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ABSTRACT In this paper, an improved particle swarm optimization (IPSO) algorithm is proposed to solve
the problem of premature convergence and redundant particles of the original PSO used in visible light
positioning (VLP) systems. In the proposed IPSO algorithm, an adaptive particle initialization method based
on Min-Max algorithm is used to adjust the number of particles and ensure that there are always particles
near the target node (TN). Moreover, a nonlinear decreasing strategy of inertia weight is designed to ensure
the stability of particle velocity during the iterative process. Simulation results show that, compared with
the original PSO algorithm, the averaged positioning accuracy of the proposed IPSO-Min-Max algorithm is
enhanced significantly at the expense of limited time consumption. What’s more, we also find that for the
proposed IPSO-Min-Max algorithm the increase of particle generation spacing will reduce the positioning
delay but with the penalty in positioning accuracy. Therefore, it is necessary to select an appropriate particle
spacing value according to specific requirements.

INDEX TERMS Visible light positioning (VLP), particle swarm optimization (PSO), received signal

strength (RSS), Min-Max algorithm.

I. INTRODUCTION

With the development of intelligent mobile terminals and
service robots, the demands for indoor location information
are increasing rapidly. Nowadays, people usually spend most
of their time indoors, and therefore accurate indoor posi-
tioning is of great significance. Presently, Global Position-
ing System (GPS) is widely used in aircraft, vehicles, and
portable devices to provide outdoor real-time positioning and
navigation. However, satellite signals are usually attenuated
or interrupted by ceiling or other obstacles, and that inevitably
leads to a sharp decline in indoor positioning accuracy and
continuity [1]. To fill the gap of GPS signals, various indoor
positioning techniques, such as WiFi [2], Bluetooth [3],
RFID [4], and UWB [5] have been developed to provide
indoor positioning services.
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In recent years, visible light positioning (VLP) systems
based on light emitting diode (LED) have attracted consid-
erable attention because of their low-cost, high precision
and easy implementation [6]. In a VLP system, LEDs are
often used as light sources at the transmitter, and photode-
tectors (PDs) or image sensors (ISs) are usually used at the
receiver [7]. Considering the cost and accuracy issues, most
PD-based VLP systems are equipped with one PD and mul-
tiple LEDs, and their receivers perform position estimation
using received signal strength (RSS) [8].

Among RSS-based VLP systems, some directly use the
RSS measurement to calculate the distance between trans-
mitter and receiver [9], [10]. Others exploit the RSS values
as location fingerprints to further perform matching algo-
rithms [11], [12]. For fingerprint-based positioning, a large
amount of work is needed to establish a fingerprint database
in advance. Therefore, distance-based positioning is suit-
able for application scenarios without training overhead.
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Most distance-based positioning methods usually use trilat-
eral positioning [13], [14] or Min-Max algorithm [15], [16].
The positioning accuracy of the Min-Max algorithm is limited
because it can only obtain an area of interest (Aol) to roughly
determine the target’s position. However, due to its advan-
tages of low complexity and good robustness, the Min-Max
algorithm can be combined with other algorithms to obtain
better positioning accuracy.

In recent years, particle swarm optimization (PSO) algo-
rithm was introduced into indoor positioning to improve
the localization performance, because of its high positioning
accuracy, simple implementation and fewer parameters [17].
However, there are some inherent problems needed to be
addressed when the original PSO algorithm is used in indoor
VLP systems, such as premature convergence and low con-
vergence accuracy.

Aiming at the above problems of the original PSO algo-
rithm, a hybrid annealing PSO algorithm was proposed
in [18] to improve the average positioning accuracy and
accelerate the convergence speed. In [19] and [20], trilateral
localization was used to reduce the number of iterations and
improve the localization accuracy by limiting the generation
area. However, in these improved PSO algorithms, the num-
ber of initial particles needs to be specified in advance and
the particles are randomly distributed, so it is inconvenient to
apply them to indoor VLP systems.

