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ABSTRACT Traditionally, studies on technical communication (TC) are based on stochastic modeling and
manipulation. This is not sufficient for semantic communication (SC) where semantic elements are logically
connected, rather than stochastically correlated. To fill this void, by leveraging a logical programming
language called probabilistic logic (ProbLog), we propose a unified approach to semantic information and
communication through the interplay between TC and SC. Building on the well-established existing TC
layer, we introduce, in this paper, a SC layer that utilizes knowledge bases of communicating parties for
the exchange of semantic information. These knowledge bases are logically described, manipulated, and
exploited using ProbLog. To allow efficient interactions between SC and TC layers, various measures are
proposed in this paper using the entropy of a clause in a knowledge base. These measurements can account
for various technical problems in SC, such as message selection to improve the receiver’s knowledge base.
Extending this, we present few selected examples of how the SC and TC layers interact with each other, s
while taking into account constraints of physical channels and efficiently utilizing channel resources.

INDEX TERMS Semantic information, semantic communication, information theory, probabilistic logic,
semantic and technical communication interplay.

I. INTRODUCTION
It may not be an exaggeration to say that the successful
development of various communication systems, including
fifth generation (5G) cellular systems, has been based on
Shannon’s theory, which is called information theory [1].
Information theory has influenced the development of com-
munication systems as well as various other fields (e.g.,
statistics, biology, and so on). In his theory, information
is characterized as randomness in variables, which allows
one to calculate the fundamental limits and performance
of communication, and to design efficient compression and
transmission schemes through noisy channels. Despite the
success of technical communication (TC), since its intro-
duction in 1948, Shannon’s theory does not consider the
semantics of information [2] which has long been tackled by
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philosophers of information. Overcoming this limitation of
Shannon’s theory has recently been regarded as a key enabler
for the upcoming sixth generation (6G) communication
systems [3], [4], [5], [6].

Addressing this limitation requires the development of a
theory on meaningful information, i.e., semantic informa-
tion, as well as a novel communication technology based
on semantic information, i.e., semantic communication (SC).
For SC, existing works can be categorized into model-free
methods leveraging machine learning or deep learning [4],
[5], and model-based approaches, which quantify seman-
tic information [7] or specify the emergence of meanings
through communication [6]. Our work falls into the latter
category with the aim of unifying our analysis on SC with
the existing model-based analysis on TC.

There are two different views in the philosophy of infor-
mation with regard to semantic information. One view
focuses on measuring semantic similarity [8], [9], which
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often encourages an entirely new way to define meaningful
information. For instance, each meaning can be identified
as a group that is invariant to various nuisances or a cat-
egory [10], across which semantic similarity can be com-
pared. The other end of the spectrum focuses on quantifying
semantic uncertainty [11], in a similar way to Shannon theory
wheremessage occurrences are counted tomeasure semantic-
agnostic uncertainty. For example, by leveraging the theory
of inductive probability [12] (see also [13], [14]), Shannon
information can be extended to semantic information, which
can allow to measure the likelihood of a sentence/clause’s
truth using logical probability, upon which an SC system can
be constructed [7]. Our view is aligned with the latter angle
(i.e., like [7], a probabilistic logic approach is taken), while
we focus on making SC interact with TC under Shannon
theory.

This paper considers an approach to SC based on the
theory of probabilistic logic assigning probabilities to logical
clauses [12], [15]. This allows to make inferences over
clauses and to quantify their truthfulness or provability in
a probabilistic way. We showcase that the process of infer-
ence and its provability analysis can be performed using
the probabilistic logic programming language (ProbLog),1

a practical logic-based probabilistic programming language
that has been widely used in the field of symbolic artificial
intelligence (AI).

As pointed out in [16], an important feature of SC is
that it is based on knowledge bases. In general, knowledge
bases are considered to be multimodal data sets consisting of
text, image, speech or video [5], [16], [17], [18]. However,
in this paper, a knowledge base is characterized by a set
of clauses that can be continuously expanded and updated
using probabilistic logic through communication as well as
inference. This approach can also allow to quantify each
user’s knowledge base and effectively helps SC. For example,
knowing the quality (or level) of knowledge base of the other
party can help one party choose the message maximizing the
success of conveying the intended meaning (such as choosing
a best message depending on a listener).

Furthermore, based on [19] and [11], we consider a
two-layer SC system comprising: (i) the conventional TC
layer where data symbols can be transmitted without taking
into account their meanings; and (ii) an SC layer where one
exploits semantic information that can be obtained from a
background knowledge or by updating a knowledge base.
We demonstrate the interaction between TC and SC layers
with selected examples showing how SC improves the effi-
ciency of TC, i.e., SC for TC, as well as how to design TC to
achieve maximal gains in SC under limited communication
resources, i.e., TC for SC. For simplicity and consistency
throughout the paper, we confine ourselves to a simple sce-
nario where a human user or an intelligent device stores
logical clauses in a knowledge base and intends to improve
the knowledge by seeking answers to a number of queries.

1ProbLog tools are available in: https://dtai.cs.kuleuven.be/problog

The main contributions of the paper are as follows.
1) Based on probabilistic logic, we characterize knowl-

edge bases for semantic information and define vari-
ous entropy-based measures, which allow us to model
semantic compression and security.

2) For a SC system consisting of SC and TC layers,
we address various issues through interactions between
SC and TC subject to constraints of physical channels
including a message selection problem. Few numer-
ical examples are studied to illustrate the proposed
approaches.

3) Open issues and challenges are identified for further
research in the future.

Note that this paper is an extended version of [20].
The paper is organized as follows. Once we provide a

background in Section II, in Section III, we present various
aspects of semantic information and knowledge bases based
on probabilistic logic and introduce key measures. With the
developed measures, in Section IV, we address key issues
to build a SC system consisting of TC and SC layers by
explaining how TC and SC layers interact subject to various
constraints of physical channels. Numerical results on two
exemplary SC use cases are presented in Section V, and open
issues and challenges are discussed in Section VI. We con-
clude the paper with a few remarks in Section VII.

II. BACKGROUND
This section provides background on information theory [21]
as well as probabilistic logic [14], [15].

A. CLASSICAL AND SEMANTIC INFORMATION THEORY
Although information theory was originally studied as a
mathematical theory for communications, it has been applied
in diverse fields ranging from biology to neuroscience.
In information theory, in order to represent symbols to be
transmitted, random variables are used. The entropy of a
symbol, denoted by X , is the number of bits required to rep-
resent it, which is given by H(X ) = −

∑
x Pr(x) log Pr(x) =

E[− log Pr(X )] (in the rest of the paper, taking log to base 2).
Here, X is regarded as a (discrete) random variable, where
Pr(x) stands for its distribution and E[·] represents the statis-
tical expectation. The entropy of X can also be interpreted as
the amount of information of X .
The joint entropy of X and Y is defined as H(X ,Y ) =

E[− log Pr(X ,Y )] and the conditional entropy is given by

H(X |Y ) = E[− log Pr(X |Y )] = H(X ,Y )− H(Y ).

The mutual information between X and Y is defined as

I(X;Y ) = E
[
log Pr(X ,Y )

Pr(X ) Pr(Y )

]
. It can also be shown that

I(X;Y ) = I(Y ;X ) = H(X ) − H(X |Y ) = H(Y ) − H(Y |X ).
If X and Y are assumed to be the transmitted and received
signals over a noisy channel, respectively, I(X;Y ) can be seen
as the number of bits that can be reliably transmitted over this
channel. As a result, maxPr(x) I(X;Y ) becomes the channel
capacity, which is the maximum achievable transmission rate
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for a given channel that is characterized by its transition
probability Pr(Y |X ).

As pointed out in [19], information theory does not con-
sider the content or meaning of the symbols, but quantify-
ing the amount of information based on the frequency of
their occurrence (i.e., the distribution of symbols as random
variables). For example, H(X ) is to measure the uncertainty
of information or number of bits to represent a symbol X
regardless of what X means. However, this does not mean
that information theory is useless or limited in dealing with
the meaning or content of information as will be discussed in
the paper.

