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ABSTRACT Combining the ultra-high user throughput of the light fidelity (LiFi) and the ubiquitous
coverage of wireless fidelity (WiFi), the hybrid LiFi andWiFi network (HLWNet) demonstrates unparalleled
advantages in indoor wireless data transmission. Due to the line-of-sight propagation nature of the optical
signal, the handover decision-making problem in HLWNets, however, becomesmore critical and challenging
than that in previous heterogeneous networks. In this paper, the handover decision-making problem in the
HLWNet is regarded as a binary classification problem, and an artificial neural network (ANN)-based
handover scheme is proposed. The complete handover scheme consists of two sets of ANNs that use
the information about channel quality, user movement, and device orientation as input features to make
handover decisions. After being trained with the labeled datasets that are generated with a novel approach,
the ANN-based handover scheme is able to achieve over 95% handover accuracy. The proposed scheme is
then compared with benchmarks under an indoor simulation scenario. The simulation results show that the
proposed approach can significantly increase user throughput by 20.5− 46.7% and reduce handover rate by
around 59.5 − 78.2% as compared with the benchmarks; in the meanwhile, it maintains a great robustness
performance against user mobility and channel variation.

INDEX TERMS Handover, light fidelity (LiFi), machine learning (ML), sixth-generation wireless network
(6G), visible light communication (VLC), wireless fidelity (WiFi).

I. INTRODUCTION
Although the fifth-generation (5G) wireless communication
network has already been standardized and commercialized
worldwide since 2020, its current performance will no longer
be adequate in the foreseeable future due to the booming
growth of new industries such as the Internet of things (IoT)
and mobile virtual reality (VR) technologies [1], [2]. Com-
pared with the 5G, the next-generation wireless network or
the sixth-generation (6G) wireless network is expected to be
human-centric, and in the meanwhile provides higher data
rates, stronger privacy, and higher energy/cost efficiency [3].

The hybrid light fidelity (LiFi) and wireless fidelity (WiFi)
network (HLWNet) has continuously attracted research inter-
est and been regarded as a potential component of the 6G
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network [4]. Especially in indoor scenarios, the HLWNet
demonstrates unparalleled advantages over conventional
radio frequency (RF) heterogeneous networks (HetNets) [5],
[6]. On the one hand, the light emitting diode (LED) based
LiFi network is able to provide ultra-high data transmis-
sion with great power efficiency, low interference, and high
physical layer security. WiFi, on the other hand, works as a
substitute for LiFi when the optical signal is unavailable to
enhance signal continuity and user mobility [7]. However,
due to the ultra-dense deployment of LiFi access points (APs)
and the susceptible LoS propagation nature of the optical
light, the handover decision-making between LiFi and WiFi
becomes more critical than that in conventional heteroge-
neous networks [8].

According to our previous study in [9], a typical han-
dover scheme consists of three modules, including the
information gathering module (IGM), the decision-making
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FIGURE 1. A three-module handover scheme.

module (DMM), and the handover execution module (HEM),
as depicted in Fig. 1. The IGM collects all the information
required for the handover decision-making and periodically
passes the information to the DMM, where the handover
algorithm locates. The DMM then decides the most suitable
access network andwhether to perform the handover to it. The
handover is triggered once the HEM receives the handover
request from the DMM.

The handover algorithm that gives the rules for
decision-making plays the most important role in the
handover scheme design. Mathematically, the handover
algorithm can be regarded as a multiple-input single-output
function, where the inputs are the values of all metrics used
for the handover decision-making and the output, equivalent
to either ‘‘0’’ or ‘‘1’’, indicates the decision result. Any
mathematical tool that approximates this type of functions
can be used to design a handover algorithm.Many math mod-
els, including fuzzy logic (FL) [10], [11], Markov decision
process (MDP) [12], [13] [14], and game theory (GT) [15],
[16], have been applied for the handover algorithm design
in heterogeneous visible light communication (VLC) and
RF networks. In our previous work, we regard the handover
problem in the HLWNet as a pattern recognition problem,
more specifically a binary classification problem, for the first
time [17]. The logistic regression (LR) and the support vector
machine (SVM) have been applied to design the handover
algorithms. Although the simulation results show that the
LR- and the SVM-based handover methods outperform the
previous handover schemes, their handover accuracy is hard
to be improved further due to the inherent disadvantage of
solving the non-linear boundary classification problem of
these two methods.