Therefore, in this paper, we propose an improved PSO
Min-Max (IPSO-Min-Max) algorithm for indoor VLP sys-
tems. In the proposed IPSO-Min-Max algorithm, the receiver
first receives the RSS values at a certain height from each
LED and converts them into corresponding distances. Then,
a cuboid Aol is formed using the Min-Max algorithm, and
the initial particles are generated at equal intervals in the Aol.
Finally, the IPSO algorithm is performed iteratively to obtain
the particle coordinates with the best fitness, which can be
selected as target coordinates. Our major contributions are
summarized as follows:

i. An adaptive particle initialization method based on
Min-Max Aol is used in the proposed IPSO algorithm
to generate initial particles uniformly in the measured
room and ensure that there are always particles near the
target node (TN).

ii. A nonlinear decreasing strategy of inertia weight is
designed to ensure the stability of particle velocity
during the iterative process.

iii. The proposed IPSO-Min-Max algorithm is compared
with the existing PSO [17] and its improved versions
[18], [19], [20] in positioning accuracy and real-time
performance to demonstrate the effectiveness of our
algorithm.

The rest of this paper is organized as follows. In Section I,
we describe the system models including the LED radiation,
visible light channel, and noise models. Then we briefly intro-
duce the existing algorithms used in this paper in Section III.
The proposed IPSO-Min-Max algorithm is presented in
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FIGURE 1. Radiation intensity distribution of a spherical LED with
different m values.

Section IV. Furthermore, simulation results are shown in
Section V, followed by the conclusion in Section VI.

Il. SYSTEM MODELS

A. RADIATION MODEL OF SPHERICAL LED

For visible light systems, RSS measurement usually refers
to the received power or received light intensity. As shown
in Fig. 1, the radiation mode of light emitted by a spherical
LED in free space follows the Lambert radiation model. The
radiation intensity of LED at emission angle ¢ is calculated
as follows [21]:

1(¢) = 1(0)cos™(¢), (D
m+1
10) = Pr. @)
b4
—In2
(3)

m=————,
Incos ¢1,2

where 1(0) denotes the intensity at 0° angle and m is the order
of Lambertian emission. ¢1 > is LED’s emission angle at half
power, and P; is radiation power.

From Fig. 1, we also see that with the increase of m, the
radiation energy is more and more concentrated near the 0°
line, and that can be beneficial for optical communications.
However, this will reduce the illumination coverage of LED
and may not meet lighting needs. Fig. 2 shows that when
m = 1, the LED can achieve good coverage with the increase
of emission power. Therefore, m can be set as close as possi-
ble to 1 to satisfy the needs of positioning and lighting at the
same time.

B. VISIBLE LIGHT CHANNEL MODEL

To measure the distance from PD to LED, the TN’s receiver
also needs to detect the visible light power at an unknown
position. As shown in Fig. 3, in the presence of a line-of-sight
(LOS) path, the received optical power P, can be expressed
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FIGURE 2. Radiation intensity distribution as a function of /(0) when
m=1.
as [21]:

P, =H(0) x Py, 4)

where H(0) is the LOS path gain, which can be represented
as [21]:

A DG, ), 0 < ¥ < Y
0,9 > Ve,

where G(¢, ¥) = cos™(@)Ts(¥)g(¥)cos(yr) denotes the
angle-dependent variable. ¢ is the LED transmitting angle, ¥
is the PD receiving angle, and d; is the distance between the
receiver and the i-th transmitter. . is the field-of-view (FOV)
angle, indicating the maximum angle of incidence allowed
by the PD. Ts(y) is the gain of the optical filter and A is
the effective receiving area of the PD. g(v) is the gain of the
optical concentrator [21]:

H(0) = : (5)

n2
g = { i =V =V ©)

0. v > v,

where n is the refractive index of the lens fixed on the PD.

C. NOISE AND INTERFERENCE MODEL

For indoor VLP systems, the noise mainly includes elec-
tron thermal noise and shot noise. Electron thermal noise
mainly includes field effect transistor (FET) channel noise
and feedback impedance noise, and shot noise is mainly
related to optical signal and background current generated by
sunlight [22]. Moreover, similar to the multipath reflection in
wireless communications, the PD will also receive reflected
light from various obstacles, and that may cause ranging
errors in distance-based positioning methods.

