS)
D

fo=Y [xl? — 10 cos (27x;) + 10],
i=1

—5.12 <x; <5.12,
fmin :f(0,0, 70)20

5. Non-continuous Rastrigin function (F22, MS)

i=1,2,---,30

D
fx) = Z [)’12 — 10cos 2my;) + IO]

i=1
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where
) lxi| < 1/2
i) ound 2x) /2.l > 1/2,
—512<x;,<5.12, i=1,2,---,30

Jmin = f(0,0,---,0)=0
6-7. Schwefel 2.26 function (F23 and F24, MS)

fx) =- ZD:xi sin (\/|)Tl|) ,
i=1

—500 <x; <500, i=1,2,---,30
Jmin = f (420.9687, - - - ,420.9687) = —12569.5

or

D
f(x) = 418.98288727243369D — in sin (\/|7|) ,
i=1
—500<x; <500, i=1,2,---,30
finin = f (420.9687, - - - ,420.9687) = 0

8-10. Michalewicz function family (F25 to F27, MS)

D 2m
fx) =- Z sin (x;) (sin (ix?/n)) ,

i=1

0O<xi<m i=12--,Dim=10

fnin = f (220, 1.57) = —1.8013,D =2

2.693170, 0.258897,
Foin = f (2.074365, 1.022922, 1.720470)
= —4.687658, D=5
2.693170, 0.258897,
2.074365, 1022922,
2.275369,0.500115, | = —9.660152,
2.137603, 0.793609,

2.818757, 1.570796
D =10

fmin =f

D. MN TEST FUNCTIONS (F28-F56)
1. Shekel’s Foxholes function (F28, MN)

(R 1
fO==+> |,
500 j=1 it (xi - aij)
—65.536 <x; <65.536, i=1,2

Jmin = (=32, .-+, =32) = 0.998004

The parameters used in Shekel’s Foxholes function can be
seen in [64].

2. Schaffer function (F29, MN)

sin? (‘ /xl2 +x§> —-0.5

f(x) =05+ ,
[1+0.001 (< +x3)]?
~100 <x; <100, i=1.2
Jmin =f(0,0)=0
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3. Six Hump Camel Back function (F30, MN)

f@) = 4]
—5<x<5,i=1,2
foin = f (x*) = —1.0316285,
= (0.08983, —0.7126) , (—0.08983, 0.7126)

1
— 2.1xi‘ + §x16 + x1x0 — 4)c22 + 4x§,

4. Bohachevsky?2 function (F31, MN)

D—1
f =) x+24,
i=1

—100 < x; <100,
fminz.f(oaov". ’0)20

5. Bohachevsky3 function (F32, MN)

i=1,2

f (x) = x7 +2x3 — 0.3 cos 3mx; + 4mx) + 0.3,
—100<x;<100,i=1,2
fmin :f(oa 0) =0

6. Shubert function (F33, MN)

5
fx) = (Zicos G+ 1 x +i)>

i=1

5
x (Zicos((i+1)x2~|—i)),
i=1
—10<x<10,i=1,2

Fnin = f (x*) = —186.7309
7. GoldStein-Price function (F34, MN)
f )
= [1 + (X1 +x2 + 1)?
x (19— 14x1 +3x} = 145 + 61112 )|
x [30 + (2x) —31)?

x (18 = 3201 + 122} + 48, — 36m32 + 2743 |
—2<x<2, i=1,2

Jmin =f (0, =1) =3

8. Kowalik function (F35, MN)

11 2 2
=3 [a,- LAURLL) }

Pt b7 + b1x3 + x4

—5<x;<5, i=1,273,4
Smin = f (0.192833, 0.190836, 0.123117, 0.135766)
= 0.0003074861

The parameters used in Kowalik function can be seen
in [64].
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— 0.3 cos (3mx;) cos (4mwxitr1) + 0.3,

9. Shekel (Shekel 5,4, Shekel 7,4, Shekel 10,4) function
(F36 to F38, MN)
—1

m 4
2
fO ==Y > (@) +ea| .
i=1 | j=1
0<x<10, j=1,2,3,4, m=5,7,10

Jmin = f (4.00004, 4.00013, 4.00004, 4.00013)
= —10.1532, m=S5
Jmin = f (4.00057, 4.00069, 3.99949, 3.99961)

= —10.40294, m=7
Fonin = f (4.00075, 4.00059, 3.99966, 3.99951)
= —10.53641, m=10

The parameters a and c used in Kowalik function can be
seen in [64].
10. Perm function (F39, MN)
2

f ) = XD: {i (ik +0.5) [(%)l - 1]} ,

k=1 Ui=I
—-D<x;<D, i=1,23,4
fmin =f(15273’4) =O

11. Power Sum function (F40, MN)

[ = Z[Zx —bk},
k=1
Olest D_1721394a

b = [8, 18,44, 114]
fmin =f (17 2’ 37 4) = 0
12-13. Hartman function family (F41 and F42, MN)

fx)= th eXp Zal] Pl] , 0=x=<1
For Hartman 3,4 functlon,
fmin = f (0.114614, 0.555649, 0.852547) = —3.86278
For Hartman 6,4 function,
0.20169, 0.150011, 0.476874, \
Jmin =1 (0.275332, 0.311652, 0.6573 > = —3.32237

The coefficients used in Hartman 3,4 function and Hartman
6,4 function can be seen in [64].
14. Griewank function (F43, MN)

D D
1 2 Xi
= — 2 _ o 1
A 4000§x’ gcos(ﬁ>+’
—600 <x; <600, i=1,2,---,30
Smin =f0,0,---,00=0

15. Ackley function (F44, MN)
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— exp ( Zcos(an, ) + 20 +e,
—32§x,§32, i=1,2,---,30
fmin :f(0,0, 70):0
16. Penalised Levy and Montalvo 1 function (F45, MN)

D—1
[ = f—) [IOsin2 TN+ Gi—1?

=1
x [1 + 10sin? (nyi+1)] +Op— 1)2}

D
+ ) u(xi, 10,100, 4),

i=1

—50<x;<50, i=1,2,---,30
where
vi=14+0.25(x; + 1) and
k(xi—a)™, xi>a
uxi,a,k,my=10, —a<zxi<a
k(=xi—a)", xi<-—a

fmin :f(0’01 10) =O
17. Penalised Levy and Montalvo 2 function (F46, MN)
D—1
sin® B3mx) + Y (4 — 1)?

— i=1
fa =01 [1+ sin? Brxiy1)]

+ (xp — ? [1 + sin® 27xp)]
D
+ ) u(x.5.100,4),
i=1

_SOSXZSSO, l:1’2’330
where
k(xi_a)m, Xi>a
u(xi,a,k,my =40, —a<x<a
k(—xi—a)m’ X < —a

fmin :f(l,l,"' , 1) =0
18. Weierstrass function (F47, MN)

_ 2[R k koo }
f ) ;{;[a cos (271[9 (x,—I—O.S))]

lelL’C
—D- Z [ak cos (nbk>],

k=0
kmax = 207
i=1,2,---,30

a=05 b=3
—0.5<x<0.5,

Jmin =f(0,0,---,0) =0

19. Modified Langerman function (F48 to F50, MN)

D

U 1
fx) = —Zciexp —;Z(xj—aij)z
i=1

J=1

131300

D

X €OS nZ(xj—a,'j)Z ,
-1

0<x;<10, i=1,2,---,D

m=n, n=2510
Jmin = f (9.6810707, 0.6666515)

=—1.0809, D=2
Fmin = f (8.074,8.777,3.467, 1.867, 6.708)
=—-15 D=5

o 8.074,8.777, 3.467, 1.867, 6.708,
Jmin = 6.349,4.534,0.276, 7.633, 1.567

= —-0.965, D=10

20. Modified Shekel’s Foxholes function (F51 to F53, MN)

30 -1
fo)=- z[c,+z —aﬂ] 7

j=1

0<x;<10, i=1,2,---,D

Foin = f (8.024,9.147)
— —12.1191, D=2

Foin = f (8.025,9.152,5.114, 7.621, 4.564)
— —10.4056, D=5

o 8.025,9.152,5.114,7.621, 4.564,
Jmin = f 4.711,2.996, 6.126, 0.734, 4.982

= —10.2088, D =10

The constants used in Modified Shekel’s Foxholes function
can be seen in [64].
21. Fletcher-Powell function (F54 to F56, MN)

D
f@ =Y A-B) -m<x<m,

i=1

i=1,2,---,D, D=2,510
D

Ai =) (aysing; + by cos o),
=1

The constants used in Fletcher-Powell function can be seen
in [64].
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