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ABSTRACT Industrial product quality inspection, a crucial procedure in industrial production, is crucial in
assuring product yield. Product safety and quality inspections on industrial assembly lines are predominantly
manual, and there is currently a dearth of safe and dependable inspection techniques. An improved surface
defect detection approach based on YOLOv5 is proposed for the problem of surface flaws in industrial
components in order to improve the quality detection effect of industrial production parts. To improve the
effect of dense object detection, the image features are extracted by the convolutional network and enhanced
by coordinate attention. BiFPN is utilized to fuse multi-scale features in order to lower the rate of missed
detection and false detection for small target samples. The detectors from the Transformer structure are added
to the complex problem of fine-grained detection to improve the predictability of challenging occurrences.
According to the experimental findings, on the dataset for industrial parts defects, the proposed network
increases the recall of the original algorithm in abnormal classes by 5.3%, reaching 91.6%. Its inference
speed can approach 95FPS, indicating an improved real-time detection performance.

INDEX TERMS Defect detection, YOLOv5, transformer, deep learning, fine-grained detection.

I. INTRODUCTION
The industrial product safety and quality inspection of indus-
trial assembly lines are mainly based on manual review.
Industrial production still relies on the naked eye to detect and
analyze defective products on assembly lines. Considering
the safety of human inspectors and the low efficiency of
manual inspection of products on assembly lines, the most
widely used method is to improve the recall rate through
manual sampling after production [1]. This manual detection
method is inefficient and has potential safety risks, which
limits the update and development of the industrial chain in
the long run. Hence, it is imminent to realize online detection
of product defects on industrial assembly lines.

With the development of deep learning in recent years,
computer vision has become more and more powerful
and functional in addressing tasks such as image classi-
fication and object detection, characterized with increased
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recognition accuracy surpassing human eyes and increasingly
faster recognition speed. Diverse algorithms and advanced
computing equipment provide stable conditions for accu-
rate industrial defect detection [2]. Robots and mechanical
intelligence technology play an important role in industrial
manufacturing, and defect detection methods used for related
parts also have research significance [3], [4], [5]. Since some
industrial defects can be regarded as the abnormal appear-
ance of industrial products, it is suitable to adopt image
methods for detecting abnormality [6], [7]. In particular,
image anomaly detectionmainly focuses onwhether the input
image is an anomaly instance, usually at the image level.
However, industrial defect detection is more concerned with
detection tasks at the local level. At the local image and
pixel level, the difference between anomalies and standard
patterns is more subtle, which leads to significantly increased
difficulty in actual detection. Therefore, employing image-
level anomaly detection methods to meet the requirements of
industrial defect detection is challenging. Yue et al. [8] pro-
pose to use a deep learning method for local defect detection
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of industrial products. Yang et al. [9] locate various defect
positions through the object detection method and distinguish
defect categories using an improved classification network.
Zhao et al. [10] extract defect information by virtue of the
instance segmentation method. The prediction results are
output through the subsequent network, and the training data
is enriched with weakly supervised learning. Still, real-time
detection cannot be guaranteed due to slow recognition speed.
The industrial field requires real-time detection performance,
and even small embedded devices can satisfy the real-time
detection requirements. This application scenario requires a
lightweight, high detection frame rate model.

To solve the problems of low detection accuracy and inabil-
ity to real-time detection in traditional methods [11], [12],
a mechanical product defect detection system is proposed in
this paper for industrial assembly lines based on the object
detection method. Parts with defects such as deform and
contamination are marked when their appearance is detected
to be defective, which provides convenience for subsequent
early warning and rejection of defective products. Different
from other object detection methods in defect detection of
industrial parts, this paper detects different abnormal states of
the same category at the instance level, which belongs to fine-
grained detection, characterized by the distinction between
different abnormal categories. Due to smaller difference of
the samples in different states, it is more difficult to identify
correct samples. Using a lightweight model with high real-
time performance, the proposed method can provide a com-
puter vision-based solution for current industrial production
through embedded transplant deployment, so as to enhance
the quality of products under industrial assembly lines. Based
on ensuring real-time detection performance, given the dif-
ficulty of defect classification with the existing YOLOv5s
method for small sampleswith low recall rates and slight sam-
ple differences, the model is improved in this paper to make
it more suitable for tiny target and difficult sample detection
to obtain satisfactory results. The main contributions are:

1) The feature extraction module can be given coordi-
nate attention to significantly improve the detection
performance of the model with minimal computational
overhead.

