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ABSTRACT Improvements in vehicular perception systems over the last decade have enabled new levels of
safety and awareness in modern production vehicles. However, achievable performance of these perception
systems is bounded by sensor limitations, such as range, and environmental factors, such as occlusion.
Collaborative perception circumvents these limitations by incorporating sensor data from multiple sources
to fill in perception gaps experienced by an individual sources’ sensors. This paper explores one important
aspect of collaborative perception: simultaneously associating objects detected by multiple individual
vehicles with each other. This task is crucial as the inability to perform such object association accurately
results in duplicate or missed detections, which can lead to unsafe driving behavior. This work proposes a
graph neural network model for this task that achieves an average precision (AP) of 0.882 in a challenging
virtual environment consisting of 25 unique, simultaneous, and mobile viewpoints. A simpler real-world
scenario with two static viewpoints is also evaluated where the model achieves an AP of 0.998, showing that
this model can readily transfer to real-world scenarios as well.

INDEX TERMS Intelligent transportation systems, connected vehicles, data fusion, computer vision,
machine learning, neural networks.

I. INTRODUCTION
Intelligent transportation systems (ITS) have been evolving at
a rapid pace over the last decade. Many production vehicles
come standard with an array of sensors, both inside and
outside of the vehicle, that allow the vehicle to perceive what
is going on inside the cabin as well as in the area surrounding
the vehicle. These sensors enable vehicle safety systems such
as the advanced driver-assistance system (ADAS), which can
give alerts to the driver about dangers on the road or in some
cases even have the vehicle drive itself.

Increased vehicular perception is needed for self-driving
vehicles to reach higher levels of automation as well as
to improve the safety of vehicles with human drivers.
Even the Waymo One [1], which is considered to have
level 4 autonomous driving capabilities as defined by
the Society of Engineering’s (SAE) 6 levels of driving
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automation [2], still does not have a perfect perception of its
surroundings and can run into problems when it is trying to
navigate through the world such as in occlusion scenarios in
where an object, e.g. a building or other vehicle, is blocking
its sensors from seeing oncoming vehicles. There is no perfect
sensor array that will allow the vehicle to see everything;
even the most sophisticated combination of sensors will have
some gaps in perception due to limitations of the sensors
or factors beyond the sensors control. However, by having
vehicles communicate with each other and share sensor data,
these gaps in perception from one vehicle can be filled in by
another. This can be enhanced even further by the inclusion
of street infrastructure sensors as well.

Vehicular networking is becoming reality through emerg-
ing deployments of vehicle-to-everything (V2X) communica-
tion systems such as cellular V2X (C-V2X) [3] and dedicated
short-range communication (DSRC) [4]. These networks will
provide the communication resources needed to enable this
vehicular sensor sharing. Yet, sensor data sharing brings
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about its own challenges in how to efficiently fuse data from
multiple sources. This paper solves one aspect of this prob-
lem: the ability to simultaneously associate object detections
from an arbitrary number of viewpoints with high preci-
sion. Object detection association is defined as positive for
object detections of the same object and negative for object
detections of distinct objects. Determining these associations
is crucial as inaccuracies can lead to duplicate detections,
causing distrust or noise in the system, or missed detections,
leading to misinformed driving behavior. This paper focuses
on RGB object detection associations due to the widespread
usage of RGB cameras on modern vehicles.

In street environment scenarios, creating positive object
associations is difficult as the viewpoint differences for each
vehicle’s sensors can be quite large. For large viewpoint dif-
ferences, it is likely that the vehicles will be viewing different
surface areas of commonly detected objects which results in
a lack of overlapping visual features. However, these positive
associations need to be established in order to avoid duplicate
detections from appearing for the same object in the fused
environmental awareness. An example of this type of associ-
ation can be seen in Fig. 1, where the truck in the middle of
the intersection can be seen by multiple other vehicles. The
large viewpoint differences cause the orientation, lighting,
and scale to be vastly different amongst each detection even
though they are detecting a common object. There are also
cases where multiple vehicles view objects that each other
cannot see due to being out of one or more vehicle camera’s
field of view; in this case a negative association would need
to be established so that each vehicle can be made aware of
the objects they were unable to see individually – enhancing
everyone’s environmental awareness.

This work shows that object detection association from
multiple sources is feasible to do in the real world, in real
time, but requires both position estimates and visual descrip-
tors for good performance. This paper proposes a newmethod
to solve this object association problem even in cases where
there is no overlap in the visual features. The ability for
our proposed model to work for any combination, and any
number, of camera viewpoints is one of the key aspects
that separates this from related works. More specifically, the
contributions of this paper are as follows:

1) We propose a collaborative perception framework
that utilizes both multi-source and multi-modal data
to create visual and spatial descriptors for achiev-
ing real-time sensor fusion in connected vehicle
environments.

2) We created and implemented a novel neural network-
based machine learning model for accomplishing
object detection association that consists of a convo-
lutional feature extractor, graph neural network feature
refiner, and a fully connected classifier.

3) We generate a collaborative sensing dataset that con-
tains a large virtual dataset as well as a smaller
real-world dataset to validate our model; to address the
lack of available collaborative sensing datasets, we are

releasing both datasets to the community for future
research.

4) We present the results of our proposed model on the
generated datasets: an average precision (AP) of .882
on the virtual test set and an AP of .998 on the
real-world test set.

