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ABSTRACT Wireless sensor networks (WSNs) have increased in popularity since they play a relevant
role in many applications, such as environmental monitoring, fire detection, and health care, to mention a
few. These applications periodically collect data that is relayed to a single sink employing a many-to-one
communication pattern. This pattern requires energy-efficient routing protocols since sensors closer to the
sink node deplete their energy faster than those sensors located further away. As a result, several techniques
have been proposed to solve this problem. For instance, some pieces of research split the network into
concentric coronas to provide more energy resources in areas with heavier traffic. However, these techniques
use either a predefined network deployment that is not well-suited for all sensor applications or do not always
guarantee homogeneous energy consumption. This paper proposes a simple energy-aware routing method
based on the Game of Life cellular automaton, which provides a homogeneous energy depletion while
extending the network lifespan by considering factors such as residual energy, number of active neighbors,
and a sleep schedule. To this end, a discrete dynamic model that takes into account different behaviors of
WSN through a set of rules combined with a variation of the A-star algorithm is proposed. Simulation results
show that the proposed model accurately balances the energy consumption rate while expanding the network
lifetime compared to most recent research works. Furthermore, the proposed method can be combined with
path-planning algorithms to improve energy consumption in sparse WSNs.

INDEX TERMS Energy-efficiency, cellular automata, game of life, energy hole problem, path planning.

I. INTRODUCTION
Wireless sensor networks (WSNs) have emerged as a crucial
technology capable of carrying out complex tasks such as
environmental monitoring, animal tracking, and smart city
designing, among many other tasks. Sensor nodes in WSNs
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can collect data from the physical world and report it to a
sink node via single-hop or multi-hop communication. In a
multi-hop pattern, sensor nodes around the sink node carry
heavier traffic loads than nodes located in the outer areas.
This situation implies that sensors closer to the sink node
deplete their energy faster, leading to the likelihood that data
may not be delivered to the sink node. Thus, implementing
energy-efficient routing protocols is a crucial concern in
WSNs since energy resources in sensor nodes are supplied
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by small batteries that cannot be easily replaced or recharged,
especially in hostile environments.

Nowadays, several techniques have been proposed to deal
with the energy consumption problem in WSNs. These
techniques can be classified into four categories: radio opti-
mization, sleep/wake-up schemes, energy harvesting, and
energy-efficient routing. For instance, radio optimization
schemes vary the radio module’s parameters such as trans-
mission power [1], modulation, and coding to avoid battery
depletion. Sleep/wake-up schemes, on the other hand, switch
between active and inactive periods to optimize power con-
sumption depending on the delay requirements, traffic load,
and topology characteristics. Energy harvesting schemes use
recent advances in microelectronics to develop new sensors
capable of collecting energy from their environment through
wind, solar radiation, or kinetic energy. Finally, it is well
known that transmitting data is ranked as one of the most
energy-consuming tasks in WSNs [2]; thus, a crucial concern
in WSNs is creating energy-efficient routing schemes that
can enhance network lifetime. Several mechanisms have been
proposed for this end, and most of them base their operation
on clustering. Each cluster usually selects a leader, often
called cluster head (CH), responsible for collecting local
data and sending it to a sink node directly or through other
CHs. Although these proposals have addressed the energy
consumption problem, they have usually applied complicated
techniques to select CHs that do not necessarily guaran-
tee energy balance among sensors. Other schemes split the
network into concentric coronas to provide more energy
resources in areas with heavier traffic. This situation balances
the energy consumption so that all sensor nodes die at the
same time without leaving residual energy [3], [4]. However,
these schemes require a predefined network deployment that
does not fit all sensor scenarios well. In addition, most of
these techniques balance energy consumption by only con-
sidering a constant data rate [4], [5]. Other mechanisms use
fuzzy logic to solve the uneven energy consumption prob-
lem by combining routing protocols with fuzzy techniques.
However, these proposals do not always guarantee an even
energy consumption.

Consequently, researching and developing algorithms and
methods based on different approaches to extending the net-
work lifetime in WSN remains a topic of great interest.
In this context, multiple techniques based on cellular
automata (CA) [6], [7], [8], [9], [10], [11] have recently been
proposed to reduce energy consumption in WSNs. However,
most of them base their operation on clustering that uses
complicated techniques to select CHs. In contrast, this paper
proposes a simple energy-aware routing method based on
a cellular automaton that provides a homogeneous energy
depletion while extending the network lifespan without
clustering.

A cellular automaton (CA) is a decentralized modeling
paradigm consisting of entities known as cells. Each cell has
a state, a neighborhood, and a finite number of transition
rules. By iterating the transition rules over time, a cellular

automaton can simulate sophisticated phenomena such as
urban traffic and water flow, for example. A CA can also be
used to model a WSN, in which a sensor (a cell) can take
either an active or inactive state while its neighborhood is
composed of sensors within its communication range. In this
paper, the active state represents a period in which a sensor
can sense the medium and transmit/receive packets. In con-
trast, the inactive state represents a period in which a sensor
sleeps as much as possible.

In particular, our proposed model is based on one of the
most interesting CAs known as the Game of Life (hereafter
referred to as GoL) [12], [13] whose transition rules are as
follows:
• A live cell with fewer than two live neighbors dies from
isolation.

• A live cell survives if it has two or three live neighbors.
• A live cell dies from overcrowding if it has more than
three live neighbors.

• A dead cell with exactly three live neighbors becomes
alive.

In this context, as long as the Game of life CA evolves,
some cells will remain in their existing state while others will
change state. When modeling WSNs, this evolution of the
GoL directly affects energy consumption and network lifes-
pan. Thus, the aforementioned rules can reduce energy con-
sumption in WSNs and avoid redundant information being
sent to the sink. However, as time passes, complex patterns
formed in the Game of Life can result in holes (i.e., a large
set of sensors in an inactive state). This situation can cause
failures in routing schemes and data loss. To prevent this
problem, this paper proposes new rules based on the Game
of Life cellular automaton that considers factors such as the
remaining energy, the active number of neighbors, and a
sleep schedule to extend network lifetime. In contrast to the
existing research, which uses fuzzy logic or corona-based
networks, the proposed method presents a straightforward
cellular automaton model that intrinsically allows turning
sensor nodes off/on. In this way, the network lifespan is
improved while balancing energy consumption.

Since GoL is a bio-inspired model that cannot relay pack-
ets, the A-star algorithm is adapted to the proposed model
with the aim to minimize the number of hops to relay data to
the sink node in a dynamic manner. As a result, a dynamic
routing system is established that avoids obstacles and makes
it possible to reach the destination node in a many-to-one
network. The fusion between the new set of rules of the GoL
CA and the new variation of the A-star algorithm is called the
Game of Sensors (GoS).

Simulation experiments show that the GoS method
improves energy balance while enhancing network lifetime
as well as the number of transmitted packages through the
network compared to the most recent proposals. Moreover,
the model preserves the simplicity of cellular automatons
models which makes it adequate for large-scale networks.

The rest of this paper is organized as follows: Section II
provides an overview of relevant works related to
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energy-aware routing schemes. Section III presents the cel-
lular automaton model, as well as the Game of Life model,
while Section IV delivers the proposed method (GoS).
Section V describes the conducted simulation experiments to
validate the proposed method, as well as a comparison with
the most recent related works. Finally, Section VI presents
the conclusions.

II. RELATED WORK
The problem of maximizing the network lifespan in WSNs
has recently received significant attention. The most studied
scenario dealing with this issue is the energy-efficient routing
problem. Most of these strategies divide the network’s geo-
graphic area into sections called clusters. Each cluster has a
cluster head (CH) responsible for managing local activities
and communicating with other CHs. CHs are selected by
parameters such as residual energy, location with respect
to the sink node, coverage, and traffic load, among others.
Clustering enhances energy efficiency since this technique
switches off nodes inside the clusters while CHs take con-
trol [14], [15], [16]. Rotating the role of CHs among the
sensors, can extend network life. However, these techniques
use intricate mechanisms to select and rotate CHs. Recently,
other research works [17], [18], [19], and [20] have addressed
this energy concern by combining the A-star algorithm and
fuzzy logic without clustering. Even if these mechanisms
extend the network’s lifespan, they do not always guarantee
even energy depletion among sensor nodes. Other works use
fuzzy strategies with ant colonies as routing algorithms to
balance energy consumption [21], [22].

