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ABSTRACT Automated food detection and recognition methods have been studied to enhance end-user life.
However, most existing research focused on food ingredient type recognition, with little work has been done
for food ingredient state recognition. Successful recognition of food ingredient state plays a significant role
in handling the food ingredient by an intelligent system. In this work, we propose a new novel cascaded multi-
head approach based on deep learning to simultaneously recognize the state and type of food ingredients.
We trained and evaluated the proposed approach on a benchmark dataset of food ingredient images with
nine different food states and 18 food types. We compared the proposed approach with a non-cascaded deep
learning approach. The cascaded approach shows improvement in food ingredient state recognition with
87% accuracy compared to 81% using a non-cascaded deep learning method. Our proposed method broadly
applies to various tasks where food ingredient state recognition is essential, such as feeding elderly and
disabled people and automating food recognition and preparation.

INDEX TERMS Food recognition, food state recognition, deep learning, features fusion, DenseNet.

I. INTRODUCTION

According to the U.S. Chamber of Commerce, the jobs
requiring in-person attendance and having lower wages,
including food service and hospitality, have suffered from
labor shortages and had difficulty retaining workers [1].
Developing automated methods for food recognition and
classification can help solve worker shortages by replacing
human workers in many of the repetitive food preparation
tasks in the industry. The computerized techniques for food
preparation can be used in various applications, including
supporting people with disability [2], especially people with
vision impairment who need help recognizing the food type
and ingredients. Our world has at least 2.2 billion people
who are classified as having vision impairment, based on
the World Health Organization (WHO) [3]. Therefore, it is
essential to help this group of people in their daily life and
their food recognition and classification needs. The current
advances in the automation of services are induced by the
effective learning approaches of artificial intelligence (Al),
deep learning, and the availability of large data [4], [5],
[6]. However, there are still challenges to fully automating
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services in interactive environments. Automation of food
preparation requires the intelligent system to operate in an
interactive kitchen environment while recognizing the food
ingredient type and state. An example of the food ingredient
type is orange and the state being sliced or whole. The food
ingredient state is defined as the character of food which can
be transformed by a human or robot chef interventions [7].
The same type of food can appear in different shapes and
states depending on the intervention of a human or robot chef.
For instance, a state of an orange fruit can be observed based
on the texture and the shape of the fruit, which can be whole,
peeled, sliced, or liquid (juiced).

Researchers have introduced different approaches for
automation of food ingredient recognition [8], [9], [10].
These approaches use deep learning to learn representation
from food images. However, these approaches learn to pre-
dict the food type or state independently, but the two tasks
are related, and knowing the food type will help recognize
the state. In this paper, we propose a novel approach to
simultaneously learn to predict the food type and state in a
cascading manner where the prediction of the food type will
be fed into the prediction of the food state as those two are
correlated. In our approach, food ingredient state recognition
is achieved using the learned deep representations of food
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FIGURE 1. a) The number of images for each food state class, and b) the number of images for each food type class.

type and the input image’s deep representations. To the best of
our knowledge, our work is the first to address learning food
ingredients type and state together in a cascading approach.

The Main Contributions of this work are:

o Proposing an approach, based on deep convolutional
neural networks, to predict the food type and state in a
multitasking and cascading manner.

o We manually labeled part of the dataset (test set) to use
for the evaluation.

« Providing a detailed quantitative and qualitative evalua-
tion of the learned models for various settings.

II. LITERATURE REVIEW

Different approaches have been proposed in the literature on
food recognition. In [8], the authors proposed a deep learning-
based approach for a food recognition system that allows
the user to monitor the dietary intake during the day. This
system uses a smartphone camera to take a picture of food as
input to the trained deep-learning model and then provide the
food classification and dietary information. This computer-
aided food recognition system automates food recognition
and dietary assessment to better monitor user dietary intake.
A method for regression of food nutrition using deep learning
is proposed in [11]. This approach uses Inception-v3 [12],
ResNet [13], wide ResNet [14], and VGG16 [15] for learn-
ing food images to nutrition regression such as calories
using ChinaMartFood-109 dataset [11]. Another method for
food recognition using an ensemble of deep neural networks
was proposed by Pandey et al. [9]. This approach assessed
the use of traditional approaches (machine learning-based
approaches) and an ensemble of deep neural network-based
techniques for food recognition. The ensemble of neural

VOLUME 10, 2022

networks produced the best result using the famous ETH
Food-101 dataset [16]. In [17], the authors proposed a deep-
learning approach to recognize traditional dishes with high
calories. The proposed model was trained using EfficientNet
pre-trained on ImageNet and fine-tuned using a dataset of
traditional dishes images collected from the web. Then, the
learned model was deployed on a smartphone for real-time
inference.