To further increase the handover accuracy and improve
the other handover metrics, we investigate the artificial neu-
ral network (ANN) in the handover decision-making in the
HLWNet, due to its capability of solving non-linear prob-
lems without explicit models [18], [19] [20]. There have
been a handful of attempts to apply ANN to the handover
management problems in heterogeneous VLC-RF networks.
To increase the user throughput of mobile users, [8] adopts
an ANN to adjust the selection preference between LiFi and
WiFi access networks. This work has shown the superiority
of the ANN in handover algorithm design; however, there
are still a number of research gaps in this study. First, the
complex indoor user behavior such as device orientation is
neglected in the decision-making. Furthermore, instead of
deciding whether to execute the handover with given inputs

FIGURE 2. A software-defined networking (SDN) based HLWNet
structure [21].

straightaway, the ANN-based algorithms in [8] only provides
the network preference score. Extra procedures are needed to
make a complete handover decision.

Aiming at the issues mentioned above, we propose a novel
ANN-based handover scheme, in which we regard the han-
dover problem inHLWNets as a binary classification problem
as we did in [17]. The proposed scheme consists of two
ANNs: one is for the handover decision-making from LiFi to
WiFi and the other one is for the handover decision-making
from WiFi to LiFi. Compared with the ANN-based han-
dover scheme in [8], our methods have two main advantages.
Firstly, sincemultiple attributes such as channel quality, light-
path blockage, user mobility, and device orientation have
been considered as features for the ANNs, our method can
make more timely, precise, and reliable decisions. Addi-
tionally, our proposed method avoids redundant handover
decision procedures. Since the handover is regarded as a
binary classification problem, the proposed scheme is able
to make the handover decision with a set of given inputs
straightforward.

The simulation results show that the proposed scheme
achieves above 95% handover accuracy, near-optimal user
throughput, and a significant handover rate reduction as
compared to the benchmarks. In addition, the proposed
method shows superior robustness performance against dif-
ferent working scenarios.

The remainder of the paper is organized as follows.
The HLWNet model is introduced in Section II. Section III
demonstrates the novel ANN-based handover scheme.
Section IV presents the simulation results and related discus-
sion. Finally, the conclusions are drawn in Section V.

II. SYSTEM MODELS
An HLWNet system consisting of multiple LiFi APs and a
single WiFi AP is used for this study. To avoid interference
to the LiFi downlink transmission, we adopt a bidirectional
LiFi network scheme that uses visible light for the downlink
and IR for the uplink communication [22]. Each LiFi cell
consists of a pair of LED and infrared (IR) photodetector (PD)
as the transceiver, which is assumed to be facing vertically
downwards. In addition, all LiFi andWiFi APs are connected
to software-defined networking (SDN)-enabled switch via
SDN agents, and the data packets from the Internet will
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FIGURE 3. The working procedure of the proposed ANN-based handover
scheme.

be routed to each AP under the supervision of the network
controller, as shown in Fig. 2 [7], [21]. In each LiFi cell, time
division multiple access (TDMA) is employed as the multiple
access scheme, whereas carrier-sense multiple access with
collision avoidance (CSMA/CA) is applied as the medium
access control (MAC) for the WiFi network [23].

The system models used for this study, including the LiFi
channel model, WiFi channel model, the achievable data rate
of both LiFi andWiFi, themodified orientation-based random
waypoint (ORWP)model, and the light-path blockage, are the
same as our previous work in [9]. The variable notations are
also the same as those in [9]. Please refer to Section II of [9]
for details.

III. ANN-BASED HANDOVER SCHEME
In this section, we propose a novel ANN-based handover
scheme that regards the handover decision as a binary clas-
sification problem. The working procedure of the proposed
handover scheme is quite straightforward, as shown in Fig. 3.
The information about the current/target channel quality,
light-path blockage, user mobility, and device orientation is
gathered periodically by the IGM which locates in the user
equipment (UE). Since only the vertical handover (VHO) is
considered in our scheme, the IGM just needs to monitor
the channel quality of the LiFi AP with the highest signal-
to-interference-plus-noise ratio (SINR) and the WiFi AP [9].
The SINR/SNR information can be monitored in the mobile
node [8], [24]. The user velocity and angular information
can be measured by the inertial measurement unit (IMU)
in smart devices [6], [25]. Furthermore, the average light-
path available/unavailable period needs to be recorded and
updated to calculate the estimated interruption and recov-
ery rates, ξ̂1 and ξ̂2 [10]. The measured information is then
wrapped up as an input vector for the pre-trained neural net-
work. After transforming the inputs through a series of hidden
layers which are made up of a set of neurons, the neural
network finally outputs the handover decision. In our scheme,
the output ‘‘1’’ means executing the handover immediately,
whereas the output ‘‘0’’ means not executing the handover.
Since the complete handover scheme consists of two parts, i.e.
the handover from WiFi to LiFi and the handover from LiFi
to WiFi, we need to train two sets of neural networks. In the
following section, we will describe the ANN architecture, the
dataset generation, the ANN training, and the ANN testing.