For the sake of analysis, shot noise, electron thermal
noise, and reflected light interference are usually modeled as
additive Gaussian noise [23]. Moreover, assuming that the
non-line-of-sight (NLOS) path gain is H,.(0), the received
electric power P, can be expressed as [24]:

Pre = {RP;[H(O) + Href(o)]}2 +o?= {RPr}z + 02’ )
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FIGURE 3. Indoor visible light channel model of single LED scenario.

where R denotes the PD responsivity. P, = P;[H(0) +
H,.r(0)] is the received optical power, and o2 is the total noise
variance consisting of thermal noise and shot noise, which
can be modeled as [24]:

0’ = o} 403, (®)
8 kT 1672kTT
o2 = T A + 242, (9)
G 8m
05 = 2qRP,B + 2qly 1B, (10

where k is the Boltzmann constant and 7 is the Fahrenheit
temperature. G is the open-loop voltage gain and 7 is the
fixed capacitance per unit area of the PD. ¢ is the unit charge,
and /5, is the background current. I and /3 are the noise
bandwidth factors and B is the equivalent noise bandwidth.
gm 1s the transconductance of FET and I' is the channel noise
factor.

Ill. ALGORITHMS USED IN THIS PAPER
A. MIN-MAX ALGORITHM
Min-Max algorithm is a ranging-based positioning method
that has the characteristics of low complexity and simple
implementation [15], [16]. In two-dimensional (2-D) scenar-
ios, by using the Min-Max algorithm, multiple square areas
can be obtained according to the distances between the TN
and each LED, and the Aol can be determined by the inter-
section area of these square areas. Fig. 4 illustrates the 2-D
Min-Max algorithm with three LEDs.

As shown in Fig. 4, the four vertices of the Aol are (Vy, V3),
Vi, Va), (V2,V3), and (V3, V4), which can be obtained
by [16]:

Vi = max(x; — d\")

hor
Vs = min(x; + d,ﬁgr) an
V3 = max(y; — d}(lgr)

V4 = min(y; + d\),
wherei= 1,2, ---,N,and N is the number of LEDs. d}(zio)r is
the horizontal distance.

For a VLP system, (x;,y;) is known, and the received
power Pgl) can be detected by the PD. Using (4) and (5), the
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FIGURE 4. lllustration of 2-D Min-Max algorithm with three LEDs.

horizontal distance d ,(I’O)r between the PD and the i-th LED can
be obtained by [25]:

AT()g(W)P"(h — H)?

iy = 6)
T P;

hor

—(h—H)?, (12)

where £ is the room height (see Fig. 3).
Moreover, the TN’s location (x,y) can be estimated
by [16]:

(13)

{x =WV1+W)/2
y=WV3+Vy/2"

As for 3-D positioning, it is necessary to obtain the slant
distances d; between the PD and each LED (see Fig. 3),
and determine the corresponding Aol. As shown in Fig. 5,
compared with the 2-D case, the 3-D Aol becomes a cubic
box instead of a rectangle. d; can be obtained using (1)-(6).
Similarly, we take the center of the Aol as the estimated loca-
tion (x, y, z) of the TN, which can be calculated as follows:

x = (max(x; — d;) + min(x; + d;))/2
y = (max(y; — d;) + min(y; + d;))/2 . (14)
z = (max(z; — d;) + min(z; + d;))/2

It should be noted that in the 3-D case, the height of the
receiver H should be known in advance to calculate the slant
distance according to the RSS model.

B. PARTICLE SWARM OPTIMIZATION ALGORITHM

We consider a 3-D space where each particle represents a
location and the population size of particles is M. The posi-
tion coordinate and the velocity vector of the /-th particle are
p?® = (pg), p;l), pg)) and v = (vg), vy), vgl)), respectively.
The individual extreme value of the /-th particle is defined
as the best position coordinate b = (b)(cl), b;l), by)) at each
iteration. The population extremum of the z-th iteration is
defined as the particle position g(t) = (gx(?), &y(1), g:(1))
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FIGURE 5. Illustration of 3-D Min-Max algorithm in 4 x 4x4 m3 indoor
scenario.

with the best fitness. At the ¢-th iteration, the /-th particle’s
position and velocity can be updated as follows [17]:

pP@) =pP¢ — 1)+ v, (15)
vO@) = wv(r = 1) + errdgy — pP — 1))
+eara(g(t) — pPr — 1)), (16)

where w is the inertia weight. ¢; and ¢ are individual and
social learning factors of population particles, respectively.
They are used to adjust the step length of particles mov-
ing towards the individual and population extreme values,
respectively. r1 and r, are two independent random variables
uniformly distributed in the interval [0,1]. After the iteration
is completed, the optimization process can be realized by
selecting several particles with the best fitness.