To deal with the meaning of symbols, it requires to develop
a theory on semantic information. In regard to semantic
information, it is noteworthy that two different views exist
in the philosophy of information. One focuses on measuring
semantic similarity [8], [9], which often encourages a new
way to define meaningful information. For instance, each
meaning can be identified as a group that is invariant to vari-
ous nuisances (e.g., a so-called topos in category theory [10]),
across which semantic similarity can be compared. The other
view focuses on quantifying semantic uncertainty [11], in a
similar way to Shannon theory where message occurrences
are counted to measure semantic-agnostic uncertainty. In par-
ticular, the classical information theory by Shannon can be
extended to semantic information theory by leveraging the
theory of inductive probability [12] (see also [13], [14]).
This view allows us to measure the likelihood of a sentence/
clause’s truth using logical probability, upon which an SC
system can be constructed [7]. Our view is aligned with
the latter one (i.e., like [7], a probabilistic logic approach is
taken), while we focus on paving a way to make SC interact
with TC based on Shannon theory.

B. DETERMINISTIC AND PROBABILISTIC LOGIC
Reasoning about the truth of a sentence is the simplest
type of logic, called propositional logic. Treating this as
the zero-th order logic, the first-order logic can describe
ordinary logic by parsing out and dividing each sentence
into meaningful clauses [22]. In the first-order logic, each
clause consists of constant symbols (e.g., alphabets), logical
operators (e.g., Boolean algebra such as AND ∧, OR ∨, and
NOT ¬), and non-logical predicates (e.g., x ‘‘is the father
of’’ y). Programming in Logics (Prolog) aims to describe the
first-order logic using a programming language, which has
been widely used for computational linguistics and symbolic
artificial intelligence (AI) such as IBM Watson [23]. In Pro-
log, each clause is in a form of Head :- Body which is
read as ‘‘Head is True if Body is True.’’ However, Prolog
can only describe deterministic logic although the world is
full of uncertainty. To overcome this limitation, thanks to the
notion of probabilistic logic [14], [15], ProbLog introduces
the notion of a probability p to each clause that is now in
a form of p::Head :- Body. This probability p can be,
for instance, annotated by a programmer, which indicates the
programmer’s degree of belief in the clause.

Here, we focus on exchanging logical clauses and mak-
ing probabilistic inferences based on the clauses written in
ProbLog. Given facts a and b, where a is assigned probability
pa, and b is assigned pb, the probability of a∧ b is computed
as the product of the probabilities, i.e. pa · pb; note that a∨ b
computed as 1− (1−pa) · (1−pb) since a∨b = ¬(¬a∧¬b).
Similar calculations are used for deductive reasoning; con-

sider the rule r of the form a→ b (where ‘‘→’’ is ‘‘implies’’)
annotated with probability pr and a with probability pa.
We can then infer b with probability pr · pa. Note that,
in ProbLog, a clause of the form a → b, which is assigned
probability p, is written as p::b :- a, where ‘‘:-’’ is read
as ‘‘if’’.

For the purposes of this paper, a knowledge base K is a set
of clauses (where a clause is a rule or a fact). Given a rule
a → b, the head of the rule is a and the body is b; a fact
is equivalent to a rule of the form a → true, which can be
written as a. In making inferences about the truth value of
a query q, q must match the head of a clause in K with the
computed outcome as the probability of q. If q does not match
the head of a clause in K , then one could view this as K is
not able to say anything about the truth of q. The probability
of q computed as the answer when posed as a query to the
knowledge base is denoted by K by p[K ` q]; inferences
made is as defined by the semantics of ProbLog.

In addition, for the purposes of this paper, we will consider
mostly the propositional logic fragment of ProbLog for sim-
plicity - however, in some examples, variables are involved,
where we assume that their values range over a finite set,
i.e., they can be considered abbreviations for a finite set of
propositional clauses; this is so that the set of (unique) queries
that can be answered via a knowledge base is finite.

III. ENTROPY AND KNOWLEDGE BASES:
COMMUNICATING INFORMATIVE MESSAGES
In this section, we discuss various aspects of semantic infor-
mation (e.g., semantic compression and security) after quan-
tifying the uncertainty of knowledge bases using the entropy
of a clause.

A. ENTROPY OF A CLAUSE
Wedefine the entropyHf of a given clause cwhose truth value
can be considered as a random variable with values ‘‘true’’
with probability pc, and ‘‘false’’ with probability 1 − pc,
as follows:

Hf (c) = − (pc log(pc)+ (1− pc) log(1− pc)) .

Here, the subscript f differentiates the entropy of a random
variable from that of a clause.

When a given query q is posed to a knowledge base K , and
suppose a probability pq is computed with respect to K , i.e.,
when q matches a head of a clause in K , as in the semantics
of ProbLog, then pq = p[K ` q], and the entropy of q with
respect to K is denoted by HK

f (q), i.e., we write:

HK
f (q) = −

(
pq log(pq)+ (1− pq) log(1− pq)

)
.
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If there is no matching clause in K for q, then the result of the
query is undefined; or, if useful for an application, this can be
set to 0.5 (i.e., which has the intuition of a random guess).

B. UNCERTAINTY OF A KNOWLEDGE BASE
WehaveHK to denote the set of the termswhich are the heads
of all clauses in K . We consider the heads of the clauses as
these would correspond to the set of different queries that the
knowledge base can compute a meaningful probability for.

Given a knowledge base K , we define an uncertainty mea-
sure UKB of K as follows (in order to take into account the
entropy of answers it computes, i.e., the average entropy of
queries computable from K ):

UKB(K ) =
1
|HK |

∑
q∈HK

HK
f (q). (1)

Note that if a knowledge base is able to answer all queries to
it with certainty (i.e., with probability 1, that is, ‘‘true’’ with
probability 1 or ‘‘false’’ with probability 1), thenUKB(K ) = 0
(assuming that 0 · log(1/0) = 0), while it is 1 in the worse
case.
Example 1: Suppose we have a knowledge base K as fol-

lows, in ProbLog:
0.2::a.
0.3::b.
0.5::a :- b.
The set of the heads of all clauses in K is {a, b}; the possible
queries K can answer are a and b, i.e. p[K ` a] = 1 − (1 −
0.2)(1− (0.3)(0.5)) = 0.32, and p[K ` b] = 0.3. Thus,

UKB(K ) =
HK
f (a)+ HK

f (b)

2
=

0.904+ 0.881
2

= 0.8925.

C. SENDER’S MESSAGE CHOICE PROBLEM
Consider a network or a multiuser system consisting of mul-
tiple users. Each user may wish to improve their knowledge
bases and communication2 plays a crucial role in reducing the
uncertainty of a knowledge base.

We illustrate this ideas as follows. Suppose that Alice has a
set L of clauses and Bob has a knowledge base K . In order to
minimize the average entropy of K , Alice can choose to send
a message m ∈ L to Bob as follows:

m = argmin
l∈L

UKB(K ∪ {l}). (2)

But being able to do this requires Alice to have complete
knowledge of K . Alternatively, Alice might have a statistical
approximation Ai of K in which Ai ≈ K with probability pAi .
In this case, Alice’s choice of m is recast as:

m = argmin
l∈L

∑
i

pAiUKB(Ai ∪ {l}). (3)

To realize this idea, one way is to allow Bob to keep feeding
the entropy of K back to Alice. Then, throughout iterative

2In this section, we assume that TC is ideal. In Section IV, wewill consider
how SC and TC interact.

communication, Alice can gradually improve the accuracy
of Ai.

D. RECEIVER’S MESSAGE ASSIMILATION PROBLEM
In parallel with Alice’s choice of communication message
m as discussed in Section III-C, Bob is also able to reduce
the uncertainty of the knowledge base K by adjusting the
updating rule of K upon receiving m, i.e., assimilation of m.
In (2), the assimilation is given by simply adding the received
message to K , i.e., K ∪ {m}. Generalizing this, Bob’s mes-
sage assimilation problem is cast as: min◦∈AUKB(K ◦ {m}),
where ◦ identifies an operator among a set A of assimilation
operators.

The aforementioned simple addition can be an assimilation
operator, i.e., ∪ ∈ A. Additionally, we introduce an assimi-
lation operator maximizing the freshness of each clause in a
way that: on receiving a new message (or clause) m′ of the
form pm′::l, if K includes clauses m (of the form pm::l)
differing from m′ in only the associated probability pm,
it replaces all such clauses of m with the newly received m′,
resulting in the updated knowledge base K ′ = K\{pm::l} ∪
{pm′::l} with replacement; otherwise, it follows the simple
addition rule. To describe this, we define an assimilation
operator � that satisfies:

K � {pm′::l} =


K ′, if pm::l ∈ K ,

for some pm
K ∪ {pm′::l}, otherwise.