FIGURE 4. The architecture of a fully-connected L-layer ANN with 1 input
layer, L − 1 hidden layers, and 1 output layer.

A. ANN ARCHITECTURE
As mentioned in Section I, the handover algorithm can be
regarded as a nonlinear function f (x) with a single output
either equal to ‘‘1’’ or ‘‘0’’, where x ∈ Rn is the input vector
that contains n features. Therefore, designing the handover
algorithm is equivalent to finding the optimal approximator
or hypothesis h2(x;2) of the function f (x). Neural network
or ANN, modeled as collections of neurons, shows great
potential to solve this problem since the neural network with
at least one hidden layer, and proper activation functions can
approximate any continuous function [26]. Combining the
ANN with a maximum likelihood estimation (MLE) thresh-
old, we can find an approximator function with an output
equals ‘‘1’’ or ‘‘0’’. A fully-connected L-layer (not including
input layer) ANN architecture, in which neurons between two
adjacent layers are fully pairwise connected, is applied in this
article, as shown in Fig. 4. As for each neuron, the sum of
weighted outputs of the previous layer and a bias is fed in
an activation function in it. The activation function is used
to introduce non-linearity to the neuron. The computation
process from the input layer to the output layer is called
forward propagation, which is given by:

a(1) = g(2(1)
[
x0
x

]
),

a(j+1) = g(2(j)

[
a(j)0
a(j)

]
),

h2(x;2) = g(2(L)

[
a(L)0

a(L)

]
), (1)

where L denotes the depth of the ANN; sl is the number
of neurons (not counting bias units) in layer l; a(j)i is the
activation of neuron i (i 6= 0) in layer j; x0 and a(j)0 are
the biases of the input vector and layer j respectively; 2(j)

∈

Rs(j+1)×(sj+1) is the matrix of weights controlling function
mapping from layer j to layer j+ 1; g(·) denotes the sigmoid
activation function with the expression as:

g(x) = {
1

1+ e−x
∈ (0, 1)n | x ∈ Rn

} (2)
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FIGURE 5. The UE is currently connected to the LiFi network and the
shadow area is the handover execution period.

FIGURE 6. The architecture of the dataset with N sets of data.

Since the output of the hypothesis h2(x;2) indicates the
estimated probability that y = 1 on input x, a maximum
likelihood estimator is needed in the output layer to achieve
the ‘‘1/0’’ classification;

y =

{
0, h2(x;2) < 0.5
1, h2(x;2) ≥ 0.5.

(3)

Hence, for a neural network with well-trained parameters
2, given an input vector x, the DMM will send the handover
request to the HEM if the output of the ANN, y = 1;
otherwise, the UE will stay in the current network.

B. DATASET GENERATION
Adequate numbers of data with labeled ground truth are
essential for supervised learning tasks; however, all previous
works of the ANN-based handover algorithm, to the best of
our knowledge, lack details on labeled data generation [8],
[27] [28]. Unlike the other classification problem, such as
object detection, it is not obvious to decide the target value
with a set of given inputs; in other words, it is not clear
whether the handover execution is worthwhile, though the
information about the channel quality, user mobility, and the
interruption/recovery rates is known. To build up the labeled
datasets, we propose a novel approach that consists of the
following steps:

1) First, we generate the tuple sequences of the dynamic
information (including position, velocity, and polar
angle) by the modified ORWP model in Section II-E
of [9].

2) The SINR/SNR values of both LiFi and WiFi chan-
nels for each user at each moment are then calculated
from the position, velocity direction, and polar angle
information under the simulation scenarios described
in Section II-A and B of [9].

3) The light-path blockage is introduced by the ON-OFF
model with given interruption and recovery rates ξ1 and
ξ2. For simplicity, the SINR of the LiFi channel is
assumed to be 0 when the optical channel is blocked.