The remainder of the paper is organized as follows.
In Section II we review related work and the differences
between those and this paper. In Section III we give more
detail on collaborative perception and object detection
association before formulating the problem definition and
presenting the framework developed to solve this task.
Section IV describes methodology for generating the two
datasets utilized in this work. We present results in Section V
on both the virtual and real-world test sets, provide a compar-
ison to other methodologies, and provide the computational
inference time of our model to establish its ability to execute
in real time. Section VI presents the results of a number of
ablation studies that informed design choices in the model
architecture and demonstrate the final model’s robustness to
sensor noise. Finally, we conclude the paper in Section VII
and share our goals for future work.

II. RELATED WORK
While vehicular perception and object association tasks in
general are well studied, the specific task undertaken in
the current work, association of objects detected in multiple
geographically separate views at the same instant in time,
remains understudied - likely due to a lack of publicly avail-
able datasets. This task is distinct from related works where
public datasets are available: i) Vehicle Re-Identification [5]
associates vehicles seen from multiple static views, but at
different time instances (limiting the ability to incorporate
spatial awareness shown to be highly beneficial in the current
work) and typically operates in a surveillance setting (where
overlapping visual features nearly always occur due to the
high vantage point), ii) Image Retrieval [6] ranks and returns
similar images in a corpus from a query image, but again
provides no ability to incorporate spatial awareness and does
not have a notion of classifying whether two images of are
of the same exact object only that they are conceptually
related, and iii) Multiple Object Detection and Tracking [7]
traditionally considers a single viewpoint and associates cur-
rent detections with those from prior time steps even if they
weremomentarily lost due to occlusion. These differences are
compared in Table 1 over four attribute categories: mobility

TABLE 1. Comparison between object detection association and other
related methodologies.
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FIGURE 1. Example urban street scenario showing how collaborative perception can improve individual perception. 25 vehicles individually
detected 54 objects which leads to 1431 possible detection pairs that can be associated. This figure explicitly shows one common object, a truck in
the intersection, being detected by at least three separate vehicles. As can be seen, the vehicles detect the common object at varying scales,
lighting conditions, and, most importantly, from nearly orthogonal viewing angles such that there is essentially zero overlap between sections of
the detected truck seen by the individual vehicles.

of the data source, use of multiple data sources, use of spatial
features, and use of temporal tracklets (data from previous
time steps).

The most closely related works have attempted to solve
the object detection association problem in a more limited
scope. Guo et. al. [8] created a dataset, using the Unity
game engine as a simulation environment, where vehicles
are randomly placed in an intersection while being observed
by two connected vehicles in fixed positions at perpendic-
ular sides of the intersection. They create a novel neural
network architecture that uses up to four different features
in a detection branch to feed pairs of features sets into an
association branch which uses a contrastive loss function
to predict associations between detections. While they are
able to achieve high accuracy, the dataset is limited to two
viewpoints which makes the problem much easier than what
the current work solves. In our previous work [9], and the
real-world evaluation in Section VII, we have also studied
this problem from the view of two stationary cameras by
exploring two different features sets and machine learning
models showing that a neural networkmodel can achieve high
accuracy. However, the current work moves beyond this to
create a more realistic (and challenging) dataset which simul-
taneously contains up to 25 different vehicles’ perspectives
where the potential viewpoints are infinite as the observers
are mobile. This work shows that solving this more challeng-
ing task requires additional feature sets and higher complexity
neural network models.

Liu et. al. [10] proposed a vehicle perception sharing sys-
tem where two vehicles can have their detections merged
into a collaborative view using a bipartite matching algo-
rithm based on the similarity between detection feature sets.
However, while real-world data was utilized to validate their
method, the dataset is quite limited in scenarios since it
only examines the case of two vehicles driving side by side
(where viewpoints, and the set of detections for each vehicle,

are quite similar); their feature sets include SURF [11] and
SIFT [12] descriptors which would not work in scenarios
with large viewpoint differences that do no have overlapping
visual features. The current work does not require any visual
overlap in the common detections of vehicles while still being
able to accurately determine object associations. Addition-
ally, the methodology from [10] is inherently only applicable
to two viewpoints at a time due to the usage of the bipartite
matching algorithm, whereas the methodology presented in
this work can associate detections from an arbitrary number
of viewpoints.

Prior works have studied cooperative vehicular perception
using lidar sensors [13], [14], [15], [16], [17] where the asso-
ciation problem is significantly easier. Furthermore, other
works present methodology which does not require machine
learning and relies only on the position estimates of surround-
ing objects to create associations. These works all require
lidar and/or radar sensors to estimate object positions [18],
[19], [20] whosewide scale adoption in vehicles, especially in
the former, remains uncertain due to a variety of reasonswhile
the current work instead focuses on the use of the widely used
RGB cameras.

Additionally, a dataset similar to the virtual dataset gener-
ated for this work was generated for related research tasks
in collaborative perception [21]. While their dataset does
include lidar data, it only includes up to 5 vehicles whereas
ours contains up to 25 in a single scene.

III. COLLABORATIVE PERCEPTION IN CONNECTED
VEHICLE ENVIRONMENTS
As evidenced by the number of works in the previous section,
there are many who believe that collaborative perception
has great potential for increasing the safety of vehicles, but
how this collaborative perception should be implemented
has not yet reached a consensus. While sensor fusion will
undoubtedly play a large role in any collaborative perception
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system, the complexity of sensor fusion that should be used
varies widely. For many, this sensor fusion is only looked
at for improving individual vehicle perception and involves
fusing lidar data with RGB image data to improve the envi-
ronmental awareness of a particular vehicle [22]; if a point
cloud representation of surrounding objects are used then a
stitching algorithms can be used to create a panoramic scene
with all the provided data. However, these sort of sensor
fusion techniques can be computationally expensive and can
produce output data that is entirely too large to send over
any type of V2X communication channel. For a real-time
collaborative perception system, the sensor fusion should be
lightweight in order to meet the strict latency requirement for
extended sensing in connected vehicle environments. As such
object detection association has been chosen as the sensor
fusion methodology for this work and will be the topic of the
remainder of this section.