2) By using a bidirectional multi-scale fusion module,
it is possible to optimize the model hierarchy, fuse
additional layers of features without increasing extra
calculation. It can also enhance the feature fusion abil-
ity of the network, and raise the recall rate for small
target samples.

3) Aiming at the issue of missing detection of fine-grained
samples in the dataset, a detector with a Transformer
structure is proposed to enhance the feature extraction
capability of the model and effectively increase the
recognition accuracy of difficult and difficult target
samples.

The remainder of this paper is organized as follows.
In Section 2, we introduce related works on object detec-
tion in recent years. Section 3 presents the details of

the proposed method. The implementation of the proposed
method and comparison with previous methods is presents in
Section 4. Section 5 summarizes the conclusions of the work
in this study and suggests the future search direction.

II. RELATED WORK
Object detection includes two parts, classification and loca-
tion, and its application fields are broad, including face
detection, pedestrian detection, vehicle detection, etc [13].
Traditional object detection algorithms adopt sliding win-
dows to detect objects without any pertinence, which is inef-
ficient and inaccurate. The manually selected features are
less robust to irregular objects with different shapes [14].
With the advancement of deep learning technology, image
feature extraction by the convolutional neural network has
become a common approach [15], [16], [17]. Meanwhile,
object detection, as one of the hot spots in the field of machine
vision research, has stimulated the appearance of numerous
excellent algorithms in object detection [18], [19], [20]. The
emergence of abundant networks has played a critical role in
promoting the development of deep learning. For example,
ResNet [21] proposed the concept of residual blocks, which
significantly intensified the depth of networks. Also, new
feature extraction methods are provided in terms of image
detection with the help of the attention mechanism [22].
Methods, such as the assemblable attention module proposed
by SENet [23], bring accuracy improvement to the convo-
lutional network; DETR [24] uses the classical convolution
structure to encode the image features after extraction and
completes both classification and positioning through the
transformer structure. For detection, an innovative Hungarian
loss function is used to match the decoded target class in gen-
eral detection networks, rather than the initial anchor design.
Similar to natural language processing, VIT [25] encodes
the segmented and serialized images to input them into the
transformer, and directly obtains coordinate positions and
category of targets through encoding and decoding. Swin-
transformer [26] is improved based on VIT, which can solve
the problem of the enormous computational cost of the VIT
method through hierarchical feature mapping and window
attention transformation.

So far, two main branches of object detection methods are
mentioned on the basis of deep learning: the two-stage object
detection model based on the region generation network and
the one-stage object detection model that directly performs
position regression [27]. YOLOv5 is an efficient and stable
one-stage object detection method with greatly enhanced
speed and accuracy, and can quickly adapt to new tasks after
transfer learning. The input of the YOLOv5 is an RGB image
with a size of 640*640. Its overall network design is divided
into a backbone network based on the CSPNet [28] neural
network, a multi-scale feature fusion module based on the
FPN [29]+PAN [30] structure and the detector for output
classification and bounding box regression.