Furthermore, we introduce another assimilation rule that
aims to minimize the entropy of each query to be asked to K .
To this end, K remains unchanged if the received m′ doesn’t
help decrease the entropy for the query corresponding to
the head hm′ of m′, where the clause m′ is in the form of
pm′::hm′:-bm′ , i.e. l = hm′:-bm′ . This rule is described
using an assimilation operator ⊕ that is defined as:

K ⊕ {pm′:: l} =



K ′, if pm::l ∈ K ,
for some pm,
& HK ′

f (hm′ ) < HK
f (hm′ )

K , if pm::l ∈ K ,
for some pm,
& HK ′

f (hm′ ) ≥ HK
f (hm′ )

K ∪ {pm′::l}, otherwise.

Given the assimilation operator ∪, �, or ⊕, the resultant
changes in the average entropy of K will be elaborated on
in Section III-E. Furthermore, for simplicity, ∪ will be used
to represent the assimilation operators discussed above (i.e.,
�, or ⊕).

E. SEMANTIC CONTENT OF A MESSAGE
We define the semantic content S of a message (where a
message in this case is a clause labelled with a probability)
with respect to the receiver’s background knowledge base K
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as the change in average entropy of a knowledge base with
respect to its queries, which can be written as:

SK (m) = UKB(K ∪ {m})− UKB(K ). (4)

Note that a received. and assimilated message changes
UKB, and so, the receiver wants to assimilate information (or
messages) to decrease the entropy, i.e., SK (m) ≤ 0, or the
receiver wants SK (m) to be as low as possible, which means
it would be good for the receiver to obtain the message m to
decrease (where possible) the average entropy in computed
queries.

Using examples below, we show why this definition
helps.
Example 2: Suppose Alice has a knowledge base K as

follows, in ProbLog:
0.3::b.
0.5::a :- b.
Suppose Alice receive the labelled clause 0.2::m, i.e., m
labelled with probability 0.2 forming K ′ as follows:
0.3::b.
0.5::a :- b.
0.2::m.
Then, p[K ′ ` a] = 0.15, p[K ′ ` b] = 0.3, and p[K ′ ` m] =
0.2 and so UKB(K ′) = 1

3 (0.60984+ 0.88129+ 0.721928) =
0.738. We have:

SK (m) = UKB(K ∪ {0.2 :: m})− UKB(K )

= 0.738− 0.746 ≈ −0.008.

The uncertainty in the knowledge base with respect to the
queries it can answer has decreased - which is what we expect
when Alice receives a clause with a lower entropy relative
to the existing clauses in K . Also, if instead Alice received
0.9::b, then Alice’s knowledge base becomes:
0.9::b.
0.5::a :- b.
And p[K ′ ` a] = 0.45, p[K ′ ` b] = 0.9, that is, we have:

SK (m) = UKB(K ∪ {0.9 :: b})− UKB(K )

= 0.731− 0.746 ≈ −0.015.

The uncertainty in the knowledge base with respect to the
queries it can answer has decreased - which is what we expect
when Alice receives a clause with a lower entropy replacing
an existing clause in K . By assimilating 0.9::b, we can
have:
0.9::b.
0.3::b.
0.5::a :- b.
where p[K ′ ` a] = 0.465, p[K ′ ` b] = 0.93, and

SK (m) = UKB(K ∪ {0.9 :: b})− UKB(K )

= 0.681− 0.746 ≈ −0.065

which also shows a decrease in average entropy.

F. INFERENCE CAN REDUCE THE NEED FOR
COMMUNICATION
Suppose there is no background knowledge, i.e., K = ∅.
Then, the uncertainty of a query becomes H∅f (q) = 1, i.e.
the truth or falsity of q is merely a random guess. But with a
knowledge base K 6= ∅, we expect to have: HK

f (q) ≤ H∅f (q).
Furthermore, for two different knowledge bases, K and K ′, if

HK
f (q) ≤ HK ′

f (q),

then we say K is less uncertain than K ′ with respect to
query q. For the case that K ′ ⊆ K , we can easily show that
HK
f (q) ≤ HK ′

f (q).
The above can lead to a reduction in the need to obtain

information about q given that we can make inferences about
q with K . For example, suppose HK

f (q) > 1 − δ, where
δ > 0, is good enough, then there is no need to receive further
information about q. In fact, with respect to q, we want only
to receive information to reduce the entropy for q, that is,
we want only to receive message m /∈ K such that:

HK∪{m}
f (q) ≤ HK

f (q).

This can also be generalized if there is a set of available
messages, say U , as follows:

m∗ = argmin
m∈U

HK∪{m}
f (q). (5)

Here, m∗ denotes the best message among those in U to
reduce the entropy for q. Hence, when choosingwhat to trans-
mit or communicate, one should consider the consequences
of the receiver receiving and assimilating a message (or from
the sender side, the implications of sending a message) on
the uncertainty of a knowledge base. We illustrate this idea
further later in the paper.

G. COMMUNICATING A KNOWLEDGE BASE EFFICIENTLY:
A NOTION OF SEMANTIC COMPRESSION
If the sender has an entire knowledge base to send, then the
sender can achieve possible compression by sending the min-
imum number of clauses (assuming a standard fixed number
of bits to send a clause) equivalent to the query-answering
capability of the knowledge base.

We used HK , the heads of all clauses in K , crudely to
represent the set of queries answerable by a knowledge base
but more general measures can be defined based on what
can be inferred from a knowledge base (e.g., the immediate
consequence operator [24]).

Let P(K ) denote the set of queries answerable using
knowledge base K , then two knowledge bases K and K ′

are equivalent provided they can answer exactly the same
queries: P(K ) = P(K ′), and for each q ∈ P(K ), both the
knowledge bases compute the same results p[K ` q] =
p[K ′ ` q]. Denoting by Keq the set of all knowledge bases
equivalent to K , clearly, the sender should send Kmin to the
receiver, which is given by

Kmin = argmin
K ′∈Keq

|K ′|,
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where |K ′| denotes the cardinality of K ′, i.e., the number
of clauses in K ′. In practice, if this is hard to compute, the
sender, wanting to send K , can try to perform semantic com-
pression by finding a K ′ such that K ′ ∈ Keq and |K ′| < |K |.

In fact, the conditions above can be weakened, if the sender
has K and the receiver has some tolerance, then, given some
threshold of tolerances δ and ε, suppose we have a knowledge
base K ′ such that |P(K )| − |P(K ′)| = δ|P(K )| for a finite
|P(K )| > 0, or |P(K ′)|

|P(K )| ≥ 1− δ, and that deviates from K by
computing potentially different though similar probabilities
as K for each query, that is, for each q ∈ P(K ) ∩ P(K ′):∣∣p[K ` q]− p[K ′ ` q]∣∣ < ε

which also implies that, for some ε′, restricted to commonly
answerable queries,

∣∣UKB(K ) − UKB(K ′)
∣∣ < ε′. Potentially,

K ′ can be a subset ofK by removing clauses, a ‘‘compressed’’
form for K .
We note that one can also define the semantic content of a

complex message comprising, not just a single clause, but a
set of clauses M (i.e., where a set if clauses is a knowledge
base), generalizing from (4):

SK (M ) = UKB(K ∪M )− UKB(K ). (6)

We have seen that the sender who knows the receiver has
knowledge K can exploit this fact to reduce the amount of
data that needs to be sent to the receiver, while communicat-
ing the same semantic content. In effect, one can compute the
following, with respect to receiver knowledge K and target
semantic content T that the sender wants to communicate to
the receiver:

Mmin = argmin
M∈ET

|M |,

where ET denotes the set of complex messages having con-
tent T , i.e., ET = {M |SK (M ) = T }. This can be viewed as a
form of semantic compression that is relative to the semantic
content (as defined in (6)) to be communicated.

H. IMPROVED SECURITY VIA SEMANTIC MESSAGES
We have seen earlier that the semantic content of a message
can help reduce the receiver’s uncertainty about one or more
queries. Hence, we can then define a notion of semantically
secure messages, such that without the receiver’s knowledge
base, someone who has gotten hold of the message will not
be able to make any use of that message, i.e., cannot use it to
answer a query (or a set of queries).