A. OBJECT DETECTION ASSOCIATION ON ROADWAYS
While object detection association between vehicles can be
utilized to accomplish high level sensor fusion that can be
executed in real time, there are a number of challenges in
creating a system that can accomplish this task with high
accuracy. Vehicles are driving on the roads 24 hours a day,
every day of the year, so there are huge variations in the light-
ing, roadway backgrounds, and weather conditions encoun-
tered. Even more challenging is the fact that there are no
set viewpoints, so for a given pair of vehicles there is no
guarantee that there will be any common visual features even
if they are viewing the same object; examples of this can
be seen in Fig. 2. As seen in the figure, there are cases of
the same vehicle that look quite different due to the different
viewpoints and lighting conditions and there are some cases
of different vehicles that may look similar to each other.
Solutions to this problemmust be robust to all of these sources
of noise, scale to a larger number of simultaneous view points,
and not require overlapping visual features.

B. PROBLEM FORMULATION
The current work restricts itself to object classes of road
users such as cars, trucks, buses, motorcycles, and bicycles
and purposefully ignores static classes of objects that may
appear on the roads such as traffic lights, traffic signs, and
benches/chairs. Additionally, the class of pedestrians will
not be considered in this work as the feature extraction and
classification needed for this object class is different than
that of vehicles and we plan to address this problem in future
work.

For this object detection association problem, it is assumed
that each participating vehicle can provide multi-modal sen-
sor data that is time synchronized. The first type of data is
image data; some cars have many external RGB cameras,
however, only a front facing RGB camera will be considered
for simplicity in this work. While this is principally an image
association problem, vehicle telemetry data is used as well,
specifically position and orientation estimates for the vehicle

that are synchronizedwith the RGB camera images, due to the
benefits this type of data gives to the association performance
(which is detailed in Section VI). The last type of data our
system utilizes is depth data; the vehicle could sense the depth
of surrounding objects using a depth sensor, such as radar
or lidar, or if there is no such on board sensor, the depth
can be estimated from the sequence of RGB images received
(as in done in Section IV-C). The physical transform, from
the vehicle position to the sensors positions, must be known
so data can be transformed into a common coordinate system.
Putting all of this information together creates the input for
our proposed framework as shown in Fig. 3. Here we define
what we call a frame, which is the data being considered
for a single time step. The data in one frame is both multi-
source, since it is coming from multiple vehicles, as well as
multi-modal since it uses multiple types of sensors.

For each time step of data there are k data sources. Each
data source detects ni objects in its surroundings and these
detections are concatenated to form the combined set of
detections D defined as

D = {d1, d2, . . . , dN } (1)

|D| =
k∑
i=1

ni = N (2)

along with its cardinality, N , which is the sum of detections
from each of the K vehicles. There exists an association
between each pair of detections defined as

A = {a1, a2, . . . , aM } (3)

|A| =
(
N
2

)
= M (4)

where each detection ai in A is either positive (ai = 1), mean-
ing that the two detections are of the same object, or negative
(ai = 0), meaning that the detections are of distinct objects.
The cardinality of A is the number of potential associations,
M , and it has a 2-combination relationship with the total num-
ber of detections. In this work, we are presenting our model
which attempts to predict the correct set of associations. The
set of associations, Â, that our model predicts is defined as

Â = f (D) = {â1, â2, . . . , ˆaM } (5)

|Â| = M (6)

which are obtained by applying our model, f (·), to the set
of detections. Since our model is a neural network, f (·) can
be thought of as a black box that takes every possible pair
of detections within D as input and outputs the predicted
association for each pair. Our goal in this work is to maximize
the precision of A and Â as defined by

Precision =
TP

TP+ FP
(7)

where TP (True Positives) are cases when a particular ai = 1
and the corresponding âi = 1 and FP (False Positives) are
cases when a particular ai = 0 and the corresponding âi = 1.
While precision is the metric of focus in this work, we will
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FIGURE 2. Example image pairs for the object detection association problem from the ground truth labels. Green columns represent positive
associations, where the two images are of the same underlying vehicle, and red columns represent negative associations, where the two images are of
different underlying vehicles.

FIGURE 3. Diagram defining what a ‘‘frame’’ of data is in our terminology.
Multi-modal data is produced by each data source and the combination
of all data sources produce a ’’frame’’ of data which is the input to our
framework.

be presenting results for a few other metrics as well. One of
these is recall which is defined by

Recall =
TP

TP+ FN
(8)

where FN (False Negatives) are cases when a particular
ai = 1 and the corresponding âi = 0. Lastly, there is
specificity which is defined by

Specificity =
TN

TN + FP
(9)

where TN (True Negatives) are cases when a particular
ai = 0 and the corresponding âi = 0.

C. OBJECT DETECTION ASSOCIATION FRAMEWORK
Fig. 4 presents the overview of our proposed framework
for determining object detection associations. As mentioned
in Section III-A, the input of the framework is a set of
multi-modal sensor data from each participating data source,
but this data must be pre-processed before being ingested
by the fusion model (Fig. 4a). Each RGB image is passed
through an object detector to produce a set of region of inter-
est (RoI) images of the objects that each vehicle has detected.
Then, each RoI image is transformed into a feature vector.
There are two separate types of features that are generated
from each RoI image. The first type of features is spatial,
represented as a position estimate for the object detected
within the RoI image. This position estimate requires all of
the input sensor data to generate since the object is detected
by the RGB camera, the depth of the object is estimated using
the corresponding depth map, and it’s position in the world

can be estimated using the position/orientation of the vehicle
and the physical transform parameters between the vehicle’s
position/orientation sensors and the RGB camera and depth
sensor if the vehicle has one. The second type of feature is
visual, which is the result of a feature extractor being applied
directly to the RoI image.

