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ABSTRACT Speech enhancement (SE) is used in many applications, such as hearing devices, to improve
speech intelligibility and quality. Convolutional neural network-based (CNN-based) SE algorithms in
literature often employ generic convolutional filters that are not optimized for SE applications. This paper
presents a CNN-based SE algorithm with an adaptive filter design (named ‘CNN-AFD’) using Gabor
function and region-aware convolution. The proposed algorithm incorporates fixed Gabor functions into
convolutional filters to model human auditory processing for improved denoising performance. The feature
maps obtained from the Gabor-incorporated convolutional layers serve as learnable guided masks (tuned
at backpropagation) for generating adaptive custom region-aware filters. The custom filters extract features
from speech regions (i.e., ‘region-aware’) while maintaining translation-invariance. To reduce the high cost
of inference of the CNN, skip convolution and activation analysis-wise pruning are explored. Employing
skip convolution allowed the training time per epoch to be reduced by close to 40%. Pruning of neurons with
high numbers of zero activations complements skip convolution and significantly reduces model parameters
by more than 30%. The proposed CNN-AFD outperformed all four CNN-based SE baseline algorithms
(i.e., a CNN-based SE employing generic filters, a CNN-based SE without region-aware convolution, a
CNN-based SE trained with complex spectrograms and a CNN-based SE processing in the time-domain)
with an average of 0.95, 1.82 and 0.82 in short-time objective intelligibility (STOI), perceptual evaluation of
speech quality (PESQ) and logarithmic spectral distance (LSD) scores, respectively, when tasked to denoise
speech contaminated with NOISEX-92 noises at -5, 0 and 5 dB signal-to-noise ratios (SNRs).

INDEX TERMS Adaptive filter design, activation analysis, convolutional neural network, Gabor filter,
pruning, skip convolution, speech enhancement.

I. INTRODUCTION
Speech enhancement (SE) is the task of eliminating or
attenuating additive noise from speech signals, commonly
used in hearing devices to improve speech intelligibility and
quality in noisy environments. In recent years, the adop-
tion of deep-learning approaches for supervised SE tasks
has become mainstream since they demonstrated exception-
ally improved denoising performance over their non-deep
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learning-based counterparts (e.g., spectral subtraction [1] and
statistical model-based SE [2]). Fully-connected deep neu-
ral network (DNN) in particular, has been widely adopted
for nonlinear mapping between noisy speech features and
enhanced speech in supervised SE (e.g., [3] and [4]). This has
been increasingly replaced by convolutional neural networks
(CNNs) (e.g., [5] and [6]) which allow greater flexibility in
their architectural design and can more effectively character-
ize local temporal-spectral structures of speech signals.

CNN-based SE algorithms described in literature rarely
explore the impact of convolutional filter designs on SE
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performance. Furthermore, to achieve high accuracy, deeper
and wider CNNs are often proposed, resulting in an increased
number of parameters and a high cost of inference oper-
ations. Complex CNNs are unsuitable for mobile devices,
edge computing, embedded systems, and real-time appli-
cations, where limitations are imposed on memory, power,
and computation speed. For a CNN-based SE algorithm to
be suitably implemented in memory, power, and compu-
tation speed-constrained systems such as hearing devices,
significant model compression and acceleration are required.
Approaches for CNN compression can be divided into three
categories: network pruning [7], precision reduction [8] and
design of compact network architectures [9].

In this paper, a CNN-based SE algorithm with adaptive
Gabor-based filter design, named ‘CNN-AFD’, formore opti-
mal speech denoising performance is proposed. The proposed
CNN-AFD investigates the benefit of using customized con-
volutional filters for SE tasks. In the proposed SE algorithm,
Gabor functions are incorporated into the convolutional fil-
ters of the network to extract temporal-spectral features based
on prior knowledge of auditory models. The extracted fea-
tures are then used as a learnable guided mask, where the
spatial dimension is segmented into several regions to realize
high-order separation of the speech and non-speech patterns
of the input frames. A filter generator is used to generate
custom filters for region-aware 2D convolution execution on
the speech segments such that dynamic and optimal filtering
is obtained for speech denoising. This leads not only to
improved denoising performance but also a significant reduc-
tion of the number of parameters to operate on compared to a
standard local convolution. This paper additionally employs
skip convolution and a variation of pruning to improve the
efficiency of the proposed CNN-AFD with minimal com-
promise on the SE performance. With skip convolution,
structured sparsity is enforced in feature maps. This reduces
computation and redundant operations while preserving fea-
ture representational capability. Pruning is performed via
performing activation analysis, where neurons and their con-
nections are removed if they have high percentages of zero
activations. The contributions of the paper are summarized
as follows:
• Utilization of Gabor incorporated CNN for realizing
human auditory-inspired adaptive filter design in speech
enhancement tasks;

• Region-aware training and processing on the identi-
fied temporal-spectral speech segments by incorporat-
ing dynamic and customized filtering to the standard
Gabor-based CNN processing pipeline; and

• Skip convolution and a variation of pruning based on
activation analysis are used for network compression.
The proposed CNN-AFD achieves excellent speech
denoising performance compared to its benchmarks
including other recent state-of-the-art CNN-based SE
algorithms with reduced computation cost.

The rest of this paper is organized as follows. Section II
discusses related work employing CNN for SE. Furthermore,

the literature utilizing CNN architectures with bespoke
filter designs is presented. Section III elaborates the pro-
posed CNN-AFD with adaptive Gabor-based filter design
by describing its major functional units in detail. Section IV
describes the network compression techniques employed to
reduce computational cost and model size, namely skip con-
volution and activation analysis-based pruning. The datasets,
evaluation metrics and baseline models used for assessing
the performance of the proposed system are described in
Section V. The results are presented in Section VI. This is
followed by their discussion in Section VII. Finally, the paper
ends with the concluding remarks in Section VIII.