The backbone of YOLOv5 includes Focus, BottleneckCSP
and SPP. The first two components mainly undertake image
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FIGURE 1. Structure of proposed network. In the inference stage, the input is a RGB image from camera, the output prediction is the primary
picture with marker box. The CSP_CA represents the CSP module with Coordinate Attention.

fusion and feature map extraction, separately. Stacking con-
volutions and the CSP unit structure of CSPNet are exactly
utilized to extract image features. This network is more
lightweight than the DarkNet structure used by YOLOv3,
enhancing the learning ability of the CNN while maintain-
ing accuracy. The hierarchical features obtained through the
backbone network are fused in the Neck part of the network.
The FPN+PAN structure adopted by the model is not only a
simple combination of multi-level features but also realizes
path enhancement from low to high through upsampling,
downsampling and residual connection. The method allows
the model to fuse more levels of features to obtain a larger
receptive field, and performs target prediction by combining
detection heads of different resolutions, thereby achieving a
good model prediction effect on targets of different scales.

III. METHODOLOGY
The proposed network structure is shown in Figure 1. Some
deep-level features are extracted by adding the CSP unit
with the CA module. The BiFPN is utilized to integrate the
features, simplify a portion of the network structure, and pay
close attention to obtain features at different levels. To locate
and classify targets, the fused features are transmitted to
the corresponding detectors in accordance with different
resolutions.

A. COORDINATE ATTENTION
The images of industrial parts and information of included
mechanical parts are usually accompanied by complex back-
ground environment. The YOLOv5 network uses stacking

FIGURE 2. Structure of Coordinate Attention. It carries out average
pooling in horizontal and vertical directions, then carries out
transformation to encode spatial information, and finally fuses spatial
information by weighting on the channel.

multiple CSP residual modules for feature extraction, which
can continuously accumulate redundant information during
network iteration and reduce the detection accuracy. In view
of the confusion of targets during dense data detection, this
paper optimizes the overall feature extraction ability of the
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model, by embedding position information into the attention
module after adding Coordinate Attention (CA) [31] into the
CSP structure.

Attention mechanisms in computer vision, which aim
to mimic the human visual system, can efficiently capture
salient regions in complex scenes, making progress in multi-
ple vision tasks. Through the attention mechanism, the input
image features can be dynamically weighted. The SENet
improves the recognition performance of the convolutional
network by the feature extraction capability of the atten-
tion optimization model at the feature channel and spatial
information level. But attention modules in methods such
as SENet and CBAM [32] only consider internal channel
information, ignoring the importance of location information.
It is undeniable that the spatial structure of objects in vision is
of great significance. Based on CBAM, coordinate attention
is simplified, as shown in Figure 2. Give an input X, a pooling
window of size (H, 1) or (1,W) is set along horizontal and ver-
tical coordinates. By using the two parallel one-dimensional
feature codes obtained from each channel, spatial coordinate
information is integrated efficiently to acquire coordinate
attention through the subsequent convolution structure tomap
the input features, so as to ensure that the network feature
extraction ability is enhanced with less computational over-
head, while obtaining more receptive field information.

FIGURE 3. Comparison of the results in different attention methods.
It inserts the SE blocks, CBAM blocks and CA blocks into the same
position in the YOLOv5 model.

To demonstrate the advantages of the proposed method
over other attention methods, experiments are conducted on
industrial parts datasets under different improved structures.
As shown in Figure 3, with a sufficient number of iterative
training and computations, our network can achieve a 0.7%
performance improvement in recall on the test set and a 0.5%
improvement in average precision, which is significantly bet-
ter than models with other attention mechanisms.

B. FEATURE FUSION WITH BiFPN
In one-stage object detection, the backbone network can
extract more complex texture features with the increased
number of layers, and the neck should fully integrate the fea-
tures extracted from the backbone network. For the problem
that the top-down FPN is limited by a single information
flow, the PANet structure is employed in YOLOv5 presented
in Figure 4(a). Bottom-up path aggregation is added based

on the feature pyramid. The combination of upsampling
and downsampling for multi-scale feature fusion can obtain
deeper semantic information. However, the shallow features
of the neck will be diluted, hindering the full combination
of image features between deep layers and shallow layers.
Considering many instances of small size in the defect
detection dataset of industrial parts, and the difficulty in
distinguishing features at the deep level, shallow features with
in-depth features are combined by the BiFPN [33]. The atten-
tion computation enhances shallow feature information flow,
making the model more biased towards small target samples
in terms of assigning weights rather than direct summation,
as in PANet.

FIGURE 4. Comparison of structural differences between PANet and
BiFPN. The left is the PANet in YOLOv5, the right is the BiFPN in our
method.

As is depicted in Figure 4(b), the BiFPN is simplified
based on PANet, using a weighting attention strategy, and
adding additional residual connections to the same-level fea-
ture layer, which can fuse more layer-side features without
increasing the amount of calculation, improve the feature
fusion ability of the network, and effectively enhance the
classification accuracy of difficult samples.

C. TRANSFORMER DETECTOR
Aiming at highly similar appearance of some defect cat-
egories of industrial parts samples, inspired by [34],
a fine-grained object detector is designed in this paper by
combing the advantages of the Transformer structure. Differ-
ent from general fine-grained detection methods, the Trans-
former detector is utilized to enhance the model’s ability to
classify fine-grained categories, enabling end-to-end detec-
tion, and direct outputs of final detection results. As shown
in Figure 5, the Transformer structure consists of two parts:
the multi-head attention layer, and the feedforward neural
network layers, which are connected by the residual struc-
ture. The Transformer encoder block increases the ability to
capture different local image information, and can explore
the feature representation potential through the self-attention
mechanism to quickly distinguish similar samples. Combined
with other prediction heads, this structure can alleviate the
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FIGURE 5. The Transformer Module. The top part is the standard convolutional predict head, the bottom part is the Transformer predict head
consists of Multi-Head Attention, MLP and other modules. L represents the Linear layer.

TABLE 1. Results and params of the proposed model.

adverse effects of drastic object scale changes. Despite costs
of computation and memory caused by the additional detec-
tor, the performance of object detection has been greatly
improved.

The improved network structure does not replace all CSP
units with the improvedmodule of fusion coordinate attention
since the scale distribution of the dataset in this experiment is
mostly small target samples, and pre-training weights cannot
be effectively used due to the change in the structure. Adding
attention to the beginning of the backbone network increases
the difficulty of model training, which may result in unstable
final detection performance. Therefore, CSP units are only
replaced in some areas to avoid unnecessary computational
overhead and ensure the robustness of the model. The pre-
dicted recall rate and parameters of themodel are summarized
in Table 1.

IV. EXPERIMENT AND ANALYSIS
A. DATASET
Given large variety of industrial parts and different types of
transportation products on assembly lines, there is currently
no unified public dataset. Aiming at the detection of micro-
motor defects in industrial production, this paper collected

FIGURE 6. The data samples of the Industrial Part Defect Dataset. The
normal target is the normal status of the industrial part, the others
represent 4 abnormal status.

videos and images of the same kind of industrial motors on
assembly lines in different environments, and then organized
and performed data augmentation to produce a motor defect
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detection dataset for assembly line operation scenarios. The
dataset contains 1400 images labeled and exported using the
EasyData labeling platform of Baidu Smart Cloud. As intro-
duced in Figure 6, labeling categories include normal, dirty,
structural distortion, main body deformation, and incom-
plete. A total of 8613 labeling boxes are obtained, includ-
ing 5837 normal labels, 820 dirty labels, 778 twist labels,
531 deformative labels, and 647 incomplete labels. Due to
safety and industrial production requirements, most of the
images are taken from a distance above the assembly line,
coupled with the target industrial motors in small size in the
experiment, thereby generating tiny targets collected in the
dataset and many dense distributions of targets.

By shuffling the dataset order, 80% of the data is selected
randomly as the training set and 20% as the validation set.
In addition, different strategies are applied for data augmen-
tation in both training and inference stages to reinforce the
model training accuracy. The Mosaic method is randomly
used during model training, including affine transformation,
random rotation, translation, scaling, cropping, flipping, and
other data augmentation methods. For inference verification,
only scaling and normalization are utilized.