The two feature vectors representing each RoI image are
concatenated to form the initial features set shown by blue
circles in Fig. 4 and serve as the detection setD. Each of these
initial features are represented as nodes in a fully connected
graph where each edge in the graph represents a potential
association between two objects; the set of all edges serve
as the set of associations A. At the output of the framework,
each edge will need a prediction to determine whether that
association is positive or negative but since the graph is fully
connected the amount of edges to perform inference on is
needlessly excessive. To reduce this, two different types of
data filtering are considered in this work (Fig. 4b). The first
type is distance filtering, where all edges between objects
with estimated positions greater than some threshold distance
δ are removed. The second type is source filtering, where
edges in the graph between detections that originate from
the same source vehicle are eliminated as well under the
assumption that the object detector utilized does not produce
duplicate detections.

After filtering is applied to the initial graph, a new filtered
graph is produced which has significantly fewer edges than
the initial graph. This filtered graph will go through one more
processing step where each node’s features can be refined by
selectively aggregating and embedding features from adja-
cent nodes (Fig. 4c).

The last step of our proposed model is to preform edge
prediction for the remaining edges in the graph. A classifier
is applied to each pair of nodes where an edge exists and a
resultant edge probability is produced (Fig. 4d). This edge
probability represents the confidence of our model that the
pair of node that edge is between is a positive association,
and these probabilities can be thresholded to determine the
predicted associations.

D. MACHINE LEARNING MODEL
The visual feature extractor used is a combination of a deep
feature extractor and a handcrafted feature extractor; the deep
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FIGURE 4. Overview of the proposed framework for object detection association. Each node in the graph corresponds to a detected object and contains
its visual features as well as position estimates. The graph starts fully connected, but can have many of its edges removed through data filtering. A feature
refiner updates the features of each node in the graph, before each pair of nodes that have an edge between them have their features fed into a classifier
to predict that edge probability. These probabilities can be thresholded to produce a resultant graph with the predicted links.

feature extractor is ResNet-18 [23] and the handcrafted fea-
ture extractor is RGB color histograms.

With our graph representation of this problem, a graph
neural network (GNN) becomes a logical option to refine
the features of each detection with a more global context
as a GNN can simultaneously aggregate across all potential
associations at the same time instead of only operating on
detection pairs. As such a GNN is used as the feature refiner
in our proposed model. The graph neural network that was
chosen is the ClusterGNN [24] convolution. The discussion
of the ablation study preformed that helped inform these
design choices is delayed for further discussion in Section VI.
The edge classifier used is a set of three fully connected
layers with input size of 1076 and output sizes of 64, 16, and
1 respectively with Exponential Linear Units [25] between
the first two layers and a Sigmoid activation function on the
output layer; the weights are randomly initialized in each
training iteration. The training parameters used are a batch
size of 8, a learning rate of .001, the binary cross entropy
loss function, and the Adam optimizer [26]. This classifier
along with all models implemented in this paper have been
implemented in the Python programming language, using the
Pytorch and Pytorch geometric deep learning framework as
well as the scikit-learn library.

IV. DATASET GENERATION
Since machine leaning is being utilized for this task, the
dataset used for training and testing the model is an impor-
tant decision. As such, we have created our own datasets
to represent the scenarios considered in this work. As there
is a lack of cooperative sensing data sets for applications
in connected vehicle applications, both the synthetic and
real-world datasets that we have recorded are available to the
public in hopes that they may be useful to other researchers
in this field.1

1The datasets along with a Jupyter Notebook to help get started are
available for academic and research purposes; you can request access using
the following form: https://forms.gle/EwBrKGWmRywNziVq8

FIGURE 5. Overview of the CARLA simulation environment (‘‘Town03’’)
that was used for synthetic data collection. All data recorded was within
the study area shown in the red box.

A. VIRTUAL DATA
While recording a real-world dataset is possible (and is under-
taken in section IV-C), it is also time consuming, both for
the actual data recording, but especially in the data labeling.
To combat this, we created a virtual street environment to gen-
erate data that mimics situations encountered in real-world
driving scenarios. We used the CARLA [27] autonomous
driving simulator to generate an urban street environment
where 25 vehicles were randomly placed and instructed to
drive around in normal traffic patterns. Since our focus in
this work is object detection association, an arbitrary 200 by
92 meter section of ‘‘Town03’’, one such urban street envi-
ronment provided by CARLA, was selected to act as a study
area and the vehicles were restricted to only drive within
this area. This was done to maintain a high vehicle density
while limiting simulation complexity in order to avoid having
many vehicle’s cameras record frames that contain no other
vehicles or no common vehicles seen by others. An overview
of the street environment and study area can be seen in Fig. 5
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FIGURE 6. Flow graph of the automated labeling pipeline used for the simulation data. It consists of an object
detector, position estimator, and label predictor that take ground truth input data from CARLA to produce the
output vehicle labels, which all have a corresponding RoI image.

and representative images from the simulation have already
been shown in Fig. 1. Each vehicle was equipped with a front
facing camera and depth sensor with additional data about the
position and orientation of each vehicle also being provided
by the driving simulator. 9,080 usable frames2 were generated
in total.