Consider an example. Suppose Eve has knowledge base
KE . Alice sends a message m to Bob, who has knowledge
base KB.
We can represent the fact that Eve has little use for the

message provided as follows (with respect to a query q):

HKE
f (q) = HKE∪{m}

f (q). (7)

Suppose HKE
f (q) = 1, and Eve managed to intercept the

communication and gain the message m, and Eve forwards it

to Bob pretending that nothing has happened - this is a man-
in-the-middle attack - but combined with her knowledge base
KE , Eve is still just as uncertain about q as before.
But with m received at Bob, who has KB, he can find the

message meaningful, that is, with respect to q,

HKB∪{m}
f (q) < HKB

f (q). (8)

Hence, as long as Bob and Alice have an a priori shared
context, as represented by knowledge base KB that Bob has
and Alice knows that Bob has KB, then, it might be possible
for Alice to transmit m so that Eve (who does not know KB),
an eavesdropper, will not be able to make much use of it, with
respect to some ‘‘sought after’’ answer for q.
Note that one can see this as analogous to the typical

security encryption scenario: q is the plaintext encoded as the
ciphertext m using some key k , then Bob who has knowledge
of the key k can decrypt m to know q, but Eve, after getting
hold of m, does not have k and cannot use it obtain q.

But we also note the following key differences. There could
be many ways to infer q with different sets of clauses. KB
and KE may have different clauses but both could allow some
inferences about q. Alice needs to ensure that KE is such that
(7) and KB is such that (8) before sending m.
Based on the previous discussion, semantic information

security can be studied. To this end, semantic information
security can be based on the different reliability of knowledge
bases, while conventional information security [25], [26] is
based on different channel reliability (e.g., the eavesdropper
channel is a degraded channel in wiretap channel models).

Define the semantic mutual information between query q
and message m with respect to knowledge base K as

IKf [q;m] = HK
f (q) − HK∪{m}

f (q). (9)

Like the mutual information, this semantic mutual informa-
tion is non-negative, IKf [q;m] ≥ 0, and upper-bounded by
HK
f (q), i.e.,

0 ≤ IKf [q;m] ≤ HK
f (q).

We can also see that IKf [q;m] becomes 0 if message m does
not help answer query q as happened in (7). Note that if
m ∈ K , we have IKf [q;m] = 0 (since HK∪{m}

f (q) = HK
f (q)

regardless of q). Consequently, we need to have an additional
assumption that m does not belong to K or {m} ∩ K = ∅.
In addition, we say that message m /∈ K is independent of
query q (with respect to knowledge base K ) if IKf [q;m] = 0.
Clearly, if message m helps answer query q (to some extent),
we expect to see that IKf [q;m] > 0. Thus, the semantic mutual
information can be used to quantify the increase of semantic
information that message m together with knowledge base
K can provide for query q. Then, assuming that Bob is the
legitimate receiver and Eve is the eavesdropper, the semantic
secrecy rate for given query q and message m /∈ {KB ∪ KE }
can be defined as

CKB;KE [q;m] =
(
IKBf [q;m]− IKEf [q;m]

)+
, (10)
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FIGURE 1. A model of SC system from [7].

where (x)+ = max{x, 0}. Let

1(q;KB,KE ) = HKB
f (q) − HKE

f (q), (11)

which is the entropy difference between knowledge bases,KB
and KE for given query q. If 1(q;KB,KE ) > 0, we can see
that KB has less knowledge than KE for given query q, and
vice versa. Then, we can see that the semantic secrecy rate
becomes greater than 0 if

1(q;KB,KE ) > 1(q;KB ∪ {m},KE ∪ {m}). (12)

The inequality in (12) implies that message m can improve
Bob’s knowledge basemore than Eve’s knowledge base when
answering query q.
The notion of semantic secrecy rate can be extended to

the case that message m may not be reliably received due to
TC errors over noisy physical channels. This generalization
can allow the integration of conventional information security
with semantic information security. To this end, we can con-
sider that the original messagem is modified due to TC errors
and received at Bob and Eve as mB and mE , respectively.
The semantic mutual information at Bob becomes IKBf [q;mB]

and at Eve IKEf [q;mE ]. From them, we could generalize the
semantic secrecy rate to encompass different physical TC
channel conditions of Bob and Eve.

IV. ISSUES IN DESIGNING SC SYSTEMS
This section discusses key issues in designing SC systems
with questions and their answers, with particular focus on the
interaction between TC and SC layers.

A. QUESTION: HOW CAN SC BE STRUCTURED?
In [7], a model of SC, which is illustrated in Fig. 1, was
presented. The message generator (also called a semantic
encoder) produces a message syntax that will be transmitted
by a conventional/technical transmitter. Thus, an SC system
can be designed with two different layers, namely TC and SC
layers.

The output of the sender at the SC layer is a message that
is to be transmitted over a conventional physical channel,
while the output of the decoder at the TC layer is a decoded
message that becomes the input of the SC decoder as shown
in Fig. 2. Like TC encoder and decoder (which are chan-
nel encoder and decoder, respectively, for a coded system),
SC encoder and decoder need to be jointly designed. In [27],

FIGURE 2. A two-layer model for SC over TC.

FIGURE 3. Exploiting the external and internal knowledge bases to
reduce the number of bits to transmit.

based on signaling game, it is shown that SC encoder and
decoder can be jointly designed when the knowledge bases
of the communicating parties are highly correlated even if
the number of signals is limited due to a finite bandwidth
of the physical channel and noise. Thus, it is important to
match the knowledge bases of the communicating parties
as much as possible through background communication for
efficient SC (the related issues such as how to effectively
update knowledge bases of the communicating parties will
be discussed in the following subsections).

Based on the two-layer model in Fig. 2, without any sig-
nificant changes for SC, it is possible to use a conventional
TC system. However, without any meaningful interactions
between TC and SC, TC cannot utilize the background
knowledge of SC as well as use the information obtained
from semantic inference. To enable interactions between TC
and SC, the notion of the conditional entropy [21] can be
considered. In SC, suppose that X represents the information
that can be obtained from the background knowledge at the
receiver. In particular, when X is a clause or an element of
clauses in the knowledge base at the receiver, it has an entropy
of Hf (X ) = H(X ). In this case, the sender only needs to send
the information of Y at a rate of H(Y |X ). In Fig. 3, a model
that exploits the external and internal knowledge bases to
reduce the number of bits to transmit is illustrated. For a given
query, Bob can extract partial information,X , from his knowl-
edge base, which can be seen as data transmitted through
internal communication, and seek additional information, Y ,
from others’ knowledge bases, e.g., Alice’s knowledge base.
In this case, the number of bits to be transmitted is H(Y |X ),
which will be available through external TC.

In general, in order to efficiently exploit the background
knowledge in SC, the notion of the Slepian-Wolf coding [28]
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can be considered. Suppose that there are two informa-
tion sources at two separate senders, which are denoted by
X and Y , for distributed source coding. According to the
Slepian-Wolf coding approach, sender 1 can transmit X at
a rate of H(X ), while sender 2 can transmit Y at a rate
of H(Y |X ), not H(Y ). As a result, the total rate becomes
H(X )+ H(Y |X ) = H(X ,Y ) ≤ H(X )+ H(Y ). In the context
of SC, X can be seen as the information that is available from
the background knowledge and through semantic inference.
Example 3: Suppose that Alice and Bob are the sender

and receiver, respectively. In previous conversations, Alice
told Bob that ‘‘Tom has passed an exam and his score is 75
out of 100,’’ which becomes part of background knowledge.
Then, Bob asked Alice the pass score, which is denoted by
Y . Clearly, based on the knowledge base from the previous
conversation, the pass score has to be less than or equal to 75,
i.e., Y ≤ 75, which can be regarded as X . Thus, to encode Y ,
the number of bits becomes H(Y |X ) = H(Y |Y ≤ 75). If Y
is a positive integer and uniformly distributed over [1, 100],
H(Y |Y ≤ 75) =