Food recognition plays a significant role in helping
impaired people. An approach for Middle Eastern food recog-
nition was proposed in [18]. This approach used a pre-
trained MobileNet-v2 and fine-tuning using a dataset of
23 classes [19], then deployed the learned model on phones
for real-time inference.

In [20], the authors proposed a fusion of different
pre-trained deep neural network-based classifiers for food
recognition. This approach is based on fine-tuning several
pre-trained deep learning models, then fusing the output
predictions using a decision template. The authors have
assessed this ensemble approach using two datasets, Food-11
and Food-101 [16], [21]. Salim et al. [22] studied different
approaches for food recognition, including machine learn-
ing (traditional) and deep neural network-based approaches,
where deep learning-based food recognition methods were
the most effective compared to traditional approaches. Deep-
Food transfer learning approach was proposed in [23] for
food type multi-class classification. The proposed approach
extracts deep features from a pre-trained ResNet followed by
feature selection and classification, where the results revealed
improvement of food type multi-class classification using
Mealcome (MLC) dataset [24]. A summary of food datasets
and benchmark results and an evaluation of existing methods
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for food recognition were presented in [25]. The authors
trained the state-of-the-art method for five trials and achieved
the state-of-the-art results on the UEC Food-100 dataset [26]
by averaging the predictions of ResNeXt [27] and DenseNet
models [28].

An improved VGGI16-based approach was proposed
in [29]. This approach used asymmetric convolution blocks
instead of the original convolution kernel. Moreover, batch
normalization was added to the VGG16, and a spatial atten-
tion mechanism was applied to improve the results of food
type classification. To improve food recognition for vertical
trait foods, a method was proposed by Martinel et al. [30]
which used deep residual blocks and sliced convolution to
learn recognition of vertical traits of food, such as a stack of
pancakes. This approach improved the classification results
using the Food-101 dataset.

Food recognition is important for automating the visual
inspection of food quality and defects. A deep learn-
ing approach was proposed to detect defective apples and
bananas in [31]. This approach uses multiple state-of-
the-art deep learning architectures to recognize defective
apples and bananas using food images. The deep learn-
ing architecture used in the work includes: ResNet-50 [13],
DenseNet [28],MobileNet-v2 [32], NASNet [33], and Effi-
cientNet [34]. The best performance was obtained using
EfficientNet. Detecting the freshness of perishable fruits,
including bananas, oranges, and apples, was studied in [35].
This approach applied transfer learning using AlexNet [36],
VGGI16 [15], and ResNet [13] architectures pre-train on
ImageNet [37]. The dataset comprises six types of images:
fresh banana, fresh orange, fresh apple, rotten banana, rotten
orange, and rotten apple from an online dataset [38]. The best-
performing model was obtained using ResNet architecture.

The previous approaches used static datasets, which rep-
resent a challenge because of the food appearance and shape
variation. To solve this problem, a method that uses online
continual learning was proposed for visual food classifi-
cation [39] using the Food-1K dataset [40]. The approach
first applied example selection using a similarity-based clus-
tering approach for knowledge replay, and second, training
online continual learning with a batch-based class balancing
approach trained in a contrastive learning manner.