After implementing steps 1) to 3), we obtained the dataset for
M users over the TSIM simulation time:

D ∈ RK×7×M ,

where K = TSIM /1t is the discrete time length.
1) Randomly choosing a time point k , the data required

for the handover decision of UE m at this moment is
denoted as:

(x(m)k )T = D(k, :,m)

=
[
γu,a γu,0 v � θ ξ1 ξ2

](m)
k , (4)

where x(m)k is the input vector for the neural network.
As illustrated in Fig. 5, if the UE is connected to a LiFi
AP and the average data rate of switching to the WiFi
network in the following short period τ is greater than
the rate of staying in the LiFi network, i.e.,∫ k+τ

k+τe
ru,0 dt >

∫ k+τ

k
ru,a dt, (5)

where τe is the execution time, then we label y = 1,
otherwise y = 0.

2) Feature scaling is needed to ensure that all features
have the same scale. We end up with 10000 sets of
data structured as shown in Fig. 6. With the same
method, we have also created 10000 sets of data for
the handover decision from WiFi to LiFi.

Both datasets are partitioned into three segments, in which
the training (70%) and validation (15%) sets are for adjusting
the hyperparameters and tuning the model; and the test (15%)
set is used to assess the network performance.

C. TRAINING AND TESTING
After setting up the ANN architecture, we obtain a hypothesis
h(x;2). Then, we need to work on the model training to
adjust the hyperparameters 2 and to achieve the optimal
performance. The data loss which measures the compatibility
between a prediction and the ground truth is adopted to eval-
uate the hypothesis performance. In our work, the data loss is
calculated by Eq. 6, as shown at the bottom of the next page,
where Ntrain is the size of the training set. Therefore, training
the ANN is transformed into an optimization problem,

2∗ = argmin
2

J (2), (7)

which is solved by the gradient descent algorithm in our work
[29]. During the training process, the ANN model should
also be tuned based on the cross validation [30]. Finally,
the performance of the hypothesis is evaluated on the test
set by checking the average loss plots, and the confusion
matrices [31].

IV. SIMULATION RESULTS
A. SIMULATION PARAMETERS
An indoor office with dimensions of 18×18×3m3 is imple-
mented as the default simulation scenario, which is equipped
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TABLE 1. LiFi simulation parameters.

TABLE 2. WiFi simulation parameters.

with a 2.4GHz WiFi AP and 36 LED-based LiFi APs in a
lattice topology. In addition, the kernelized LR(K-LR)-based,
the kernelized SVM(K-SVM)-based, and the ANN-based
handover algorithm (referred to as ANN∗) 1 in [8] with the
same simulation parameters, are adopted as benchmarks of
the proposed ANN-based handover scheme (referred to as
proposed ANN). The handover overhead is approximated
as a normal distribution with an expected value of 400ms
[10]. Additionally, 300 users, whose velocity magnitude
and direction are uniformly distributed from 0 − 3m/s and
0− 2π , are evaluated and each of them has a simulation
time of 300s. Other simulation parameters are summarised
in Tables 1 and 2.

B. ANN SPECIFICATIONS
As described in Section III-B, the datasets are labeled
by checking whether the handover execution brings more
benefits than keeping connected to the current AP in the
following ‘‘τ ’’ period. If the handover is worthwhile, the data
vector is labeled with ‘‘1’’; otherwise, it is denoted with ‘‘0’’.

1Because the authors of [8] do not provide their dataset or explain how
they generate their dataset, we train their ANNmodel with our datasets here.

FIGURE 7. The plots of average user throughput against different τ

values.

Therefore, the first task is to determine the optimal τ value
that gives the best overall performance.

We first check the optimal τ of the dataset to train the
ANN that makes the handover decision from LiFi to WiFi.
We start by defaulting the depth of the ANN to 2, i.e. there
is one hidden layer, which by default has 7 neurons and
one bias. Suppose that the UE is currently connected to the
LiFi network, different values of τ are chosen to label the
10000 sets of data, which are then used to train the neural
network. After that, the trained hypothesis is used to simulate
the average user throughput of the 100 users over 300s.
As shown in Fig. 7a, we check the average user throughput
against different τ values and then use 5th-degree polyno-
mials to approximate the relation between them. It is found
that the average user throughput of the proposed ANN-based
handover scheme increases sharply and reaches its maximum
when τ is around 1.9s. Then, the throughput decreases rapidly
as the value of τ increases and eventually converges to around
25Mbps. This is because the measured inputs are only useful
for the ‘‘near future’’ predictions but do not work for the long-
term ones. In addition, the bell-shaped curve in Fig. 7a also
indicates that it is feasible to employ a neural network to
design a handover algorithm because if it did not work, the

J (2) = −
1

Ntrain
[
Ntrain∑
i=1

y(i)log(h2(x(i);2))+ (1− y(i))log(1− h2(x(i);2))] (6)
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FIGURE 8. Training and validation losses of the ANN versus the epoch
index.