During the last few years, cellular automata models have
shown to be suitable for model WSNs [9], [11]. In [6], for
instance, the authors introduced a block CA approach to
improve energy consumption in wireless sensor networks
by selecting cluster heads in a geographical area. Although
the energy consumption improves in a uniform deployment
as the cluster size increases, their proposal is inefficient in
random deployments. Moreover, the authors do not eval-
uate the energy balance among sensors. In [7], an AC
algorithm is developed to achieve better coverage quality
and more equitable energy distribution among the nodes.
However, the authors do not evaluate a routing scheme under
scheduling rule transitions. Although cellular automata can
be used in wireless sensor networks, proposing local-simple
rules poses significant challenges. These rules should balance
energy consumption using energy-efficient routing schemes
that enable large-scale sensor applications.

Recently, learning automata (LA) have become a great
alternative to studying WSNs. A learning automaton (LA) is
a technique in which the learning process is based on either
rewards or penalties. This processmakes the learning automa-
ton reach an optimal value by interacting with the environ-
ment as time passes. For instance, in [8], the authors proposed
a cellular learning automaton method to select CH based
on nodes’ energy for heterogeneous deployments. However,
these scenarios may not be well suited for all applications.

Moreover, simulations show that cluster formation depletes
a considerable amount of energy. In contrast, in [23], the
sensor network is divided into different hierarchy levels in
which the cluster head selection depends on both the number
of active and available nodes. However, this proposal is tied
to a specific amount of energy in each group of sensors.
Research in [24] used an LA model to minimize the number
of hops in a routing scheme using Voronoi diagrams. Simula-
tion results of this model indicate that its behavior improves
when a larger number of nodes in the network is present.
The proposal in [10] used an LA model to optimize a routing
algorithm for a dynamic network environment. In [25], the
authors claim that LA enhances energy consumption, energy
balance, and packet delivery ratio when combined with other
techniques.

On the other hand, in a many-to-one communications, sen-
sors closer to the sink node deplete their batteries faster than
other sensors since they relay more packets to the sink node.
This characteristic can potentially create holes or disruptions
in the data collection process. To solve this issue, researchers
have proposed node distribution strategies in areas with a
heavier load to balance the energy in the network. The authors
in [4], for instance, proposed a non-uniform node distribution
strategy modeled as concentric coronas in which the sink
node is located in the inner one. To balance energy con-
sumption, the authors changed the node’s density in each
corona in a geometric progression from the outer to the inner
coronas. In addition, the authors proposed a routing algorithm
named q-switch to find the shortest path to the sink node
based on residual energy. However, according to the authors’
simulations, the outer corona still retains 15% residual energy
when the network dies (let’s recall then that ideally all nodes
must deplete their batteries simultaneously). Furthermore, the
authors do not consider energy consumptionwhile processing
data and control messages. In addition, to achieve homoge-
neous energy consumption, sensor nodes should be located in
a predefined deployment that is not always possible or does
not always suit all sensor applications well.

In [26], the authors split the network into uniform slices
to balance energy consumption by using two strategies called
inter-slice and intra-slice. In the inter-slide strategy, sensor
nodes vary their transmission power using a linear program-
ming model based on their distance from the sink node. This
strategy allows sensors closer to the sink node to conserve
energy since they transmit using a lower power level, while
those located further away can consume more energy since
they are not used as relay nodes. On the other hand, the
intra-slice strategy considers the residual energy in which
sensors using low power levels forward their packets to sen-
sors using higher energy levels to save energy. By combin-
ing both strategies, the authors proposed an energy balance
transmission protocol called ETP. Simulation experiments
claim that ETP outperforms energy consumption compared
with cluster-based algorithms such as [27]. However, the
authors do not consider hardware limitations that cannot
always set the required transmission power levels selected by
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the algorithm. Furthermore, they do not consider the cost
of sending control messages to know which sensors have a
higher energy levels in their intra-slice strategy.
Based on [4], the authors in [3] proposed three strate-

gies to balance energy depletion on corona-based wireless
sensor networks. These strategies seek the optimal position
of sensor nodes to minimize the number of sensors in each
corona. To achieve this end, the transmission power control
technique is used so that outer coronas can cover extended
areas rather than coronas closer to the sink node since sensors
near the sink node can use a lower transmission power level
to balance energy depletion. Moreover, the authors proposed
a technique in which sensor nodes can be inactive for long
periods to save energy. However, the authors did not consider
that off-the-shelf radios have power limitations that cannot
always set the desired transmission power level [1]. More-
over, balancing energy consumption is achieved only for a
predefined network deployment that is not well suited for all
applications.

In a many-to-one communication pattern, the innermost
corona in corona-based wireless networks is not always the
highest energy-consuming region. Thus, the authors in [5]
proposed a solution to identify the critical region in many-
to-one networks. The authors claim that their proposal bal-
ances energy consumption and improves network lifetime
compared with [3] and [4].

Recently, autonomous robots have used cellular automaton
models to plan a collision-free path in unknown or hostile
environments [28], [29], [30], [31], [32]. These mechanisms
provide advantages in many-to-one networks since energy-
efficient routing schemes, such as the A-star algorithm, can
be used in path planning.

We envision our proposal as a suitable algorithm that
can be combined with path planning algorithms to optimize
energy consumption in WSNs employing a cellular automa-
ton model. The model proposed in this paper is a discrete
dynamic model that considers different behaviors of WSNs
through a set of rules combined with a variation of the
A-star algorithm. In particular, a simple energy-aware routing
method based on the Game of Life cellular automaton is
proposed, which provides a homogeneous energy depletion
while extending the network lifetime considering factors such
as residual energy, number of active neighbors, and a sleep
schedule. Moreover, the proposed model maintains the sim-
plicity of cellular automata.

In order to evaluate the effectiveness of GoS, a comparison
with [4], [5], [17], and [20], is presented in Section V. Con-
trary to these works, which use fuzzy logic and corona-based
networks, the proposed method presents a straightforward
cellular automaton model based on the Game of Life that
intrinsically allows turning sensor nodes off/on. This char-
acteristic enhances network lifetime while balancing energy
consumption. Moreover, the A-star algorithm in GoS can
create dynamic routes that can adapt in regular or irregular
network deployments.

III. CELLULAR AUTOMATON
Cellular automaton (CA) can be viewed as a spatially
extended decentralized system consisting of several individ-
ual entities (called cells). Cellular automata are mathematical
models of dynamical systems that evolve in a parallel way in
discrete time steps. Thus, at each interaction, the state of each
cell is changed according to a set of local dynamic transition
rules that take into account the cells’ own state and the state
of neighboring entities.

Formally, CA can be defined as a four-tuple, {C, �,V , f };
where C is the cellular space consisting of a set of individual
entities.� denotes a finite set of states whose elements are all
possible cell states. V denotes the cell neighborhood of each
entity ∈ C, and f denotes the local transition rules, which
specify how CA evolves.

In particular, for a two-dimensional CA, cellular space C is
represented as a regular spatial lattice or grid C of L × M
cells, C = {(i, j) | i, j ∈ Z, 1 ≤ i ≤ L, 1 ≤ j ≤ M}.
At time t , each entity stays in one of the finite numbers of
possible discrete states in �. By interacting with the entities
in its neighborhood V , each agent updates its current state
following the set of specific transition rules in f . Thus, let
ωi,j(t) be the state of a cell c = (i, j) at time t , which can be
defined as follows:

ωi,j(t) = f (ωi,j(t − 1), {ωk,l(t − 1)}), (k, l) ∈ Vi,j,

where f is an arbitrary function that specifies the cellular
automaton rule operating on Vi,j, i.e., the set of cells (k, l)
in the cell’s neighborhood (i, j).

