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ABSTRACT Broadband seismographs are used to collect seismic data over an extended period. Temper-
ature, pressure, and humidity are field variables that can have an impact on the broadband seismograph’s
performance as well as the accuracy of observational data. Variations in performance, geological structure,
and noise source will cause the cross-correlation function of seismic ambient noise to alter. To evaluate the
effectiveness of seismographs, we propose to use the whole cross-correlation function as well as the positive
and negative timewaveforms for feature extraction. The cross-correlation function is decomposed to evaluate
the phase variations using LocalMeanDecomposition (LMD) andVariationalModeDecomposition (VMD).
This is followed by the calculation of the Multivariate Multiscale Fuzzy Entropy Partial Mean (MMFEPM).
Wavelet Packet Decomposition (WPD) and MMFEPM are used to evaluate phase variations in the positive
and negative time waveforms. WPD combined with Wavelet Feature Scale Entropy (WFSE) is chosen to
evaluate the amplitude variations of the cross-correlation function and its positive and negative waveforms.
The results show that the proposed methods can identify time offsets within 0.025-2.5s and amplitude
variations of 10−16, which provide a new direction for evaluating the performance of seismographs using
ambient noise.

INDEX TERMS Broadband seismograph, feature extraction, performance evaluating, ambient noise.

I. INTRODUCTION
Emplacing portable seismic stations has become an essen-
tial measure with the development of seismic observation.
However, service duration and field uncertainties, such as
temperature and humidity [1], [2], [3], emplacement methods
[4], [5], geographical conditions [6] and atmospheric pressure
[7], [8] may influence the performance of seismographs.
As periodic calibration methods can lead to time delays and
acquisition interruptions, several methods are proposed to
analyze the performance of seismographs in real time using
seismic data [9], [10], [11]. Since the seismic data is dis-
continuous, the seismic ambient noise is selected to evaluate
the performance. It can also be evaluated by comparing the
short-period ambient noise power spectral density with the
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long-term noise baseline [12], [13], [14], or by using the data
from co-located sensors [15], [16]. The time symmetry anal-
ysis of the ambient noise cross-correlation function (NCCF)
allows for the separation of the time offsets brought on by
the variations of seismograph performance [17], [18], [19].
However, the majority of evaluation methods only process
data in the time or frequency domain, which has a negative
impact on measurement accuracy. As a result, we analyze the
NCCF by feature extraction methods to test the performance
variations of the seismograph in the time-frequency domain.

A variety of time-frequency processing methods are cho-
sen to extract the features of NCCF and its positive and
negative time waveforms to judge the variations in the
performance of seismographs. Empirical Mode Decomposi-
tion (EMD) and its improvements, such as Ensemble Empir-
ical Mode Decomposition (EEMD) and Complete Ensemble
Empirical Mode Decomposition (CEEMD) are frequently

130224
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-5856-3207
https://orcid.org/0000-0002-2942-1963
https://orcid.org/0000-0003-0621-9647


X. Bao et al.: Using the Features Extracted From the Ambient Noise Cross-Correlation Function

used for seismic data processing. These methods are based on
empirical generalization and temporarily lack mathematical
theoretical support. Local Mean Decomposition (LMD) is
chosen to perform a preliminary decomposition of NCCF
since it can better reflect the detailed characteristics of the
seismic signal and avoid the problem of over-decomposition
of the seismic signal [20]. VMD performs better in terms
of noise robustness than other decomposition methods. It is
then utilized as the secondary decomposition to describe the
geological features and stratigraphic information in NCCF
[21], [22], [23]. Variational Mode Decomposition (VMD)
can also be applied to underwater acoustic signals [24], [25].
Wavelet Packet Decomposition (WPD) can adaptively select
the corresponding frequency band to match the spectrum
according to the signal characteristics. It can improve the
time-frequency resolution of seismic signals by taking advan-
tage of time-frequency localization and multi-scale analysis
[26]. Positive and negative time waveforms can both have
phase information extracted using WPD. As the spatial dis-
tribution of noise sources can alter the amplitude of NCCF,
WPD is used to extract the amplitude information more
pertinently. Following the presentation of the feature extrac-
tion methodologies in Section 2, the results are provided in
Section 3 and demonstrate the feasibility of themethods using
real data in Section 4. Section 5 concludes the phase and
amplitude evaluation methods.

II. METHODS
Changes in instrument responses can alter the collected data
since it is obtained by convolving the source term, path term,
and instrument response. The instrument response function
consists of the zero-poles and sensitivity:

G(f ) = SdA0

N∏
n−1

(s− rn)

M∏
m−1

(s− pm)

= SdA0Hp(s) (1)

where Sd contains all information about the stage’s sensi-
tivity, A0 is the normalization factor, s is a variable in the
Laplace transform domain, rn and pm are the zeros and poles,
respectively.

The performance of seismographs will alter as service
time increases and field uncertainty factors, resulting in
instrument response parameters changes. The amplitude and
phase of the data can be used to assess performance since
changes in parameters will have an impact on the data. Vari-
ations in zero-poles will influence the amplitude-frequency
and phase-frequency responses (Fig. 1), whereas variations
in sensitivity will affect the amplitude-frequency response
(Fig. 2). The NCCF calculated from the collected ambient
noise data is selected to evaluate the performance of the
seismograph.

Physical changes in media, seismograph errors, and
the spatial distribution of noise sources all have impacts

FIGURE 1. The results of zero-poles variations on instrument responses.
(a) Variations in zero-poles; (b) Enlargement of the black box in (a);
(c) Variations in amplitude-frequency and phase-frequency responses.
The results before and after changing the parameters are shown in blue
and red, respectively.

FIGURE 2. Variations in amplitude-frequency and phase-frequency
responses when the sensitivity is increased by ten times. The results
before and after changing the parameters are shown in blue and red,
respectively.

on NCCF [17] :

ψij(t) = τ (t)+ ω(t)+ σ (t)ij (2)

where ψ is the time offset on the positive and negative
time waveform of the NCCF, τ is the time offset caused
by seismograph errors, ω is the time offset caused by the
physical changes, σ is the time offset caused by changes in
noise sources and ij is the two components of NCCF. τ will
cause the entire waveform to shift left or right (Fig. 3a), ω
will cause the waveform to stretch or compress (Figs. 3b-c)
and σ will affect the amplitude of the positive or negative
time waveforms independently (Figs. 3d-e). The time offsets
caused by seismograph errors can be separated since τ is an
even function and ω is an odd function:

ψij(t)+ ψij(−t)
2

= τ (t)+
σij(t)+ σij(−t)

2
(3)

As increasing the length of the time series can reduce the
influence of σ , positive and negative time waveforms can be
used to separate the time offset caused by seismograph errors:

ψij(t)+ ψij(−t)
2

= τ (t) (4)

Different decomposition and entropy methods are utilized
to extract the amplitude and phase features in NCCF (Fig. 4).
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FIGURE 3. NCCF influencing factors. (a) The time offset of the entire NCCF
caused by seismograph errors (the blue curve is the ideal NCCF, and the
red curve is the NCCF after seismograph errors); (b-c) NCCF variations due
to physical changes in the medium; (d-e) NCCF variations caused by the
uneven distribution of noise sources.

FIGURE 4. Flow chart of phase and amplitude evaluating methods.

The phase variations of the whole NCCF are evaluated using
LMD-VMD-MMFEPM (Multivariable Multiscale Fuzzy
Entropy Partial Mean), whereas those of positive and nega-
tive time waveforms are evaluated using WPD-MMFEPM.
WPD-WFSE (Wavelet Feature Scale Entropy) is used to
evaluate amplitude variations in the three waveforms. The
relationships between the three waveforms can be utilized to
analyze the variations induced by performance changes.