B. AUTOMATED LABELING PIPELINE
9,080 frames corresponds to millions of potential object
detection associations that are contained within these frames
which all must be labeled as positive or negative associations.
Even though CARLA provides ground truth positions and
depth images, ground truth is not available for these object
detection associations between vehicles. As such, an auto-
mated labeling pipeline was created to label this synthetic
data. This automated labeling pipeline is an important aspect
of the synthetic dataset generation as this is what makes this
method of data generation so efficient. There is essentially
zero human cost to create this data since it takes no work to
generate, just computing time. The pipeline is shown in Fig. 6
and organized as follows: Each image from each vehicle has
an object detector applied to it; the object detector used in
this work was Detectron2 [28]. As previously mentioned,
static detection classes such as traffic lights, stop signs, and
benches are filtered out so that only road vehicles like motor-
cycles, bicycles, cars and trucks remain. After this the camera
transform, position of the bounding box in the image frame,
and the corresponding depth map (which can be generated
by a co-located sensor in CARLA) are used to estimate the
3D position of the detected object in the global coordinate
system. Each detection location is then compared with the
known ground truth locations of all roadway users in that
time step to determine its label. In total, there were 243,365
objects detected, producing 5,185,671 possible association
pairs. One thing to note is that this automated labeler utilizes a
heuristic and, therefore, is imperfect; for cases of vehicles that
are very close to one another it is prone tomislabeling them as
the same vehicle. While we have not inspected every vehicle

2When there are zero common detections amongst multiple vehicles,
for instance if they are far apart or face different directions, the frame is
discarded.

label, 1000 individual labels were randomly sampled and
examined to get an estimate of how accurate the automated
labeling pipeline is. It was found that the labeling was 93%
accurate in this sub-sample, so we have confidence that the
large majority of the labels are correct. The utility of this
automated labeling procedure is further reinforced by the
excellent performance when transferring to the real-world
dataset shown in Section VII which is hand labeled, and is
thus 100% accurate.

After all the data had been labeled, the 9,080 frames were
split into training, validation, and testing datasets that con-
sisted of 7017, 893, 1170 frames respectively; this dataset
is named Synthetic (Large). Yet, in order to train models
faster during the feature exploration described in Section VI,
a random subset of the Synthetic (Large) dataset was utilized
to create a smaller training and validation set that consists
of 2143 and 99 frames respectively; this dataset is named
Synthetic (Small). All models are evaluated on the same test
set regardless of what is used during training.

This dataset is, by nature of the problem, very imbalanced
due to the high vehicle density in the area leading to many
more negative associations than positive associations; only
8.2% of the image pairs in the test set are positive associations
and 8.7% in the dataset overall.

C. REAL-WORLD DATA
While there are many benefits in using virtual datasets, one
thing they cannot do is perfectly replicate many real-world
phenomenon and corner case situations that arise in physical
environments. As such, we have also recorded a real-world
dataset to test our model that ensures it is able to work in
this realistic domain as well. The scenario of this real-world
data is RGB camera images from two cameras observing
vehicles driving through an intersection as shown in Fig. 7;
the cameras were placed as close to the street as possible to try
and mimic two vehicles stopped at opposite sides of an inter-
section. The images from each camera had object detection
applied to them [29] and each RoI image pair between the two
cameras were labeled by a human to determine if they were a
positive association (1) or not (0). This data was recorded for
our previous work [9] which did not include spatial informa-
tion about the vehicles, so some additions to this dataset were
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FIGURE 7. The setup used to record the real-world dataset. Cameras were set up on opposite sides of an intersection on the UCSD campus
to mimic two cars stopped at the intersection. Example images from both cameras are shown.

needed; these were estimating the transformation between the
two cameras as well as creating a depth map of each image,
which was done using monocular depth estimation [30]. With
these additions, rough position estimates could be generated
in the camera coordinate frame and translated to a global
coordinate system, thus the data can be tested using the full
model developed in the prior section to validate that our
formulation can be readily applied in real-world scenarios.
419 frames of data were randomly chosen to use as a test set
which yielded 3,354 object detection associations. A training
set of real-world data was also created from an additional
1,353 frames of data that yielded another 11,556 data points.
This dataset is also imbalanced but not quite as much as
the synthetic dataset due to this data being much sparser
(less vehicles seen in each image and only two viewpoints);
12.4% of the images pairs contain positive associations.

V. EXPERIMENTAL RESULTS
In this section, the performance results of our proposedmodel
on both the virtual and real-world data sets are presented,
as well as sample inference time values to show that it is
able to execute in real time. For performance evaluation, the
average precision (AP) metric, which is the area under the
precision recall curve, is chosen as the metric of focus as this
metric relies solely on precision (positive predicted value)
and recall (true positive rate). As previously mentioned, the
dataset being used is imbalanced due to the nature of the
problem and contains an overwhelming majority of true neg-
ative examples which will inflate the area under the receiver
operating characteristic curve (ROC AUC) metric whereas
the AP metric will not be affected by this.