Assuming that the Euclidean distance from the /-th particle
to the i-th LED is dl.(l), the fitness function can be expressed
as [19]:

N
fel.a=>"

i=1

4" — d;

) a7

whered = [dy, da, - - - , dy] is the distance vector containing
the slant distances from the TN to N LEDs. di(l) can be
obtained using the coordinates of LED and p*.

From (17), we see that the closer a particle is to the TN,
the smaller the fitness function value. Moreover, particles
will always move to the particle with the lowest fitness in
each iteration. This means after a sufficiently large number
of iterations, one or more particles with the least fitness can
be selected as the estimated coordinates of the TN.

It is noted that when the PSO algorithm is used in indoor
VLP systems, the number of LEDs must be greater than or
equal to 3 to achieve sufficiently high positioning precision.
As shown in Fig. 6, when single-LED or two LEDs are used,
there are infinite optimal fitness points in addition to the
TN’s position, and that leads to poor positioning accuracy.
In actual positioning environments, the number of LEDs
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FIGURE 6. Estimated locations of the TN with the best fitness in (a) single
LED and (b) double LED scenarios. (All coordinates on the hemispherical
surface in (a) or on the half-circle (b) can have the best fitness values).

usually needs to be more than three to obtain satisfactory
performance. If there are obstacles on one or more LOS
paths (namely the number of LEDs), as long as the receiver
can smoothly receive three or more LOS components from
independent LEDs, the performance will not deteriorate sig-
nificantly. Therefore, the probability of performance deteri-
oration can be minimized by optimizing the layout design
of LED arrays. Due to the limited space, the optimization
of LED layout design is not discussed in this paper, and we
assume that there are always three independent LOS paths
available.

IV. PROPOSED LOCALIZATION ALGORITHM

To improve the overall performance of the original PSO
method, in this paper, the Min-Max algorithm is combined
with the PSO method. The main process of the proposed
IPSO-Min-Max method is performed by the following steps.

Step 1: Calculate the distances according to the RSS values
at the TN;

Step 2: Acquire the Aol using the Min-Max algorithm;

Step 3: Generate particles at equal intervals adaptively
according to the size of the Aol and determine the
maximum value of particle velocity according to the
minimum edge length of the Aol.

Step 4: Perform the PSO iteration with the nonlinear
decreasing strategy of inertia weight designed in this
paper to estimate the position of the TN.

According to the above steps, we see that the nonlinear
decreasing strategy of inertia weight and adaptive particle
generation play important roles in the proposed IPSO-Min-
Max method. Therefore, they will be discussed in detail in
this section.

A. NONLINEAR DECREASING STRATEGY OF INERTIA
WEIGHT

This strategy is designed to avoid the local optimization
problem caused by the excessive moving speed of particles.
Generally speaking, we expect the particles to move fast
toward the optimal position at the beginning of the iteration,
but slowly at the end of the iteration so as not to miss the
optimal position.

Observing (16), we see that the moving speed of particles
can be adjusted by the inertia weight w. Therefore, we let w
gradually decrease from the maximum value with the increase
of the number of iterations by using the frequency response
function of the low-pass Bessel filter. The system function of
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the low pass Bessel filter can be expressed as [26]:
By

Z?io At

where A; and By are polynomial coefficients and M is the

filter order. Fig. 7 shows the frequency response of the Bessel

filter with M = 2.

From Fig. 7 we see that the amplitude decreases gradually
with the increase of frequency, and the change rate (gradient)
increases firstly and decreases after the cut-off frequency is
approached. We apply this trend to the factor controlling the
particle moving speed, namely the inertia weight. Accord-
ingly, the inertia weight in (16) can be refined as:

By

V@ — 422 + (A2
(19)

where By = Ag = T%/4,A1 = T/(2Q), and A» = 1. T is the
total number of iterations. Q0 = 0.5773 is the quality factor
related to M [26].

From (19) we see that w(t) decreases nonlinearly with the
increase of the number of iterations in the range of [0.1,0.9],
where the lower and upper limits are determined empirically
as 0.1 and 0.9, respectively. Using this strategy can ensure
that the particles’ velocity decreases nonlinearly with the
iteration, so as to make sure that the particles can be closer to
the TN. In addition, when the number of iterations is given,
the inertia weight of each iteration can be directly acquired
according to (19), so this method can solve the problem of
poor convergence accuracy without significantly increasing
the computational complexity.