∑75
i=1

1
75 log 75 = log 75, not H(Y ) =

log 100.
Example 4: Suppose that Eve told Bob that ‘‘Tom’s score

is 75’’, which is denoted by fact a. In addition, Alice sends
additional information that ‘‘The pass score is 70,’’ which is
denoted by fact b. Bob still does not know if Tom has passed,
even after knowing the mark. Bob can ask Alice but does not
need to ask Alice or Eve whether or not Tom has passed,
because Bob can tell Tom passes from facts a and b via
inference. If pa = 0.8 and pb = 0.9, the probability that Tom
has passed is papb = 0.72. Thus, in order to encode the fact
that Tom has passed, which is a binary random variable (e.g.,
Y = 0 (resp. Y = 1) represents Tom passes (resp. fails)),
the number of bits becomes Hf (a ∧ b) = −(0.72 log 0.72 +
0.28 log 0.28) ≈ 0.855 < 1. This demonstrates that the back-
ground knowledge in SC can help compress the information
in TC. A logic programming perspective on this example can
also be considered. Suppose we model the knowledge Bob
has with this rule that says that a person passes if the mark
is above a threshold, and also that Bob has been told by Eve
Tom’s score:
0.8::mark(tom,75).
1.0::pass(X) :-
mark(X,M), pass_score(S), M >=S.
But Bob still does not know if Tom has passed. Bob could ask
Alice but does not need to if he also knows the passing mark:
0.9::pass_score(70).
0.8::mark(tom,75).
1.0::pass(X) :-
mark(X,M), pass_score(S), M >=S.
Bob can then answer the query pass(tom) himself with
computed probability 0.72. Now Bob knows not only Tom’s
mark but also whether Tom has passed, if this probabil-
ity of 0.72 is good enough for Bob. With K representing
Bob’s knowledge base, note that HK

f (pass(tom)) = 0.593.
Note that if Charlie later tells Bob that Tom has passed
with probability 0.6, then Bob perhaps should discard

Charlie’s message (which under assimilation resulting in
K ′) would increase Bob’s uncertainty about pass(tom)
since HK ′

f (pass(tom)) = 0.673. Inferring can go far - e.g.,
by inferring about Tom, Bob has reduced the need for com-
munication, but this can be extended to not just Tom but many
others, saving a lot of communication. While this example
appears to be contrived, one can consider a wide range of
examples where a similar advantage can be realized. For
instance, another way to put it is that suppose Bob knows
the review scores of 1000 restaurants in his city but without
knowing the pass score to be qualified as a good restaurant.
Bob does not know if any of them passed, but on receiving the
one message on the pass score, Bob now can infer which of
the 1000 restaurants passed and which did not. Also, rather
than sending 1000 facts stating which passed and which
didn’t, sending just the pass score is more efficient. Lastly,
if Bob is uncertainty tolerant and guesses the pass score
70 with probability 0.75, then it doesn’t even need to ask
for the pass score, and concludes a restaurant passes with
probability > 0.5, which might be good enough for tolerant
Bob to dine in.

B. QUESTION: WHAT MESSAGES TO SEND?
We have discussed that an optimal message can be chosen
to minimize the entropy for a given query q (see (5)) in
Subsection III-F. If a message is to be sent over a TC channel,
the length of the message can be seen as the cost of TC. Let
`(m) denote the length of message m, where m ∈ U at a
sender (in bits) and K represent the knowledge base at the
receiver that has query q. Provided that the maximum length
of message is limited by Lmax over a given TC channel, the
optimal message for query q can be chosen as follows:

m∗ = argmin
m∈U

HK∪{m}
f (q)

subject to `(m) ≤ Lmax . (13)

While the optimization in (13) would be tractable, it requires
for the sender to know or estimate the receiver’s knowledge
base, K , so that it can compute HK∪{m}

f (q). Thus, in general,
it is expected that the sender has a larger knowledge base than
the receiver and knows (or is able to estimate) the receiver’s
knowledge base. For example, the sender can be a server
in cloud and the receiver can be a mobile user in a cellular
system. The server needs to update all the registered users’
knowledge bases. In addition, the server is connected to base
stations and needs to estimate the length of message m to be
transmitted through TC, which may vary depending on the
time-varying physical channel condition between the user and
associated base station. In this case, `(m) is also a function of
the channel condition and parameters of the physical layer
(e.g., modulation order, code rate, and so on).

The message selection problem in (13) can also be general-
ized for the case of multiple receivers. For example, suppose
that there is a common query from all the receivers, q. For TC,
we can consider broadcast channels where there one sender
andN receivers. LetKn denote the knowledge base of receiver
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n, n ∈ {1, . . . ,N }. Then, (13) becomes

m∗ = argmin
m∈U

max
n

HKn∪{m}
f (q)

subject to `(m) ≤ Lmax , (14)

where the maximum of the all receivers’ entropy for the
common query q, i.e., maxn HKn∪{m}

f (q), is to be minimized.
If multiple messages are to be sent, the message selection in
(14) can be repeated or a subset of U can be chosen.

C. QUESTION: WHAT QUESTIONS TO ASK?
As shown in Example 4, it is important to formulate a
question/query carefully in SC for efficient TC. For example,
if Bob asks Alice, ‘‘Does Tom pass?’’, Alice can answer
yes or no. Thus, a single binary random variable can be
considered in TC for Alice’s answer. In this regard, inefficient
questions might be ‘‘What is the pass score?’’ and ‘‘What is
Tom’s score?’’. Then, Alice must answer ‘‘70’’ and ‘‘75’’,
respectively, which requiresmore than one bit and can be seen
inefficient compared to the answer of pass or fail with one
binary random variable in TC.

In addition, the knowledge base has to be exploited
in SC to formulate a TC-efficient question/query through
semantic inference as mentioned earlier. By a TC-efficient
question/query in SC, we mean a question/query that can be
answered with a minimum number of bits in TC. To this
end, we can consider the minimum description length (MDL)
criterion [29].

Recall that P(K ) denotes the set of queries answerable
using knowledge base K . Consider a subset ofP(K ), denoted
by Q (i.e., Q ⊆ P(K )), which has all the queries whose
answers can provide specific information that Bob wants.
Then, the query that minimizes the total length of query-and-
answer is given by

q∗ = argmin
q∈Q

`(q)+ `(m | q), (15)

where `(q) and `(m | q) represent the length functions of
question q andmessagem (as an answer) for given question q,
respectively. Furthermore, the cost function can be replaced
with `(q) + λ`(m | q), where λ > 0 is the weight for the
length of answer. In the conventional MDL criterion, λ = 1.
while λ can be larger than 1 if the length of answer is more
important than the length of question, and vice versa. For a
length function, `(·), suppose that a set of queries is finite
and known, i.e., Q = {q1, . . . , qN } with a finite N is known.
In addition, if the probability that query qn is given by
Pr(qn) = Pn, using the entropy, then the length of query qn
becomes L(qn) = − logPn.
Example 5: Suppose that a group of students took an exam

and their scores (between 1 and 100) were given. In addition,
there are 4 grades, {A,B,C,F}. Denoting by x a student’s
score, the grade is given as follows: A for x ≥ 90, B for 70 ≤
x < 90, C for 50 ≤ x < 70, and F for x < 50. Alice
has a knowledge base of the exam results, and Bob wants to
know if Tom has passed and can consider the following set of

questions to ask Alice:

Q = {q1, q2, q3}
= {‘Tom′s score?′′, ‘‘Tom′s grade?′′,

‘‘Does Tom pass?′′}.

Bob knows the grading table and F means fail. Provided that
Tom’s score is 80, the answer that ‘‘Tom’s score is 80’’ (for
q1) or ‘‘Tom’s grade is B’’ (for q2) implies that Tom passes.
Thus, the answer of any query inQ can directly or indirectly
provide the information what Bob wants (i.e., whether or not
Tom passes). The number of bits to encode the answer for
query q1 is log 100 ≈ 6.64 bits (if the score is given as an
integer number between 1 and 100 uniformly at random),
for query q2 2 bits (as there are 4 grades that are equally
likely), and for query q3 1 bit. If P1 = 0.6, P2 = 0.3, and
P3 = 0.1, with λ = 1, then q∗ = q2 according to the MLD
criterion in (15). Of course, `(m | q) can be shorter than the
above values of any prior knowledge of Tom’s performance
is known (e.g., Tom has been an excellent achiever and hardly
fails). This indicates that the receiver’s knowledge base can
help compress the information to be sent in TC.

D. QUESTION: HOW EXISTING KNOWLEDGE IS RELATED?
Let Y be a random variable of a certain information. In addi-
tion, denote by Xk the information that user k has. Each user
may have a different uncertainty on the information Y that
can be measured by the following conditional entropy:

Wk = H(Y |Xk ) ≤ H(Y ). (16)

We can decompose the information at user k with respect to Y
as follows: Xk = (X̃k , X̂k ), where X̃k is independent of Y , i.e.,
f (Y , X̃k ) = f (Y )f (X̃k ). Here, f (X ) represents the distribution
of X . Then, we have

Wk = H(Y | X̃k , X̂k ) = H(Y | X̂k ). (17)

Thus, in multiuser SC with single sender and multiple
receivers, it becomes important to realize the difference
between receivers’ knowledge bases.
Example 6: Suppose that Y is a message. The meaning of

this message can be different and depends on a receiver’s
knowledge, which is denoted by Xk for user k . As a result,
the meaning of the message is a function of Y and Xk , i.e.,
Sk = h(Y ,Xk ). Consider 3 parties, Alice, Bob, and Eve.
All the three parties know a person named Tom who took an
examination. Alice has a message, Y , that is ‘‘Tom’s score
is 75’’ to deliver Bob and Eve. Bob knows that another
candidate whose score is 70 passes, which makes Bob deem
Tom passed. Therefore, the meaning of the message is that
Tom has passed the examination. On the other hand, Eve
knows that a different candidate whose score is 80 passes.
Thus, Eve still does not know if Tom has passed.