A. PERFORMANCE ON VIRTUAL TESTSET
The results of our model on the virtual test set can be seen in
Table 2. In this table there are four rows, each showing the
model’s performance when a different filtering combination
is used. Looking at the distributions of distances between

TABLE 2. Virtual Results.

detections for both the positive and negative classes as seen
in Fig. 8, it is clear that nearly all of the positive associa-
tions have the distance between the detections of less than
20 meters. Therefore for testing the distance filtering thresh-
old δ is set to be 20 meters. To aid in training δ is relaxed
to 50 meters as to not reduce the size of the training set by
too much. This filtering helps with reducing the search space
as well as helps to correct the class imbalance of the data.
This can be seen in last two columns of Table 2; any row
that contains distance filtering has a high amount of data
reduction and an increased positive association percentage
over the baseline (no filtering) case. With source filtering, the
performance actually decreases on the Synthetic test set and
this is mainly due to the automated labeler; there were cases in
the automated labeling where two detections from the same
vehicle were labeled as the same even though they were of
different vehicles causing the source filtering to erroneously
reduce the performance on the synthetic data.

Example images that exemplify the performance of our
model are shown in Fig. 9. In this figure, examples of all four
possible associations results (true positive, false positive, true
negative, false negative) randomly chosen from the results on
the Synthetic test set are shown. The achieved AP of .882
shows that our model is able to correctly predict associations
most of the time producing results shown in Fig. 9b and
Fig. 9d but that there are still some cases such as the ones
in Fig. 9a and Fig. 9c that the model will get incorrect.

B. PERFORMANCE ON REAL-WORLD TESTSET
As an initial naive test, the model that we trained on the
synthetic data was applied directly to the real-world test set;
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TABLE 3. Real-World Results.

FIGURE 8. Histogram of the distance between detections for both
positive and negative association pairs. Almost all positive associations
in our Synthetic dataset have an estimated distance between detections
of less than 20m.

these are the results on the left side of columns two and three
of Table 3. The real-world training set was used for transfer
learning as the network model that was trained on synthetic
data was fine tuned on this training set for 5 epochs; these
results are on the right side of columns two and three of
Table 3. Note that there are two different performance values
in this section since the results will be different when transfer
learning is used, but the percentage of test data reduction and
positive associations in the data will remain the same whether
transfer learning was used or not.

There is a reduction in AP (0.882 vs 0.830) between the
virtual data performance and real-world data performance
with the naive test caused by the drastic change between
the test data, which is expected since the datasets are from
two completely different domains (synthetic vs real world).
The transfer learning approach successfully improves the
accuracy of the model on the real-world test set and now
has a very high accuracy of 0.992 AP when using distance
only filtering. Part of why the accuracy on real-world data
is higher than the model was able to achieve on the synthetic
data is due to the real-world data captured from only two static
viewpoints and being more sparse, but nevertheless shows the
effectiveness of the model to adapt to different domains.

The combination of source and distance filtering fur-
ther improves the results on the real-world test set to an
AP of 0.998. The source filtering performs better on the
real-world data because it was human labeled and thus nearly
100% accurate whereas the synthetic data utilized the auto-
mated labeler. However, the real-world performance shows
how the use of both distance and source filtering can be an
effective method for real-world systems. This combination of
filtering produced the greatest reduction in the amount of data

that needed to be classified and created the largest increase in
the percentage of positive associations in the dataset as seen
in the distance and source filtering row of Table 3.

C. MODEL COMPARISON
In terms of model comparisons, a few existing methods were
chosen to test on and compare their performance to our pro-
posedmodel. To the best of our knowledge, there are no exist-
ing methods for non-temporal multi-source object detection
association using both visual and spatial features but there are
other methods that were developed for different applications
or use amore limited feature set that can be adapted or applied
to this problem. The Siamese-ResNet architecture from our
previous work [9] was used to compare the performance
of our proposed model with a model that does not use a
GNN. While neural networks are the most common machine
learning methods for any task that involves digital images,
other paradigms can be used; a Random Forest (RF) [31] and
a support Vector Machine (SVM) [32] were also used as clas-
sifiers to serve as baselines comparison models.3 For these
methods, only the raw object positions are used as features.
A method created for this problem that uses a Bhattacharyya
Distance Filter (BDF) [19]was also adapted and implemented
to determine the associations using a threshold of 3 meters;
this method differs from the others in that is does not involve
any machine learning. Finally, a different neural network
model created for image retrieval [33] (we refer to this model
as the Deep Image Retrieval Network (DIRN)) was used as a
feature extractor; the cosine similarity between each pair of
DIRN features was used as a classification metric. One thing
to note is that with the DIRN, no positional features were
included which leads to poorer model performance further
supporting the results shown in Fig. 11. The results of this
comparison are shown in Table 4, showing that our model is
the highest performing. Since some methods, like the BDF,
produce labels directly (0 or 1) instead of scores (0-1) for
each potential association, the binary classification metrics of
specificity, precision, recall, and f1 score are the metrics used
for comparison instead of AP; classifiers that output scores
had their values thresholded to 0.5. The metric of focus here
should be the F1 score since this is the harmonic mean of
precision and recall. The values for specificity are high for
all models but this is mainly due to the dataset containing
so many true negative examples, further showing why pre-
cision/recall focused metrics work better for this particular
problem.

D. COMPUTATIONAL TIME
To demonstrate that our system is feasible to run in real
time, different sections of our proposed model were timed
to estimate inference times using an NVIDIA 1080Ti GPU.
The individual image feature extractor (ResNet-18) took
average of 12 milliseconds per image while the GNN layer

3The SVM used was sklearn.svm.SVC with kernal=rbf and the RF used
was sklearn.ensemble.RandomForestClassifier with n_estimators=100.
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FIGURE 9. Randomly selected image pairs showcasing the results of our model on the Synthetic test set in each of four possible scenarios:
(a) false negatives are separate views of the same common object which were not correctly matched, (b) true negatives are separate views of
distinct objects which were correctly determined to not be common detections, (c) false positives are separate views of distinct objects which
were erroneously matched, and (d) true positives are separate views of common objects which were correctly matched.