FIGURE 9. Confusion matrices.

curve should be a horizontal line. Using the same approach,
the optimal τ for the dataset to train the ANN that makes the
handover decision fromWiFi to LiFi is found located around
2.1s, as shown in Fig. 7b. Hence, the two optimal values,
τ = 1.9s and τ = 2.1s, are applied to label two datasets
to train the decision-making ANNs.

After obtaining the labeled datasets, we begin to train the
ANNs for handover decision-making. We first train the ANN
that makes handover decisions from LiFi to WiFi. The train-
ing and validation losses against the epoch index are shown
in Fig. 8a. It shows that the training and validation losses
decrease rapidly and converge to around the same amount as
the epoch index increases. This indicates that our network is
effective and that there is no overfitting.

The performance of the trained ANN is then checked with
the test set and the results are presented in the confusion

FIGURE 10. The comparison of handover accuracy.

matrix in Fig. 9a. It is found that the proposed ANN model
performs quite well and it can achieve a 95.1% accuracy with

F1 score =
2(precision× recall)
precision+ recall

= 0.89, (8)

where precision = 88.9% and recall = 89.2%. We have
tried to improve the accuracy by increasing the number of
hidden layers and neurons, but with limited improvement.
Therefore, we believe that one hidden layer with 7 neurons
and one bias is sufficient for this problem. With the same
approach, we trained the other ANN that makes handover
decisions from WiFi to LiFi with the second dataset. The
losses of the training process and the confusion matrix are
presented in Fig. 8b and 9b, respectively.
The complete ANN-based handover scheme is obtained

by combining the two well-trained ANNs. The proposed
ANN-based approach will be compared with the other three
benchmarks in terms of user throughput, handover rate, and
robustness in the following sections.

C. HANDOVER ACCURACY
1000 sets of labeled data are randomly chosen from the test
set to evaluate the handover accuracy of the four handover
methods. The accuracy performance is presented in Fig. 10.
It shows that the proposed ANN-based handover scheme
is able to achieve the highest handover accuracy of 95.1%
with F1 score equivalent to 0.89. In addition, the handover
accuracy of K-LR and K-SVM methods are similar, which
agrees with the conclusion of our previous study in [17]. They
can also achieve handover accuracy of above 90%; however,
their F1 scores, which equal 0.79 and 0.81 respectively, are
lower than that of the proposed ANN-based method. The
numerical results of these two methods are slightly different
from those in [17] since different test sets are used in these
two studies. The ANN∗ benchmark has the lowest handover
accuracy of 83.1% and the worst F1 score of 0.64.

VOLUME 10, 2022 130355



G. Ma et al.: Artificial Neural Network-Based Handover Scheme for Hybrid LiFi Networks

FIGURE 11. The CDF plot of average user throughput of the proposed
ANN-based handover scheme and benchmarks.

D. USER THROUGHPUT
Fig. 11 shows the cumulative distribution function (CDF)
plot of average user throughput under two different situa-
tions: i) only LoS component is considered, and ii) both LoS
and NLoS components are taken into account. It is found
that for all four methods, the user throughput that considers
both LoS and NLoS components is always greater than that
which considers the LoS component only. This is because
the NLoS component can significantly increase the received
signal strength of UE, especially for those UE close to the
wall, where LoS signal is often extremely low but the NLoS
part is strong. Additionally, the proposed ANN-based scheme
can always achieve the highest user throughput, which is
around 20.5 − 46.7% higher than that of the benchmarks.
Furthermore, it shows that the CDF curves of the proposed
scheme are the sloppiest, which indicates that our method has
the best robustness performance as compared to the bench-
marks. The reason is that our approach takes into account
multiple attributes to make the handover decision.

E. HANDOVER RATE
The handover performance of four different handover algo-
rithms is presented in Fig. 12. Same as Section IV-C, it can
be concluded that, for all four methods, the handover perfor-
mance with both LoS and NLoS components considered is
always better than that with LoS component only, which indi-
cates that NLoS component can largely improve the optical
channel quality. The average handover rates of the proposed
ANN-based scheme are the lowest, whereas those of the
ANN∗ are the highest. The performance of the K-LR is sim-
ilar to that of the K-SVM, which agrees with what we found
in [17]. Specifically, the proposed ANN-based algorithm can
reduce the handover rates by around 59.5% and 78.2% as
compared to K-SVM and ANN∗ algorithms.

F. ROBUSTNESS
A good handover algorithm should not only boost the trans-
mission rate and avoid unnecessary handovers but also adapt

FIGURE 12. The CDF plot of handover rate of the proposed ANN-based
handover scheme and benchmarks.

FIGURE 13. Average user throughput versus user velocity.

to different working scenarios. In other words, it is sup-
posed to show robustness against different working scenarios.
We first examine the effect of user velocity on the perfor-
mance of different algorithms. Fig. 13 shows the average
user throughput as a function of user velocity. It shows that
the data rates provided by all four methods decrease as the
user velocity increases; however, the proposed ANN-based
approach and another ANN-based method (ANN*) have rel-
atively smaller variations, since the user velocity has been
attributed to the network selection in these two methods. Our
proposed algorithm provides the highest user throughput at
different velocities; in the meanwhile, it is more immune to
speed variations than K-SVM and K-LR benchmarks. The
influence of the user velocity on the handover rate is pre-
sented in Fig. 14. The handover rates increase as the velocity
increases for all four methods, among which ANN∗ has the
greatest handover rate, and our proposed algorithm has the
lowest handover rate and the best robustness performance.
The proposed ANN-based method can avoid around 60% and
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FIGURE 14. Average handover rate versus user velocity.

FIGURE 15. Average user throughput versus channel quality.

75% handoffs as compared to the K-SVM and the ANN∗

algorithms, which agrees with our observation from Fig. 12.
Fig. 15 and Fig. 16 compare the average user through-

put and the handover rate performance of the proposed
scheme and the benchmarks under different channel con-
ditions. As we know, the quality of the optical channel
is determined by interruption and recovery rates together.
The interruption rate ξ1 is chosen as 0.05s−1 and 0.1s−1,
whilst the recovery rate ξ2 ranges from 0.1s−1 to 1s−1.
The increase in ξ1 means that the light path is interrupted
more frequently; in other words, the channel quality becomes
‘‘worse’’. In contrast, the increase in ξ2 indicates that a
blocked optical channel has a greater chance of recovery.
In Fig. 15, it is found that the average user throughput of
all four methods increases as ξ1 decreases or as ξ2 increases,
which agrees with our expectation. Additionally, the average
data rate provided by the ANN-based algorithm is always
the highest; in the meanwhile, its variation is the smallest
which indicates that our method has the best robustness per-
formance. Fig. 16 shows the average handover rates of the

FIGURE 16. Average handover rate versus channel quality.

proposed ANN-based method as compared with the bench-
marks. It shows that ANN∗, K-SVM, andK-LRmethods have
much higher handover rates and they are more susceptible
to network condition variations. Our ANN-based algorithm,
in contrast, can significantly reduce the handover rates under
different channel qualities, and at the same time, maintain the
strongest robustness.

V. CONCLUSION
In this paper, the handover problem in the HLWNet
is regarded as a binary classification problem and an
ANN-based handover scheme is proposed as a solution. The
proposed handover scheme consists of two ANNs, of which
one is for making the handover decision from LiFi to WiFi
and the other one is for the handover decision from WiFi
to LiFi. To obtain reliable and realistic simulation results,
we build a comprehensive simulation model that includes
channel quality, user movement, light-path blockage, and
device orientation. In addition, a novel approach is intro-
duced to generate labeled datasets for supervised training.
After being trained with the pre-labeled datasets, the ANN
models are able to achieve above 95% handover accuracy.
The proposed ANN-based handover scheme is then evaluated
and compared with another ANN-based method and two
handover schemes using pattern recognition techniques. The
simulation results show that, compared with benchmarks, the
proposed method can significantly increase user throughput
by around 20.5−46.7% and reduce handover rates by around
59.5−78.2%. Furthermore, the proposed method also shows
great robustness against different working scenarios. Our
work is novel and it shows that the neural network can be
a potentially robust solution to the handover problem in het-
erogeneous networks. We believe that this work can play an
important role in future research on the next-generation wire-
less network which is expected to be composed of ultra-dense
networks with LoS communication links such as LiFi and
millimeter wave networks.
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