LMD is used to reduce noise interference by analyz-
ing the local time-frequency characteristics of NCCF. The
method needs first to calculate the local mean function mll(t)
and envelope estimation function all(t) of NCCF. Then,
subtractmll(t) from NCCF to obtain a new signal xnew(t).
Demodulate xnew(t) to a pure FM signal, and then multiply
all local envelope functions to get the envelope signal. The
first Product Function (PF) of LMD is the product of the
envelope signal and the pure FM signal, which has the highest
frequency in NCCF. Repeat the previous steps until the resid-
ual is a monotone function after separating PF from NCCF:

x(t) =
k∑

p=1

PFp(t)+ uk (t) (5)

where k is the number of PF, PFp is the pth PF, and uk (t) is
the residual.

All the PFs are stacked to create a new waveform since
LMD has a mode mixing problem and removing some com-
ponents may cause the loss of information:

X (t) =
k∑

p=1

PFp(t) (6)

VMD is utilized to process X(t) as a secondary decompo-
sition to reduce noise interference and avoid modal mixing.
Assuming k Intrinsic Mode Functions (IMFs), the variance
constraint model is as follows:

min
{uk ,ωk }

{∑
k

∥∥∥∂t ∣∣∣(δ(t)+ j
π t )ut (t)

∣∣∣ e−jωt t∥∥∥2
2

}
s.t.

∑
k=1

uk = x (7)

where {uk} is IMF and {ωk} is the center frequency of each
IMF. The constrained variational issue is changed to an
unconstrained variational problem by using a penalty factor
α and a Lagrange multiplier operator λ(t):

L ({uk} , {ωk} , λ)

= α
∑
k

∥∥∥∂t [(δ(t)+ j/π t) ∗ uk (t)] e−jωk t∥∥∥2
2

+

∥∥∥∥∥f (t)−∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

∑
k

uk (t)

〉
(8)

The optimal solution of the variational model and the IMFs
can be obtained through iteration and optimization of uk , ωk
and λ(t).

MMFEPM [27], composed of MMFE and PM, is chosen
to describe the phase information in IMF. Compared with
other measurement methods, like Slope Entropy (SlEn) and
Permutation Entropy (PE) [28], MMFE is more suitable for
NCCF processing. In MMFE, coarse granulation ensures that
IMF can be analyzed from multiple perspectives, and the
fuzzy membership function K (x) has a significant impact on
the statistical stability of the MMFE entropy values. They
ultimately make the calculation results more reflective of
the phase variations of the waveforms. When the Chebyshev
distance d [Ym (i) ,Ym(j)] ∈ [0, r], writeK (x) asMi and when
d [Ym (i) ,Ym(j)] > r , write K (x) as Ni, where r is the given
threshold value. Let Ei = Mi + Ni and the frequency of Ei is
Lmi (r). The MMFE can be written as follows:

IMSE (M , λ, r,N ) = −ln
[
Lm+1 (r)
Lm (r)

]
(9)

PM is used to analyze the central trend ofMMFEvalues under
different scale factors:

Hpe
mp =

(
1+

∣∣∣∣Ske3
∣∣∣∣)× Hm

mp (10)

where Ske is the skewness and Hm
mp is the entropy mean.
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FIGURE 5. Map of the study area. The stations are indicated by triangles
with station names beside each symbol. The inset shows the location of
stations on the larger map.

WPD is used to filter the positive and negative time wave-
forms at high and low frequencies, resulting in the wavelet
node. The phase information in the wavelet node can be
evaluated using the MMFEPM value.

Noise sources and other interference factors can influence
the amplitude of NCCF. These three waveforms are processed
using WPD as well, and the WFSE values are then calculated
to describe the amplitude information. The measure of the
wavelet coefficients dj(k) is determined as follows:

pjk =
dFj(k)∑N

k=1 dF(j)(k)
(11)

where dF(j)(k) is the Fourier transform of dj(k). The WFSE
value is defined by the information entropy:

WFSEj = −

N∑
k=1

Pjk logPjk (12)

where WFSEj is the WFSE value of the jth scale of the
sequence.