TABLE 4. Model performance comparison.

and classifier combined averaged only 2 milliseconds per
mini-batch. These inference times should allow for real-time
object associations for all but the most dense traffic scenar-
ios. These inference times can be improved by using more
powerful hardware or using other techniques, including par-
allelizing the feature extraction task and the use of road side
units and vehicular edge clouds, which look promising to be
deployed on roads to support such vehicular applications in
the future [34].

VI. ABLATION STUDY
In this section, we will present three separate ablation studies
that were conducted as part of this work. The ablation in
subsections A and B were done as part of our implementation
of our object association framework and helped inform the
design decisions for the machine learning model while the
ablation in subsection C shows the robustness of the final
model to sensor noise.

A. GNN CONVOLUTION
A GNN is a neural network that works directly on a graph
structure which consists of nodes and edges; each node con-
tains a feature set and edges represent some sort of relation-
ship between the nodes. There are many different types of
graph convolutions present in prior work [35], all of which
involve aggregating the features of connected nodes accord-
ing to some function which varies among methodologies.

FIGURE 10. Results of the graph convolutional layer accuracy comparison;
the results varied greatly depending on the type of layer that was chosen.

After each node in the graph has passed through the GNN
layer,4 we refer to the set of updated node features as GNN
features. A number of different graph convolutions were
trained on the Synthetic (Small) training set and tested on
the Synthetic test set to compare their performance in order
to find which would perform best for this problem. While
there are many advantages to using a GNN, one disadvan-
tage is that how you aggregate the nodes within the GNN
(i.e. what type of GNN convolution you choose) has a large
affect on the resultant performance. As such, eight different
graph convolutional layers [24], [36], [37], [38], [39], [40],
[41], [42] that have been proposed for a variety of other
tasks were chosen and uniformly randomly sampled over
100 instances; for each instance, a model with the chosen
GNN is trained and the testing results of this experiment can
be seen in Fig. 10. ClusterGCN [24] was the best perform-
ing graph convolutional layer and as such was the type of

4GNNs can have multiple layers, but for this paper all models used that
contained a GNN only had 1 GNN layer.
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FIGURE 11. Accuracy comparison across multiple classes of potential feature sets and their corresponding models. The results in (a) use
only visual features to create the image associations and the results in (b) are when object positions are used as a feature along with visual
features. Each combination was repeated numerous times to ensure that variances in training do not impact the takeaways of the analysis.

GNN layer used in our model implementation. Furthermore,
as shown in Fig. 11, the GNNmodels are the highest perform-
ing on average, even if only by a small margin.

B. FEATURE TYPE
In this section, we evaluate a few different handcrafted fea-
tures as well as deep neural network (DNN) and GNN fea-
tures and compare their performance on this association task.

There are a number of handcrafted features that can be
extracted from images that can be used for visual feature asso-
ciation. One of the most widely usedmethods for this purpose
is using a feature extraction method such as SIFT [12] which
extracts interest points in images and creates a descriptor
for these points that is invariant to scale, orientation, and
illumination changes. This type of descriptor acts as a visual
feature and it works well for creating associations in images
that come from cameras with similar viewpoints and thus
have overlapping regions for the descriptors to be associated;
however in cases with very large changes in camera pose
like in the example of one camera viewing the front of a
vehicle and another camera viewing the rear, the interest
points detected by SIFT will be of completely different phys-
ical points on the vehicles and thus association with these
descriptors will fail. As such, more general visual features
are needed for this object detection association problem.

One intuitive feature choice is color, since the color of a
vehicle is typically uniform. For the specific class of vehicles,
you can also try to make observations about what the make,
model, and type of the vehicle is. There are machine learning
models that exist, such as the Sighthound vehicle recognition
API [29], which try to create these make, model, type, and
color labels given an image of a vehicle; however, despite the
fact that all of these features are intuitive to a human, these
models are subject to incorrect classifications. Make, model,
and type are specifically very difficult to predict correctly due
to the vast diversity of different vehicles on the road today
and the amount new vehicles that are released every year.
Additionally, even estimating color can be very challenging

due to the differences in lighting conditions that are observed
in real-world road scenarios. As such, we have decided not
to include make, model, and type as specific features for
this paper and have chosen more general color features to
represent a vehicle color. For each detection, the average of
the RGB color channels (3× 1 feature vector) is included as
well as a color histogram (24× 1 feature vector); these color
features provided to the input of the model to aid in the asso-
ciation classification. Yet, as seen in Fig. 11a, these features
when used by themselves lead to subpar performance.

While the handcrafted features presented so far are intu-
itive and seem like they should work well in object detection
association, they have begun to be replaced by deep features
in many computer vision applications. Deep features are
visual features that are learned by a DNN. These features
are usually taken from a feature map of a neural network
at the middle or end of the convolutional layers and may
not seem meaningful when viewed as images, but they can
achieve high accuracy on computer vision tasks. For this
paper, we explore the features produced by ResNet-18 [23]
pre-trained on the ImageNet [43] dataset. Large residual net-
works that have been pre-trained on the ImageNet dataset
have been shown to work well on a wide variety of image
classification problems [44]. As a pre-processing step, all RoI
images are resized to 224 × 224 × 3 and have each channel
normalized to the ImageNet mean and variance. We take the
flattened output of the last convolutional layer of ResNet-18,
which has size 512, and call these the deep features. As seen
in Fig. 11a, incorporating deep features nearly doubles the
performance of the model.