II. RELATED WORK
Table 1 provides a summary of the speech enhancement
algorithms mentioned in this section by including a con-
densed description of the algorithm, and its methods, key
results, and limitations. Recent CNN-based SE algorithms
have been described in [5], [6], [10], [11], [12], and [13].
In [5], two signal-to-noise ratio-aware (SNR-aware) CNN
models are proposed for SE. The first algorithm employs
a multi-task framework in which restoring the clean speech
given a noisy speech input is formulated as the main task and
SNR estimation is given as the second task. In the second
algorithm, based on the SNR estimation given by the CNN, a
specific SNR-dependent CNN model is selected for denois-
ing from a pool of pre-trained SNR-dependent CNN models.
As result, the SNR-aware models outperformed DNN and
CNN models without SNR awareness and the SNR-aware
models can improve denoising performance even when pro-
cessing unseen SNR levels. However, the performance of the
SNR-aware models relies on accurate SNR estimation.

In [6], a multi-objective learning CNN framework lever-
aging a smartphone, where log-power spectra and log Mel
filterbank energy are used as primary and secondary targets
for improved speech denoising is proposed. The experimental
results demonstrated improvements over the compared state-
of-the-art techniques (i.e., log minimum mean square error-
based SE, spectral coherence-based SE, SEmethods based on
DNN, single channel CNN-based denoising autoencoder and
multi-objective DNN-based SE) and validated the usability of
the proposed method in the real world under different noisy
environments and low SNRs. The multi-objective learning
CNN frameworkmakes use of TensorFlowC++ and requires
a maximum memory consumption of 308.8 Mb on the smart-
phone when SE is switched on.

A CNN-based SE for processing speech in the time domain
is presented in [10]. SE in the time domain remains desirable
due to its capability to jointly enhance both magnitude and
phase of speech. To achieve enhancement in the time domain
in [10], frequency domain loss is used to train the CNN and
an extra operation that converts the time domain represen-
tation to the frequency domain representation is added at
training. Frequency domain loss gave better SE outcomes
than time domain loss, and loss functions considering phase
performed better than those that did not. Phase estimation
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TABLE 1. Summary of recent CNN-based SE algorithms described in related work.
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in [10] has room for improvement as the estimated phase
was yet to be comparable with the clean phase. Another SE
algorithm leveraging time domain processing is proposed in
[11]. In this work, a dense convolutional network with self-
attention is employed, where each layer in the encoder and
decoder comprises a dense block and an attention module.
The dense block promotes feature reuse in a deeper net-
work while the self-attention module is used for utterance-
level context aggregation. The dense convolutional neural
network model demonstrated superiority in SE over baselines
employing time-frequency (T-F) masking, spectral mapping,
complex spectral mapping, and temporal mapping. However,
it is more computationally expensive and did not outperform
baselines in terms of real-time performance.

In [12], a CNN for speech synthesis calledWavenet is used
to directly estimate clean speech in the time domain. The
Wavenet model is highly parallelizable during both training
and inference. Both computational and perceptual evaluations
indicated that the Wavenet model is preferential over Wiener
filtering. The Wavenet model, however, displayed limitations
in dealing with sudden interferences like honks in city traffic.

A U-Net-based CNN SE architecture with skip connec-
tions and a focus on real-time applications is proposed in
[13]. The U-Net CNN model provided 27% and 11% per-
ceptual evaluation of speech quality (PESQ) improvement
over a spectral-domain and temporal-domain baseline sys-
tem respectively, as well as significantly lower latency. The
real-time factor is compromised when the processing window
length employed is reduced but this leads to improvements in
speech intelligibility and quality.

All the aforementioned CNN-based SE algorithms employ
generic convolutional filters (or kernel functions) for speech
denoising. Recent studies on CNN architectures suggest more
optimally designed filters can lead to improved performance,
better convergence behaviour and reduced hyperparameter
sensitivity. For example, in [14] a selective kernel convolution
scheme is introduced into a convolutional encoder-decoder
architecture for SE by employing adaptive receptive field
size. The selective kernel convolution takes into consideration
varying spectrograms arising from different noises, speakers,
and contents of speeches. As result, the implementation of
dynamic receptive field size in the convolutional layer of the
encoder led to improved SE performance in both seen and
unseen conditions when compared to baselines with fixed
receptive field size.

In [7], a framework is developed for searching optimal
filter shapes for stripe-wise network pruning. The optimal
filter shapes not only provided appropriate receptive fields for
each convolution layer but also removed redundant parame-
ters in convolution filters. When embedded in the VGG-16
CNN [15] for the task of object recognition, the optimal
filter shapes increased recognition accuracy from 93.53%
to 94.26%, in addition to providing model compression and
processing speed-up.

Adaptive convolution kernels are explored in [16] for
computer vision tasks. The adaptive kernel is defined by a

dynamic filter that changes its weights by itself depending on
the input image. The adaptive convolutional kernels signif-
icantly reduced the number of epochs required for training,
number of activation function computations and number of
parameters needed in the model whilst maintaining >99%
accuracy. These studies make a compelling case for investi-
gating bespoke filter designs for SE applications. Therefore,
this work explores and demonstrates the benefits of using
adaptive convolutional filter design in SE.

CNN is also widely used in other speech processing meth-
ods besides SE. In recent years, speech emotion recogni-
tion and classification have garnered much research interest.
An example CNN-based speech emotion recognition system
is the novel hybrid architecture based on acoustic and deep
features proposed in [17]. Deep features are obtained by
feeding spectrogram images of the original sound signal to
pre-trained CNN architectures such as VGG-16 and ResNet-
101 [18]. The use of a hybrid feature vector containing
deep and acoustic features showed superior classification
accuracy and efficiency compared to previous approaches
described in the literature (e.g., [19]). In [20], CNN is used for
real-time speech source localization that is robust to realistic
background acoustic conditions (noise and reverberation).
A combination of the imaginary-real coefficients of STFT
and spectral flux with delay-and-sum beamforming is used
as the input feature. The CNN model is trained using noisy
speech recordings collected from different rooms. The pro-
posed CNN-based approach trained with STFT coefficients
and spectral flux with beamforming provided successful real-
time inferencing with low latency (21 ms per frame with a
frame length of 30 ms) and high accuracy (i.e., 89.68% under
babble noise condition at 5 dB SNR).