The cell’s neighborhood can have different shapes and
neighborhood radii. However, the twomost popular neighbor-
hoods in CA are theMoore and vonNeumann neighborhoods.
Figures 1 and 2 show the Moore and von Neumann neigh-
borhoods with different radii on a two-dimensional square
lattice, respectively. The focal cell is colored black, while its
corresponding neighborhood is colored gray.

FIGURE 1. Moore neighborhood.

A. THE GAME OF LIFE
A well-known example of cellular automata is the Game of
Life (also known as GoL). This game has no players, i.e.,
its evolution is determined by its initial state and therefore
does not require any input from the player [33], [34]. As a
result, interaction with the GoL is achieved by creating an
initial configuration and observing how it evolves over time.
Recently, the Game of Life cellular automaton has been used
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FIGURE 2. Von Neumann neighborhood.

to solve different problems [35], [36], [37]. In the GoL CA,
each cell can take two states (alive or dead), generally repre-
sented as 1 and 0, respectively. The cells’ states are updated
simultaneously and in discrete time. In the two-dimensional
neighborhood, the local transition rules of the GoL are as
follows:

ωi,j(t) =



1, ωi,j(t − 1) = 1 ,
∑

(k,l)∈Vi,j

ωk,l(t − 1) = 2, 3

0, ωi,j(t − 1) = 1 ,
∑

(k,l)∈Vi,j

ωk,l(t − 1) 6= 2, 3

1, ωi,j(t − 1) = 0 ,
∑

(k,l)∈Vi,j

ωk,l(t − 1)) = 3

0, ωi,j(t − 1) = 0 ,
∑

(k,l)∈Vi,j

ωk,l(t − 1)) 6= 3,

(1)

where
∑

(k,l)∈Vi,j

ωk,l(t−1) denotes the number of active (alive)

cells at time-step t − 1, in the neighborhood Vi,j of the focal
cell (i, j).

B. GoL FOR WSNs
Although the Game of Life cellular automaton emerged as a
biological model, this CA can be used inWSNs. For instance,
in WSNs, nearby sensors usually gather similar data mea-
surements. Thus the above transition rules avoid too many
sensors sending redundant information to the sink node since
these rules turn off the majority of nearby sensors at each
step. Moreover, these rules also save energy since only two
or three sensors can be active at a time in the surroundings of
a focal cell (hereafter the words cell and sensor will be used
interchangeably). In order to use GoL as a WSN model, it’s
necessary to map the concepts of CA to WSNs components,
where C represents the entire network composed of sensors.
� is the set of possible states for each sensor (active and
inactive). V denotes all the sensors within the focal sensor’s
communication range, and f designates the algorithms and
protocols (rules) that each sensor must follow. Table 1 sum-
marizes the node attributes.

Algorithm 1 shows how the GoL automaton is used in a
WSN.

Enhancing network lifetime is one of the main concerns
in WSNs since sensors are usually equipped with small bat-
teries that cannot be straightforwardly recharged or replaced.
Therefore, applying energy-efficient protocols has become

TABLE 1. Attributes for a sensor (i, j ) at time t .

Algorithm 1 Game of Life Algorithm
Input: current_node
Output: null

Check the node’s neighborhood to apply rules:
1: active_neighbors = 0
2: for node in current_node.neighborhood do
3: if node.status == active then
4: active_neighbors + = 1
5: end if
6: end for
7: if current_node.status == active then
8: if active_neighbors == 2 or 3 then
9: current_node.next_status = active
10: else
11: current_node.next_status = inactive
12: end if
13: end if
14: if current_node.status == inactive then
15: if active_neighbors == 3 then
16: current_node.next_status = active
17: else
18: current_node.next_status = inactive
19: end if
20: end if
21: return null

a priority topic. For instance, recently, a long-term pattern
known as symmetric die-hard cellular automaton [38], which
lasts 1638 ticks in a 32 × 32 bounding box was proposed.
Figure 3 shows this CA at different time-steps. Even if this
model can extend lifespan in a two-dimensional lattice, it cre-
ates patterns shown in Figs. 3b-3f that do not fit well inWSNs
since a large number of sensors remain switched off for
several time-steps, causing a loss of information. Moreover,
routing protocols may not work properly with these rules
since no nearby relay sensors exist. It is thus necessary to
introduce variations to these rules to allow sensors to turn on
when they have been inactive for many time-steps.

IV. GAME OF SENSORS
This section presents a new set of transition rules added to
the Game of Life model to extend the network lifetime while
balancing energy consumption among sensors. Then, since
these new rules cannot relay packets, the A-star algorithm is
adapted to fulfill this role. The fusion between the adapted
A-star algorithm and the new rules of the GoL is therefore
called the Game of Sensors (GoS). Finally, an evaluation of
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FIGURE 3. Symmetric die hard pattern.

the new set of rules is presented to measure the effectiveness
of the proposed method.

A. TRANSITION RULES IN THE GoS MODEL
In WSNs, keeping devices continuously active for long peri-
ods quickly depletes their battery. On the contrary, if a sensor
remains inactive for extended periods, a loss of information
may be caused since there might not be enough awake sensors
to relay data packets to the sink node. Figures 3b-3f show
this scenario, in which there are many areas of cells that are
inactive, resulting in a loss of information. In order to solve
this situation, the following rules are added as a solution to
the GoL model for WSNs:

ωi,j(t) =


1,

RT∑
z=1

ωi,j(t − z) = 0

0,
RT∑
z=1

ωi,j(t − z) = RT ,

(2)

where RT denotes the number of time-steps that a sensor
remains in the same state. Therefore, these transition rules
assure that if a sensor has remained active for RT time-

steps (
RT∑
z=1

ωi,j(t − z) = RT ), it will change its state to rest

(ωi,j(t) = 0). On the contrary, if a sensor has remained

resting for RT time-steps (
RT∑
z=1

ωi,j(t− z) = 0), it will become

alive (ωi,j(t) = 1). In both cases, the focal cell’s state will
change, regardless of its neighborhood’s state. From this point
onward, these rules will be identified as the sleep schedule
rule. Figures 4a and 4b show a set of cells following the same
pattern (from t = 1 to t = 10, i.e., RT = 10), whereas Fig. 4c
shows how (2) breaks the pattern.

FIGURE 4. Sleep schedule rule.

Algorithm 2 describes the implementation of the sleep
schedule rule in a sensor node.

Algorithm 2 Sleep Schedule Algorithm
Input: node
Output: null

Check the node’s activity to apply the sleep schedule:
1: node.next_status = node.next_status from algorithm 1
2: if node.status == active then
3: node.battery -= 1
4: node.active_time += 1
5: node.inactive_time = 0
6: else
7: node.active_time = 0
8: node.inactive_time += 1
9: end if
10: if node.active_time ≥ RT then
11: node.next_status = inactive
12: end if
13: if node.inactive_time ≥ RT then
14: node.next_status = active
15: end if
16: return null

In addition, the foremost concern in WSNs is the depletion
of batteries. Thus, cells with a high battery charge should
remain active with a high probability, whereas cells with a
lower battery charge should rest to save energy. Then, if the
current energy e of a sensor is below a threshold th and its next
state is active (ωi,j(t) = 1)), it will change its state to active
with probability p. This rule produces that sensors with low
energy switch to active state less frequently. Therefore, this
rule produces that sensors with low energy switch to active
state less frequently. This rule is implemented in Algorithm 3.
Table 2 contains a summary of the parameters of the proposed
model.

TABLE 2. Parameters of the proposed model.

B. A MODIFIED A-STAR ALGORITHM
Since the proposed rules do not relay packets, the A-star
algorithm is adapted to carry out the routing process [39].
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Algorithm 3 Threshold Algorithm
Input: node
Output: null

Check the node’s battery to apply the rules:
1: node.next_status = node.next_status from algorithm 2
2: if node.next_status == active then
3: if node.battery < th then
4: r = random number from 0 to 1
5: if r > p then
6: node.next_status = inactive
7: end if
8: end if
9: end if

10: return null

A-star is a widely known routing algorithm using heuristic
knowledge to select the optimal path from source to desti-
nation. To achieve this end, the A-star algorithm uses the
following two-part function to evaluate the best relay node
to reach the destination:

f (n) = g(n)+ h(n), (3)

where g(n) is the actual cost from the start node to the current
node n, while h(n) is a heuristic function that estimates the
cost from the current node n to the destination node (the
sink node). A-star maintains two priority queues: an open
list and a closed list. The open list contains those nodes
that have been evaluated but have not been selected as relay
nodes, whereas the closed list contains those that have already
been examined. Initially, the start sensor is the only node
in the open list. Then, the algorithm checks if this sensor
is the destination node. If so, the task is complete. Otherwise,
the algorithm evaluates the cost required to extend the path
through using its neighborhood (see (3)) to choose the best
relay node. In this way, the A-star algorithm finds an optimal
route in which obstacles and nodes do not change over time.
However, in the proposed model, sensors may change their
state every time-step. Thus, it is necessary to implement a
modified version of the A-star algorithm.

Since in the proposed method, an active cell cannot esti-
mate which neighbors wake up or maintain an active state
in the next time-step since each cell depends on the behav-
ior of its surroundings expressed by Algorithms 1-3. The
adapted A-star algorithm is applied as follows: component
g(n) is calculated by computing the Euclidean distance from
the current cell position n to the focal active neighbor m.
In contrast, h(n) can use any estimator from the focal neighbor
to the destination node. For the sake of simplicity, this paper
uses, Euclidean distance. However, any other estimator can be
used, such asManhattan distance, Minkowski distance, or the
estimator used in [17], for instance. In this way, this version of
the algorithm computes the best relay node in each time-step.

For cases in which (3) applies to the current cell n, and
it cannot look for a better relay cell, the current cell n has
to wait for the next time-step to look for a better relay cell.

This situation can occur because variations in local transition
rules change the possible relay nodes at each time-step over
time, provoking that the active neighbors at time t do not
enhance the distance from the current node to the destination
node. Due to this situation, the rule described in the equation 4
is added to the proposed method.

ωi,j(t) =

{
1, ωi,j(t − 1) = 1, h(n) > d(n,DST )
0, ωi,j(t − 1) = 1, h(n) < d(n,DST ),

(4)

where d(n,DST ) represents the Euclidean distance from the
current node n to the destination node. This rule ensures that
the distance to the destination node diminishes every time a
packet is sent. If the current node n cannot look for a better
relay at time (t−1), it will remain active in the next time-step
to again search for a better relay. Otherwise, the node can send
the packet, thus becoming inactive. Algorithm 4 describes the
adapted routing algorithm.

Algorithm 4 Routing Algorithm
Input: current_node
Output: next_node

Check the node’s neighborhood to choose the next jump
1: current_distance = distance from current_node to the sink

2: current_f = highest possible value
3: for node in current_node.neighborhood do
4: if node.status == active then
5: f_node = g_node + h_node
6: if f_node < current_f then
7: current_f = f_node
8: node.distance = distance from node to the sink
9: if node.distance < current_distance then
10: current_distance = node.distance
11: next_node = node
12: end if
13: end if
14: end if
15: end for
16: if next_node == sink then
17: Packet received
18: end if
19: return next_node

As can be observed from Algorithm 4, the complexity
of this modified version is O(n), where n is the number of
neighbors of the transmitting sensor.

C. GoS ALGORITHM
Based on Algorithms 1–4, the complete GoS algorithm is
presented in Algorithm 5.

D. PARAMETER TUNING
In this section, we first study the main parameters of the GoS
method. According to the design goals, our proposal should
balance the energy in the network, i.e., prevent sensors close
to the sink deplete their batteries quickly. We then compare
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Algorithm 5 Game of Sensors Algorithm
Input: network
Output: null

Execute the proposed algorithm:
1: Set an initial scenario
2: while all nodes in network are alive do
3: if No packet in network then
4: Generate packet in a random node
5: end if
6: for node in network do
7: Game of life algorithm (node)
8: Sleep schedule algorithm (node)
9: Threshold algorithm (node)
10: Routing algorithm (node)
11: end for
12: for node in network do
13: node.next_status = node.next_status from previous

algorithms
14: node.status = node.next_status
15: end for
16: end while
17: return null

our proposal with the Game of Life-based CA to assess the
impact of the new transition rules. For this evaluation, the
routing process is not applied since the GoL has no such func-
tionality (It will later be included; in Section V). A custom
simulator written in Python language is used. The studied
region corresponds to a regular two-dimensional square lat-
tice of 30 × 30 cells. For the sake of simplicity, each cell
has a battery of 100 units of charge. Each active time-step
consumes one unit of battery. Each time-step corresponds
to one second. In Section V, we will make use of a more
realistic energy model to compare the GoS method with the
most relevant related works. The energy threshold th is set to
50%, while the probability of change is set to p = 0.6. The
impact of choosing the value of p will be explored later. The
initial state of the CA is determined randomly, in which each
cell has a 50% probability of being active and 50% of being
inactive. Each metric considered in the simulation was run
100 times to obtain average results.

In the new set of rules, variations in the sleep schedule (RT )
imply changes in the number of active sensors. Figure 5a
shows how RT changes the average number of active cells
in the network. For instance, when RT is equal to 4, the
average active cells is 31.8%. In other words, 68.2% of cells
are resting. Conversely, when RT is equal to 20, the average
number of active cells is 22.3%. Figure 5b, on the other hand,
shows how RT affects network lifetime. In this figure, for
RT equal to 2, the network lifespan in time-steps is 189,
while for RT equal to 20, the network lifespan increases to
271, i.e., the network lifetime increases by 30%. In this way,
by varying the value of RT , the network lifetime and the
average number of active cells can shrink or extend gradually

depending on which value of RT is selected. Thus, depending
on the parameter of interest (active cells or lifespan), RT
should be selected accordingly. It is relevant to note that each
simulation ends when the first cell depletes its battery.

It is relevant to note in Figure 5a that the average number of
active cells first increases for RT < 5 and then decreases for
RT > 5. This situation occurs since small values of RT cause
drastic changes in the state of sensors, i.e., sensors are forced
to be active/inactive in a shorter period. At the same time,
the GoL rules will drastically reduce the average number
of active cells every time the RT is satisfied. This situation
provokes the network works in an unstable mode since some
sensors are active for more time than others. As a result,
one of these sensors depletes its battery faster, provoking
that the simulation stops untimely. However, for RT > 5,
the network reaches a stable state, i.e., the number of active
sensors remains similar as time passes since sensors change
their state less frequently, incrementing the network lifetime.

In GoS, RT is set to 10 since this value establishes a
fair point between the network lifetime and the number of
active cells to guarantee that routing protocols work correctly,
as shown later.

Once all these parameters are set (th = 50%, p = 0.6,
and RT = 10), Fig. 6 shows the number of active cells over
time. At the beginning of the simulation, as aforementioned,
50% of cells were active due to the initial conditions. After
that, there is a brief period of oscillation while the system
converges at 28% of active cells. This figure also shows that
when the first sensor runs out of battery, the number of active
cells remains constant from time-step 10 to time-step 242.
After that, the average active cells diminishes quickly until
all cells discharge their batteries.

At time-step 350 (see Fig. 6), only 11% of the active
sensors can be used in routing protocols. This situation may
result in a loss of information since there are few relay sensors
available to transmit data. However, the number of active cells
can be extended by reducing RT at the cost of reducing the
network lifespan.

Figure 7a shows the network state when the first sensor
runs out of battery. This sensor is marked in the lower right
of the figure (×). Black squares denote the active cells at
this point, whereas white squares denote the resting cells.
Figure 7b shows the network state when 20% of sensors run
out of battery (see gray cells).