III. DATA AND RESULTS
A. DATA PROCESSING
The seismic ambient noise data from the CI network in
the Los Angeles Basin region of Southern California from
September to December 2006 is selected (Fig. 5). Following
data preprocessing [29], the raw data with a frequency of
40Hz is filtered in the 0.01-0.1Hz band and then divided into
one-hour time windows to calculate the daily NCCF. The
NCCF can be obtained by stacking the daily NCCF with
correlation coefficients greater than 0.4 for different days
[30], and then evaluating the phase and amplitude variations
within the ±125s time window (Fig. 6).
The whole NCCF is shifted (Fig. 7a) to simulate different

phase variations in the range of 0.025 to 2.5s and the wave-
form is multiplied by different coefficients to simulate small
variations in amplitude (Fig. 7b).

B. RESULTS OF PHASE EVALUATING
NCCF is processed with LMD to obtain four PFs and one
residual component. The waveform tends to be monotonous
as the number of PF increases. Stack all PFs to get a new

FIGURE 6. NCCFs of (a) OSI-SDD, (b) OSI-SVD, and (c) EDW2-SVD station
pairs for different stacking days.

waveform X (t) to avoid the loss of information and then
use VMD to further analyze the waveform. The number of
IMFs is set to two. Positive and negative time waveforms
can be distinguished from IMF1 (Fig. 8) and the correlation
coefficient with X (t) is higher than that with IMF2 and X(t).
Therefore, the IMF1 that maintains more phase information
is selected for further processing.

The MMFEPM value of IMF1 is calculated to describe
phase information from different scales. The MMFEPM
value of the OSI-SDD station pair decreasesmonotonically as
the time offset increases from 0.025s to 2.5s (Figs. 9a and 9b).
According to the results of the EDW2-SVD and OSI-SVD
station pairs (Figs. 9c and 9d), as well as the OSI-SDD
station pair, this method can be applied to evaluate NCCFs
in different directions and distances.
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FIGURE 7. Simulation of the phase and amplitude variations of the NCCF
due to the seismograph performance, the selected waveforms are
contained within the solid black line. (a) Shifting the waveform by
500 points (12.5s); (b) Multiplying the amplitude of the waveform by a
factor of two.

FIGURE 8. Results of VMD.

FIGURE 9. The phase evaluation results of different station pairs
(normalized). (a) Variations in MMFE values as the time offsets increase
(single NCCF of OSI-SDD station pair); (b) Variations in MMFE values as
the time offsets increase (NCCFs for different stacking days of OSI-SDD
station pair); (c) The same as (b), but of the EDW2-SVD station pair;
(d) The same as (b), but of the OSI-SVD station pair.

A four-layer WPD is used to process the positive and
negative time waveforms. Since the nodes are arranged
from low to high frequency, the first node is chosen to
calculate the MMFEPM value. The MMFE values of these
two waveforms increase initially and subsequently decrease
as the time offsets increase (Fig. 10). The evaluation range of

FIGURE 10. The phase evaluation results of positive and negative time
waveforms of the OSI-SDD station pair (normalized). (a) The result of a
single positive-time waveform; (b) The results of the positive-time
waveform for different stacking days; (c) The result of a single
negative-time waveform; (d) The results of the negative-time waveform
for different stacking days. The black solid lines are the evaluation ranges.

FIGURE 11. The phase evaluation results of (a) positive and (b) negative
time waveforms of the EDW2-SVD station pair for different stacking days
(normalized). The black solid lines are the evaluation ranges.

the positive time waveform is larger than that of the negative
time waveform (the rising part is taken as the evaluation
range). The higher the waveform energy, the wider the evalu-
ation range. This conclusion can be confirmed by comparing
the evaluation ranges of three waveforms of the EDW2-SVD
station pair (Fig. 11).

C. RESULTS OF AMPLITUDE EVALUATING
Since interference factors can easily impact the amplitude of
NCCF, it is important to properly identify amplitude varia-
tions caused by changes in seismograph performance. The
influence of physical medium change can be avoided by
improving time resolution as it is not easy to change in a short
time and has little impact on the waveform. Therefore, the
amplitude variations caused by performance changes can be
determined by separating the effect of the noise source.

Set the sliding windows with a duration of 40 days and
a step of 1 day to calculate the NCCF of the OSI-SDD
station pair (Fig. 12) and take the amplitude in the first time
window as a reference. The influence of noise sources can
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FIGURE 12. Variations of noise sources over time.