Model performance is compared for different combina-
tions of the three visual feature categories (handcrafted fea-
tures, deep features, GNN features) in Fig. 11a. For these
results, a feature exploration experiment was conducted to
determine which combination of features perform best on
this problem. A list of every combination of features was
uniformly sampled to determine what feature set would be
used. The feature sets that contain multiple feature categories
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are concatenations of each included categories feature vec-
tors. On each iteration a feature set is selected and the corre-
sponding feature extraction model is chosen. Each model is
trained on the Synthetic (Small) training set and tested on the
Synthetic test set. For each of these feature combinations, the
experiment was run for 100 iterations to mitigate the effects
of training variance.

So far in this subsection a number of visual features have
been discussed, but visual features are only one aspect of this
problem; the positional features of each detection can also
play an important role in determining if two detections are the
same or not. In fact, if absolutely perfect position estimates
for each object detection were obtainable, then those alone
could be used to create the associations; however, in practice
this is not possible. Estimating the position of these objects
can be challenging and relies on accurate depth maps that
correspond to the images the objects were detected in. There
is no real-world depth estimation technique that is perfectly
accurate. Even in CARLA, where there is ground truth depth
maps available, there is still some error in the position estima-
tion as the depth estimated for a vehicle is for the exterior of
the vehicle rather than the centroid; in the case of a large truck
or bus this can lead to an error of several meters. As such it is
impractical to use position alone to create these associations,
especially in dense traffic scenarios, but it is another useful
feature to consider in this work. Estimated positions for each
detected object can aid in this classification; two objects
that have estimated positions that are close to one another
are, unsurprisingly, more likely to be the same object while
two objects with estimated positions very far away from
each other are more likely to be different objects as seen
in Fig. 8.

Now that the positions of the detections are being con-
sidered, two more features are added to the potential fea-
ture set: the raw position of each detection as well as the
distance between detections. Considering these additional
positional features greatly increases model performance as
seen in Fig. 11b

C. SENSOR NOISE
Since the majority of data was generated using a virtual
environment with ground truth position/orientation data and
depth maps for each vehicle, an ablation study was performed
to determine how our model would perform in less ideal
conditions which may be more realistic to what may be
encountered in the real world. Real-world data was recorded
as well and while the results presented in Section VII show
good performance on this data, we do not have ground truth
for any of that sensor data and as such do not know how
much noise in present in each sensor. As such, we have
taken the simulation data from the test set and added noise
to each measurement needed to estimate a detection’s posi-
tions (position in meters, depth map in meters, orientation
in radians). The noise that was added was sampled from a
uniform distribution from −nv to nv where nv is the chosen
amount of sensor noise. A range of sensor noises were chosen

TABLE 5. Model performance under different levels of sensor noise.

TABLE 6. Model performance under different levels of object detection
noise.

to reflect the variable nature of these sensors; for many depth
sensors, precision is based on the distance to the object so a
range of reasonable noise values were chosen [45], [46]. GPS
positioning error depends on many factors but is less than 2m
in 95% of cases [47] and magnetometers can achieve sub
one-degree (0.017 radian) heading (yaw) accuracy [48]. The
results of this ablation are shown in Table 5. As is expected,
as the sensor noise increases, the AP of the model decreases
due to the decreasing accuracy of the position estimates. The
model continues to perform well in low to medium noise
ranges staying above 0.8 AP; however, with very high noise
the model performance will decrease significantly which is to
be expected, highlighting the importance of accurate sensor
data for this problem.

The other source of error that may arise is from poor object
detection performance. To simulate this, noise was added
to the position and scale of the bounding boxes that were
detected by detectron2 [28] to mimic the performance of an
object detector on noisier RGB images. Similar to the sensor
noise experiment, the noise applied to each value is sampled
from a uniform distribution from −nv to nv in the case of
pixel noise and nv to 1.0 in the case of scale noise where nv is
the chosen amount of noise. Table 6 shows that even with
moderate levels of these type of object detection noise, the
model can still maintain an AP of more than 0.8.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed the use of object detection asso-
ciation as a lightweight sensor fusion method for real-time
collaborative perception in connected vehicles environments.
We have presented a novel graph based object detection asso-
ciation framework that leverages both visual and positional
features of detected objects. We created a machine learning
model for this object association task that was able to produce
an AP of .882 on a large virtual dataset consisting of 25 mov-
ing vehicle views’ and an AP of .998 on a real-world dataset
consisting of two stationary views.
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The biggest challenges we experienced over the course of
working on this paper were figuring out a way to label all
the generated virtual data as well as improving the perfor-
mance of the proposed model on the virtual test set once it
was labeled. We were able to develop a heuristic automated
labeling pipeline to handle the large amount of data labeling
needed and performed ablation studies in feature exploration
to determine design improvements in our proposed model.

For future work, we plan to investigate additional
real-world considerations for collaborative perception such
as high mobility situations, dynamic availability of network
and computing resources, and the susceptibility of models to
malicious activities such as adversarial attacks. Additionally,
while we believe our proposed model performs quite well,
there are some further improvements that can be made. For
instance, we plan on utilizing 3D object detection instead of
2D to improve the position estimation as well as including
temporal tracking to maintain and increase confidence in
correct associations while helping to discard incorrect associ-
ations. We also plan to consider other classes of objects, such
as pedestrians, and introduce other sensor modalities beyond
RGB cameras and positional trackers. While this model is
able to execute in real time, we believe that it can be further
optimized such as amortizing the deep feature extraction (the
most computationally expensive task) into actions already
being taken by the vehicles (e.g. object detection). Finally,
we hope to implement this work in a real time, real-world
system using a C-V2X test bed we are developing on the
UCSD campus.5
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