One of the most relevant parameters to consider in this
work is the number of active neighbors per sensor that allow
routing protocols to operate correctly. Figure 8 shows the
average number of active neighbors after 1% of the cells run
out of battery. It can be observed in this figure that for the
one-hop neighborhood, there are at least two relay neighbors
per sensor until 20% of the sensors die, whereas there are
at least six neighbors per cell for the two-hop neighborhood.
This figure also shows that after 20% of the sensors run out
of battery, the remaining active neighbors decrease rapidly.

Figure 9 shows the probability of change for different
values of p. This figure shows that as long as p increases,
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FIGURE 5. Sleep schedule variation with respect to active cells and network lifespan. For both figures th is set to 50%, while p = 0.6.

FIGURE 6. Average active cells vs. network lifetime.

FIGURE 7. Network state at different times.

the network lifespan decreases. For instance, for p = 0.4,
the network dies at 335 time-steps, while for p = 0.8, it dies
at 307 time-steps. This figure also shows that for p = 0.8,
the number of active sensors diminishes quickly after the first
node runs out of battery (at time-step 250) compared to when
p = 0.4. This situation occurs because when th is below 50%,
the probability of change forces the rest of the sensors to turn
on fewer times, resulting in slower battery discharge. In GoS,
p is selected as 0.6 since this value establishes a fair point in
maintaining network lifetime while keeping 28% of network
coverage.

Figure 10 shows the threshold th when p = 0.6. This
figure shows that the larger the value of th, the faster the
average number of active nodes decreases. For instance, for

FIGURE 8. Active neighbors vs. nodes still alive.

th = 50%, the average active cells start to decrease at
250 time-steps, while for th = 70%, the average active cells
start to decrease after 150 time-steps. This result compro-
mises the routing protocol since fewer active nodes are less
likely to find a route to the destination node. In GoS, th is
selected as 50% since this value establishes a fair point in the
average number of active sensors while extending network
lifetime.

The following experiment was conducted to evaluate
the Game of Life CA’s effectiveness. The same regular
two-dimensional square lattice of 30 × 30 cells was used.
Each cell has a battery with 100 units of charge. One unit
of battery is consumed for each active time-step. Each time-
step corresponds to one second. The initial state of the GoL
is determined randomly, each cell having a 50% probability
of being active. 100 simulations were run to obtain aver-
age results. Table 3 shows the average network lifetime, the
average number of active cells, and the average number of
neighbors in the GoL CA. This table demonstrates that the
standard deviation in the network lifetime field is 10.66 times
higher compared to the standard deviation in the network
lifetime field of the proposed model (see Table 4). This result
shows that GoL cannot maintain the same number of active
cells as time passes compared to GoS. This effect can be
seen in Fig. 6, in which the number of active cells remains
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FIGURE 9. Variations of probability of change (p).

FIGURE 10. Variations of threshold (th) with p = 0.6.

TABLE 3. Game of life CA effectiveness.

TABLE 4. GoS model effectiveness.

constant until 20% of cells run out of battery. Moreover,
the proposed technique maintains about 28% of cells active
while the Game of Life has only 6.97%. In addition, the
GoS method has about two relay neighbors in the one-hop
neighborhood, whereas the Game of Life has only 0.54. The
latter result impacts routing protocols since, most of the time,
the GoL CA does not have relay neighbors. Finally, the GoS
method for the two-hop neighborhood has at least six relay
neighbors, while the GoL CA has only 1.63. It is relevant to
note that Tables 3 and 4 report average results until the first
node runs out of battery.

Table 5 shows the proposed technique’s average number of
time-steps, average coverage, and average number of neigh-
bors when 20% of the sensors run out of battery. It can
be seen that the proposed method maintains a good energy
balance and enough relay sensors for routing protocols to
operate.

TABLE 5. GoS model effectiveness when 20% of cells run out of battery.

V. EXPERIMENTS AND RESULTS
This section presents a performance evaluation of the GoS
model. For this, simulation experiments were divided into
three sets. First, a comparison with the EERP [17] and
A&F [40] algorithms is carried out. Then, a comparison with
the LPA-star algorithm [20] is presented. Finally, a compar-
ison with [5] is conducted. Hereafter, this algorithm will be
identified as ‘‘Maximizing.’’ It is important to mention that
the Maximizing proposal outperforms [3] and [4]. A custom
simulator in Python was used for these three sets of exper-
iments. The following assumptions and properties are pre-
sented in the three sets of experiments.
• All sensor nodes have the same initial energy except the
last experiment.

• All sensor nodes have the same maximum transmission
range.

• Each sensor node is synchronized with its one-hop
neighborhood.

• Each sensor node knows the location of the sink node as
well as the location of its neighbors.

• All sensor nodes are located in the same position during
the simulation.

• The model evolves every time-step.
A time-step represents the time required to evolve the

system, defined as C + Hello + Unicast + Packet , where
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C denotes the contention period (MAC layer) to send hello
packets. The Hello period represents the time to send hello
packets. This time is required to announce which nodes are
active during the current time-step. It is relevant to mention
that during the Hello period, all sensor neighbors should
receive hello messages to update the cell state at time t + 1.
Based on Fig. 8, the average number of active neighbors in
the one-hop neighborhood scenario is approximately two for
each time-step in regular deployments. This feature means
that, on average, only two sensor nodes try to gain the channel
(C period) and send hello messages every time-step. Table 4
confirms this value (the one-hop neighborhood field) with a
standard deviation equal to 0.02. Finally, the Packet period is
the time in which to send a packet. It is relevant to say that
packets are sent in a unicast manner by means of an RTS-
CTS protocol or similar techniques. Thus, only the sensor
receiving the message should be active, whereas the rest can
switch off until the next time-step.

For these three sets of experiments, in GoS, RT is set to 10,
p is set to 0.6, and th is set to 50%.

A. ENERGY MODEL
The radio energy consumption model was taken
from [5] and [17], in which the energy consumed by trans-
mitting l bits can be calculated as follows:

ETx(l, d) =

{
l · Eelec + l · εfs · d2 if d ≤ d0
l · Eelec + l · εamp · d4 if d > d0,

(5)

where l represents the packet size, while d is the Euclidean
distance between the transmitter and the receiver. Eelec rep-
resents the transmitter and receiver circuit dissipation per bit,
εfs represents the amplification factor for the free spacemodel
(path loss equal to 2), while εamp denotes the amplification
factor for the multi-path model (path loss equal to 4). Finally,

d0 =
√
εfs

εamp
.

The energy consumption model when receiving an l-bits
message is calculated as follows:

ERx(l) = l · Eelec. (6)

Since proposals in [3], [4], and [5] do not consider the
cost of the energy consumption when processing data, the
proposed model in [15] is taken as follows:

ETx(l, d) =

{
l · Eelec + l · EDA + l · εfs · d2 if d ≤ d0
l · Eelec + l · EDA + l · εamp · d4 if d > d0,

(7)

where EDA denotes the energy consumption when processing
a data packet, while the energy consumption model when
receiving and processing an l-bits message is calculated as
follows:

ERx(l) = l · Eelec + l · EDA. (8)

FIGURE 11. A 2D randomly distributed network measuring
100 m × 100 m.

B. GoS VS. EERP
For this set of experiments, the studied region corresponds
to a 2D square area measuring 200m × 200m. Although
GoS was modeled in a regular arrangement (see Section IV),
it can also be applied to irregular deployments, as shown in
Fig. 11, in which the focal cell is depicted in a 2D region
of 100m × 100m. However, instead of using the Moore
neighborhood (8 neighbors), the number of active sensors is
computed as a percentage ( 28 = 0.25, and 3

8 = .375). In other
words, the focal sensor should calculate the number of active
sensors in its vicinity as follows: if the current state of the
focal cell is active; and the percentage of the active sensors
in its neighborhood is between 25% and 37.5%, the focal
sensor remains active. On the other hand, if the current state
of the focal cell is inactive, and the percentage of the active
cells in its vicinity is 37.5%, then the focal cell will change
to active. However, in an irregular arrangement, it is not
always possible to have a neighborhood with exactly 37.5%
of active cells; thus, a range between 35% and 40% will
be used instead. These rules follow a similar proportion as
proposed in (1). Figure 12 shows the average number of active
cells vs. the network lifetime in an irregular arrangement
corresponding to a 2D square area measuring 100m×100m.
The cell’s radius is set to 15m. One hundred sensors were
randomly deployed. These simulations were run 100 times to
obtain average results. For this set of experiments, the average
number of the one-hop neighborhood is 2.1, whereas the per-
centage of active cells until the first node runs out of battery
is 24%. When comparing this to the values shown in Table 4
for p = 0.6 (regular arrangement), both values diminished
slightly. However, regular and irregular arrangements have
shown similar behavior (see Figs. 6 and 12).

Table 6 contains a summary of the parameters used for this
set of experiments. Before explaining the results, it should
be noted that the EERP algorithm has twenty actor nodes
that generate data. These nodes randomly change every
100 rounds in these simulations. It is also relevant to note
that control messages (hello and unicast) in the GoS model
should be considered since the neighborhood of a focal sensor
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FIGURE 12. Number of active cells vs. network lifetime in an irregular
arrangement. For this figure th is set to 50%, RT = 10, and p = 0.6.

TABLE 6. Simulation parameters.

FIGURE 13. Number of alive nodes vs. number of transmitted packets
comparing GoS, EERP, and A&F.

requires knowing the number of active sensors during the
time-step to update the next time-step. For this purpose,
(7) and (8) are used.

Figure 13 shows the number of transmitted packets vs. the
number of alive nodes. It can be seen that GoS outperforms
the number of transmitted packets compared to the EERP and
A&F methods. This is a consequence of the GoS simplicity
since it intrinsically manages active and inactive periods and
the sleep schedule (RT ). Moreover, the first node dies after
32, 000 transmitted packets in the GoS model, while for
EERP, it dies at 8, 100. In other words, GoS can triple the
number of transmitted packets. This figure also shows that
after the first node dies, the number of alive nodes diminishes
slowly in the GoS method compared to A&F and the EERP
schemes. This behavior can also be seen in Fig. 12, in which

FIGURE 14. Average remaining energy vs. number of transmitted packets
comparing EERP, A&F, and GoS method.

TABLE 7. Simulation parameters.

the number of alive cells does not fall instantly after the
first node runs out of energy, resulting in a longer lifespan
(transmitted packets). This feature is due to choosing p = 0.6.
It should be noted that even when the authors in [17] range
the transmitted packets from 4, 000 to 44, 000, our simula-
tions continue until no more packets can reach the sink node
(48, 000 packets).

Figure 14 shows how the average remaining energy in
A&F, EERP, and GoS decreases as the number of transmitted
packets increases. It can be seen in this figure that GoS
diminishes energy availability in senor nodes homogeneously
compared to EERP and A&F.

C. GoS VS. LPA-STAR
LPA-star takes advantage of reusing previous searches in
the A-star algorithm to seek a better path. The use of this
mechanism enhances performance compared with the EERP
algorithm. For this set of experiments, the studied region
corresponds to a 2D square area measuring 200m × 200m.
Fifty sensor nodes were placed randomly in the studied region
to create a similar scheme presented in LPA-star [20]. Simula-
tion experiments were run 100 times to obtain average results.
For each experiment, the sink node in the proposedmodel was
fixed inside the studied region at coordinates (200m, 200m).
It is relevant to note that for this set of experiments, (7) and
(8) were used, even when authors in [20] and [17] do not
include control processing consumption in their experiments.
The authors in [20] range packets from 1 to 20, 000. Table 7
contains a summary of the parameters used for this set of
experiments.
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FIGURE 15. Number of alive nodes vs. number of transmitted packets
comparing EERP, LPA-star, and GoS method.

FIGURE 16. Average remaining energy vs. network lifetime comparing
LPA-star, EERP, and GoS method.

Figure 15 illustrates how GoS outperforms the number of
transmitted packets (network lifetime) compared to LPA-star
and EERP. This figure also shows that the GoS method main-
tains the number of alive nodes as the number of transmitted
packets increases compared to LPA-star and EERP before
the first node dies. This behavior is a consequence of the
probability of change, and the sleep schedule selected, see
Section IV-D. For instance, the first node dies in EERP after
2, 947 packets, while in LPA-star occurs after 5, 995 packets.
However, in GoS, the first node dies after 24, 779 packets.
Figure 16 shows how the average remaining energy in
LPA-star, EERP, and GoS decreases as the number of trans-
mitted packets increases. It can be seen in this figure that
LPA-star and GoS diminish their energy resources homoge-
neously compared to EERP. However, GoS shows a better
energy balance.

D. GoS VS. MAXIMIZING
Since the authors in the Maximizing protocol [5] and
q-switch [4] do not consider the energy cost of control mes-
sages and data processing, a new implementation of the
q-switch and Maximizing is used. Then, a comparison with
GoS can be made since our proposal considers energy con-
sumption in data processing and control messages.

For the q-switch and Maximizing algorithms, the studied
region corresponds to a circular area divided into k concentric
coronas, in which the sink node is located at the center of
the innermost corona. Specifically, in this set of experiments,
k = 5, each corona has a width of 40m. All sensors have the

TABLE 8. Simulation parameters.

same maximum transmission range (80m). The ith corona is
denoted asCi, and nodes inCi can communicate directly with
Ci−1 and Ci+1. Nodes in the outermost corona do not forward
any data. The number of nodes in each corona increases
in a geometric progression of ratio equal to two from the
outermost to the innermost coronas, as follows 3, 3, 6, 12,
and 24 (see q-switch method [4]).

As mentioned in Section II, in a many-to-one transmission
pattern, nodes close to the sink node deplete their battery
faster than far away sensors. However, the innermost corona
may not always be the most energy-consuming region. Thus,
the authors in [5] proposed an equation to seek the corona
with the highest energy dissipation rate. This strategy allows
the network to balance the energy consumption by adjusting
each sensor’s initial energy so that all coronas run out of
battery simultaneously. In other words, the network lifetime
ends as soon as the first node dies since, at that moment,
the rest of the nodes have zero remaining energy. Table 8
contains a summary of the parameters used for this set of
experiments. Each experiment’s initial amount of energy per
node is distributed depending on corona location. Based
on [5] and adding the energy cost to send control messages
and data processing, the amount of energy per node from the
outermost to the innermost coronas, is as follows: 4.258 J,
5.398 J, 5.6845 J, 5.6825 J, and 4.5325 J.

For the GoS model experiment, the studied region corre-
sponds to a circular area having a radius equal to 200m.
Forty-eight sensor nodes were placed randomly in the studied
region, in which the sink node is located at the center of
the area. The initial energy for each node is 5 J. Table 8
contains a summary of the parameters used for this experi-
ment. Figure 17 shows how GoS outperforms the q-switch
and the Maximizing algorithms in terms of the number of
transmitted packets (network lifetime). Even when the first
node in the GoSmethod dies before compared to q-switch and
Maximizing, GoS can transmit more packets. For instance,
the Maximizing model transmits 34, 123 packets, whereas
GoS can transmit 47, 977 packets. In other words, the
GoS technique improves the network lifetime by 1.4 times
compared to the Maximizing algorithm and 1.9 times com-
pared to the q-switch.
Although the q-switch and Maximizing methods achieve

a better energy balance, the GoS method can transmit more
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FIGURE 17. Percentage of still alive nodes vs. number of transmitted
packets comparing q-switch, Maximizing, and GoS.

packets to the sink node, extending the network lifetime.
Moreover, GoS is not tied to fixed network deployments
that do not always suit all the sensing applications well.
In addition, the q-switch and Maximizing models require
a constant bit rate to guarantee an energy balance among
the coronas. Finally, the Maximizing technique requires that
sensor nodes have a different battery capacity, which is not
always possible. Contrary to these algorithms, GoS uses a
straightforward technique that can be easily implemented in
sensors with limited resources.

VI. CONCLUSION
In contrast to related works in which most authors use com-
plicated methods to extend the network lifetime, such as
clustering and corona-based algorithms, GoS takes advantage
of one of the most interesting cellular automatons known
as the Game of Life. The conjunction of this simple model,
a variation of the A-star algorithm, and the new set of rules
enhance the network lifetime compared to the most recent
works such as [4], [5], [17], [20], and [40], resulting in a
large number of transmitted packets preserving the simplicity
of cellular automatons models. Moreover, GoS can be easily
implemented on limited-resource sensors since the set of
proposed transition rules only requires simple programming
techniques. In addition, the proposed algorithm considers that
parameters such as the remaining energy, the number of active
neighbors, and a sleep schedule guarantee energy balance
while minimizing the number of hops to reach the sink node
through the A-star algorithm.

Furthermore, simulation results demonstrate that the
proposed model accurately balances energy consumption,
extending the network lifetime compared to the most recent
works. Moreover, we envision the proposed method as a
suitable algorithm that can be combined with path planning
algorithms. Finally, for future research, the proposed tech-
nique can use mobile sinks on a cellular automaton model to
maximize energy consumption, especially for sparse wireless
sensor networks.

CONFLICTS OF INTEREST
The authors declare that there is no conflict of interest regard-
ing the publication of this paper.

REFERENCES
[1] O. Arana, F. Garcia, and J. Gomez, ‘‘Analysis of the effectiveness

of transmission power control as a location privacy technique,’’ Com-
put. Netw., vol. 163, Nov. 2019, Art. no. 106880. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128618311034

[2] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, ‘‘Energy
conservation in wireless sensor networks: A survey,’’ Ad Hoc
Netw., vol. 7, no. 3, pp. 537–568, May 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1570870508000954

[3] H.-W. Ferng, M. Hadiputro, and A. Kurniawan, ‘‘Design of novel node
distribution strategies in corona-based wireless sensor networks,’’ IEEE
Trans. Mobile Comput., vol. 10, no. 9, pp. 1297–1311, Sep. 2011.

[4] X. Wu, G. Chen, and S. K. Das, ‘‘Avoiding energy holes in wireless
sensor networks with nonuniform node distribution,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 19, no. 5, pp. 710–720, May 2008.

[5] H. Asadollahi, S. Zandi, and H. Asharioun, ‘‘Maximizing network life-
time in many-to-one wireless sensor networks (WSNs),’’ Wireless Pers.
Commun., vol. 123, no. 4, pp. 2971–2983, Apr. 2022, doi: 10.1007/s11277-
021-09271-9.

[6] C. Banerjee and S. Saxena, ‘‘Energy conservation in wireless sensor net-
work using block cellular automata,’’ in Proc. Int. Conf. Comput. Commun.
Informat., Jan. 2013, pp. 1–6.

[7] H. Byun and J. Yu, ‘‘Cellular-automaton-based node scheduling control
for wireless sensor networks,’’ IEEE Trans. Veh. Technol., vol. 63, no. 8,
pp. 3892–3899, Oct. 2014.

[8] C. P. Subha and S. Malarkkan, ‘‘Optimization of energy efficient cellular
learning automata algorithm for heterogeneous wireless sensor networks,’’
in Proc. 10th Int. Conf. Intell. Syst. Control (ISCO), Jan. 2016, pp. 1–6.

[9] S. Choudhury, ‘‘Cellular automata andwireless sensor networks,’’ inEmer-
gent Computation. Cham, Switzerland: Springer, 2017, pp. 321–335.

[10] S. Hao, H. Zhang, and M. Song, ‘‘A stable and energy-efficient routing
algorithm based on learning automata theory for MANET,’’ J. Commun.
Inf. Netw., vol. 3, no. 2, pp. 43–57, 2018.

[11] P. S. Khot and U. L. Naik, ‘‘Cellular automata-based optimised routing for
secure data transmission in wireless sensor networks,’’ J. Experim. Theor.
Artif. Intell., vol. 34, no. 3, pp. 431–449, May 2022.

[12] J. Lee, S. Adachi, F. Peper, and K. Morita, ‘‘Asynchronous game of life,’’
Phys. D, Nonlinear Phenomena, vol. 194, nos. 3–4, pp. 369–384,
Jul. 2004. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167278904001198

[13] T. Fujita, K. Nakano, and Y. Ito, ‘‘Fast simulation of Conway’s game of life
using bitwise parallel bulk computation on a GPU,’’ Int. J. Found. Comput.
Sci., vol. 27, no. 8, pp. 981–1003, Dec. 2016.

[14] I. Gupta, D. Riordan, and S. Sampalli, ‘‘Cluster-head election using fuzzy
logic for wireless sensor networks,’’ in Proc. 3rd Annu. Commun. Netw.
Services Res. Conf. (CNSR), May 2005, pp. 255–260.

[15] Y. Yuan, C. Li, Y. Yang, X. Zhang, and L. Li, ‘‘CAF: Cluster algorithm and
A-star with fuzzy approach for lifetime enhancement in wireless sensor
networks,’’ Abstract Appl. Anal., vol. 2014, pp. 1–17, Jan. 2014.

[16] G. Smaragdakis, I.Matta, andA. Bestavros. (2004). SEP: A Stable Election
Protocol for Clustered HeterogeneousWireless Sensor Networks. [Online].
Available: https://open.bu.edu/handle/2144/1548

[17] A. Ghaffari, ‘‘An energy efficient routing protocol for wireless sensor
networks using A-star algorithm,’’ J. Appl. Res. Technol., vol. 12, no. 4,
pp. 815–822, 2014.

[18] S. Soijoyo and R. Wardoyo, ‘‘Wireless sensor network energy efficiency
with fuzzy improved heuristic A-Star method,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 8, no. 4, pp. 1–7, 2017.

[19] I. S. AlShawi, L. Yan, W. Pan, and B. Luo, ‘‘Lifetime enhancement in
wireless sensor networks using fuzzy approach and A-star algorithm,’’ in
Proc. IET Conf. Wireless Sensor Syst. (WSS), 2012, pp. 1–6.

[20] A. A. Alkadhmawee and S. Lu, ‘‘Prolonging the network lifetime based
on LPA-star algorithm and fuzzy logic in wireless sensor network,’’ in
Proc. 12th World Congr. Intell. Control Autom. (WCICA), Jun. 2016,
pp. 1448–1453.

[21] E. Amiri, H. Keshavarz, M. Alizadeh, M. Zamani, and T. Khodadadi,
‘‘Energy efficient routing in wireless sensor networks based on fuzzy ant
colony optimization,’’ Int. J. Distrib. Sensor Netw., vol. 10, no. 7, Jul. 2014,
Art. no. 768936.

[22] A. J. Obaid, ‘‘Wireless sensor network (wsn) routing optimization via the
implementation of fuzzy ant colony (faco) algorithm: Towards enhanced
energy conservation,’’ in Next Generation of Internet of Things, R. Kumar,
B. K. Mishra, and P. K. Pattnaik, Eds. Singapore: Springer, 2021,
pp. 413–424.

129700 VOLUME 10, 2022

http://dx.doi.org/10.1007/s11277-021-09271-9
http://dx.doi.org/10.1007/s11277-021-09271-9


J. Reyes et al.: Game of Sensors: An Energy-Efficient Method to Enhance Network Lifetime in WSNs

[23] S. Tanwar, S. Tyagi, N. Kumar, and M. S. Obaidat, ‘‘LA-MHR: Learning
automata based multilevel heterogeneous routing for opportunistic shared
spectrum access to enhance lifetime ofWSN,’’ IEEE Syst. J., vol. 13, no. 1,
pp. 313–323, Mar. 2019.