H(s) = (18)

w() =0.1+(0.9—-0.1) x

B. ADAPTIVE PARTICLE GENERATION METHOD

In the PSO algorithm, how determining the initial position
and number of particles is an important problem. Too many
particles will lead to unnecessary computation overhead, and
too few particles may result in local optimization problems.
Moreover, if the initial particle is too far away from the TN,
likely, that particles cannot approach the optimal position
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FIGURE 8. Initial and final particle distributions of the proposed adaptive
particle generation algorithm.

within a limited number of iterations. Therefore, we use the
Min-Max algorithm to solve this problem.

Using the Min-Max algorithm described above, the ver-
tices of the Aol affiliated with the TN can be obtained, and
that means the initial particles can be generated within the
Aol to make sure that the initial particles can be as close to
the TN as possible. The adaptive particle generation process
is shown in Algorithm 1. According to Algorithm 1, we see
that the number of particles does not need to be specified
in advance and it just can be obtained directly after the Aol
affiliated with the TN is determined. By this means, particles
can be closer to the TN and their speed can also be limited by
the size of the Aol. Therefore, compared with the existing
PSO algorithms in which particles should be initialized in
advance using random distribution, the proposed adaptive
particle generation method can be more suitable for VLP
systems thanks to its flexibility and ease of implementa-
tion. More specifically, Fig. 8(a) and Fig. 8(b) present the
initial and final particle distributions of the adaptive parti-
cle generation method, respectively. It should be noted that
the TN has been limited within the Aol, so the range of
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Algorithm 1 Adaptive Particle Generation Method

Input: particle spacing /, slant distances {d,-}f.V: 1» LED coor-
dinates {(x;, i, zi)}fvzl.

Initialization:ii = 1;

Procedure:

Vi = max(x; — d;) Vo = min(x; + d;)

: V3 = max(y; — d) V4= min(y; + d;)

2 Vs = max(z; — d;i) Ve = min(z; + d;)

Vi = min(Vo — Vi, Vq — V3, Vg — Vs)

Xmin = V11 Xmax = V2l

¢ Ymin = |—V3-| Ymax = |_V4J

* Zmin = |—V51 Zmax = I.V6J

$ Px = mins Xmin + L Xmin + 21, -+, Xinin + K1l < Xpax);
Py = Vmins Ymin + 1 Ymin + 2L, -+, Ymin + k2l < Yimax);
10: p; = @mins Zmin + 1y Zmin + 20, -+, Zmin + k31 < Znax);
11: for k=1 to k3 + 1 do

12: fori=1tok; + 1 do

13: for j=1to k> + 1 do

14: p(ii) = [px()), py(), p=(K)];

15: i=ii+1;

16: end for

17: end for

18: end for

Outputs: particle coordinates p, maximum value of particle
velocity vyiy,.

RN ANU A W -

o

particle velocity can be determined according to the size of
the Aol.

C. IPSO-MIN-MAX POSITIONING

According to the definition of the fitness function mentioned
above, after the iteration process is completed, the particle
coordinate with the smallest fitness value is selected as the
estimated position of the TN. Therefore, at the end of the
iteration, the TN’s position (x, y, z) can be expressed as:

(¥, y,2) = argminf (p, d). (20)

Based on the above discussions, Algorithm 2 presents
the implementation process of the proposed IPSO-Min-Max
algorithm. Compared with the original PSO algorithm [17],
the proposed IPSO-Min-Max algorithm has the following
advantages:

1) higher positioning accuracy because of faster conver-
gence and closer to the optimal value;

2) initial particles can be generated as close to the TN as
possible.

V. SIMULATION RESULTS

This section gives the performance evaluation of the proposed
IPSO-Min-Max algorithm in terms of positioning accuracy
and latency. In the simulations, the averaged positioning
error was evaluated by averaging the results obtained from
200 random positions in the measured room. Some simulation
parameters of the VLP system are shown in Table 1, in which
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Algorithm 2 IPSO-Min-Max Positioning Algorithm

Input: Received Power P = {Pl-}f.v= , from N LEDs, LED
coordinates {(x;, y;, zi)}?/: |» total number of iterations T, fit-
ness function f(-).
Initialization:
1: Q=0.5773
2:A0=By=T?/4 Ay =T/Q2Q) Ay =1 c; =c, =2.
Procedure:
1: Convert P to distance {di}évz | by visible light channel
model.
2: Substitute {d;}_; and {(x;, y;, z)}Y_, into algorithm 1 to
obtain the initial particle coordinates p and range of particle’s
velocity vy, and let b=p.
3: Generate the velocity vector v randomly whose values are
in range [—Viim, Viiml;
: Let g=p.
:for t=1to T do
w = 0.1+ 0.8B0/\/(Ag — Agr2) + A}r%;
for i=1 to length(p) do
p(i) = p@@) + v(i);
9: Generate two independent random parameters ry, 7y €
[0, 1];
10: v()) = wv(D) + ciri(b(i) — p(D) + car2(g — p());
11:  if f(p() < f(b()
12: b(i) = p(@);
13: end if
4:  iff(b() <f(®)
15: g = b(i);
16: end if
17:  end for
18: end for
19: p = arg minp f (p);
Outputs: Estimated coordinate p of the TN.

N S

TABLE 1. Simulation parameters of the VLP system.

Parameter Value
room size (m°) 4x4x4
LED radiation power (mW) 100
half power angle 60°
PD FOV angle 80°
PD effective area (cm?) 1
PD responsivity (A/W) 0.53
optical filter gain 1
refractive index 1.5

LED coordinates (m) (2,34), (1.134,1.5,4), (2.866, 1.5, 4)

most parameters are the same as, or similar to those reported
in [17], [18], [19], and [20]. Moreover, the parameters of the
investigated PSO algorithms can be derived empirically and
they are presented in Table 2.

Fig. 9 shows the overall positioning effect of the proposed
IPSO-Min-Max algorithm when SNR=15 dB and with dif-
ferent H values. It can be seen that the proposed IPSO-Min-
Max algorithm has good positioning accuracy when H ranges
from O to 3 meters.
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FIGURE 9. Positioning results of the proposed IPSO-Min-Max algorithm
when SNR=15 dB and with different H values.

To evaluate the performance of the proposed IPSO-Min-
Max algorithm, we consider the original PSO [17], the orig-
inal Min-Max [15], [16], PSO using nonlinear weights in
(19) (IPSO), PSO with Algorithm 1 (PSO-Min-Max), and two
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TABLE 2. Parameters for the original PSO and the proposed
IPSO-Min-Max algorithms.

Parameter Value
learning factor c1=co =23
inertia weight for PSO 0.9
number of particles for PSO 30
initial particle spacing for IPSO (m) 0.8
maximum number of iterations 30
range of particle velocity for PSO (meters per iteration) [-3,3]

TABLE 3. Fitness function values of the proposed IPSO-Min-Max
algorithm at each iteration for the TN’s position (2, 2, 1.5).

iteration index 1 2 3 4 5 6
fitness value (cm) | 28.07 | 20.96 | 20.96 | 20.96 | 20.96 | 19.03
iteration index 7 8 9 10 11 12
fitness value (cm) | 15.79 | 15.79 [ 15.79 | 15.79 | 15.79 | 11.27
iteration index 13 14 15 16 17 18
fitness value (cm) | 8.18 | 8.18 | 6.92 | 599 | 2.93 | 2.34
iteration index 19 20 21 22 23 24
fitness value (cm) | 2.34 | 2.05 | 2.05 | 2.05 | 2.02 | 2.02
iteration index 25 26 27 28 29 30
fitness value (cm) | 1.35 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31

100 ‘ ‘ ‘
* —#— Original PSO [17]
| #— Single IPSO
80l | Improved PSO in [191,[20] |
‘\ —<—PSO-Min-Max
‘ —— Improved PSO in [18]
/g 60L& Jh Proposed IPSO-Min-Max
g
= 40 r 1
20 |
0 ‘ * :
0 5 10 15 20 25 30

Number of Iterations

FIGURE 10. Fitness values of the investigated PSO algorithms when the
TN’s exact position is (2, 2, 1.5).