III. CNN-BASED SPEECH ENHANCEMENT WITH
ADAPTIVE FILTER DESIGN
In a CNN-based SE, the extracted features from the audio
input are represented as an image and the mapping from
noisy speech to enhanced speech forms a regression prob-
lem. Through performing convolution on the audio input
with a series of weighted learnable filters, a feature map
which describes simple image features of the audio input
is generated. The obtained feature maps are often fed to a
max-pooling layer for dimensionality or resolution reduction.
Oftentimes, the max-pooled output is connected to another
convolution layer as more complex feature learning can be
achieved with the addition of more convolution layers. The
outputs of convolution or max-pooling layers are flattened
and fed to fully-connected layers before the final regression
output (enhanced speech) is obtained. The enhanced speech
output is given at the nonlinear output layer which comes after
the fully-connected layers. From training, the CNN learns to
identify important T-F auditory features such as formants.
Since each part of the feature map is convoluted with the
same filter, the CNN is invariant to translational variance.
This allows the network to be robust in processing speech
from different genders, and possibly languages and accents,

130660 VOLUME 10, 2022



S. Abdullah et al.: Compact CNN-Based SE With AFD Using Gabor Function and Region-Aware Convolution

FIGURE 1. System overview of the proposed CNN-based SE method with
adaptive filter design (CNN-AFD). The adaptive filter design is conducted
via a three-step process shown in (c) which involves: (1) extracting the
learnable guided mask from the Gabor feature map; (2) generating the
custom region-aware filter based on the extracted learnable guided
mask; and (3) performing convolution operation using the generated
custom filter.

where different pitches (related to fundamental frequencies)
are presented.

Fig. 1 illustrates the system-level overview of the proposed
CNN-AFD, where the CNN filters are generated dynami-
cally, conditioned on the input noisy speech frames. In the
training stage (denoted by the red arrows in Fig. 1, repre-
senting the training path), the CNN model is trained with
pairs of 64-frequency channel power-normalized spectrum
(PNS) [21] features extracted from the noisy speech and the
corresponding clean speech. The PNS is obtained using the
fast Fourier transform as shown in Fig. 1(a). Subsequently, the
logarithmic function is performed on the normalized energy
magnitude. Note that the PNS features form a single-channel
2D image unlike RGB images in computer vision tasks
which contain three channels defining red, green and blue
color components. Skip convolutions are performed when
the examination of the extracted PNS suggests an absence of

speech (unvoiced). This process is depicted in Fig. 1(b). In the
enhancement stage (denoted by the blue arrows in Fig. 1,
representing the enhancement path), the trained CNN-AFD
model is fed with the PNS features of noisy speech from
the test set. Through forward propagation within the trained
model, the enhanced PNS features would be given as the
output. The enhanced speech is then combined with the phase
information extracted from the input noisy speech for wave-
form reconstruction. At reconstruction, the enhanced speech
features undergo inverse fast Fourier transform. This is fol-
lowed by performing overlap-add to synthesize the enhanced
speech in the time domain (Fig. 1(e)). The proposed design
consists of three major components as shown in Fig. 1(d)
to achieve a CNN-based SE with adaptive filter design and
filtering: (i) a learnable guided mask module, where convolu-
tion with the Gabor filter is performed to generate the speech/
non-speech region patterns according to the input frames; (ii)
filter generator module, where a customized filter is extracted
from the speech region patterns and (iii) dynamic filtering
module, where region-aware convolution is performed using
the customized filter. The parameters within the filter genera-
tor and dynamic filtering modules are not fixed after training
like regular deep-learning model parameters as they are made
to adapt according to the calculated learnable guided mask,
which is in contrast, fixed and optimized at training.

A. ADAPTIVE FILTER DESIGN
1) LEARNABLE GUIDED MASK MODULE
The learnable guided mask is calculated based on the output
from the Gabor filter and it indicates the regions containing
speech and non-speech components within each input noisy
speech utterances. TheGabor filter [22], popular for its invari-
ance in scale, rotation, and translation, captures localized
regions of temporal-spectral information over broader time
intervals. Neurophysiological evidence [23] from several ani-
mals shows that the 2D temporal-spectral Gabor filterbank
resembles the temporal-spectral receptive fields of auditory
cortical cells. Due to this and its other inherent benefits such
as noise robustness, it is widely used in speech processing
applications. The two-dimensional Gabor function G imple-
mented in this paper is defined by a complex sinusoidal signal
modulated by the Gaussian envelope. Only the real part of the
Gabor filter equation is used [22]:

G = exp
(
−
û2 + γ v̂2

2σ 2

)
cos

(
2π

û
λ
+ ψ

)
, (1)

where

û = (u− u0) cos θ + (v− v0) sin θ, (2)

v̂ = − (u− u0) sin θ + (v− v0) cos θ, (3)

λ is the wavelength of the sinusoidal factor, θ is the
orientation of the Gabor filter, ψ is the phase offset, σ rep-
resents the standard deviation of the Gaussian envelope, γ
denotes the spatial aspect ratio and finally, (u0, v0) is the
location of the center.
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FIGURE 2. Learnable guided mask acquisition and optimization process.
The forward propagation involves calculating the guided mask by
applying the argmax(.) function on the Gabor guided feature. The
backpropagation process requires the introduction of an intermediary
term F̂ j

u,v which enforces the guided feature to closely approximate the

guided mask. Calculating the error gradient for F̂ j
u,v will allow the

estimation of the error gradient for the guided feature F j
u,v , which is

needed to enable successful backpropagation training.

The ψ , σ and λ were set to the following ranges: {0,
π
4 ,

π
2 ,

3π
4 ,} {1, 2, 3, 4, 5} and {0.2, 0.4, 0.6, 0.8, 1} respec-

tively. The parameters leading to the best validation accuracy
are subsequently chosen in the Gabor filter construction. θ
and (u0, v0) were kept controlled at 0◦ and (0.5k , 0.5k),
respectively, where k is the filter size, at the time of the
preliminary test. Adjusting θ tunes the Gabor function to a
particular direction of temporal-spectral modulation. Only a
subset of the possible filter combinations is used to avoid high
similarities (leading to redundancies) between the feature
components. NarrowGabor filters capture rapid time-varying
detail of the temporal-spectral input, while coarse (or dilated)
filters highlight the coarse representations from the speech
signal. Similarly, tall, and short filters each capture different
spectral dynamics.

The input to the Gabor filter can be denoted as X ∈ RU×V ,
whereU andV are the height and width of the 2D PNSmatrix
R, respectively. When convolved with a Gabor filter G, the
corresponding feature map output F ∈ RU×V is given by:

Fu,v = Xu,v ∗ G(u0, v0) ∈ S, (4)

where S represents the spatial dimension (S ∈ RU×V ) and
∗ is the 2D convolution operation. (u0, v0) represents a T-F
unit within the PNS matrix that corresponds to the center
of the filter when the filter size is larger than 1 × 1. From
the feature map output, a guided mask M = {S0, . . . , Sm−1}
which represents the different regions (i.e., regions dominated
by speech and regions dominated by noise or silence) within
the spatial dimension is obtained.

The learning process of the guided mask is shown in Fig. 2.
The guided mask M ∈ RU×V is computed based on the

Gabor feature map F ∈ RU×V , by executing the following
expression [24] in the forward propagation (shown by blue
arrows in Fig. 2):

Mu,v = argmax(F0
u,v,F

1
u,v), (5)

where argmax (.) gives the index (0 or 1) at which the maxi-
mum value is found when F0

u,v and F
1
u,v are compared, F0

u,v is
the Gabor guided feature for non-speech-dominated regions
and F1

u,v is the guided feature for speech-dominated regions.
Therefore, the guided mask varies between 0 and 1, which
indicates the index of the guided feature that should be used
in the corresponding position. From the guided mask, a filter
Ŵu,v for each position (u, v) can be obtained as follows:

Ŵu,v = WMu,vMu,v ∈ [0, 1] = W ∗Mu,v (6)

where WMu,v is one of the filters [W0,W1] generated in the
learnable guided mask module. ∗ denotes 2D convolution
operation.

At the backward propagation process (shown by red arrows
in Fig. 2), the error gradients of theweights which produce the
guided feature are approximated. The gradient is estimated
from comparing the performance given by the guided mask
with the intended outcome. It is subsequently backpropagated
to the guided feature to form a training loop which in turn
optimizes the guided mask. To calculate the gradient, a new
term, F̂ ju,v, which closely approximates the guided mask is
introduced. F̂ ju,v is obtained by applying a softmax function
to the guided feature F ju,v as follows:

F̂ ju,v =
eF

j
u,v∑1

n=0 e
Fnu,v

j ∈ [0, 1] , (7)

Eq. (7) enforces the guided feature to be as close to 0 or 1 and
as a result, reduces the gap between the guided feature and the
guided mask. The gradient of F̂ ju,v is computed as follows:

∇F̂ ju,v
L = 〈1Ŵu,v

L,Wj〉 j ∈ [0, 1] , (8)

where∇.L represents the tensor’s gradient with respect to the
loss function and 〈, 〉 denotes dot product. From the gradient
of F̂ ju,v, the gradient of the guided feature F ju,v finally can be
obtained:

∇Fu,vL = F̂ ju,v � (∇F̂ ju,vL− 1), 〈Fu,v,1F̂ ju,v
L〉 (9)

where � is element-by-element multiplication. The approxi-
mate backpropagation is needed to ensure that the stochas-
tic gradient descent algorithm (used for backpropagation
training) is successful at parameter optimization since the
argmax (.) function is non-differentiable, leading to the ceas-
ing of gradient propagation. Using the softmax function
allows the transfer of the gradient to the guided feature,
ensuring the guided mask is trainable and optimized.
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FIGURE 3. Filter generator module where the custom region-aware filter
is obtained from the guided mask through a series of downsampling.
Subsequently, the convolution of the noisy PNS input with the calculated
custom filter is performed in the dynamic filtering module.

2) FILTER GENERATOR MODULE
The filter generator module computes the custom filters for
the speech regions detected by the learnable guided mask
module. The execution process to adaptively obtain the cus-
tom filter within the filter generator module is illustrated in
Fig. 3. As shown in the figure, the input to the filter generator
module X ∈ RU×V (output of the learnable guided mask
module) is average pooled such that it is downsampled to
filter size k × k . The custom filter size k × k is made to
be the same as the Gabor filter size which is 11 × 11. The
downsampling process consists of applying two 1×1 convo-
lution layers consecutively: the first involves the use of a sig-
moid activation function and the second does not employ any
activation function. The filter generator module adaptively
generates custom filters based on the obtained guidedmask to
more optimally capture characteristics of the speech compo-
nents given a noisy speech frame. This is beneficial since the
T-F characteristics of different speech sounds, such as vowels,
stops, weak fricatives, strong fricatives, and nasals, are very
different [25]. Therefore, using filters whose design can adapt
based on the constantly evolving T-F speech shapes would
lead to improved mapping from noisy speech to enhanced
speech.

3) DYNAMIC FILTERING MODULE
The dynamic filtering module is the final step within the
adaptive filter design pipeline. It basically involves perform-
ing convolution on the PNS feature map using the computed
custom region-aware filter. The dynamic filtering module

takes feature maps as inputs and gives the filtered results as
outputs. It is similar to a traditional convolutional layer, where
the same filter is applied at every position of the 2D PNS
input. In the dynamic filtering module, however, the filter
parameters are dynamically generated by the filter generator
module. The filters are sample-specific and conditioned on
the input frame. The dynamic filtering module is executed
after the filter generator module as shown in Fig. 3.

B. CONVOLUTIONAL NEURAL NETWORK
The proposed CNN architecture is illustrated in Fig. 4.
As shown in the figure, the CNN has 5 hidden layers, 2 con-
volutional layers with a max-pooling layer in between, and
2 fully-connected layers. In a convolutional layer, a neuron
is connected to a local subset of frequency bands, where a
set of neurons with receptive fields shifted in frequency share
the same filter weights. The activation of each neuron is com-
puted by multiplying a local receptive field with the network
weights before adding a bias, and then finally applying a
nonlinear function:

hm (n, c) = α

 N∑
i=−N

C∑
j=−C

Wm (i, j) · x (n+ i, c+ j)+ bm


= α [Wm (−n,−c) ∗ x (n, c)+ bm] , (10)

where hm (n, c) represents the neuron of the mth feature
map, whose receptive field (centered at x (n, c)) encompasses
2C+1 frequency bands and 2N+1 time frames. Wm, bm and
α (.) are the network weights, bias and sigmoid function,
respectively. To model Gabor filtering in CNNs, Gabor filter
coefficients are incorporated into the initial weights Wm.
In addition, the nonlinear function α (.) is replaced with a
linear one and the bias term bm is enforced to be zero. This
change to Eq. (10) means that the neurons of the convolu-
tional layers simply compute the filter outputs of the receptive
field. Since Gabor features consist of filters with different
time and frequency band supports, the receptive field size is
modified to give the same supports of the Gabor filters rather
than remaining fixed.

In the proposed architecture, the first convolutional layer is
initialized with 6 fixed Gabor filters, equally spaced in orien-
tation (i.e., θ = 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦). The fixed
Gabor filters are then used to generate the learnable guided
masks which are in turn used to obtain the custom region-
aware filters. Although weight initialization is performed by
employing fixed Gabor functions in the convolutional layers,
adaptivity and awareness are incorporated by expanding on
the Gabor feature map to perform guided mask construc-
tion, filter generation and eventually dynamic filtering as
discussed in Section III.A. Unlike the fixed Gabor filters,
the custom region-aware filters are trainable at backprop-
agation. The second convolutional layer contains 12 fixed
Gabor filters for each of the 6 output feature maps of the
first convolutional layer, giving a total of 72 filters. The
12 fixed Gabor filters are also equally spaced in orientation
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FIGURE 4. The employed CNN architecture with two convolutional, max-pooling and fully-connected layers. Adaptive filter design is embedded in each
convolutional layer.

(i.e., θ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦,
150◦ and 165◦). Since the same set of 12 fixed Gabor filters is
convolved with each of the 6 output feature maps of the first
convolutional layer at every training cycle, the 6 Gabor filters
of the first convolutional layer are also present in the second
convolutional layer. This allows the integrity of the previous
layer to be carried forward to the following layer.

According to [26], the window length, window shift and
normal length of vowels are approximately 32, 16 and 99 ms,
respectively. This led to the decision of setting the Gabor
filters in the time axis to 11 frames in all convolutional layers.
This results in the filters covering approximately 192 ms,
which is around twice the vowel length. Therefore, the filters
are 11 × 11 to ensure symmetry such that both temporal and
spectral patterns are equally considered. The signal frames
are obtained using a Hanning window with 256 points and
an overlap interval of 128 points. All data were sampled at
8 kHz. Max-pooling is used to reduce the size of the convo-
lutional layer and remove variance along the convolutional
bands. It involves taking the maximum value from a window
of activations (i.e., region of the feature map covered by the
filter) in a convolutional layer. This leads to the extraction of
the most prominent features from the previous feature map.
The window size is referred to as the pooling size. A pooling
size of 2 × 2 with a stride of 2, giving a dimensionality
reduction by a factor of 2, is employed for the max-pooling
layers. Two fully-connected layers are added after the last
max-pooling layer to integrate the pooled features. Fully-
connected layers are an essential component of CNNs as
they are responsible for learning the relationship between the
features and the desired output. The fully-connected layers of
the proposed CNN-AFD contain 1024 neurons and employ
the ReLU activation function. Restricted Boltzman machine
pre-training [27] is used to initialize the parameters of the
fully-connected layers. Thereafter, the CNN is trained for
50 epochs with the stochastic gradient descent algorithm.
The learning rate is initially set at 0.015. This reduces by

factors of 2 when the 5-fold cross-validation loss reaches
convergence and continues to decay until the validation loss
shows no further change. The mean-square error is set as the
error criterion.

IV. CONVOLUTIONAL NETWORK OPTIMIZATION
One of the main drawbacks of CNN is the demand for
large computational and storage overhead, which constitutes
a challenge in deployment on devices with limited computing
resources (e.g., implantable devices). Within a CNN, sig-
nificant resource consumption resides in the convolutional
and fully-connected layers. This is because the convolution
operation involves computationally expensive repetitions of
multiplications and summations over iterations of sliding
windows. Similarly, fully-connected layers suffer from great
redundancy. In this paper, skip convolution and an activa-
tion analysis-based pruning method are explored for CNN
optimization.

