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ABSTRACT Uncertainty measurement (UM) gives a brand-new perspective on attribute reduction in an
information system (IS). Interval-valued data is a kind of very vital data in rough set theory (RST). Rough set
model based on tolerance relations can be considered to deal with interval-valued data. However, these kinds
of tolerance relations have deficiencies when they are used in fuzzy rough computation. This paper studies
new UM for an interval-valued information system (IVIS) and considers its attribute reduction. Firstly,
a novel fuzzy symmetry relation on the object set of an IVIS is established based on ‘‘The similarity between
information values that is fed back to the attribute set’’. Secondly, λ-information granules on the basis of
a fuzzy symmetry relation are obtained. Then, four UMs for an IVIS are investigated. Next, numerical
experiments and statistical tests are used to evaluate the performance of the proposed UMs. Moreover,
attribute reduction in an IVIS is studied and the relevant algorithms are proposed. Finally, clustering analysis
on the reduced IVIS is conducted. Experimental results indicate that the proposed algorithms are effective
based on evaluation indicators of clustering performance. This paper provides a novel viewpoint for the
establishment of fuzzy symmetry relation and attribute reduction algorithms.

INDEX TERMS RST, IVIS, UM, fuzzy symmetry relation, attribute reduction, cluster analysis.

I. INTRODUCTION
Rough set theory (RST), proposed by Pawlak [23], is a pow-
erful tool to handle uncertainty. The completeness of RST
depends on the data itself. In other words, it does not need
to be attached to any additional information, so the results
will become more objective and reliable. Nevertheless, two
extended rough set models are raised for the sake of solving
the disadvantage of too strict equivalence conditions. One is
to introduce weak equivalence relations, such as to tolerance
relations, similarity relations, dominance relations, or reflex-
ive relations [34]; the other is to apply fuzzy set theory (FST)
for RST [14].

An information system (IS) in the light of RST was raised
by Pawlak. Uncertainty nearly exists in everywhere. Uncer-
tainty measurement (UM) becomes a significant issue in a
range of fields. The study of various UMs in ISs is helpful to
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understand the nature of information. UMs are able to be used
for attribute reduction, rule acquisition, pattern recognition
and clustering analysis. Some researchers have made some
explorations in this respect and achieved a great deal of
excellent research results. For instance, Düntsch et al. [11]
investigated the measurement of decision rules on the basis
of Shannon entropy in RST; Li et al. [20] gave UM methods
based on fuzzy relation in an IS; Zeng et al. [42] researched
UMs in a hybrid IS with the help of Gaussian kernel;
Li et al. [17] provided a method to measure the uncertainty of
a fully fuzzy IS by means of Gaussian kernel; Yang et al. [38]
proposed UM methods for multi-source fuzzy IS.

Attribute reduction is a common technology in machine
learning. Many datasets typically have a range of redundant
attributes. Attribute reduction is aimed to eliminate extrane-
ous and superfluous attributes from the original attributes of
data and select the most effective attribute subset to eliminate
the dimension of data. In recent years, many attribute reduc-
tion methods have emerged one after another. For example,

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 129791

https://orcid.org/0000-0002-1687-041X
https://orcid.org/0000-0002-8751-9205


L. Li: New Measures of Uncertainty for Interval-Valued Data With Application to Attribute Reduction

Zeng et al. [40] provided a FST method for incremental
attribute reduction in a hybrid IS; Cornelis et al. [5] gave a
general definition for a fuzzy attribute reduction; Li et al. [16]
studied UMs in view of description ability for attribute reduc-
tion in an IS; Chen et al. [4] proposed a attribute reduction
method for heterogeneous data on the basis of the notion
of fuzzy kernel alignment; Li et al. [18] advanced attribute
reduction for heterogeneous data by means of information
entropy; Wang et al. [31] put forward attribute reduction
on account of local conditional entropy; Singh et al. [28]
explored attribute reduction in an IVIS by employing a
approach based on fuzzy similarity; Wang et al. [32] car-
ried out attribute reduction by virtue of neighborhood self-
information; Liu et al. [15] raised a familiar form of attribute
reduction for an IS; Akram et al. [1] investigated parameter
reduction under interval-valued m-polar fuzzy soft informa-
tion; Ali et al. [2] researched attribute reduction in a bipolar
fuzzy relation decision system.

FST was proposed by Zadeh [39] that describes the fuzzi-
ness in precise mathematical language. FST and RST, are two
models to study inaccurate, uncertain and vague information.
They have own advantages and features, and combine to
form a model that is called fuzzy rough sets (FRSs) [7].
Wang et al. [29] put forward a fitting model for attribute
reduction with FRSs; Chen et al. [6] raised a new attribute
reduction algorithm on account of FRSs. Cornelis et al. [5]
gave a extended model of attribute reduction in view of fuzzy
tolerance relation within the context of FRSs. Yuan et al. [37]
researched unsupervised attribute reduction for hybrid data
by means of FRSs. Moreover, Wang et al. [34] proposed
an integrated qualitative group decision-making method for
assessing health-care waste treatment technologies based on
linguistic terms with weakened hedges.

An interval-valued information system (IVIS) expresses
an IS where its information values are interval-valued num-
bers. Based on the rich semantic explanations and flexi-
bility, an IVIS have attracted attention of some scholars.
Xie et al. [35] considered information structures of an IVIS
and gave a new UM to measure uncertainty of the system.
Dai et al. [8] studied UMs for an IVIS. Zhang et al. [41]
proposed incremental updating of rough approximations in an
IVIS under attribute generalization. Sakai et al. [27] presented
a rule generation prototype system of IISs in Lipski that is
able to process an IVIS.

Wang et al. [34] researched attribute reduction for categor-
ical data based on FRSs. But they did not consider UMs and
attribute reduction in an IVIS.

Usually, a tolerance relation on the object set of an IVIS is
established according to ‘‘The similarity between information
values that is fed back to the object set’’. Rough set model
based on this tolerance relation is employed to dispose of
interval-valued data. However, these kinds of tolerance rela-
tions have deficiencies when they are used in fuzzy rough
computation. This paper introduces a novel fuzzy symmetry
relation on the object set of an IVIS is established based on
‘‘The similarity between information values that is fed back to

the attribute set’’. Fuzzy rough set model based on this fuzzy
symmetry relation is used to deal with interval-valued data.
On this basis, this paper studies UM for interval-valued data
with application to attribute reduction. The work process of
this paper is displayed in FIGURE 1.

A. STRUCTURE AND ORGANIZATION
The specific arrangements of the article is structured as fol-
lows. In Section 2, some related concepts of fuzzy relations,
interval-valued numbers and IVISs are raised. In Section 3,
UMs of an IVIS are raised. In Section 4, some numeri-
cal experiments are designed to analyze the effectiveness
of the proposed measures. In Section 5, an application for
attribute reduction is given in an IVIS and clustering analysis
on the reduced IVIS are doing. In Section 6, this paper is
summarized.

II. PRELIMINARIES
In this article, O and AT signify two nonempty finite sets,
|X |means the cardinality of an ordinary set X , F(O) indicates
the family of all fuzzy subsets on O and F(O × O) typifies
the family of all fuzzy relations on O. Put

O = {o1, o2, · · · , on}, AT = {a1, a2, · · · , am} (II.1)

A. FUZZY RELATIONS
A fuzzy subset S on O is a function S : O→ [0, 1], and S(x)
means the membership degree of x to S. S is denoted as

S =
S(o1)
o1
+
S(o2)
o2
+ · · · +

S(on)
on

(II.2)

|S| =
n∑
i=1

S(oi) shows the cardinality of S.

IfR ∈ O×O is a fuzzy relation onO, andRmay be denoted
by M (R) = (R(oi, oj))n×n.

If M (R) is a fuzzy identity matrix, and we denote by
R = 4; if R(oi, oj) = 1, i, j ≤ n is a fuzzy universal relation,
and we denote by R = ω.

Let R ∈ F(O× O). ∀ o ∈ O, define

R(o)(o′) = R(o, o′) (II.3)

Then R(o) ∈ F(O) can be treated as the information granule
of o [24].

Obviously,

R(o) =
R(o, o1)
o1

+
R(o, o2)
o2

+ · · · +
R(o, on)
on

(II.4)

Then

|R(o)| =
n∑
i=1

R(o, oi).

B. INTERVAL-VALUED NUMBERS
Denote

[M ] = {s = [s−, s+] : s−, s+ are real numbers, s− ≤ s+}

(II.5)
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FIGURE 1. The work process of this paper.

Definition 1 [21], [22]: Given s, t ∈ [M ]. Then the
possible degree of s with respect to t is defined by

p(s, t) = min{1,max{
s+ − t−

(s+ − s−)+ (t+ − t−)
, 0}}

(II.6)

Obviously,
a) ∀ s, t ∈ [M ], 0 ≤ p(s, t) ≤ 1;
b) ∀ s ∈ [M ], p(s, s) = 0.5;
c) ∀ s, t ∈ [M ], p(s, t)+ p(t, s) = 1.
Definition 2 [9], [10]: Suppose s, t ∈ [M ]. Then the

similarity degree between m and t is defined as follows:

q(s, t) = 1− |p(s, t)− p(t, s)| (II.7)

Clearly,
(1) ∀ s, t ∈ [M ], q(s, t) = q(t, s);
(2) ∀ s, t ∈ [M ], 0 ≤ q(s, t) ≤ 1;
(3) ∀ s, t ∈ [M ], q(s, t) = 1 ⇒ s = t .
Example 3: Pick s = [6, 12] and t = [3, 8]. Then

p(s, t) = min{1,max{
12− 3

(12− 6)+ (8− 3)
, 0}} =

9
11
,

p(t, s) = min{1,max{
8− 6

(8− 3)+ (12− 6)
, 0}} =

2
11
,

q(s, t) = 1− |p(s, t)− p(t, s)| = 1− |
9
11
−

2
11
| =

4
11
.

C. AN IVIS
Definition 4: Let (O,AT ) be an information system (IS).

If ∀ a ∈ AT , ∀ o ∈ O, a(o) is an interval-valued num-
ber, then (O,AT ) is called an interval-valued information
system (IVIS).
If A ⊆ AT , then (O,A) is known as the subsystem of

(O,AT ).

Example 5: TABLE 1 depicts an IVIS (O,AT ) where O =
{o1, o2, · · · , o12} and AT = {a1, a2, · · · , a6}.

Let (O,AT ) be an IVIS, A ⊆ AT and λ ∈ [0, 1]. Define

T λA = {(o, o
′) ∈ O× O : ∀ a ∈ A, q(a(o), a(o′)) ≥ λ}

(II.8)

Apparently, T λA is a tolerance relation on O.
In T λA , ‘‘∀ a ∈ A, q(a(o), a(o′)) ≥ λ’’ is fed back to

the object set of an IVIS. Naturally, we may consider that
‘‘∀ a ∈ A, q(a(o), a(o′)) ≥ λ’’ is fed back to the attribute
set of an IVIS. For this purpose, inspired by the paper [34],
we introduce the following definition.
Definition 6: For an IVIS (O,AT ), given A ⊆ AT and

λ ∈ [0, 1]. Then the fuzzy relation on O can be defined as

RλA(o, o
′) =

1
m
|{a ∈ A : q(a(o), a(o′)) ≥ λ}|, ∀ o, o′ ∈ O

(II.9)

Clearly, RλA is a fuzzy symmetric relation on O.

∀ i, RλA(oi) =
RλA(oi, o1)

o1
+
RλA(oi, o2)

o2
+ · · · +

RλA(oi, on)
on

,

∀ i, |RλA(oi)| =
n∑
i=1

RλA(oi, oi).

For convenience, denote

Aλoo′ = {a ∈ A : q(a(o), a(o
′)) ≥ λ} (II.10)

Then

RλA(o, o
′) =

1
m
|Aλoo′ | (II.11)

Obviously,

RλA(o, o) =
|A|
m

and ∀ o ∈ O, |RλA(o)| ≥
|A|
m
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TABLE 1. An IVIS.

Theorem 7: For an IVIS (O,AT ), if A ⊆ B ⊆ AT , then
∀ λ ∈ [0, 1], RλA ⊆ RλB.

Proof: By Definition 6,

RλA(o, o
′) =

1
m
|Aλoo′ |, R

λ
B(o, o

′) =
1
m
|Bλoo′ |.

Since A ⊆ B ⊆ AT , we have ∀ o, o′ ∈ O, Aλoo′ ⊆ Bλoo′ .
So ∀ o, o′ ∈ O, RλA(o, o

′) ≤ RλB(o, o
′).

Thus, RλA ⊆ RλB.
Theorem 8: For an IVIS (O,AT ), if 0 ≤ λ1 ≤ λ2 ≤ 1,

then ∀ A ⊆ AT , Rλ2A ⊆ Rλ1A .
Proof: By Definition 6,

Rλ1A (o, o′) =
1
m
|Aλ1oo′ |, R

λ2
A (o, o′) =

1
m
|Aλ2oo′ |.

Since 0 ≤ λ1 ≤ λ2 ≤ 1, we have ∀ o, o′ ∈ O, Aλ2oo′ ⊆ Aλ1oo′ .
So ∀ o, o′ ∈ O, Rλ2A (o, o′) ≤ Rλ1A (o, o′).
Thus, Rλ2A ