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ABSTRACT Driver identification systems that use deep-neural-network-based sequential models have
been studied for personalized intelligent vehicles. After a vehicle starts moving for a trip, the system
identifies the driver at each time step using accumulated driving sensing data. We propose a novel driver
identification system with temporal early exiting to identify a driver as early as possible while maintaining
accuracy. Existing systems require entire-trip data or fixed-length partial trip data, regardless of driver
identification difficulty. The proposed system automatically identifies the driver with less driving data for
easy-to-identify trips and more driving data for hard-to-identify trips. To adaptively exit the identification
by considering the difficulty of a trip, we propose a temporal early-exiting method by thresholding the
confidence score. Sequential models output an identified driver and confidence score at each time step.
However, the confidence score of deep neural networks is unreliable owing to the overconfidence problem.
To overcome this problem, we propose three temporal confidence calibration methods that adjust the
calibration strength according to the driving time and trip difficulty. Thus, the system can determine the
best time to exit the identification, considering the trade-off between latency and accuracy. Our experiments
on a naturalistic driving dataset show that the proposed system achieved 90.06% accuracy with early exiting
at an average of 6.7 min, yielding the same accuracy with 74.2% latency reduction compared with driver
identification with 26 min of fixed-length data for each trip.

INDEX TERMS Confidence calibration, driver identification, driving sensing data, in-vehicle sensors, label
smoothing, temporal early exiting, temperature scaling.

I. INTRODUCTION
Intelligent vehicles (IVs), which have evolved based on
computer and sensor technologies, have become essential in
the field of intelligent transportation systems [1]. IVs provide
safety and comfort to drivers by using driving sensing data
from pedal pressure, vehicle motion, engine airflow, and
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environmental sensors. To provide a safer and more com-
fortable driving experience, IVs should consider the needs
of different drivers through driving style features. Previous
studies on driver identification have discussed how driving
style features in advanced driver assistance systems and
autonomous vehicles can improve driver experience [2].
Through driver identification, IVs can accommodate driving
styles of various drivers. For example, Hyundai Inc. provides
automatic drive-mode shifts according to driving styles,
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and Tesla Inc. has released self-driving software with
personalized driving styles. In a shared mobility context,
driver identification helps car-sharing providers verify autho-
rized drivers by tracking their driving styles and provide
personalized rides for their customers [3].

Driver identification refers to determining the driver
behind the driving data based on how they control the
vehicle and react to different driving conditions [4]. Each
driver has a different driving style, even under the same
driving conditions. Machine learning approaches using deep
neural networks (DNNs) are commonly used to learn the
driving style features of each driver. A DNN identifies the
driver using sliding-window driving data at each time step.
Many previous studies have adopted the convolutional neural
network (CNN) architecture to predict the confidence scores
of drivers using a sliding window [5], [6], [7]. These studies
independently identified the driver using a few seconds or
minutes of data, regardless of the driving progression of a
trip.

Recently, studies investigating the tendency of an entire or
partial driving trip by aggregating the outcomes with a sliding
window have attracted attention in driver identification.
Because there are variations in the driving style of a
driver, understanding the driving style of a trip rather
than a short sliding window is required. For example,
a driver’s driving style may occasionally change depending
on abnormal situations or emotions [8]. Related studies used
deep sequential models such as recurrent neural networks
(RNN) to aggregate the outcomes for an entire or partial
trip [9], [10], [11], [12]. At each time step, the RNN outputs
the driver confidence scores using the accumulated data from
the beginning of the trip to the assessment time.

However, driver identification systems that rely on mini-
mal driving are required. The vehicle must identify the driver
as early as possible to switch to the driver’s preferences [13].
After the vehicle starts moving, the system identifies the
driver at each time step using the accumulated data. The final
decision and identification exit can be made at any point
during a trip. If the exit is made early, with relatively little
trip data, the identification result has good latency but low
accuracy. If the exit is made late, with considerable trip data,
the result has good accuracy but a poor latency. Therefore,
early exit andmaintaining accuracy are crucial issues in driver
identification systems.

It is challenging to decide when to exit the driver
identification process because the best time may vary
depending on the course and situation of a trip. For example,
a driver may manipulate the brake frequently because of a
traffic jam, but the same driver may brake little during a
different trip. Therefore, it is difficult to identify the driver
during some trips, whereas during others, it is simple [14].
Nevertheless, the disadvantage of existing systems is that
they require entire-trip data or fixed-length partial trip data,
regardless of driver identification difficulty. Consequently,
a method to exit the identification adaptively is required to
reduce latency while maintaining accuracy.

A simple and effective way to exit the identification
adaptively is to use a confidence score threshold. Deep
sequential models identify the driver and output a confidence
score for each time step. A confidence score estimates
the predicted probability that represents the true likeli-
hood [15]. The confidence score is essential not only for
model interpretability but also for early exiting. Despite
the success of temporal early exiting with a confidence
score in video recognition [16], [17], [18], no such studies
have been conducted on driver identification. The challenge
is that the confidence score is unreliable owing to the
overconfidence problem, particularly in sequential sensing
data [19]. Confidence calibration has been proposed as an
effective solution to this problem [20]. Nevertheless, most
previous works aimed at nonsequential data and did not
consider early exiting.

In this study, we propose a novel driver identification
system with a temporal early-exiting method to identify a
driver as early as possible while maintaining accuracy. The
proposed system provides not only the identification result
for each time step but also the time to exit the identification
with the final decision during driving. By using temporal
early exiting with a combination of CNN and RNN, the
system can determine the tendency of sequential driving
data for real driving scenarios. To exit the identification
adaptively by considering the difficulty of a trip, we propose
three types of temporal confidence calibration methods for
temporal early exiting. The proposed calibration methods
automatically train and calibrate a model to identify the
driver with less driving data for easy-to-identify trips and
more driving data for hard-to-identify trips. By adjusting the
calibration strength according to the driving time and trip
difficulty, we improved the trade-off between latency and
accuracy.

We aimed to identify drivers as early as possible while
maintaining accuracy. The main contributions of this study
can be summarized as follows:

1) We study temporal early exiting for driver identification
to reduce latency while maintaining accuracy using natural-
istic driving data.

2) We propose three types of temporal confidence cali-
bration for early exiting to improve the trade-off between
accuracy and latency.

3) We propose a novel hybrid confidence calibration to
emphasize the consideration of trip difficulty.

The remainder of this paper is organized as follows.
In Section II, we provide a review of related works on
driver identification systems, early-exiting methods, and
confidence calibration. In Section III, we explain our pro-
posed driver identification system with temporal early
exiting, and in Section IV, we propose three types of
temporal confidence calibration methods for early exiting.
In Section V, the experimental results are presented and
discussed using collected and public datasets. Finally,
we discuss our conclusions and plans for future work in
Section VI.
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II. RELATED WORK
A. DRIVER IDENTIFICATION
Driver identification using driving sensing data has been
actively studied. The driver can be identified using a machine
learning algorithm using sliding-window data as input.
Wakita et al. [5] proposed a driver identification system based
on a Gaussian mixture model with 6 s window data. Public
driving sensing datasets extracted from vehicle on-board
diagnostics (OBD) ports have become popular, and much
research has been conducted on them using CNNs and
RNNs to process the window data. Chen et al. [6] used an
input with a 3 s window and 2 s overlap. Xun et al. [7]
proposed a CNN using a 30 s window with a 29 s overlap.
These studies independently identified drivers for each short
window, regardless of their driving progress during a trip.
They reported good accuracy because existing public datasets
have many restrictions, such as few drivers and fixed
routes. However, recent studies using large natural datasets
without restrictions have shown inferior accuracy for driver
identification using short-window data [9], [21], [22].

Research attempting to understand the driving style of
an entire or partial trip by aggregating the results of
sliding windows is attracting attention in the field of driver
identification. Voting is a straightforward approach that
aggregates the outcomes for each window in a trip. Previous
studies identified the driver for each window and then
selected a driver for a trip by voting on the outcomes of
each window [21], [22]. The combination of CNN and
RNN is commonly used for developing driver identification
systems because of their superior accuracy with sequential
data [9], [10], [11], [12]. These works used a CNN to extract
features from window data and RNN to identify the driver at
each time step using accumulated features from the beginning
of the trip. Therefore, the RNN prediction at each time step
utilizes not only the current observation but also previous
observations, which provide context for the progression of the
sequence.

Existing driver identification systems have disadvantages
in that they require entire-trip or fixed-length partial trip data,
regardless of driver identification difficulty. Dong et al. [9]
proposed a method that processed entire-trip data with a
CNN-RNN to improve accuracy. Similarly, Zhang et al. [10]
presented a driver identification system based on CNN-RNN
using entire-trip data. They extracted features via a sliding
window using a CNN and collected them using an RNN.
Ren et al. [11] proposed a deep learning framework that
combines the Siamese architecture and CNN-RNN to process
entire-trip data. To date, there is no existing work on
the optimal time to exit driver identification during a
trip. Therefore, temporal early-exiting studies on driver
identification are required.

B. TEMPORAL EARLY EXITING AND CONFIDENCE
CALIBRATION
Early exiting, a method of reducing the latency of a DNN,
can be conducted layer-wise and temporally. Layer-wise

early exiting reduces the computational load by exiting the
inference early via the exit branches in the neural network
architecture. If an intermediate exit branch is sufficiently
confident, the model short-circuits and halts the inference
at that layer [23]. Temporal early exiting has been actively
studied for deep sequential models such as RNNs. An RNN
with temporal early exiting adaptively exits recognition
after observing only a fraction of the sequence. Temporal
early exiting, which helps determine when to exit such that
accuracy can be maintained while reducing latency, is widely
used in video recognition. Moreover, Ghodrati et al. [24]
proposed a method for determining when to exit by using a
gated unit.

Research on determining when to exit using confidence
scores has been actively conducted in temporal early exiting.
Wang et al. [16] determined when to exit by using a
confidence score threshold in online video recognition. This
approach can score partial events by monitoring the degree
of event completion, as it monotonically increases toward
termination. Tang et al. [17] proposed an early-exiting system
when the confidence score for streaming speech command
recognition is sufficiently high. Because it is difficult to trust
these confidence scores, Ma et al. [18] proposed a ranking
loss to gradually increase the confidence score.

Even though most modern DNNs natively produce an
estimated confidence score over class labels for a given
instance, the scores do not always closely reflect the true
probabilities of each class. The confidence score is unreli-
able owing to the overconfidence problem, particularly in
sequential sensing data [19]. Confidence calibration has been
proposed to solve the overconfidence problem effectively.
Temperature scaling [15] and label smoothing [27] are
widely used confidence calibration methods. Temperature
scaling prevents overconfidence by leveling the confidence
per label of the learned DNN. Label smoothing prevents
overconfidence by averaging the correct answer values during
the DNN training process. However, a limitation of these
calibration methods is that they do not consider sequential
models.

To overcome this limitation, recently, studies have been
on temporal confidence calibration [28], [29]. Leathart and
Polaczuk [28] applied different temperatures according to the
data sequence length for natural language. Shen et al. [29]
proposed class-specific errors to adjust the smoothing
strength by considering the sequence context. These studies
aimed to alleviate overconfidence; however, to date, there is
no temporal confidence calibration study for early exiting.

III. PROPOSED DRIVER IDENTIFICATION SYSTEM
In this paper, we propose a novel driver identification system
using minimum driving data while maintaining accuracy
through temporal early exiting. The proposed system consists
of two parts: a driver identification system with tempo-
ral early exiting and three types of temporal confidence
calibration for temporal early exiting. The proposed driver
identification system is characterized by temporal early
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FIGURE 1. Overview of the proposed driver identification system.

exiting during a driving trip. The proposed system identifies
the driver when the confidence score exceeds a threshold, and
three types of confidence calibration methods for temporal
early exiting are introduced to improve the trade-off between
latency and accuracy.

Fig. 1 shows an overview of the proposed system, which
consists of three components: driving data preparation,
driver identification, and temporal early exiting. In the data
preparation stage, the system obtains driving data from
vehicular sensors during the trip. Moreover, it preprocesses
the data to normalize them and composes slide-window data.
In the driver identification stage, the deep learning model
identifies the driver at each time step using the preprocessed
data. Finally, in the temporal early-exiting stage, the final
result of the trip is determined when the confidence score
output exceeds the threshold value.

We used a standard preprocessing method and a well-
known CNN-RNN structure for the proposed system to
provide an example of a driver identification systemwith tem-
poral early exiting for quick application to any other driver
identification system. Similar to existing studies, the driver
is identified from among specified drivers. The proposed
system classifies a set of drivers as follows. The sequential
classification task assigns a sequential label vector Y =
{y1, y2 . . . , yt , . . . , yT } to input X = {x1, x2 . . . , yt , . . . , yT }:

f : X1∼t → yt = {y1t , y
2
t , . . . , y

k
t , . . . , y

K
t }. (1)

In the driver identification system, X represents time-series
driving sensing data, and Y is the sequence of a driver
identified at each time step; yt is one-hot encoded ground
truth at time step t for K drivers. Thus, ykt is the binary truth
for the k-th driver.

A. DRIVING DATA PREPARATION
During driving data preparation, the proposed system
acquires driving data from vehicular sensors and preprocesses
the acquired driving data. The driving data are multidimen-
sional sequential data consisting of various sensing data,
such as velocity and pedal pressure. The system applies
the normalization and sliding-window techniques in the
preprocessing step. Driving data are prepared sequentially to

pass to the CNN-RNN for driver identification at each time
step.

To mitigate the effects of different sensor scales, the
system normalizes the driving data before using them for
driver identification. Through normalization, the sensing data
are treated equally by the CNN-RNN. The normalization
equation is shown in (2):

X́ it =
X it −minX it

maxX it −minX it
, (2)

where min (X it ) and max (X it ) are the minimum and
maximum values of feature column X it , respectively. X́

i
t is the

normalized variable. Normalization transforms each sensor
data point of the driving data to a range between 0 and 1.

Before being input in the CNN-RNN, the normalized
data are processed using a sliding window. Algorithms
with sliding windows are widely used for processing
sequential data. Driving data are continuous; therefore, the
sliding-window technique is adopted to divide the entire-trip
driving data into multiple discrete data windows by period.
The sliding-window technique extracts the window data with
a certain overlapping ratio.

B. DRIVER IDENTIFICATION
In the driver identification stage, the proposed system sequen-
tially processes the prepared driving data and identifies the
driver at each time step. Sliding-window data, which are a
fraction of the sequential driving data, are passed into the
CNN, which in turn extracts the date features from each
slidingwindow. The features accumulated from the beginning
of the trip to the present are input into the RNN. At each time
step, the RNN outputs the driver confidence scores.

The driver confidence scores at each time step result from
the SoftMax activation. The last layer of the CNN-RNN
outputs the driver confidence score as a real value ranging
between 0 and 1 with the SoftMax activation presented in (3):

pkt =
ez

k
t∑K

k=1 e
zkt

(3)

where pkt represents the confidence score of driver k at
time step t . K is the number of drivers to classify, and
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zkt represents the last layer outputs of the CNN-RNN before
the SoftMax activation. The CNN-RNNmodel is trained with
cross-entropy loss to find the best model parameters θ as
follows:

argmin
θ

∑K

k=1
−ykt log

(
pkt
)
. (4)

The detailed architecture of the CNN-RNN is as follows.
The CNN consists of six layers: five convolutional layers
and an average pooling layer. Each convolutional layer has
a 3 × 3 filter and ReLU activation. The second and fourth
convolutional layers have a 3 × 1 stride. The numbers of
channels in the convolutional layers are 64, 128, 128, 256,
and 256. An average pooling layer converts the 2D feature
output of the last convolutional layer into a 1D feature to be
passed to the RNN. The size of the 1D feature is 256. The
CNN has 1.1M parameters.

The RNN consists of four layers: two long short-term
memory (LSTM) layers and two fully connected layers.
Each LSTM layer has 256 channels, sigmoid activation for
recurrent units, and tanh activation for output. The number of
channels in the first fully connected layer is 128. The number
of channels in the last fully connected layer equals the number
of drivers that require identification. Therefore, the last fully
connected layer outputs the confidence score of a driver as a
real value ranging between 0 and 1 with SoftMax activation.
The RNN has 1.2M parameters. Consequently, the total size
of the CNN-RNN architecture is 2.3M parameters.

C. TEMPORAL EARLY EXITING
Driver identification based on SoftMax activation assigns a
confidence score to each driver. We set a threshold TH for
early exiting using the confidence score for each driver as
follows:

max
1≤k≤k

pkt ≥ TH , (5)

where pkt represents the confidence score of driver k at
time step t . As shown in (5), the proposed system exits
the processing and identifies the most likely driver once
the network surpasses this confidence threshold. This model
adaptively exits per sequential driving data. The threshold
TH controls the timing of early exiting with a certain trade-
off between accuracy and latency. We aim to improve this
trade-off between accuracy and latency for all TH ranges.

IV. PROPOSED CONFIDENCE CALIBRATION
In this paper, we propose three temporal confidence cali-
bration methods, which adjust the calibration strength over
time. The proposed methods aim to reduce the latency to
exit identification during a driving trip and to maintain
identification accuracy. Therefore, the objectives of the
proposed method are as follows:

argmin
calibraion

AVG_Latencyexiting(Dval)

subject to ACCexiting (Dval) = ACClast(Dval). (6)

Here, Dval is the validation set, which means that the
proposed calibration method finds the best method for
the validation set. AVG_Latencyexiting(Dval) represents the
average early-exiting time for each trip on the validation
set. ACCexiting (Dval) and ACClast (Dval) are the accuracies
with partial-trip data before early-exiting and entire-trip
data, respectively. ACCexiting (Dval) and ACClast (Dval) are
equal if the system with early-exiting maintains its accuracy
compared to the system without early-exiting. Therefore, the
proposed calibration methods aim to find the best way to
minimize AVG_Latencyexiting(Dval) when ACCexiting (Dval)

and ACClast (Dval) are equal.
The problem of overconfidence occurs in the early stage

when using little driving data. It is especially a problem on
trips in which driver identification is difficult. To overcome
this problem, calibration methods should be improved to
adjust the calibration strength according to driving time. The
calibration strength should be increased at the beginning
of driving and decreased during the latter part of driving.
Therefore, the proposed temporal calibration methods adjust
the calibration strength according to driving time and trip
difficulty.

The proposed temporal temperature scaling and label
smoothing are advanced methods that modify existing
standard calibration methods to control the calibration
strength over driving time. The proposed hybrid calibration
method is characterized by its calibration strength adjustment
according to driver identification difficulty, i.e., by decreasing
the strength for easy-to-identify trips and increasing it for
hard-to-identify trips.

A. TEMPORAL TEMPERATURE SCALING
Temperature scaling has been widely used as a simple and
effective calibration method to mitigate the overconfidence
problem of modern DNNs. Temperature scaling is a post-hoc
calibration strength adjustment method via a temperature
parameter for DNN output. The temperature parameters
cannot be adjusted during the training period. The DNN
learns to decrease the temperature as much as possible so
that it can be very confident in the training examples [28].
Therefore, a temperature parameter should be obtained after
training the DNN. Temperature scaling multiplies the logits
by the selected temperature, which is a scalar, before applying
the SoftMax:

p̂kt =
ez

k
t /T∑K

k=1 e
zkt /T

, (7)

where p̂kt and T are the calibrated confidence score of pkt and
the calibration strength for SoftMax activation, respectively.

Although temperature scaling is an effective calibration
method, applying the same temperature on the output at
each time step is ineffective for sequential model calibration
because the sequence data context varies over time [29].
Accordingly, wemodified the standard temperature scaling to
control the calibration strength over driving time. We control
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FIGURE 2. Temporal temperature scaling examples.

T for temperature scaling over driving time t as follows:

T =
(
1−

1
L
t
)β
(α − 1)+ 1. (8)

Here, the best temperature T , which is a function of
driving time t not a scalar, is selected via grid search
among predefined α and β sets. α and β should be greater
than 0. Grid search aims to enhance the performance of
temporal early-exiting according to (6). α controls the initial
temperature, and β controls the strength reduction. Fig. 2 and
3 show examples of temperature T according to α and β.

B. TEMPORAL LABEL SMOOTHING
Recently, label smoothing has become a popular choice for
DNN calibration. One-hot encoding, in which all data are
labeled with 0 or 1, is prone to make the model overconfident
for prediction. Label smoothing is applied during training
and focuses on increasing the entropy of the predicted
values, thereby reducing overconfident events. It smooths the
one-hot distribution with a hyperparameter ε to obtain a soft
distribution for every yt :

ŷkt = ykt (1− ε)+ ε/K , (9)

where ykt and ŷkt are the one-hot encoded ground truth and
label smoothed ground truth, respectively.

Although label smoothing has proven to be helpful
in mitigating the overconfidence problem by smoothing
confidence in a soft distribution, using the same smoothing
strength on the label of all sequences is ineffective for
calibrating sequence data [29]. We modified the standard
label smoothing to control the calibration strength over driv-
ing time. Therefore, the proposed temporal label smoothing
controls ε over driving time t as follows:

ε = α

(
1−

1
L
t
)β
, (10)

where α controls the initial smoothing strength, and β leads
to an exponential reduction in confidence. We select the best
ε value with the validation set via grid search according to (6)
among predefined α and β sets. β should be greater than 0,
and α should be between 0 and 1.

FIGURE 3. Overview of the proposed hybrid confidence calibration.

C. HYBRID CONFIDENCE CALIBRATION
The proposed hybrid calibration determines a suitable
calibration strength for each trip because applying a high cal-
ibration strength for easy-to-identify trips increases latency
without a gain in accuracy. Therefore, the proposed hybrid
calibration increases the calibration strength for hard-to-
identify trips and decreases it for easy-to-identify trips. The
main idea behind the proposed hybrid calibration is to find a
smoothed label for each trip via post-hoc temperature scaling
and then apply label smoothing with the acquired smoothed
label. Via temperature scaling, we can obtain the temperature
for each trip in the validation set but cannot obtain the
temperature for a new trip. However, label smoothing can
apply calibration implicitly for a new trip but cannot obtain
the calibration strength for each trip. Therefore, we used
temperature scaling to find an appropriate strength for each
trip and applied label smoothing with this strength while
training the model.

Fig. 3 presents an overview of the proposed hybrid
confidence calibration. The proposed method comprises four
components: temperature acquisition, smoothed label conver-
sion, training, and rescaling. In the temperature acquisition
phase, we applied temperature scaling trip by trip. All trip
data match one optimal temperature to obtain the minimum
latency while maintaining accuracy for early exiting. Using
temperature scaling, we can obtain the temperature for each
trip in the validation set. In the smoothed label conversion
phase, smoothed labels suitable for each trip data point
were obtained using the temperature acquired in the previous
phase. The result of applying temperature to the confidence
of each trip data point was used as a smoothed label.
In the next step, the model was trained using the obtained
label as the standard label-smoothing method. Finally, the
temporal temperature was applied again. Although it has been
found that temperature scaling and label smoothing can be
used as calibration techniques and have similar effects for
a DNN, the relationship between temperature scaling and
label smoothing is an open research topic in the field of
machine learning theory. Therefore, in this study, the scale
was adjusted by applying temperature scaling again in the last
phase when combining the two calibration methods.