A. SKIP CONVOLUTION
CNNs are highly redundant in terms of computation due
to the presence of spatial redundancy. Each pixel or in this
case, each T-F unit on the PNS is surrounded by very similar
T-F units in the neighbourhood. Greater efficiency can be
achieved by exploiting spatial redundancy in feature maps to
bypass extra computations. Skip convolution [28] can be used
to attain improved efficiency by skipping convolution opera-
tions in the nearby T-F units (horizontally or vertically) while
ensuring feature representational capability is maintained.
It is motivated by the Nyquist sampling theorem, which states
that a signal can be reconstructed without loss of information
when a signal is sampled at twice the highest frequency.
Besides this, a speech spectrogram usually depicts contin-
uous signals in certain frequency bands and has recurring
unvoiced intervals. The structured sparsity presents a suitable
scenario for sampling alternate rows or columns. Structured
sparsity can also be introduced to the output feature maps by
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FIGURE 5. Skip convolution criterion. Convolution operations are omitted
for unvoiced frames (example areas where skip convolution is carried out
are shown by the greyed boxes). A frame is deemed unvoiced when the
lower frequency bands (red dashed circles) in the PNC have significantly
less energy than that of the preceding frame.

intentionally skipping corresponding rows or columns of the
convolutional filters. This subsequently establishes sparsity
in the CNN model parameters during training.

In this work, skipping convolution introduced in [28] is
adapted for the proposed SE method. Instead of skipping
convolution operations on alternate rows or columns of pix-
els, this work uses skipping convolution to omit perform-
ing convolutions on unvoiced intervals since the number of
PNS frequency bands (rows) employed is already limited.
Unvoiced intervals refer to frames (columns) where speech is
not present (e.g., pauses between words or syllables). Since
speech signals are often shown to possess high energy in
lower frequencies as illustrated by the dashed circles in Fig. 5,
it can be assumed that a frame is unvoiced when the combined
first 15 bands (around a quarter of the 64 total bands) of a
single PNS frame contains lesser than a tenth of the energy
of the combined first 15 bands of the preceding frame. The
greyed areas shown in Fig. 5 depict the segments on the
PNS feature map where the first 15 frequency bands are
significantly lower in energy, corresponding to columns (i.e.,
frames) where convolutions can be skipped. A constraint
is imposed on the skip convolution decision such that no
two subsequent frames are skipped to satisfy the Nyquist
sampling theorem. In addition, the latest calculated first-15-
band energy of a voiced frame is stored in memory to enable
the identification of longer pauses or silence (in this case,
the energy of the current unvoiced frame will not be signif-
icantly lesser than that of the preceding frame’s which was

also unvoiced). The proposed approach of ignoring unvoiced
frames to achieve skip convolutions provided comparable
performance to a traditional voice activity detection proposed
in [29] even though little time was spent on perfecting the
voice activity detection capability of the proposed approach.
The proposed approach was used instead of the traditional
voice activity detection due to its simplicity. Furthermore,
it utilizes already existing components (i.e., PNS extraction)
within the algorithm to perform voiced/ unvoiced frame iden-
tification, making it a more efficient approach. This paper
explores the impact of performing the proposed skipping con-
volution with or without max-pooling layers. The results are
reported as part of the ablation study given in Section VI.A.

B. ACTIVATION ANALYSIS PRUNING
In this work, network pruning is used to prune lesser
important filters, feature maps, as well as neurons in the
fully-connected layers to achieve model compression while
ensuring speech denoising capability is not compromised.
The baseline CNN is pruned via activation analysis to remove
neurons that do not contribute to the regression output. Struc-
tured pruning is enforced by encouraging frequency band-
wise or time frame-wise pruning instead of pruning individual
neurons. The proposed activation analysis pruning benefits
from the structured sparsity introduced by skip convolution.
Since skip convolution is performed on the unvoiced frames
as explained in Section IV.A, many column-wise neurons
and their associated connections will be pruned. The acti-
vation analysis evaluates the importance of any neuron by
calculating the average percentage of zeros (APoZ) [30] from
the activation output of each neuron at training. For a given
convolutional layer CL, the importance of the custom filter
given by the filter generator module is calculated as follows:

CL =

∑O
i=1

∑S
j=1 f (A = 0||B ≥ 2σ )

O× S
, (11)

where A = CLr (k) and B = 1
5

∑r+2
r−2 CL

r+1
r−1 (k) ≥ 2σ . r

denotes the neuron index within the kth convolutional layer.
S and O are the total numbers of training samples and the
dimension of the output feature map respectively. f (.) is
computed as follows:

f (.) =

{
0, ifA = 0 or B ≥ 2σ
1, else.

(12)

The pruning process begins by calculating the neuron’s
importance in the convolutional layers using Eq. (11).
A neuron and its connections are removed if the APoZ of
the neuron is zero or if a group of five consecutive row or
column-wise neurons possesses an average APoZ of larger
than twice the standard deviation of the overall average APoZ
in the same layer. Once the pruning of both convolutional
layers is completed, the network is fine-tuned to recover the
original accuracy using the baseline model’s training config-
uration described in Section III.B.
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TABLE 2. Summary on the development of the train and test set used for
evaluating the SE algorithms.

V. EXPERIMENTAL SETTINGS
A. DATASETS
The proposed CNN-AFDwas evaluated using the TIMIT [31]
corpus and NOISEX-92 [32] database. The TIMIT corpus
contains 6300 clean phonetically-rich English utterances that
include 8 major American English dialects. The corpus was
developed by recording 630 participating speakers (male and
female), where each spoke 10 sentences. For the development
of the training set, the dialect sentences were removed, and
1500 utterances were randomly selected for training. The
training utterances were mixed with five types of noises
(babble, factory, pink, Volvo (car) and white noise) from
the NOISEX-92 database at three SNR levels (-5, 0, 5 dB).
For the development of the test set, the TIMIT core test set
containing 192 utterances that were not part of the training
set were used. Similarly, they were combined with the same
five types of noises from the NOISEX-92 database at -5,
0 and 5 dB SNR. To avoid using the exact same frames of
noise in both training and testing, random cuts of the first
2 minutes of the noise recordings were used for training. The
test set consisted of random cuts of the last 2 minutes of the
noise recordings. To evaluate the generalization performance
of the proposed approach, two unseen (untrained) types of
noises (‘f16’ and ‘factory2’ noise) and two other SNR values
(-10 and 3 dB) were added to the test set. Table 2 summarizes
the development of the training and test set.