FIGURE 13. The amplitude evaluation results of NCCFs. (a) The results of
the OSI-SDD station pair for different stacking days; (b) The same as (a),
but of the OSI-SVD station pair.

be separated by calculating the WFSE values of two NCCFs
and subtracting the difference in the values between two
adjacent time windows from the WFSE value of the latter
time window.

A three-layer WPD is utilized to analyze the amplitude
variations of NCCF, and the first node is selected to calculate
the WFSE value. The WFSE values of the OSI-SDD station
pair for different stacking days decrease monotonically with
increasing amplitude (Fig. 13a). When the amplitude changes
are the same, the absolute value of WFSE increases with
increasing SNR. The results of the OSI-SVD station pair
verify the practicality of this method (Fig. 13b).

The amplitude of positive and negative time waveforms
is evaluated using the same method as NCCF. The results
of the OSI-SDD station pair for different stacking days

FIGURE 14. The amplitude evaluation results of positive and
negative-time waveforms. (a) The results of the positive time waveform of
the OSI-SDD station pair for different stacking days; (b) The same as (a),
but of the OSI-SVD station pair; (c) The results of the negative time
waveform of the OSI-SDD station pair for different stacking days; (d) The
same as (c), but of the OSI-SVD station pair.

FIGURE 15. The relationships between the WFSE values of the NCCF of
the OSI-SDD station pair and the sum of the WFSE values of the positive
and negative time waveforms(normalized).

show amonotonic decreasing trendwith increasing amplitude
(Figs. 14a and 14c). The higher the waveform energy, the
larger the absolute value of WFSE. The WFSE value of
NCCF is equal to the sum of WFSE values of positive and
negative time waveforms (Fig. 15). These conclusions are
validated by the amplitude evaluation results of OSI-SVD
stations (Figs. 14b and 14d).

IV. METHOD VERIFICATION
To calculate the NCCFs and confirm the reliability
of the phase and amplitude evaluation methods, data
from the OSI-SDD station pair between September and
December 2006 is chosen. A sliding window with a period
of 40 days and a step of 1 day is then defined.

A. THE VERIFICATION OF THE PHASE
EVALUATING METHOD
The MMFEPM values of all the original waveforms (written
as the original result) are first calculated, then the phase is
changed in a certain time window to calculate the MMFEPM
value (written as the changed result). The validity of the
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FIGURE 16. Residuals between the original and final results of the
OSI-SDD station pair, where the black solid lines are the fifth and
twentieth time windows, respectively.

FIGURE 17. Residuals between the original and final results of the
(a) positive and (b) negative time waveforms of the OSI-SDD station pair,
where the black solid lines are the fifth and twentieth time windows,
respectively.

method can be verified by comparing the residuals between
the original and changed results in the same time window.

The MMFEPM values of all time windows are recorded
as the original results. The waveforms are then shifted by
10 points (0.25s) in the sixth to twentieth time windows and
25 points (0.625s) in the twenty-second to fortieth time win-
dow (recorded as the initial results). To better assess the unity
of the results, the initial results are divided by the PM value
of the period (recorded as the final results). The residuals
between the original and the final results show breakpoints
in the fifth and twentieth time windows (Fig. 16), indicating
that this method can evaluate the phase variations in NCCF.

The changed time windows and phases of positive and
negative time waveforms are consistent with the above.
Breakpoints are visible in the fifth and twentieth time
windows (Fig. 17), demonstrating that this method can iden-
tify the phase variations in both positive and negative time
waveforms.

It’s essential to evaluate whether the variations of the three
waveforms are the same. We first need to find the MMFEPM
value of the changed phase (written as evaluation result)
and then shift this waveform within 0.025-2.5s (written as
simulation result). When the MMFEPM values between the
two results are the closest, the evaluation result has the same
time offset as the simulation result. The three waveforms in
these two periods all have the same time offsets of 0.25s and

FIGURE 18. The residuals between the original and changed results of
the NCCF, where the black solid lines are the second and thirteenth time
windows, respectively.