Algorithm 1 shows the procedure for temperature acqui-
sition and smoothed label conversion. The temperature
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Algorithm 1 Temperature Acquisition and Smoothed Label
Conversion
Input: Train set (X ,Y )
Output: Train set with the smoothed labels (X ′,Y ′)
01: Split train set to P folds
02: For p in 1: P do
03: Select p fold for validation fold
04: Select remain folds for train folds
05: Train a modelM using train folds
06: For d in validation fold do
07: For α, β in a predefined α, β set do
08: Get temperature T by α, β
09: If T is the best on modelM according

to (6)
10: Best temperature T̂ ← T
11: End if
12: End for
13: Get confidence of d
14: Apply the best temperature T̂ to confidence
15: Use the scaled confidence as smoothed label
16: End for
17: End for

acquisition uses only the training set. We split the training
set into P folds and obtained the temperature for each
trip in a cross-validation manner. Each fold became a
validation fold, and the remaining folds became a training
fold. We performed a grid search among predefined α and
β sets to find temperature T for each trip on a validation fold.
The best T̂ value, which resulted in the minimum latency
while maintaining accuracy for early exiting, was selected.
Then, the smoothed label was obtained by determining
the confidence for each trip data and applying temperature
scaling to the confidence with the best temperature T̂ .

V. EXPERIMENTS
In this section, we evaluate the effectiveness of temporal
early exiting with the three types of temporal confidence
calibration for the proposed driver identification system.
To evaluate the proposed driver identification approach,
we experimented with a collected dataset and an open
public dataset. We compared the existing driver identification
system using fixed-length driving data and the proposed
system with temporal early exiting. Moreover, we analyzed
the effects of three types of temporal confidence calibration
methods. In addition, we explored hyperparameters for
temporal confidence calibration. Finally, we evaluated the
proposed system using an open public dataset.

A. DATA COLLECTION
Data were collected from different types of real vehicles to
verify the effectiveness of the proposed system. Four sets
of sensing data from the vehicle OBD port, namely vehicle
speed, revolutions per minute, steering wheel angle, and
brake pedal pressure, were recorded every 1 s during driving.

FIGURE 4. OBD data collector distributed for data collection.

FIGURE 5. Example trips of the collected dataset.

Data were collected using an OBD data collector designed
by OPEL Solution Inc. (Fig. 4), which was distributed to
the public with consent to collect data using crowdsourcing.
The data were collected and anonymized by OPEL Solution
Inc. as part of the Data Voucher Project of the South Korean
government. All trip data were collected in South Korea
using various routes without any restrictions, thus creating a
naturalistic dataset.

Details of the collected dataset are as follows. After exclud-
ing the data of drivers with insufficient trips, the number of
subject drivers was 55. Each remaining driver drove ten trips
or more. Example trips in Fig. 5 show the driving route of the
vehicles during data collection. Most trips differ in terms of
the route. The dataset contained 1941 trip data points for a
total of 2181 hours. Each trip was driven for a minimum of
30 min, an average of 1 h, and a maximum of 5.5 h.

B. EXPERIMENTAL SETTINGS
We evaluated the performance of the proposed system over
the collected natural dataset. To evaluate the efficiency of
the proposed system, we compared its identification results
with those of various confidence calibration methods. The
experimental settings included the input data settings, dataset
separation, and metrics.

For all experiments, the window size was 20 s with 10 s
overlapping. The system identified the driver every 10 s using
accumulated driving sensing data from the beginning to the
present time until early exiting occurred. The sampling rate
of the four types of sensing data was 1 Hz. Therefore, the
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FIGURE 6. Early exiting results according to calibration.

prepared input data for the DNN with a 20 s window through
the four sensors represented 80 real number data points.

We divided the dataset using an 8:1:1 ratio for training,
validation, and testing, respectively, such that all trips in the
dataset were divided into training, validation, and test sets.
Although the number of trips for each driver was imbalanced,
the validation and test sets had at least one trip by each
driver. The CNN-RNN model for driver identification was
trained only with the training set. The model was trained
with the Adam optimizer, where the number of epochs was
100. The CNN was pretrained with the sliding-window data.
Confidence calibration used the training and validation sets.
The test set was only used for performance evaluation after
the model was trained.

Most existing studies evaluated the accuracy of window
data but not trips. However, in a realistic scenario, it is
important to identify the driver accurately and quickly during
the trip. Therefore, we used trip accuracy as the evaluation
metric, similar to some existing studies based on per-trip
identification. The trip accuracy calculates the proportion of
driving trips that belong to the target driver among all trips in
the dataset, which can be denoted as

Trip Accuracy =
the number of true positive trip

the total number of trip
(11)

The calibration parameters were determined via grid
search. During temporal temperature scaling, the search
space of the grid search was such that α and β had integer
values ranging from 1 to 10. For temporal label smoothing,
the search space of the grid search was such that β has
an integer value from 1 to 10, and α was a real number
from 0 to 1 with a step of 0.1. For hybrid calibration, the
search space of the grid search was the same as the temporal
temperature scaling, and the number of folds was 8 except for
the hyperparameter experiments.

C. EXPERIMENTAL RESULTS
1) TEMPORAL EARLY EXITING RESULTS
Fig. 6 summarizes the results for the systemwith early exiting
according to the calibration methods. As demonstrated, the
proposed system after the three types of temporal calibra-
tion is highly improved compared to the system without

FIGURE 7. Results without early exiting: accuracy when exiting at a fixed
time.

FIGURE 8. Early exiting results according to calibration (enlarged view).

calibration. The reason may be that the overconfidence
problem in the early stage of a driving trip makes early exiting
difficult. Temporal confidence calibrations are effective in
mitigating the overconfidence problem in the early stages.
The results for driver identification without early exiting,
which means that the system always exited at a fixed time,
are shown in Fig. 7. Driver identification with 26 min of
fixed-length data for each trip reached 90.06% accuracy.
The system with early exiting outperformed the system
without early exiting, which had 84.53% accuracy with 10
min of driving data, regardless of the calibration method.
In particular, the proposed system with early exiting applied
using hybrid calibration achieved 90.06% accuracy at an
average of 6.7 min, which is the same accuracy with 74.2%
latency reduction compared to driver identification using
26 min of fixed-length data for each trip.