B. EVALUATION METRICS
For speech denoising performance evaluation, the short-time
objective intelligibility (STOI) [33], perceptual evaluation of
speech quality (PESQ) [34] and logarithmic spectral distance
(LSD) [35] were employed. STOI was found to be positively
related to subjective speech intelligibility. It is calculated
using the short-time (386 ms) temporal envelopes of the
clean speech and the estimated speech. STOI varies between
0 to 1, with 1 indicating the absence of speech distortion (i.e.,
best achievable STOI). STOI is mathematically calculated as
follows [33]:

STOI =
1

U ,V

∑
U ,V

(
xu,v − µx

)T (x̂u,v − µx̂)∥∥xu,v − µx∥∥ ∥∥x̂u,v − µx̂∥∥ , (13)

where u and v are time and frequency indexes respectively.
‖.‖ denotes the Euclidean `2-norm. xu,v and x̂u,v represent
the short-time temporal envelope of the clean and enhanced
speech, respectively. µ is the sample average of the corre-
sponding vector (xu,v or x̂u,v).

PESQ was recommended by the ITU-T for objective
speech quality assessment. It is computed using a linear com-
bination of disturbance parameters to predict the subjective
mean opinion score. Two parameters, symmetric disturbance
(dSYM ) and asymmetric disturbance (dASYM ), are combined to
predict the speech quality as follows [34]:

PESQ = 4.5− 0.1dSYM − 0.0309dASYM , (14)

where dSYM and dASYM are calculated by the disturbance
processing model in PESQ [30]. PESQ falls within the
range -0.5 and 4.5, where the higher PESQ score repre-
sents better perceptual speech quality. PESQ may fall below
1 in extremely high distortion conditions, but this is usually
uncommon in the real-world.

LSD measures the logarithmic spectral distance (averaged
over all frames) between two speech samples (in this case,
clean and enhanced speech) as follows [35]:

LSD
(
x, x̂

)
=

1
T

T∑
t=1

√
1
F

∑F

f=1

(
xt,f − x̂t,f

)2
, (15)

where xt,f and x̂t,f represent the clean and enhanced speech
respectively. T and F denote the number of time frames and
frequency bins of the samples, respectively. In contrast to
STOI and PESQ, lower LSD is desirable as it represents lower
speech distortion. When LSD is zero, this suggests the signal
is clean speech.

C. BASELINE MODELS
The speech denoising performance of the proposed
CNN-AFD is compared against six baseline models, four
of which are other CNN-based SE methods and two are
DNN-based SE methods. The first fully-connected DNN
model is known as ‘DNN-IRM’. It employs 4 hidden lay-
ers, each with 1024 neurons, and is trained to estimate the
ideal ratio mask [36] from a noisy PNS input. The second
DNN-based SE approach is the ‘DNN-QCM’ proposed in [3].
The DNN-QCM uses correlation information between clean
speech/ noise and noisy speech to fine-tune the ideal ratio
mask. Similarly, the DNN-QCM is trained to process noisy
PNS input for consistency. The first CNN baseline employs
two convolutional layers, each followed by a max-pooling
layer, and then two fully-connected layers. This is similar to
the topology used for the proposed CNN-based SE method
described in Section III.B. However, 64 fixed convolution
filters of size 3×3 are used in each of the convolutional layers
instead. This CNN baseline is referred to as ‘CNN-Norm’.
The second CNN baseline has the same two convolutional
layers, two max-pooling layers and two fully-connected lay-
ers topology but only employs fixedGabor filters (i.e., similar
to the proposed approach but without adaptive filter design).
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FIGURE 6. STOI performance with varying numbers of fixed Gabor filters
employed for the 2nd convolutional layer. Saturation in STOI performance
is observed with a higher number of fixed Gabor filters.

TABLE 3. STOI performance with different max-pooling and skip
convolution configurations.

TABLE 4. Average training per epoch with and without skip convolution
and average inference time when processing an input frame with and
without skip convolution.

This is referred to as ‘CNN-Gabor’ in the results provided.
The third CNNbaseline is named ‘CNN-Dilated’ in this paper
and it represents an SE approach involving complex spectro-
gram processing using frequency-dilated filters proposed by
[37]. Finally, the last CNN baseline is the ‘TCNN’ described
in [38]. TCNN is a temporal convolutional neural network
proposed for real-time SE in the time domain.

VI. RESULTS
A. ABLATION STUDY
Fig. 6 depicts the STOI score achievedwhen varying numbers
of Gabor filters were employed in the second convolutional
layer. The performance of the CNN-based SE with and with-
out max-pooling, with andwithout skip convolution, andwith
and without combining max-pooling and skip convolution

TABLE 5. Percentage parameter reduction achieved on every CNN layer
with activation analysis pruning.

was assessed. When investigating this, activation analysis
pruning was not implemented. The performance was eval-
uated using STOI and the results are shown in Table 3.
Table 4 presents the average training time required to train
an epoch and the average inference time required to process
an input frame of 35 ms with or without skip convolution.
The percentage of parameters pruned at each layer using
activation analysis pruning was assessed by comparing the
trained proposed method with and without pruning. The effi-
cacy of activation analysis pruning was assessed when it was
used on its own as well as when it was combined with skip
convolution. The results are shown in Table 5.

B. SPEECH ENHANCEMENT PERFORMANCE
Table 6 lists the denoising performance of the proposed
CNN-AFD (optimized with activation analysis pruning and
skip convolution) and the other considered SE algorithms,
evaluated using mean STOI, PESQ and LSD scores. The
optimal values are marked in bold.

C. GENERALIZATION CAPABILITY
For supervised deep-learning algorithms, generalization abil-
ity is an important aspect of performance evaluation. The
generalization of the proposed approach is mainly evaluated
from two perspectives: noise and SNR generalization ability.
Fig. 7 shows the performance of the proposed CNN-AFD
and the baselines on unseen noises (i.e., ‘factory2’ and ‘f16’
noises) and SNRs (-10 and 3 dB).

VII. DISCUSSION
The STOI score generally improved with an increasing num-
ber of Gabor filters. However, using more filters also incurred
higher computational costs. As shown in Fig. 6, it was found
that using 12 Gabor filters in the second layer led to the
optimal performance before the enhancement performance
begins to saturate with a higher number of filters due to
increasing redundancy. From Table 3, it was observed that
the CNN with skip convolution without max-pooling led to
the best STOI score. The CNN with skip convolution with-
out max-pooling led to the best STOI score likely because
it was harder to perform skip convolution on unvoiced
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TABLE 6. Speech denoising performance (STOI, PESQ and LSD) comparison of the various deep learning-based SE algorithms on different noise types and
SNR conditions.

intervals after downsampling via max-pooling especially
since unvoiced segments occur within short time frames.
The computational savings achieved from skip convolution
depends on how frequently unvoiced intervals are present
within a sentence. Table 4 depicts that close to 40% reduc-
tion in training time could be achieved since short speech
pauses often occur after every English syllable. Performing
activation analysis pruning on top of skip convolution led
to at least 30% parameter reduction in each layer according
to Table 5.

Improvements across all metrics were obtained when the
SE algorithms were employed for denoising. This demon-
strates the effectiveness of the SE operations. Table 6 shows
that the CNN-based systems demonstrated superior SE capa-
bility over DNN-IRM as they achieved better scores than
DNN-IRM across all metrics and in all conditions. This
is likely contributed by the sophisticated feature extraction
at multiple temporal and/ or spectral resolutions embedded
in the CNN approaches. There were many instances where
DNN-QCM provided comparable performance with TCNN.
This displays the importance of convolutional filter choice
in CNN-based SE algorithms and suggests that DNN-based
can still outperform CNN-based methods given the right
architectural and training configuration. The evaluation met-
ric scores obtained from all SE methods when processing

Volvo noise were all almost equally high in terms of STOI
as the Volvo noise is more stationary than the other noise
types, making it less challenging to denoise. The perfor-
mance of all SE systems deteriorated with increasing noise
dominance (diminishing SNR). Overall, the performance of
the proposed model is better than the other SE models. The
proposed CNN-AFD achieved an average improvement of
2.05%, 4.35% and 4.03% in terms of STOI, PESQ and LSD
respectively when compared to the next best-performing SE
model, which is the CNN-dilated.

A trend similar to that in the seen conditions can be
observedwhen the proposed SE approachwas used to process
noise types that were not part of the training dataset. The
proposed method continued to show outstanding denoising
performance and outperformed the baselines. This is fol-
lowed by CNN-dilated. It was much more challenging for
the SE systems to process noisy speech at -10 dB SNR as
greater STOI, PESQ and LSD improvements can be observed
when processing noisy speech at 3 dB SNR. Nevertheless, the
SE systems continued to show effective denoising as refined
STOI, PESQ and LSD scores were attained. The proposed
method provided the largest percentage of STOI (1.30%),
PESQ (4.00%) and LSD (3.76%) improvements across both
unseen SNRs, demonstrating excellent SNR generalization
capability as well as noise generalization capability.
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FIGURE 7. Evaluation performance comparisons of the various SE algorithms on untrained noise types (‘f16’ and ‘factory 2’ noise)
and untrained SNRs (-10 and 3 dB).

VIII. CONCLUSION
In this paper, a CNN-based SE with an adaptive filter
design named CNN-AFD was presented. The CNN of the
proposed SE approach was incorporated with fixed Gabor
functions to extract human auditory model-inspired features
in multiple temporal and spectral resolutions. The obtained
Gabor feature map output was used as the basis for gen-
erating adaptive region-aware filters. A learnable module
was used to predict guided masks for assigning similar fea-
ture region patterns on the Gabor feature map to the same
filter. Subsequently, the back propagation-optimized guided
masks were used in a filter generator module to produce
specialized filters given a noisy speech input. Skip convo-
lution and activation analysis-based pruning were explored
for model compression and computation reduction. The
optimization techniques employed demonstrated comple-
mentary compression performance and led to a significant
reduction in model parameters and processing time while
maintaining excellent speech denoising outcomes. Compar-
ison with other deep-learning-based SE algorithms showed
that the proposed approach outperformed other SE meth-
ods employing fixed convolutional filters. The proposed
CNN-AFD provided the best denoising performance with
average STOI, PESQ and LSD scores of 0.95, 1.82 and

0.82, respectively. Furthermore, it displayed good noise and
SNR generalization capability. The proposed CNN-AFD
possesses some limitations: it ignores the significance of
phase information on SE performance (i.e., noisy speech
phase is used at waveform reconstruction) and the adap-
tivity of the filter design can be an overkill in situations
where the noise and speech characteristics remain constant
(e.g., listening to the same speaker in the same noise con-
dition for an extended period). Furthermore, the proposed
CNN-AFD has not been designed and evaluated to consider
reverberations. Future work will address these limitations
and investigate the performance of the proposed CNN-AFD
when presented with combinative noise. The viability of
deploying CNN-AFD in hearing devices will also be exam-
ined through hardware implementation. Subjective evalua-
tion of the CNN-AFD will be performed through human
hearing tests to understand the real-life speech intelligi-
bility and quality benefit achievable by the CNN-AFD
processor.
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