B. EVALUATION METRICS
The evaluation indicators in this paper contain Recall, Pre-
cision, and Mean Average Precision (mAP), commonly used
in object detection. For abnormal sample detection, the recall
rate of abnormal samples is an important indicator for method
evaluation. The recall rate refers to the proportion of all
targets predicted by the model that is correctly predicted. As a
widely used evaluation index in the field of defect detection,
the recall is related to TP and FP.

The evaluation indicators in this paper contain Recall,
Precision, and Mean Average Precision (mAP), commonly
used in object detection. For abnormal sample detection, the
recall rate of abnormal samples is an important indicator
for method evaluation. The recall rate refers to the propor-
tion of all targets predicted by the model that is correctly
predicted.

Recall =
TP

TP + FN
(1)

The prediction accuracy represents the proportion of all
targets predicted by the model that is correctly expected.

Precision =
Tp

TP + FP
(2)

The mAP is currently the most popular evaluation metric
in object detection, and its calculated value involves several
related concepts. The intersection and the union ratio, IoU,
measures the degree of overlap between the two regions and
is the ratio of the overlapping area of the two regions to the
total area. As is shown in Figure 7, the IoU of two rectangular
boxes is the ratio of the intersection area to the combined
area.

IoU =
S2

S1+ S2+ S3
(3)

FIGURE 7. IoU calculation diagram. The Ground truth box is the true label
of the target like the S1, the prediction box is the output prediction from
model like the S3, the overlapping area is the S2, and the IoU is
calculated by the S1, S2 and S3.

The PR (Precision-Recall) curve can reflect the perfor-
mance of an algorithm, by setting a calculation threshold
θ as the threshold for determining whether the prediction
result is a positive or negative sample. IoU is often used
in object detection to determine the prediction result. For
example, first set IoU ≥ 0.5 as the same target, then it is
determined that the prediction that meets the condition is true,
otherwise, it is false. Then calculate the Precision and Recall
of the data set, then increase the threshold θ in a decreasing
manner, and record the Precision and Recall corresponding
to the respective thresholds, each threshold θ corresponds to
a (Precision, Recall) point, and connecting these points is
PR curve.

Average Precision (AP): An evaluation index reconciles
precision and recall’s contradictory variables in object detec-
tion. The recall is the horizontal axis, the precision is the
vertical axis, and the PR curve encloses the area of the irreg-
ular graph. Since the integral calculation is relatively tricky,
approximate interpolation calculation is adopted.

AP =
1
n

n−1∑
i=1

Pinterp(r) (4)

where Pinterp(r) is the larger value of the accuracy in the
r position and the r next position. Mean Average Precision
(mAP): to improve the comprehensiveness of the calculation
accuracy, 100 points were sampled on the PR curve for calcu-
lation. And the threshold of IoU is adjusted from a fixed value
of 0.5 to the value of AP calculated every 0.5 in the interval
of 0.5 - 0.95, and the average of all results is taken as the final
result.

mAP =
1
m

m∑
i=1

APi (5)

C. ABLATION STUDY
To verify the generalization of the model, the performance
of the proposed model is compared with other models like
RetinaNet, EfficientDet-D0, and YOLOv5s in the defect
detection dataset of industrial parts. Pre-trained weights on
the ImageNet dataset are used for all models to complete
transfer learning. SGD is adopted for optimization during the
training process. The number of training images per batch is
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TABLE 2. Industrial parts defect detection experiment comparison.

TABLE 3. Detection results of different proposed structures on an industrial part defect dataset. Recall(abnormal) represents the recall rate except
normal target.

slightly different according to different networks. Based on
experience, the initial learning rate is set to batch size * 0.001,
the learning rate decay is performed once every 60 iterations,
a total of 200 epochs, and the decay coefficient is 0.1 to
converge the model parameters further. The input image size
of the selected model is 640*640 RGB image. The model is
evaluated using the validation set after each round of training,
and the validation curve is shown in Figure 8.