2) TEMPORAL CALIBRATION RESULTS
Fig. 8 shows an enlarged view of the early exiting results
according to the calibration methods. Temperature scaling
showed a slightly better trade-off between accuracy and
latency than label smoothing. The hybrid confidence calibra-
tion outperformed the other temporal calibrations. The reason
may be that the hybrid method considers the difficulty of a
trip.

We compared the proposed temporal calibration and
standard calibration results. Fig. 9 illustrates a comparison
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FIGURE 9. Comparison between temporal temperature scaling and
standard temperature scaling.

FIGURE 10. Comparison between temporal label smoothing and standard
label smoothing.

between temporal temperature scaling and standard temporal
scaling. As illustrated, the proposed system with temporal
temperature scaling outperformed that with standard tem-
perature scaling. Fig. 10 illustrates a comparison between
temporal label smoothing and standard label smoothing.
As illustrated, the proposed system with temporal label
smoothing outperformed that with standard label smoothing.
The reason may be that the overconfidence problem in
the early stage of a driving trip makes early exiting
difficult. Temporal confidence calibrations are effective
in mitigating the overconfidence problem in the early
stages.

We performed an ablation study for the hybrid calibration,
as shown in Table 1. Results show latency: the average
driving time when maintaining accuracy during temporal
early exiting. The latency was 9.2 min when the temperature
acquisition for each trip process was omitted. One best tem-
perature was applied to all trip data to obtain smoothed labels
for this experiment. Similarly, the latency was 9.8 min when
the temperature acquisition and smoothed label conversion
process was omitted. This experiment is equivalent to a
simple combination method applying temperature scaling
after label smoothing. Therefore, we showed that both

TABLE 1. Ablation study for hybrid confidence calibration.

FIGURE 11. Examples of the change in confidence score while driving a
trip before and after hybrid calibration (Driver ID: 1).

temperature acquisition and smoothed label conversion are
essential.

3) EFFECTS OF TEMPORAL CALIBRATION
To analyze the obtained results in more detail and investi-
gate the effects of temporal calibration, we visualized the
change in the confidence score over time during a trip.
Fig. 11 illustrates examples before and after calibration.
Before calibration, overconfidence occurred at the beginning
of driving. In the figure, the top row presents an example
of early identification, while the bottom row presents an
example of late identification. If a selected temperature is low
in hybrid calibration, there is no overconfidence in the early
driving stage of the trip. If a selected temperature is high in
hybrid calibration, there is overconfidence in the early driving
stage of the trip.

To evaluate the characteristics of temporal calibration,
we analyzed the timing of early exiting using a box-plot
presentation. Through the box plot, we analyzed the timing
of early exiting with no calibration and three types of
temporal calibration. These box plots include the shortest
timing, lower quartile (25%), median (50%), upper quartile
(75%), and the longest timing according to the threshold with
accuracy.
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FIGURE 12. Early exiting without calibration.

FIGURE 13. Early exiting with temporal temperature scaling.

As shown in Fig. 12, early exiting without calibration
showed a low variation in exit timing. Figs. 13 and 14 show
the early exiting results with temporal temperature scaling
and temporal label smoothing, respectively. Early exiting
with calibration showed a high variation in exit timing. This
implies that the system exits at various times according
to a trip. Therefore, the proposed calibration methods

FIGURE 14. Early exiting with temporal label smoothing.

FIGURE 15. Early exiting with hybrid confidence calibration.

automatically train and calibrate a model to identify the driver
with less driving data for easy-to-identify trips and more
driving data for hard-to-identify trips. Hybrid calibration had
the highest variation in exit timing, as shown in Fig. 15. This
is because the calibration strength is adjusted according not
only to driving time but also trip difficulty. The temperature
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FIGURE 16. Temporal temperature scaling results according to
hyperparameters.

FIGURE 17. Temporal label smoothing results according to
hyperparameters.

acquisition phase, which finds temperatures for each trip in
hybrid calibration, emphasizes adaptiveness by considering
trip difficulty.

4) TEMPORAL CALIBRATION HYPERPARAMETERS
As described in Section IV, the hyperparameters α and β
control the calibration strength and thus play an important
role in model performance. Therefore, we set the hyperpa-
rameters to different magnitudes to observe their effects on
model performance.

We explored hyperparameter settings for temporal temper-
ature scaling and temporal label smoothing. Fig. 16 shows
the temporal temperature scaling results for various α and β
settings. Fig. 17 shows the temporal label smoothing results
for various α and β settings. In both cases, we observed
similar trade-offs between accuracy and latency, regardless
of the hyperparameter settings.

Finally, we explored the hyperparameter settings for the
hybrid calibration. Fig. 18 shows the results according to
the grid search space. A grid equal to 10 means that α and
β take integer values from 1 to 10 for temperature scaling.
The grid equal to 5 showed a relatively low performance,
and grids equal to 10 and 15 showed similar performances.

FIGURE 18. Hybrid calibration results according to grid search space.

FIGURE 19. Hybrid calibration results according to the number of folds
during temperature acquisition.

Fig. 19 shows the results according to the number of P folds.
Grids of 10 or more are sufficient for hybrid calibration.
The large fold is advantageous for the temperature selection
efficiency per trip.

D. EXPERIMENTAL RESULTS ON A PUBLIC DATASET
As mentioned above, public datasets have many restrictions,
such as few drivers and fixed routes. Most previous studies on
public datasets have reported good accuracy. Mekki et al. [3]
compared the performance with four public datasets. Perfor-
mance with the OSF dataset [30] was relatively poor because
of the large number of drivers and various driver conditions.
Therefore, we analyzed early exiting with the OSF dataset,
although the dataset is based on a simulator and has only one
route. After excluding the data of drivers with insufficient
trips, we experimented with the trip data of 35 drivers.