In this and previous subsections, we discussed two separate
questions, while the two questions can be considered together.
For example, if there are multiple related queries, we may
consider an optimal order of queries to minimize the number
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of bits to be transmitted through interactions between TC
and SC. To this end, it is necessary to consider the fact that
the receiver can update its knowledge base once the answers
of the earlier queries are obtained. Using a certain example,
we will discuss this issue in Section V with numerical results.

E. QUESTION: WHERE TO SEEK ANSWER AMONG
DISTRIBUTED SOURCES?
In this subsection, we first discuss an approach to efficiently
select distributed sources in terms of the entropy differ-
ence minimization [30]. Then, we extend this approach with
respect to semantic context.

Suppose that there are multiple senders and one receiver.
Let Xk denote the information that sender k has. The receiver
has a query and the answer is a function of the variables at
the senders, which is given by Y = φ(X1, . . . ,XN ), where N
stands for the number of senders. For a large N , with a lim-
ited bandwidth, collecting all information from N distributed
senders may take a long time. Furthermore, if the Xn’s are
correlated, it may not be necessary to collect all variables.
For efficient data collection from distributed senders/sources
(or sensors), the notion of data-aided sensing (DAS) has been
considered in [31] and [32]. If only one sender can be chosen
in each round, the following selection criterion is proposed
in [30]:

n(i+ 1) = argmin
n∈Ic(i)

H(X c(i) |X (i))− H(Xn |X (i)), (18)

where I(i) represents the index set of the senders that send
their information up to iteration i and X (i) is the set of
the variables of the senders corresponding to I(i). Here, X c

stands for the complement of a setX . In (18), H(X c(i) |X (i))
represents the total amount of remained uncertainty of x =
[X1, . . . ,XN ] for givenX (i), which is available at the receiver
up to iteration i. Thus, in the next iteration i + 1, the sender
that minimizes the remained uncertainty is to be chosen.

While no semantic information is taken into account in
(18), it is possible to extend to consider semantic information.
Let mn represent the message at node n (for a given set of
queries). At iteration i, K (i) represents the updated knowl-
edge base K . Then, from (4), the node (or source) selection
criterion can be given as follows:

n(i+ 1) = argmin
n∈Ic(i)

{UKB(K (i) ∪ {mn})− UKB(K (i))} . (19)

That is, the receiver can actively seek the most effective
message among multiple sources and iterate this process to
rapidly improve the knowledge base. In addition, as in (13),
constraints on TC can be imposed if TC channels are limited
(e.g., in terms of capacity and channel resource sharing).

V. NUMERICAL RESULTS
In this section, we present the numerical results of two exam-
ples, illustrating how SC and TC can interact to reduce the
communication overhead in terms of the number of bits to
transmit or the number of communication rounds. For sim-
plicity, we consider a peer-to-peer communication between

FIGURE 4. A crossword puzzle scenario.

Alice and Bob who are the sender and the receiver, respec-
tively, and focus only on the transmission from Alice to Bob.
The first example assumes that all the queries from Bob to
Alice are assumed to be reliable, whereas the second example
considers unreliable queries, as we shall elaborate next.

A. CROSSWORD PUZZLE EXAMPLE
Consider a task for Bob to solve the crossword puzzle in Fig. 4
with the three questions. Bob has a knowledge base, denoted
by KB, to solve the puzzle and is able to ask Alice to obtain
answers through TC. It is assumed that Alice knows all the
answers, which are (1) APPLE, (2) PORK, and (3) ICE. The
physical channel of TC is modeled as a discrete memory less
channel (DMC) and TC unit is an alphabet letter (upper cases
only). Thus, we assume that each symbol has a unit length of
Ltc = log2 26 ≈ 4.7 bits. For the 26-ary DMC of TC, the
following transition probability is assumed:

y =

{
x, with a probability of 1− ε
x ′ 6= x, with a probability of ε

26−1 =
ε
25 ,

where ε represents the crossover probability or symbol error
rate of TC.

To solve the crossword puzzle in Fig. 4, for problem (1),
Bob has a list of possible answers (the names of fruits consist-
ing of 5 letters) as follows, written as an annotated disjunction
representing a probability distribution:

0.25::word(one,"APPLE");
0.25::word(one,"PEACH");
0.25::word(one,"MANGO");
0.25::word(one,"MELON").

where ‘‘;’’ can be taken as XOR, that is, there are 4 fruits and
each one is equally likely in KB. For problem (2), Bob has the
possible answers as follows:

0.5::word(two,"BEEF");
0.5::word(two,"PORK").

Bob does not have any idea on problem (3). Note that any
answer to the query one(X ) has probability 0.25 and any
answer to the query two(Y ) has probability 0.5, that is,
HKB
f (word(one,X )) ≈ 0.811, for each of the possible X and

HKB
f (word(two,Y )) = 1 for each of the possible Y . However,

we can also capture how knowing certain possibilities in one
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TABLE 1. Total numbers of letters to be transmitted for 3 different orders.

word can help Bob know the other word, e.g., with certainty
1.0, not labelled below, we have the rules:

% (1) helps (2)
word(two,"PORK") :-

word(one,"APPLE").

% (3) helps (1)
word(one,"APPLE") :-

word(three,X), endswith(X,"E").

Firstly, we assume that the TC channel is error-free (i.e.,
ε = 0). Without any interactions between TC and SC, Alice
needs to send 9 letters or 9Ltc bits. To reduce the number of
bits from Alice to Bob, Bob can exploit his knowledge base.
To this end, 3! = 6 orders for queries3 can be considered (e.g.,
(1) ⇒ (2) ⇒ (3)). When (1) is asked to Alice, Alice sends
‘‘APPLE’’. Then, Bob can find the answer of (2) using his
knowledge base. Furthermore, Bob can update his knowledge
base as ‘‘If the meat is from pig, it is PORK’’ with probability
1 or

word(two,"PORK") :-
clue(two,"meat from pig").

Bob can ask (3) to Alice and Alice sends the first two
letters, ‘‘IC’’ as the last letter was sent. Note that once (1)
is answered, Bob can find the answer of (2). Thus, the two
orders of queries, [(1)⇒ (2)⇒ (3)] and [(1)⇒ (3)⇒ (2)],
are reduced to [(1) ⇒ (3)]. As a result, according to the
order of queries, (1)⇒ (3), a total of 7 letters should be sent
from Alice. For different orders, we have different number of
letters to be transmitted as shown in Table 1.

Note that when problem (3) was asked as the first query,
Bob receives ‘‘ICE’’. Then, he can use his knowledge base
to find all the answer. That is, for (1), ‘‘APPLE’’ is only
the answer whose last letter is ‘‘E’’ so that Bob can find
the answer. Likewise, Bob can also find the answer of query
(2). This result can provide an insight into the best order for
multiple related queries, which is that the first query might
be the most uncertain one for Bob. However, this may not
be true if TC is no longer error-free (as we will show later).
In addition, note that the rule that (1) helps (2) could have
beenmore precisely stated that the answer to (1) with the third
letter (index 2) is ‘‘P’’, then Bob would know word (2):

word(two,"PORK") :-
word(one,X), charAt(X,2,"P").

and one could also state that knowing just the third letter of
(1) would identify (1) completely:

3In this example, the terms, problem and query, are interchangeable.

FIGURE 5. The decoding error probability as a function of crossover
probability, ε, when Alice sends the answer for each query.

word(one,"APPLE") :-
word(one,X), charAt(X,2,"P").

While this could help further reduce the amount of data Alice
needs to send to Bob - Alice just sends the third letter of (1)
to identify both (1) and (2), given Alice knows about Bob’s
knowledge base, wewill not consider thesemore precise rules
further for simplicity.