FIGURE 8. Validation curve of epochs. It compares the validation mAP
from RetinaNet, YOLOv5, EfficientDet-D0 and our method in the training
stage.

As can be seen from Figure 8, the proposed model achieves
higher detection accuracy than YOLOv5s, and the mAP
reaches 0.756, which is 2.2 percentages points higher than
the original network. It can be seen from Table 2 that the pro-
posed method achieves almost the highest detection accuracy
among the same type of methods, reaching 93.6%, and the
detection speed is also at a high level. The inference speed on

FIGURE 9. PR curve of the proposed model in industrial part defect
dataset.

the A100 graphics card reaches 95FPS, which still meets the
needs of real-time detection. The experiments demonstrated
that our model remains competitive on the dataset.

To verify the optimization effect of each proposed module
in the network, ablation experiments are carried out according
to the proposedmethod. The experimental results are summa-
rized in Table 3. The Recallabnormal is the primary evaluation
indicator of the abnormal detection of industrial parts. After
adding the coordinate attention module, the average precision
of the model is increased by 0.5%. After using the bidi-
rectional multi-scale fusion module for feature integration,
the abnormal recall rate of the detection model is increased
by 2.3%. It is concluded that the prediction accuracy of the
method for small target samples is significantly improved.
The addition of the Transformer detector guarantees great
enhancement of the recall rate and precision. Figure 9 shows
the precision-recall curve of the detection performance of
proposed model. The detection speed decreases due to the
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FIGURE 10. Feature dimensionality reduction visualization in t-SNE. The feature is from the feature maps of the penultimate layer of network,
and reduced to 2 dimensions by PCA. Different colored dots represent different categories.

increased number of parameters and computation brought by
its structure. The results show the proposed detection model
is superior to the primary YOLOv5.

D. ANALYSIS
Figure 10 presents a comparison of the prototype distribution
of classification features learned by both original and pro-
posedmodels, indicating that the model with the bidirectional
multi-scale fusion module still faces a small amount of sam-
ple confusion after network fine-tuning, but its classification
interval is more apparent. The model added to the Trans-
former detector clearly distinguishes the vast majority of

samples, reduces the overlap between categories, and realizes
more balanced overall spacing of features, proving that the
proposed method can improve the representation ability of
the feature space for effective object detection.

Specifically, to compare the proposed network results more
intuitively, some pictures in the test dataset and real pic-
tures were selected for testing. For more obvious comparison
results, the two networks’ confidence thresholds were set
to 0.45. The non-maximum suppression IoU threshold is
set to 0.3.

Figure 11 describes the detection results of the YOLOv5s
model and proposed model respectively on the left and
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FIGURE 11. Prediction results with marker box. The left side of the predict picture is from YOLOv5, and the right side is from proposed model.
The part (a) shows the comparing results in small target detection situation. The part (b) shows the comparing detection results in dense
situation.

right sides. In Figure 11(a), owing to long distance from
the detection target to the shooting acquisition device, the
detected targets tend to be tiny overall, and the confidence
is lower with some false detections. The fact is that small
target objects can be detected more accurately on the right
side. In Figure 11(b), dense targets make some of the predic-
tion frames on the left inaccurate and undetected, while the
detection results on the right are improved.