FIGURE 19. The residuals between the original and changed results of
the (a) positive and (b) negative time waveforms, where the black solid
lines are the second and thirteenth time windows, respectively.

0.625s, proving that the phase variations are caused by the
performance change.

B. THE VERIFICATION OF THE AMPLITUDE
EVALUATING METHOD
The WFSE value of the waveform requires to be calculated
after separating the influence of the noise source (recorded
as the original result). After that, change the amplitude in a
certain time window and calculate the WFSE value (recorded
as the changed result). The reliability of the amplitude
evaluation method can be demonstrated by comparing the
residuals between the original and changed results.

From the third to the twentieth and the thirteenth to the
fortieth time window, the amplitudes of the waveforms are
multiplied by 6.7×10−10and 10−9, respectively. Breakpoints
in the residuals between the original and changed results are
found in the second and thirteenth time windows (Fig. 18),
indicating that this method can identify amplitude variations.

The changed time windows and amplitude of positive and
negative time waveforms are consistent with the preceding.
The breakpoints appear in the second and thirteenth time
windows (Fig. 19), indicating that this method can assess
the amplitude variations in positive and negative time
waveforms.
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FIGURE 20. The relationships between the WFSE value of the NCCF and
the sum of the WFSE values of the positive and negative time waveforms.

The WFSE value of the changed amplitude is recorded
as the evaluation result. The WFSE values for this ampli-
tude range are then calculated using the slope (written as
simulation data). When the WFSE values are closest, the
amplitude variation of the simulation data is the same as
that of the evaluation data. The amplitude variations of the
three waveforms in these two periods are 6.7 × 10−10 and
10−9 , showing that the amplitude variations are caused by
performance change. This conclusion is further supported by
the fact that the WFSE value of NCCF is equal to the sum
of the WFSE values of positive and negative time waveforms
(Fig. 20).

We multiply the amplitudes of the three waveforms by
1.6 × 10−10 and 3.0 × 10−10 in the eighth to twenty-first
and twenty-second to fortieth time windows, respectively. All
waveforms have breakpoints in the eighth and twenty-second
time windows (Figs. 21a-c). By comparing the WFSE values
of the three waveforms, it is confirmed that the amplitude
variation is caused by changes in seismograph performance
(Fig. 21d). Furthermore, the amplitude range is 10−11 − 10−9

both in the eighth to twenty-first and twenty-second to
fortieth time windows. The amplitude variations in the cor-
responding time windows of the three waveforms are the
same by comparing the simulation and evaluation results. It is
further proved that by analyzing the relationships between
the WFSE values of the three waveforms, it is possible to
determine whether the amplitude variations are caused by
performance changes.

V. CONCLUSION
We propose to use the features of NCCF as well as positive
and negative time waveforms to monitor the performance of
seismographs online.

LMD-VMD-MMFEPM is utilized to evaluate the phase
variations of the entire NCCF and the time offsets within
0.025-2.5s can be identified. WPD-MMFEPM is then used
to evaluate the phase variations of positive and negative
time waveforms. Since the evaluation range is decided by
the smallest of the three waveforms, selecting the station
pairs whose positive and negative time waveforms are more
evenly affected by noise source can obtain a wider range. It is
necessary to separate the influence of the noise source since it
has an independent impact on both the positive and negative
time waveforms. The smallest variation in amplitude of the

FIGURE 21. The evaluation results among the NCCF, positive and negative
time waveforms. (a) Residuals of the WFSE values between the original
and changed results of NCCF; (b) The same as (a), but of positive time
waveform; (c) The same as (a), but of negative time waveform; (d) The
relationships between the WFSE values of the three waveforms. The black
solid lines are the eighth and twenty-second time windows, respectively.

three waveforms that can be evaluated using WPD-WFSE
is 10−16. Distance and azimuth do not affect the evaluation
accuracy.

The proposed feature extraction methods can test the small
variations in the ambient noise waveform and swiftly evalu-
ate the performance of the seismograph. Following that, the
combination of this method and machine learning can realize
the automatic detection and early warning of the performance
of the seismograph, thereby promoting the intelligent appli-
cation of the seismograph.
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