In [10], an approach to recognize the food state and type
was proposed. This approach takes features extracted from
an ImageNet-based pre-trained convolutional neural network
(CNN), followed by a support vector machine for classi-
fying food images into 20 food types and 11 food states.
The authors experimented with multiple pre-trained CNN
including GoogleNet [12], Inception-v3 [41], MobileNet-
v2 [32], and ResNet-50 [13]. This approach independently
learned food ingredient type and food ingredient state recog-
nition using separate neural networks. The authors also pro-
posed a new dataset of food ingredient images with state
and type labels. However, this data was not made publicly
available. Another approach for identifying the food ingre-
dient state was proposed by Jelodar et al. [7]. The proposed
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approach used ImageNet pre-trained ResNet for fine-tuning
using a dataset created by the authors. The proposed approach
focused on learning food ingredient states only by fine-
tuning pre-trained deep learning models [7]. Although these
approaches can be applied to food ingredient state recogni-
tion, they suffer from shortcomings related to the learning
process where learning food ingredients’ states and types are
performed independently.

Ill. DATASET

The dataset we used to learn and evaluate the proposed
approach has annotated images of various ingredients in a
kitchen. This dataset has 17 different most common cooking
ingredients collected from over 250 online cooking videos
from the two popular datasets [42], [43]. The cooking ingredi-
ents include: chicken/turkey, beef/pork, tomato, onion, bread,
pepper, cheese, strawberry, milk, potato, garlic, egg, carrot,
butter, mushroom, orange, and cheese [7].

Each food ingredient was labeled with a state where the
state describes the status of the ingredient during the cooking
process. In the original dataset, there are eleven different food
ingredient state classes. However, there are two food ingredi-
ent state classes that do not have the object labels associated
with each image, which are mixed and other. Therefore,
we have eliminated these two food ingredient state classes
(mixed and other) from the dataset. Thus, in the revised
dataset, there are nine different food ingredient states where
each food ingredient image has a state label and type label.
An example of the food ingredient type is Orange, and the
food ingredient state is sliced. The food state labels include
whole, peeled, sliced, floured, grated, julienne, diced, juiced,
and creamy paste. Our training set has 5251 images, the vali-
dation set has 1132 images, and the test set has 1180 images.
The test set had only the state label. Therefore, we have
manually labeled the test set for the food type, e.g., Orange
or Potato. During training, we applied data augmentation,
including rotation of 90°, 180°, 270°, horizontal and vertical
flipping, and zooming. Figure. 1 shows the total images for
each state and type label in the dataset. Table 1 illustrates
the total number of images per food state and type classes
on the test set. More information on the dataset collection
and the labeling process is provided in [7]. Figure 2 presents
examples from the dataset of different food ingredient types
and states.

IV. RESEARCH METHODOLOGY

We propose a CNN architecture as shown in Figure 3 to
estimate the two probabilities P(f;|img) and P(fs|img, f;) for
a food ingredient image img, where f; represent the food
ingredient type, f; is the food ingredient state, and img repre-
sent the input image. For a given food ingredient image img,
this approach learns two functions: the first is for estimating
the probabilities of the food ingredient type using features
learned from input images. The second function estimates the
probabilities of the food ingredient state, which takes inputs
from the learned representation of the food ingredient type in
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FIGURE 2. Examples from the dataset, where each row corresponds to a food state class. The presented images

are: creamy (first row), diced (second row), flour (third row), juiced (fourth row), and whole (last row).

concatenation with the food ingredient image feature vector.
The proposed cascaded multi-head neural network integrates
features learned for food ingredient type with the image-
based deep features to learn to recognize food ingredient state
effectively (cascaded approach). In other words, the proposed
approach learns food state recognition with the guidance of
food-type learned representations. Furthermore, the proposed
cascaded multi-head neural network can simultaneously pre-
dict food state and type.

The input for our model is RGB images img of food ingre-
dients. For this approach, we use the DenseNet121 model
pre-trained on the ImageNet dataset and fine-tuning on the
food dataset described in Section III. The earlier layers of
DenseNetl21 are set as non-trainable, whereas layers from
the convolution layer (conv5) onward are set to trainable.

VOLUME 10, 2022

Two heads on the top of DenseNet121 were added, where
the first head is used for predicting the food ingredient type,
and the second head is used for predicting the food ingredient
state. Each head comprises three fully connected layers. The
output of the second dense layer on the food ingredient type
head is concatenated with the flattened feature vector of the
image representation, and the concatenated feature vector is
the input for the second neural network head consisting of
fully connected layers for food ingredient state recognition as
shown in Figure. 3. This neural network is trained in an end-
to-end approach for learning food ingredient state and type
simultaneously.