existing improved PSO proposed in [18], [19], and [20] as its
counterparts. Fig. 10 presents an example of the comparison
of fitness values for the investigated PSO algorithms when
the TN’s exact position is (2, 2, 1.5). From Fig. 10 we see
that the proposed IPSO-Min-Max algorithm has the best
fitness values and best convergence, and that demonstrates
the effectiveness of the proposed IPSO-Min-Max algorithm.
Moreover, the robust convergence of fitness values of the
proposed IPSO-Min-Max can also be observed in Table 3.
During each iteration, the position and speed of all particles
are updated respectively towards the global optimum. The
average iteration time is 0.075-0.09 ms for each iteration
and therefore, it will take 2.25-2.7 ms after 30 iterations are
performed.

Fig. 11 presents the averaged positioning errors of the
seven investigated positioning algorithms with different SNR
values. We see that the IPSO-Min-Max performs best in most
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FIGURE 11. Averaged positioning error of the seven investigated
positioning algorithms as a function of SNR value.
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FIGURE 12. Cumulative distribution function of the positioning error
when SNR=15 dB.

SNR values. For the PSO-Min-Max algorithms, although the
Min-Max algorithm limits the particle generation area, the
positioning accuracy is still not sufficient, and that demon-
strates the effectiveness of our proposed localization method.

Fig. 12 shows the cumulative distribution function (CDF)
of the positioning error for the seven investigated positioning
algorithms when SNR is fixed at 15 dB. We see that the
proposed IPSO-Min-Max algorithm outperforms the other
six algorithms in positioning accuracy.

From Figs. 10-12, we also see that the proposed adaptive
particle initialization method (used in the PSO-Min-Max) is
exactly better than the random particle generation (used in the
original PSO) in terms of the positioning accuracy.

Fig. 13 presents the performance comparison in terms
of positioning delay, which represents the real-time per-
formance of the seven investigated positioning algorithms.
We see that the positioning latency of the proposed
IPSO-Min-Max algorithm is higher than the other six inves-
tigated algorithms. That means the benefit of the proposed
IPSO-Min-Max algorithm in positioning accuracy comes at
the expense of computational complexity. During all the
simulations, we observed that the particle initialization time
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FIGURE 13. Averaged positioning latency for the seven investigated
positioning algorithms.
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FIGURE 14. Averaged positioning error of the proposed IPSO-Min-Max
algorithm with different initial particle spacing values (SNR=15 dB).
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FIGURE 15. Positioning latency of the proposed IPSO-Min-Max algorithm
with different initial particle spacing values (SNR=15 dB).

is 1-2 ms for the adaptive particle generation method, and
0.5-1 ms for the random generation method, respectively.
Therefore, in accordance with Fig. 13, we can infer that only
using the nonlinear decreasing of inertia weight (single IPSO)
does not significantly increase the computational complexity
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compared with the random particle distribution (the origi-
nal PSO [17]). However, for the PSO-Min-Max algorithm
and the proposed IPSO-Min-Max algorithm, small initial
particle pacing (0.8 m) accounts for the dramatic increase
in computational complexity. Therefore, the initial particle
spacing is crucial to reach the trade-off between positioning
accuracy and computational complexity, which are shown in
Figs. 14 and 15.

Figs. 14 and 15 provide the averaged positioning error
and positioning latency of the proposed IPSO-Min-Max algo-
rithm with different initial particle spacing values, respec-
tively (SNR=15 dB). We see that with the increase of initial
particle spacing, the positioning accuracy becomes worse,
but the positioning delay becomes smaller. Therefore, we can
adjust the particle generation spacing according to the actual
positioning requirements to balance the computational com-
plexity and the positioning accuracy.

VI. CONCLUSION

In this paper, we propose a visible light indoor positioning
method referred to as the IPSO-Min-Max algorithm, which
includes the nonlinear decreasing strategy of inertia weight
based on Bessel filter model and the particle initialization
strategy based on Min-Max algorithm. Simulation results
demonstrated the effectiveness and feasibility of the proposed
IPSO-Min-Max algorithm. Therefore, it can be considered a
promising solution for indoor high-precision VLP applica-
tions with low cost.

In our future work, we will continue to focus on the
research and development of RSS-ranging-based VLP sys-
tems, mainly including the optimization of LED layout
design, real-time positioning algorithm design, and system
implementation for practical applications.
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