Ablation experiments are carried out to verify the
efficiency of the proposed module in the actual produc-
tion environment. We set up control groups in the factory
based on different environments. Each control group contains
20 batches of samples from the abnormal category, with four
different abnormal samples in each batch. On a assembly line,
samples from the same batch were photographed in different
environments. The camera is situated between 65 and 85 cm
away from the object in the normal control group. There is
around 170 lx of indoor illumination, and the camera is brand-
new. The samples were placed in two groups of experimen-
tal settings that were separated from the control groups by

distances of 100 cm and 120 cm. The illuminance comparison
group was set up with two distinct illuminance environments,
namely the low-light group with an illuminance of approxi-
mately 100 lx and a high-light group with an illuminance of
about 220 lx. A dirty-camera control group was established
to shoot with the experiment using the same model camera
that had been in use in the factory for about 14 months.
While maintaining the same environment, all batches were
shot in five shots with fine-tuning of the shooting angle, and
total of 400 samples were collected. By using data enhance-
ment methods including horizontal flip, vertical flip, and
random cropping, the dataset was enlarged. With a total of
1600 samples, they were then summarized and sorted into an
industrial parts environmental comparison dataset.

The prediction results of the proposedmodel on this dataset
are shown in Table 4. It can be seen that the prediction recall
rate of the model in different environments has been affected
to different degrees. Among them, the Twist samples aremore
significantly affected when the camera is far away and dirty,
with a maximum drop is about 5 percentage points. In low
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TABLE 4. Prediction results in different environments.

light conditions, dirty class samples are more affected, and
the recall rate decreases by 6.7 percentage points. The recall
rate of the rest of categories is slightly influenced by the
environment. Additionally, it was discovered throughout the
experiment that the samples from the Twist category and
the Incomplete category were marginally impacted by the
shooting angle. According to the comparative experiments
mentioned above, it can be found that the proposed method
will slightly reduce the recall rate of abnormal samples when
the illumination and camera height of the real production
environment change slightly, but it can still meet the detection
requirements.

The proposed model is suitable for use with embedded
devices. After compiling to onnx, we migrate the model to
NVIDIA Jetson NX and build a detection system based on it.
Due to the limited computing power of the device, the detec-
tion speed on Jetson NX after porting is about 35FPS. When
the detection system uses monitors to output the detection
videos, the detection speed of the model decreases because
the videos take up part of the computation, and it declines
to 31FPS in our experimental environment. The above data
are measured under the condition that the detection accuracy
is unaffected and the model is transplanted without quan-
tification. The model can be quantized in order to reduce
the number of model parameters and calculations and speed
up the inference for embedded devices to achieve real-time
detection. The quantization operation will result in some
recall loss that is related to the model compression rate.

V. CONCLUSION
In this study, we propose an end-to-end lightweight defect
detection model for industrial parts based on improved
YOLOv5. The detector can achieve excellent detection accu-
racy and real-time detection on edge computing device. Our
contributions mainly concentrate on three aspects: applying
the coordinate attention to module for feature extraction to
improve the detection performance of the model, optimizing
the model hierarchy through the BiFPN to reduce the false
detection rate and missed detection of small target sam-
ples, and adding the Transformer detector to increase the
recognition accuracy of difficult samples. The experimental
results demonstrate that the algorithm proposed in this article
improves the performance of the defect detection algorithm
based on industrial parts under the premise of real-time detec-
tion and can help improve the yield in industrial production,
transportation, and other scenarios. Currently, the algorithm

still has a slight shortage of detecting the defects of parts with
occlusion under a fixed shooting angle. Future research will
further adjust the structure and determine how to improve
the recognition accuracy through multi-angle collaborative
detection to achieve better detection performance.

A. ABBREVIATIONS
AP Averaged AP at IoUs from 0.5 to 0.95

with an interval of 0.05
AP50 AP at IoU threshold 0.5
AP75 AP at IoU threshold 0.75
BiFPN Bi-directional feature pyramid network
CA Coordinate Attention
CBAM Convolutional block attention model
end-to-end The input is the original data, and the

output is the final result
FLOPs Floating-point operations per second
FPN Feature pyramid network
IoU Intersection over union
lx Lux, the unit of illumination.
Recallabnormal recall rate of abnormal samples
SSD Single Shot multibox Detector
YOLO You Only Look Once
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