We now consider the case that the crossover probability
of TC channel is non-zero (i.e., ε > 0). Suppose that the
majority-logic decoding [33] is employed. For query (1),
Bob can successfully decode if any 3 letters out of 5 letters,
APPLE, are correctly received. For query (2), we assume that
2 letters are to be sufficient for successful decoding (here,
we ignore the case that ‘‘POEF’’ or ‘‘BERK’’ etc). On the
other hand, for query (3), all the 3 letters should be correctly
received, which can happen with a probability of (1− ε)3.

In Fig. 5, the decoding error probability when each query
is answered from Alice to Bob over 26-ary DMC is shown.
Thanks to different levels of knowledge at Bob, the decoding
error probability varies. Since Bob does not have any knowl-
edge about query (3), the decoding error probability becomes
the highest. When ε > 0, there can be decoding errors in TC.
Thus, Bobmay ask Alice to re-transmit. For this, we consider
a simple re-transmission scheme. Then, the average number
of re-transmissions can be found using the geometric distribu-
tion. For example, letting ps denote the probability of success-
ful decoding for the transmitted answers, the average number
of (re-)transmissions becomes 1

ps
, and the total number of

letters to be (re-)transmitted becomes number of letters
ps

for
each query. Fig. 6 shows the average number of letters to be
(re-)transmitted for each order. It is shown that order 3 is opti-
mal (in terms of the number of letters to be (re-)transmitted)
when the crossover probability is sufficiently low (which was
clearly shown above when ε = 0). However, as the TC
channel becomes less reliable (i.e., ε increases), order 3 is
no longer optimal. That is, when ε ≥ 0.29, we see that order
2 becomes optimal.
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FIGURE 6. Average number of letters to be transmitted as a function of
crossover probability, ε, for different orders in queries to solve the
crossword puzzle in Fig. 4.

FIGURE 7. A clinical test scenario.

B. CLINICAL TEST EXAMPLE
Consider a new medicine clinical test in which Alice and
Bob participate as a medical doctor and a medical scien-
tist, respectively. As Fig. 7 shows, Alice in a hospital has
a knowledge base storing the causal relationships among a
symptom X2, its treatment X3, and a patient’s recovery X4;
i.e., p23 = p34 = 0.7, p24 = p35 = 0.3, and p25 = 0, where
pji := Pr(Xi → Xj) and Xj → Xi is read as ‘Xj causes Xi.’
Unknown relationships are associated with random guesses,
i.e., p12 = p15 = 0.5. Meanwhile, Bob in a lab has a
knowledge base storing the causal relationships among the
age X1 and loss X5 of the patient; i.e., p12 = 0.7, p15 = 0.3,
and p23 = p24 = p25 = p34 = p35 = 0.5.
Such a knowledge base coincides with a causal graph, i.e.,

a structured causal model (SCM) [34] or a Bayesian network,
which is a directed acyclic graph (DAG) having the nodes
Xi’s and the edges associated with pji’s that identify causal
relationships. ProbLog is capable of representing this causal
knowledge base in a way that ‘‘Xj→ Xi with probability pji’’
is described by the following clause:

pji :: Xi : − Xj.

Given this knowledge base, our focus is Bob’s self-asking a
query Xi about the truth probability Pr(Xi) of Xi, which is cast
as:

Pr(Xi) = 1−
∏
j

(
1− pji Pr(Xj)

)
, (20)

where Pr(X1) is assumed to be 1. The calculation of Pr(Xj)
follows the same way of (20) in a recursive manner. Conse-
quently, Pr(Xi) reflects all its preceding causal relationships.

Suppose that answering to each query is followed by
improving Bob’s knowledge base by receiving a single clause
on pji from Alice. For every communication round, Bob
compares the received clause on pji and the clause pji stored
in its knowledge base. Bob chooses either one of these two
clauses and updates its knowledge base. Assuming that the
received clause is always chosen by Bob, the communicating
clause selection at Alice and the received clause assimilation
at Bob are jointly recast as the problem of Alice’s selection of
a clause to transmit. Each clause transmission is determined
by one of the the following rules:

• A1. Replacement - A randomly selected clause;
• A2. Maximum Edge Probability - The clause associ-
ated with the maximal edge probability;

• A3. Minimum Edge Entropy - The clause maximally
reducing the entropy of an edge in Bob’s knowledge
base;

• A4. Minimum Knowledge Base Entropy - The clause
maximally reducing Bob’s knowledge base entropy;

• A5. Maximum Average Answer Probability - The
clause maximizing Bob’s average answer probability.

With A1, the communication Rounds continue until send-
ing Alice’s entire 7 clauses. With A2-A5, the communication
stops when it cannot further improve Bob’s knowledge base
for its given criterion. This reduces communication costs,
which comes at the cost of Alice’s additional computing
overhead and having the information on Bob’s knowledge
base.

To measure the accuracy of Bob’s reasoning about its
query, we define the average error of a query on Xi where
the average is taken over the query selection. Each error is
measured using the absolute difference between Pr(Xi) under
Bob’s knowledge base and that under a ground-truth SCM
that can be reconstructed by integrating the knowledge bases
of Alice and Bob based on A3.

When Bob’s self-asking queries are randomly selected,
Fig. 8(a) shows that A3 achieves the lowest average error
after 5 communication rounds, in stark contrast to A2 and
A5 focusing on the edge/answer probability, corroborating
the importance of taking into account entropy. Furthermore,
Fig 8(b) depicts that A3 achieves the entropy of the ground
truth SCM, advocating that the knowledge base entropy is a
good indicator to identify the reasoning capability of Bob.
Nonetheless, the knowledge base entropy is not a proper
communication rule for causal reasoning as it ignores the
causal relationship therein, as observed by A4 that is even
worse than A1.

Next, we consider that Bob’s query is always on X5. Alice
can reflect this task specific information in its default trans-
mission rule A3 by reducing the target clauses from the its
entire knowledge base to only the clauses having X5 as their
header. This new rule and the originalA3 can be interpreted as
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FIGURE 8. Average error and knowledge base entropy under Alice’s
transmission rules A1-A5, when Bob’s query is randomly selected from
{X1, · · · ,X5}. The transmission stops when no further gain is achieved in
terms of a given rule.

A3-1 ‘Within Task’ andA3 ‘Beyond Task’ rules, respectively.
Fig. 9(a) shows that A3-1 achieves a sufficiently low average
error rate with less communication overhead. Nevertheless,
as opposed toA3,A3-1 fails to achieve the minimum average
error due to its ignorance of the causal relationships that
are not directly associated with X5. Indeed, the resultant

knowledge base entropy under A3-1 is different from that
underA3 and the ground truth value, as observed in Fig. 9(b).

VI. OPEN ISSUES AND CHALLENGES
In this section, we present open issues and challenges to
design SC systems.

A. BACKGROUND COMMUNICATION FOR KNOWLEDGE
BASE UPDATES
In the previous sections, we have studied SC under a scenario
where a user (Bob) has a set of queries to send and ask another
user or a server (Alice) who may have a better knowledge
base than Bob, to get answers through TC as shown in Fig. 3.
TC may suffer from outages due to fading and interference
and from delays due to limited bandwidth. To avoid those
difficulties, Bob may update his knowledge base in advance
for the anticipated queries whenever the bandwidth of TC
is sufficient. From this, we can divide TC into: background
TC for updating the knowledge bases of users and foreground
TC for sending a query and receiving an answer if the user’s
knowledge base is not sufficient to obtain the answer with a
certain reliability.

Given limited bandwidth, it is crucial to optimize the
resource allocation and scheduling for the foreground TC and
background TC. It is expected that the cost of background
TC is lower than that of foreground TC as the background
TC can be carried out based on best-effort delivery, while
the foreground TC needs reliable and low-latency delivery.
In this respect, the problem scenario is similar to radio
access network (RAN) slicing between ultra-reliable and low-
latency communication (URLLC) and other types of ser-
vices [35], [36], [37]. One key difference is that the priority
of background TC depends on the amount of the accumu-
lated knowledge and query patterns and anticipation. In this
sense, edge caching problems are also relevant [38], [39].
Nonetheless, background TC is additionally challenged by
the logical connections within knowledge bases, as observed
by the examples in Section V.

B. PRAGMATIC SC FOR MEMORY AND COMMUNICATION
EFFICIENCIES
Thus far we have focused mainly on the Shannon-Weaver’s
semantics (Level B) problem, while for the effectiveness
problem (Level C) we have presumed that all semantic con-
tents can be useful for some generic tasks. Such SC strategies
may not be sustainable under limited memory for storing the
ever-growing amount of knowledge, not to mention incur-
ring redundant communication costs. Alternatively, inspired
from pragmatic information theory [40], we can first focus
on a given task, and then count the usefulness of semantic
contents based on its effectiveness in the task. In pragmatic
information theory, there is a novelty-confirmation trade-off
stating that not only identical information but also too novel
information do not contribute to updating knowledge and/or
having impacts on decision-makings. While the former is
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FIGURE 9. Average error and knowledge base entropy under Alice’s
transmission rule A3 ‘Beyond Task’ and A3-1 ‘Within Task,’ when Bob’s
query is fixed as X5. The transmission stops when no further gain is
achieved in terms of a given rule.

trivial, the latter results from the fact that such dissimilar
information is barely comprehensible.

Leveraging this idea, consider a remote control scenario
where Bob updates his knowledge base only when the
received clause is grounded in (i) Bob’s prior knowledge and
(ii) the physical world, directly or through multiple hops. The
condition (i) comes from the novelty-confirmation trade-off,

and (ii) is based on that control task-effective actions should
be taken in the real world. For brevity, consider only con-
ditional clauses in the form of a → b but an action u
that is a factual clause. For given Bob’s knowledge base
{b → a, a → u, u}: if Bob receives c → b satisfying
(i) and (ii), Bob updates the knowledge base; and if Bob
receives c → d violating (i) and (ii), Bob keeps the knowl-
edge base unchanged. By adding this pragmatic rule to the
aforementioned SC framework, one can communicate and
store only the semantic contents that are effective in a given
task. In doing so, Bob can save the memory costs by simply
discarding less task-effective semantic contents as we studied
in the example in Section V-B. Furthermore, if Alice knows
Bob’s task effectiveness before transmission, they can save
the communication costs too. In this respect, it is worth inves-
tigating the feedback and prediction mechanisms to estimate
the semantic content’s task effectiveness.

C. COMPATIBLE SC VIA KNOWLEDGE-MODEL
CONVERSION
Our proposed SC layer can be seamlessly added on to the
conventional TC layer. How to jointly operate such SC
and TC layers have been elaborated in Section IV-A, and
how to reduce the additional overhead induced by the SC
layer will be discussed in Section VI-D. What makes it
challenging is the recently proposed semantics-empowered
and goal-oriented SC frameworks that commonly rest on
AI-native operations with neural networks [41], [42], [43],
as opposed to our knowledge-based SC layer. We expect
that both AI-native and knowledge-based SC frameworks
are complementary, even creating a synergetic effect. In this
respect, it is promising to study the conversion between neural
network models and knowledge bases.

Indeed, it is possible to convert the knowledge base in our
SC layer into a neural network model. For instance, treating
a knowledge base as a labeled dataset, one can directly infuse
the knowlege of the dataset into a neural network model by
training the model via supervised learning. Similarly, if the
knowledge base is graphical, one can first generate a synthetic
corpus from the graph [44], and train the model, yielding a
trained neural network that contains the knowledge of the
dataset. On the other hand, it is also feasible to transform
a neural network model into a knowledge base, in that the
model parameters store the information on their training
dataset [45]. One possible solution is to leverage the model-
to-corpus verbalization [46] in natural language processing
(NLP), through which a trained model generates synthetic
clauses to be stored in a knowledge base. Consequently,
an updated knowledge base in our SC layer can improve a
neural network model for AI-native SC operations, and vice
versa.

D. SC LAYER OVERHEAD REDUCTION VIA
SEMANTICS ALIGNMENT
Allocating orthogonal communication and separate comput-
ing resources to the SC layer imposes additional overhead on
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the incumbent communication architecture. A näive solution
is superimposing SC and other layers in power domain as
in non-orthogonal multiple access [35], [47]. Going beyond,
one can partly or entirely integrate the SC layer with the
existing TC and/or application layers in semantics domain.
To illustrate, consider integrating the SC layer message Z into
the TC layer message X . It requires to maximize I(X;Z ) =
H(X )+H(Z )−H(X ,Z ). Such a problem boils down to mini-
mizing H(X ,Z ) subject to the fixed marginal distributions of
X and Z . This coincides with the minimum-entropy coupling
problem [48], of which the polynomial complexity solution
is available [49]. Similarly, for the application-SC layer inte-
gration, by maximizing I(U;Z ) = H(U )+H(Z )−H(U ,Z ),
one can align the action U in a control application with Z ,
and vice versa.

Accordingly, engineering the semantic representation of
Z by modifying the logic-based language or learning a new
emergent language could be an interesting research direction.
As shown by the mutual information expressions above, the
SC-TC layer integration and the application-SC layer inte-
gration may require more bandwidth due to the increased
H(X ) and incur more uncertain action decision-makings due
to higher H(U ). Furthermore, in different layers, the message
sizes can be different, and their communication frequency can
be asynchronous. While reflecting this, reducing the SC layer
communication overhead via cross-layer integration could be
a challenging yet interesting topic for future research.

E. PRACTICAL DEMONSTRATORS AND PRACTICALLY
ESTABLISHING COMMUNICATION CONTEXTS
We outlined a number of issues with integrating seman-
tics into communication, and noted how the communica-
tion context (as constituted by the knowledge held by the
communicating parties and by what knowledge one party
thinks the other has) can help in compression, security and
improve efficiency beyond traditional communication mod-
els. An analogy is this: one can hear every word (or see every
symbol) shared within a conversation among two friends
and may not understand what actual knowledge has been
exchanged - compression, security (in part at least) and
efficiency are concurrently achieved, once the communica-
tion context has been established. A practical demonstration
of our approach could be useful, e.g., involving machine-
to-machine (say, robot-to-robot, or among IoT devices)
communication within a shared context, exploiting such an
SC based approach, can help shed further light on the quan-
titative advantages of our approach. One can also investigate
how to efficiently establish and maintain such communica-
tion contexts before further intensive communications take
place.

F. BEYOND ProbLog
We have used ProbLog as a concrete illustration of key
ideas of what we mean by semantics and as a way to model
semantic information and inference, and to demonstrate how
TC and SC can interact information-theoretically. However,

there are many types of inferences possible and other logics
that can be used to model semantics. An open research issue
is to consider a similar analysis as we have done in this
paper but based on a different logical formalism. For example,
a generalized version of ProbLog that allows probabilistic
argumentation based reasoning [50] can help deal with the
open world of communication where received messages may
support or attack certain other pieces of knowledge, where
truth and falsity of statements might not be assumed absolute
but weighted by evidence and argument.

G. BEYOND SC
In this paper, we mainly focused on SC, but did not consider
the applications of SC. There can be a number of differ-
ent applications of SC including ambient intelligence4 [51],
[52], where a knowledge base might be used as a means to
mediate interactions among participants, akin to the notion of
semantic information brokerage in [53]. Such use of knowl-
edge bases for facilitating interactions can aid interoperability
among people and agents in a given smart space (or envi-
ronment) - in the same way that a knowledge base in our
proposed scheme can help provide (or augment) semantics
(and context) for messages received, a knowledge base can
potentially help participants in a smart space understand and
interpret not only messages but also the actions and behaviors
of other participants. Thus, in 6G, it is necessary to model and
build this knowledge base through SC, which however would
be challenging due to diverse applications with different types
of users (e.g., people and autonomous agents).

VII. CONCLUDING REMARKS
While several approaches exist to study semantic informa-
tion, in this paper, we have considered semantic information
and knowledge bases based on probabilistic logic, because
the probabilistic logic based approaches can allow us to
model interactions between SC and TC and formulate various
problems to design a SC system subject to constraints of
physical channels in a unified manner. In particular, based
on probabilistic logic, we have defined various entropy-based
measures for knowledge bases and addressed various issues
when SC and TC layers interact. Numerical examples have
been presented to demonstrate how the proposed probabilistic
logic based approaches can efficiently utilize TC channels
for SC.

Although we mainly focused on SC between human com-
municating parties, the proposed approach can be extended to
machine-to-machine and human-to-machine SC. For human
communicating parties, in general, we have assumed that
one party would improve his/her knowledge (base) by
receiving answers to a series of queries in this paper.
For machines (in general, autonomous agents), there might
be given goals to achieve and SC can be carried out to
achieve those goals. Thus, together with the open issues in
Section VI, it would be interesting to generalize the proposed

4This application was provided by a reviewer.
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approach to SC betweenmachines and betweenmachines and
human/machine agents.
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