The driver identification results without early exiting,
which means that the system always exited at a fixed time,
showed a latency of 6 min to reach 91.43% accuracy on the
OSF dataset. Table 2 summarizes the results for the system
with early exiting according to calibration method on the
OSF dataset. The system with early exiting outperformed
the system without early exiting regardless of the calibration
method. The system without calibration showed an inferior
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TABLE 2. OSF dataset results.

accuracy of 82.86%. The proposed system after the three
types of temporal calibration was highly improved compared
to the system without calibration. Temporal confidence
calibration methods are effective in mitigating the overcon-
fidence problem in the early stages even on the public dataset
with many restrictions. In particular, the proposed system
with early exiting applied using hybrid calibration achieved
91.43% accuracy at an average of 1.1 min, which is the
same accuracy with 81.67% latency reduction compared to
driver identification using 6 min of fixed-length data for each
trip.

VI. CONCLUSION
In this paper, a driver identification system is proposed that
benefits from temporal early exiting. First, we conducted
temporal early exiting for driver identification. Additionally,
we proposed three types of temporal confidence calibration
to address the overconfidence problem so that the system can
work effectively during early exit. In particular, we proposed
a novel hybrid confidence calibration method to improve the
trade-off between accuracy and latency by considering the
difficulty of identifying the driver during a trip. The proposed
system achieved 90.06% accuracy with early exiting at an
average of 6 min, the same accuracy with 74.2% latency
reduction compared to driver identification with 26 min of
fixed-length data on a naturalistic dataset. Furthermore, the
proposed system achieved 91.43% accuracy at an average of
1.1 min, the same accuracy with 81.67% latency reduction on
a public dataset.

IVs should consider the needs of different drivers to
provide a safer and more comfortable driving experience.
We proposed a novel driver identification system that allows
drivers to provide personalized features as early as possible.
In a shared mobility context, driver identification helps
car-sharing providers verify authorized drivers by tracking
their driving styles and providing personalized rides for their
customers. In an autonomous mobility context, self-driving
software with personalized driving styles provides a safer and
more comfortable driving experience.

Although it has been found that temperature scaling
and label smoothing have similar calibration effects for a
DNN, the relationship between temperature scaling and label

smoothing is an open research topic in machine learning
theory. In this paper, hybrid calibration combining temper-
ature scaling and label smoothing is proposed; however,
there is a limitation as their relationship is not considered.
Further improvement is possible instead of rescaling by
applying temperature scaling again in the last step of hybrid
calibration. It is also necessary to study the relationship with
knowledge distillation.

To the best of our knowledge, this paper is the first to
explore temporal early exiting in driver identification and
the first to consider trip difficulty for temporal confidence
calibration. We believe that the proposed methods can be
easily applied to existing driver identification systems and
will promote applications in driver identification.

REFERENCES
[1] H. Cai, Z. Hu, Z. Chen, and D. Zhu, ‘‘A driving fingerprint map method

of driving characteristic representation for driver identification,’’ IEEE
Access, vol. 6, pp. 71012–71019, 2018.

[2] M. N. Azadani and A. Boukerche, ‘‘Driving behavior analysis guidelines
for intelligent transportation systems,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 7, pp. 6027–6045, Jul. 2022.

[3] A. E.Mekki, A. Bouhoute, and I. Berrada, ‘‘Improving driver identification
for the next-generation of in-vehicle software systems,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 8, pp. 7406–7415, Aug. 2019.

[4] M. N. Azadani and A. Boukerche, ‘‘Driver identification using vehicular
sensing data: A deep learning approach,’’ in Proc. IEEEWireless Commun.
Netw. Conf. (WCNC), Mar. 2021, pp. 1–6.

[5] T. Wakita, K. Ozawa, C. Miyajima, K. Igarashi, K. Itou, K. Takeda, and
F. Itakura, ‘‘Driver identification using driving behavior signals,’’ in Proc.
IEEE Intell. Transp. Syst. Conf. (ITSC), Sep. 2005, pp. 396–401.

[6] J. Chen, Z. C. Wu, and J. Zhang, ‘‘Driver identification based on
hidden feature extraction by using adaptive nonnegativity-constrained
autoencoder,’’ Appl. Soft Comput., vol. 74, pp. 1–9, Jan. 2019.

[7] Y. Xun, J. Liu, N. Kato, Y. Fang, and Y. Zhang, ‘‘Automobile
driver fingerprinting: A new machine learning based authentication
scheme,’’ IEEE Trans. Ind. Informat., vol. 16, no. 2, pp. 1417–1426,
Feb. 2020.

[8] N. M. Nor and A. Wahab, ‘‘Driver identification and driver’s emotion
verification using KDE and MLP neural networks,’’ in Proc. 3rd Int. Conf.
Inf. Commun. Technol. MoslemWorld (ICT4M), Dec. 2010, pp. E96–E101.

[9] W. Dong, J. Li, R. Yao, C. Li, T. Yuan, and L. Wang, ‘‘Characterizing
driving styles with deep learning,’’ 2016, arXiv:1607.03611.

[10] J. Zhang, Z. Wu, F. Li, C. Xie, T. Ren, J. Chen, and L. Liu, ‘‘A deep
learning framework for driving behavior identification on in-vehicle CAN-
BUS sensor data,’’ Sensors, vol. 19, no. 6, pp. 1–17, Mar. 2019.

[11] H. Ren, M. Pan, Y. Li, X. Zhou, and J. Luo, ‘‘ST-SiameseNet: Spatio–
temporal Siamese networks for human mobility signature identification,’’
in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2020, pp. 1306–1315.

[12] M. N. Azadani and A. Boukerche, ‘‘Convolutional and recurrent neural
networks for driver identification: An empirical study,’’ inProc. IEEE/IFIP
Netw. Oper. Manage. Symp., Apr. 2022, pp. 1–6.