[24] A. H. F. Navid, ‘‘SELARP: Scalable and energy-aware learning automata-
based routing protocols for wireless sensor networks,’’ in Proc. 4th Int.
Conf. Sensor Technol. Appl., Jul. 2010, pp. 570–576.

[25] M. Kamarei, A. Patooghy, Z. Shahsavari, and M. J. Salehi, ‘‘Lifetime
expansion in WSNs using mobile data collector: A learning automata
approach,’’ J. King Saud Univ. Comput. Inf. Sci., vol. 32, no. 1, pp. 65–72,
Jan. 2020.

[26] T. Liu, T. Gu, N. Jin, and Y. Zhu, ‘‘Amixed transmission strategy to achieve
energy balancing in wireless sensor networks,’’ IEEE Trans. Wireless
Commun., vol. 16, no. 4, pp. 2111–2122, Apr. 2017.

[27] G. Chen, C. Li, M. Ye, and J. Wu, ‘‘An unequal cluster-based routing
protocol in wireless sensor networks,’’ Wireless Netw., vol. 15, no. 2,
pp. 193–207, Feb. 2009, doi: 10.1007/s11276-007-0035-8.

[28] G. M. B. Oliveira, R. G. O. Silva, G. B. S. Ferreira, M. S. Couceiro,
L. R. do Amaral, P. A. Vargas, and L. G. A. Martins, ‘‘A cellular automata-
based path-planning for a cooperative and decentralized team of robots,’’
in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019, pp. 739–746.

[29] L. G. A. Martins, R. D. P. Cândido, M. C. Escarpinati, P. A. Vargas, and
G. M. B. de Oliveira, ‘‘An improved robot path planning model using
cellular automata,’’ in Towards Autonomous Robotic Systems, M. Giuliani,
T. Assaf, and M. E. Giannaccini, Eds. Cham, Switzerland: Springer, 2018,
pp. 183–194.

[30] S. C. S. Nametala, L. G. A.Martins, andG.M. B. Oliveira, ‘‘A new distance
diffusion algorithm for a path-planningmodel based on cellular automata,’’
in Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2020, pp. 1–8.

[31] G. B. S. Ferreira, P. A. Vargas, and G. M. B. Oliveira, ‘‘An improved
cellular automata-based model for robot path-planning,’’ in Autonomous
Robotics Systems, M. Mistry, A. Leonardis, M. Witkowski, and
C. Melhuish, Eds. Cham, Switzerland: Springer, 2014, pp. 25–36.

[32] J. Tariq and A. Kumaravel, ‘‘Construction of cellular automata over hexag-
onal and triangular tessellations for path planning ofmulti-robots,’’ inProc.
IEEE Int. Conf. Comput. Intell. Comput. Res. (ICCIC), Dec. 2016, pp. 1–6.

[33] E.M. Izhikevich, J. H. Conway, andA. Seth, ‘‘Game of life,’’ Scholarpedia,
vol. 10, no. 6, p. 1816, 2015.

[34] R. B. Elwin, J. H. Conway, and R. K. Guy, Winning Ways for Your
Mathematical Plays. Boca Raton, FL, USA: CRC Press, 2018, doi:
10.1201/9780429487330.

[35] M. G. Kechaidou and G. C. Sirakoulis, ‘‘Game of life variations
for image scrambling,’’ J. Comput. Sci., vol. 21, pp. 432–447,
Jul. 2017. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1877750316301442

[36] S. M. Lucas, A. Dockhorn, V. Volz, C. Bamford, R. D. Gaina, I. Bravi,
D. Perez-Liebana, S. Mostaghim, and R. Kruse, ‘‘A local approach to
forward model learning: Results on the game of life game,’’ in Proc. IEEE
Conf. Games (CoG), Aug. 2019, pp. 1–8.

[37] X. Wang and C. Jin, ‘‘Image encryption using game of life permu-
tation and PWLCM chaotic system,’’ Opt. Commun., vol. 285, no. 4,
pp. 412–417, Feb. 2012. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0030401811010893

[38] A. Adamatzky, Ed., Game Life Cellular Automata, 1st ed. London, U.K.:
Springer, 2010.

[39] T. Shankar, G. Eappen, and S. Rajalakshmi, ‘‘Optimized routing algorithm
for wireless sensor networks,’’ in Game of Life Cellular Automata. Singa-
pore: Springer, 2021, pp. 83–96.

[40] I. S. AlShawi, L. Yan, W. Pan, and B. Luo, ‘‘Lifetime enhancement in
wireless sensor networks using fuzzy approach and A-star algorithm,’’
IEEE Sensors J., vol. 12, no. 10, pp. 3010–3018, Oct. 2012.

JOEL REYES was born in Mexico, in 1997.
He received the B.S. degree (Hons.) in telecom-
munications engineering from the National
Autonomous University of Mexico, in 2020. He is
currently pursuing the M.S. degree in computer
science and engineering with the Department of
Telecommunications, UNAM, Mexico. He joined
the Signal Integrity Department, Intel, in 2022,
where he has been involved in software opti-
mization. His research interests include cellular

automata models, sensor networks, and machine learning.

FRANCISCO GARCÍA received the B.S. degree
in electrical engineering from the National
Autonomous University of Mexico (UNAM),
in 2005, and the M.S. and Ph.D. degrees (Hons.)
in computer science from the IIMAS, UNAM, in
2007 and 2015, respectively. He worked at The
European Organization for Nuclear Research
(CERN) on the ALICE project. He is currently a
full-time Professor at the Department of Telecom-
munications Engineering, UNAM. His research

interests include sensor networks, SDN security, and localization techniques.
He has been a member of the SNI, since 2017.

MARÍA ELENA LÁRRAGA received the B.S.
degree in computer science from the Benemérita
Universidad Autónoma de Puebla, Mexico, and
the master’s degree in computer science and engi-
neering and the Ph.D. degree in system engi-
neering (transport) from the Universidad Nacional
Autónoma de México. She is currently working
as a Researcher with the Universidad Nacional
Autónoma de México. Her research interests
include modeling and simulation of complex sys-

tems, such as traffic flow analysis, epidemics, security, and malware propa-
gation as well as cellular automata and agent-based models. She served as a
TPC member and a reviewer for many leading international conferences and
journals.

JAVIER GÓMEZ received the B.S. degree (Hons.)
in electrical engineering from the National
Autonomous University of Mexico (UNAM),
in 1993, and the M.S. and Ph.D. degrees in
electrical engineering from the COMET Group,
Columbia University, in 1996 and 2002, respec-
tively. During his Ph.D. studies at Columbia Uni-
versity, he collaborated and worked on several
occasions at the IBM T. J. Watson Research Cen-
ter, Hawthorne, NY, USA. He is currently a full-

time Professor at the Department of Telecommunications Engineering,
School of Engineering, UNAM. His research interests include routing, QoS,
and MAC design for wireless ad hoc, sensor, and mesh networks. He has
been a member of the SNI, since 2004.

LUIS OROZCO-BARBOSA (Member, IEEE)
received the Diplôme d’Etudes Approfondies
degree in computer science from the École
Nationale Supérieure d’Informatique et de Math-
ématiques Appliquées, France, in 1984, and the
Doctorat d’Université degree in computer science
from the Université Pierre et Marie Curie, France,
in 1987. From 1991 to 2002, he was a Faculty
Member with the School of Information Tech-
nology and Engineering, University of Ottawa,

Canada. Since 2002, he has been a Professor with the Department of
Computer Engineering, Universidad de Castilla-La Mancha, Spain, and the
Director of the Albacete Research Institute of Informatics. He has con-
ducted numerous research and innovation projects with the private sector,
contributed to ITU standards. His current research interests include the
IoT technologies, B5G networks, modeling, and performance evaluation.
He is a member of the IEEE Communications Society and various COST
actions in wireless technologies. He served as a Technical Advisor for the
Canadian International Development Agency and the Spanish International
Cooperation Council.

VOLUME 10, 2022 129701

http://dx.doi.org/10.1007/s11276-007-0035-8
http://dx.doi.org/10.1201/9780429487330