For the purpose of studying the impact of learning the food
ingredient state and food ingredient type jointly in a cascaded
manner, we have trained two models: the first model uses
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FIGURE 3. The proposed food ingredient state and type recognition cascaded multi-head deep neural network. This neural network learns food
ingredient states and types simultaneously. The learned representation of the food ingredient type is concatenated with the image features to learn the

food ingredient state.

TABLE 1. Total number of test set images per food type class is shown in
the left table, and the total number of test set images per food state class
is shown in the right table.

Number of Number of
Food Type Test Images Food State Test Images
Beef/Pork 49 Creamy/Paste 94
Bread 105 Diced 117
Butter 43 Floured 124
Carrot 110 Grated 122
Cheese 72 Juiced 133
Chicken/Turkey 81 Jullienne 131
Dough/Batter 65 Peeled 88
Egg 75 Sliced 196
Garlic 72 ‘Whole 175
Lemon_orange 90
Milk 21
Mushroom 26
Onion 64
Other 26
Pepper 59
Potato 75
Strawberry 52
Tomato 95

DenseNetl121 with a single head of three fully connected
layers for learning to recognize the food ingredient state
only. This model is called non-cascaded single head model.
The second model has two heads on-top of DenseNet121 for
the food ingredient type and food ingredient state outputs,
as shown in Figure 3. This model concatenates the learned
features from the last convolution layer and the second fully
connected layer in the food type head. We called this model
cascaded multi-head model, which learns to predict the food
ingredient state and type, whereas the former model only
learns to predict food ingredient states.

V. IMPLEMENTATION
Model architecture designing and coding was done using
TensorFlow and Keras deep learning development libraries
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[44], [45]. Fine-tuning deep learning was performed on
Nvidia GeForce 1080ti GPU architecture for 20 epochs. For
the models’ fine-tuning optimization, we used the Adam
algorithm with a learning rate of 0.001, and the loss function
was categorical cross-entropy. To ensure the repeatability
of deep neural networks training, we have seeded all the
libraries, and we set deterministic configurations using Ten-
sorFlow as described in [46].

VI. RESULTS

We have experimented with two classification approaches.
First, we experimented with fine-tuning a deep learning
model (DenseNet121) in an end-to-end approach where there
is only one output head for the food state (i.e., non-cascaded
single head approach). The second classification approach
is for fine-tuning deep learning model (DenseNet121) in an
end-to-end cascaded classification scenario where there are
two neural network prediction heads: the first is for food
ingredient type and the second is for the food ingredient state
(i.e., cascaded multi-head approach). Furthermore, the latter
approach uses fused learned food ingredient type representa-
tion with the image deep representation vector in a cascaded
manner for learning to recognize the food ingredient state.
Therefore, learning the food ingredient state is guided by the
food ingredient type and image deep representations. In the
following two subsections, we provided the results for our
trained deep learning models.

A. NON-CASCADED SINGLE HEAD MODEL

This single-head model (i.e., the model trained to learn the
food ingredient state only) is a non-cascaded approach where
DenseNet121 is fine-tuned for food ingredient state recogni-
tion. The results of this approach showed an accuracy of about

VOLUME 10, 2022



S. S. Alahmari, T. Salem: Food State Recognition Using Deep Learning

IEEE Access

TABLE 2. Results summary of two deep learning models. The second row shows results for the non-cascaded single-head model, where learning was
done for food state only. The third row shows the results of learning from food state and type (i.e., the cascaded multi-head model). The results denoted

by * are based on 11 state classes. However, our results use nine state cl as disc d in the dataset section. The best result is in bold.
Food State Results Food Type Results
Model Name — e
Accuracy (%) | Precision | Recall | Fl-score | Accuracy (%) | Precision | Recall | FI-score
Jelodar et al. [7] 80.40 * - — — _ — _ _
Non-cascaded Single Head Model
X 80.90 0.82 0.81 0.81 - - - -
(Learning Food State Only)
Cascaded Multi-Head Model
(Learning Food State and 86.69 0.87 0.87 0.87 71.35 0.72 0.71 0.7
Type)
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(a)

81%, a precision of 0.82, a recall of 0.81, and an F1-score of
0.81 for the food ingredient state.