[13] G. Kar, S. Jain, M. Gruteser, J. Chen, F. Bai, and R. Govindan,
‘‘PredriveID: Pre-trip driver identification from in-vehicle data,’’ in Proc.
2nd ACM/IEEE Symp. Edge Comput., Oct. 2017, pp. 1–12.

[14] R. Khan, N. Saxena, O. Rana, and P. Gope, ‘‘ATVSA: Vehicle driver
profiling for situational awareness,’’ in Proc. IEEE Eur. Symp. Secur.
Privacy Workshops, Jun. 2022, pp. 348–357.

[15] C. Guo, G. Pleiss, Y. Sun, andK.Q.Weinberger, ‘‘On calibration ofmodern
neural networks,’’ in Proc. ICML, Aug. 2017, pp. 1321–1330.

[16] S. Ma, L. Sigal, and S. Sclaroff, ‘‘Learning activity progression in LSTMs
for activity detection and early detection,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2016, pp. 1942–1950.

[17] Y. Wang, K. Lv, R. Huang, S. Song, L. Yang, and G. Huang, ‘‘Glance
and focus: A dynamic approach to reducing spatial redundancy in image
classification,’’ in Proc. Int. Conf. Neural Inf. Process. Syst. (NeurIPS),
Dec. 2020, pp. 1–15.

132106 VOLUME 10, 2022



J. Lim et al.: Temporal Early Exiting With Confidence Calibration for Driver Identification Based on Driving Sensing Data

[18] Y. Wang, Y. Yue, Y. Lin, H. Jiang, Z. Lai, V. Kulikov, N. Orlov, H. Shi,
and G. Huang, ‘‘AdaFocus V2: End-to-end training of spatial dynamic
networks for video recognition,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 20030–20040.

[19] P. Boyer, D. Burns, and C. Whyne, ‘‘Out-of-distribution detection of
human activity recognition with smartwatch inertial sensors,’’ Sensors,
vol. 21, no. 5, p. 1669, Mar. 2021.

[20] R. Müller, S. Kornblith, and G. Hinton, ‘‘When does label smoothing
help?’’ in Proc. Int. Conf. Neural Inf. Process. Syst. (NeurIPS), Dec. 2019,
pp. 1–10.

[21] S. Jafarnejad, G. Castignani, and T. Engel, ‘‘Towards a real-time driver
identification mechanism based on driving sensing data,’’ in Proc. IEEE
20th Int. Conf. Intell. Transp. Syst. (ITSC), Oct. 2017, pp. 1–7.

[22] S. H. Sanchez, R. F. Pozo, and L. A. H. Gomez, ‘‘Driver identification and
verification from smartphone accelerometers using deep neural networks,’’
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 1, pp. 97–109, Jan. 2022.

[23] S. Teerapittayanon, B. McDanel, and H. Kung, ‘‘BranchyNet: Fast
inference via early exiting from deep neural networks,’’ in Proc. Int. Conf.
Pattern Recognit., Dec. 2016, pp. 2464–2469.

[24] A. Ghodrati, B. E. Bejnordi, and A. Habibian, ‘‘FrameExit: Conditional
early exiting for efficient video recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 15608–15618.

[25] R. Tang, K. Kumar, J. Xin, P. Vyas, W. Li, G. Yang, Y. Mao, C. Murray,
and J. Lin, ‘‘Temporal early exiting for streaming speech commands
recognition,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2022, pp. 7567–7571.

[26] J. Platt, ‘‘Probabilistic outputs for support vector machines and compar-
isons to regularized likelihood methods,’’ Adv. Large Margin Classifiers,
vol. 10, no. 3 pp. 61–74, Mar. 1999.

[27] G. Pereyra, G. Tucker, J. Chorowski, L. Kaiser, and G. E. Hinton, ‘‘Regu-
larizing neural networks by penalizing confident output distributions,’’ in
Proc. Int. Conf. Learn. Represent. (ICLR), Apr. 2017, pp. 1–15.

[28] T. Leathart and M. Polaczuk, ‘‘Temporal probability calibration,’’ 2020,
arXiv:2002.02644.

[29] S. Huang, Y. Luo, Z. Zhuang, J.-G. Yu, M. He, and Y. Wang,
‘‘Context-aware selective label smoothing for calibrating sequence recog-
nition model,’’ in Proc. 29th ACM Int. Conf. Multimedia, Oct. 2021,
pp. 4591–4599.

[30] S. Taamneh, P. Tsiamyrtzis, M. Dcosta, P. Buddharaju, A. Khatri,
M. Manser, T. Ferris, R. Wunderlich, and I. Pavlidis, ‘‘A multimodal
dataset for various forms of distracted driving,’’ Sci. Data, vol. 4, no. 1,
Aug. 2017, Art. no. 170110.

JAEBONG LIM was born in 1992. He received
the B.S. and M.S. degrees from Pusan National
University, in 2016 and 2018, respectively, where
he is currently pursuing the Ph.D. degree. His
research interests include embedded systems, low-
power devices, embedded AI, TinyML, and driver
behavior analysis.

YUNJU BAEK was born in 1967. He received the
Ph.D. degree in computer science from KAIST,
Republic of Korea, in 1997. He was an Invited Pro-
fessor at KAIST, a CTO at Naver Corporation, and
an Assistant Professor at Sookmyung Women’s
University. He is currently a Professor with the
School of Computer Science and Engineering,
Pusan National University. His research interests
include embedded systems, RTLS systems, wire-
less sensor networks, embedded AI, TinyML, and
driver behavior analysis.

BUMHEE CHAE was born in 1983. He received
the B.S. degree in software engineering from the
KumohNational Institute of Technology, Republic
of Korea, in 2009. He was a BigData Platform
Team Leader at SureSoft Technologies Inc. He is
currently a Devops Group Leader at Suremobility
Inc. His research interests include software testing,
mobility platform development, and autonomous
driving systems.

VOLUME 10, 2022 132107