B. CASCADED MULTI-HEAD MODEL

The food ingredient state and type recognition model is a
cascaded multi-head model for classifying food ingredient
type and food ingredient state simultaneously. This approach
uses the food ingredient type feature vector and the input
image feature vector to learn to recognize the food ingredi-
ent state. The two heads are built on top of DenseNetl21,
as shown in Figure. 3. This method showed superior results
for food ingredient state classification compared to the for-
mer approach (i.e., non-cascaded single-head model), where
accuracy, precision, recall, and F1-score are 87%, 0.87, 0.87,
and 0.87, respectively. The food ingredient type accuracy is
71.35%, precision is 0.72, recall is 0.71, and F1-score is 0.70.
The improvement of the food ingredient state results using the
proposed model compared to the non-cascaded single head
model shows that learning the food ingredient state using
the representations learned for the food ingredient type in
combination with the image features vector has a monumental
results improvement. The results are shown in Table 2.

VII. DISCUSSION

The proposed approach aims to simultaneously learn food
ingredient state and type in a cascaded manner. The cascaded
multi-head deep neural network uses representations learned
for food ingredient type recognition to learn food ingredient
state. In other words, the learned deep features for food ingre-
dient type are fused with the image deep representation for
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Predicted label

(b)
FIGURE 4. a) The confusion matrix for food ingredient state recognition (Non-cascaded single head model) for predicting the food ingredient state.

b) The confusion matrix for food ingredient state and type recognition model (Cascaded multi-head model) where the two heads are for predicting the
food ingredient state and food ingredient type. The confusion matrix is for the food ingredient state results. c) The confusion matrix for the food
ingredient type results from the food ingredient state and type recognition (Cascaded multi-head model) approach with fusing feature vectors.

Predicted label

©)

learning food ingredient state. Learning food state with fused
representations (cascaded approach) shows superior results
over learning food ingredient state without feature fusing i.e.,
non-cascaded single head model.

The food ingredient state recognition model (i.e., non-
cascaded single head) for learning to recognize food ingre-
dient states using the input image deep representations only
showed that some food ingredient states are confused with the
other food ingredient states. For instance, some diced labeled
images are predicted as sliced, some creamy-paste labeled
images cases are predicted as grated, some images labeled as
whole food ingredient state is predicted as sliced, and some
images labeled as julienne food ingredient state is predicted
as sliced. This is because of learning the food ingredient state
directly from the image representation without knowing the
food ingredient type. The confusion matrix for a single-head
neural network to predict the food state is shown in Figure 4a.

Fusing food ingredient type feature vector with image deep
representations using the proposed cascaded multi-head deep
neural network shown in Figure. 3 shows improvement in
classifying the food ingredient state images. For instance,
only three images of the test set were predicted as sliced,
whereas the true label is whole. However, in the non-cascaded
single-head neural network for learning to recognize the
state of food ingredients, 22 images of the test set were
predicted as sliced, whereas the true label is whole. Further-
more, the number of true positives for diced, creamy paste,
floured, juiced, julienne, peeled, and whole increased using
the cascaded multi-head deep neural network compared to
using non-cascaded single head deep neural network. The
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FIGURE 5. Examples of the results of the proposed cascaded multi-head neural
network, each row shows an image along with the food ingredient state head
predictions and the food ingredient type head predictions.

confusion matrix for the food ingredient state recognition
using a cascaded multi-head deep neural network approach
is shown in Figure. 4b, and Figure. 4c for the food ingre-
dient type prediction. The food ingredient type head of the
cascaded multi-head approach shown in Figure 3 showed
prediction errors for some foods images that appear similar.
For instance, milk and lemon_orange juice labeled images are
similar; therefore 15 images of liquid milk were predicted as
lemon_orange juice, as shown in Figure. 4c. Furthermore, the
number of milk images in the dataset is low. Thus, the lower
number of images labeled as milk could be the cause for the
misclassification of milk images.

In Figure 5, two images are provided along with proba-
bilities distribution for food ingredient state and type using
the cascaded multi-head deep neural network. The ground
truth label for each image is shown using the orange color.
Figure 6 shows food state and type prediction results using the
cascaded multi-head model for the same food type (orange
fruit) but with different food states. In Figure 7, we provided
visualization of the learned deep representations using the
proposed cascaded multi-head deep neural network for both
food state and type. This visualization was done by extract-
ing deep features from the last convolutional layer of the
fine-tuned DenseNet121, then applying the Grad-Cam inter-
nal representation visualization approach [47]. As observed
from the deep representation visualization, our deep learning-
based approach is focusing on the target objects presented in
the images. Moreover, when there is more than one object of
the same type in the image, the deep learning model focuses
more on the closest object to the camera, as shown in Figure 7
top left image.
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Convolutional Neural Network (CNN)-based food ingre-
dient type and state recognition is an efficient approach for
optimal results compared to handcrafted based approaches.
Previous work showed that food discrimination could be done
only using the food ingredient state images [10]. However,
we found some challenges to food ingredient state recogni-
tion because of the similarity between food ingredients in
terms of shape and texture, especially after manipulations.
Furthermore, some states of food ingredients appear similar
in images. For instance, julienne and grated food ingredient
appearance are similar. Because of this apparent similarity,
we noticed some cases with julienne food ingredients and
predicted them as grated food ingredients.

Our work did not include deep feature extraction (trans-
fer learning) or handcrafted feature extraction. Instead, this
work focuses on learning the food ingredient state and type
by fine-tuning an off-shelf neural network (DenseNetl21)
in an end-to-end manner. Some learned representations of
the early layers of DenseNetl21 were kept unmodified,
where learning (fine-tuning) was done for the last layers of
DenseNet121.

Although this project focuses on recognizing the state of
food ingredients from a dataset collected from food prepara-
tion videos, this approach can apply to assist robots in other
tasks, such as feeding elderly or handicapped people where
an intelligent system needs to recognize the type and state of
food ingredient for successful achievement of a certain task
such as food preparation. Moreover, this research contributes
to improving human-intelligent system interaction for better
automation of services such as automation of feeding elderly
persons and food ingredient grasping.
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FIGURE 6. Examples of the results of the proposed cascaded multi-head deep learning approach,
each row shows an image of an Orange fruit state along with the food ingredient state head
predictions and the food ingredient type head predictions.

The limitation and challenges of the proposed approach are
related to the dataset. The dataset was collected by the authors
of [7], where some state classes do not have the corresponding
object label for food ingredient images. These classes are
mixed and other state categories. Therefore, we had to remove
the food state classes where dual labels for food state and type
are not provided. Furthermore, the dataset we used suffers
from data imbalance for some food type classes and poses
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a challenge for our proposed approach. Therefore, our future
work focuses on solving the data imbalance issue for learning
the food state and the type of food ingredient. Although the
number of images in each food state and type class was low,
we overcame this issue using a data augmentation approach.

Our future work includes addressing some shortcomings
of the proposed approach, including improving the dataset
by balancing the number of instances per class to improve
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Food State Head Food Type Head Food State Head

Food Type Head

FIGURE 7. Grad-Cam visualization of the learned representation of the proposed cascaded multi-head neural network. The first and
third-row visualize the latent space for the food state head. The second and fourth-row show visualization of the latent space of the

food type head.

the results. Furthermore, we are planning to use the image
segmentation of each food ingredient along with the raw food
ingredient images for learning deep representation using deep
learning.

VIIl. CONCLUSION

Learning food ingredient states is an important task dur-
ing food manipulation by an intelligent system. We pro-
pose an approach for learning food ingredient type and state
jointly using a cascaded multi-head deep neural network. The
learned feature vector for food ingredient type using deep
learning is fused with image deep representation. The fused
feature vector is used as input to the food ingredient state
fully connected layers for the classification of food images.
This approach showed superior results over the non-cascaded
single-head neural network approach that learns to predict
only the food ingredient state.
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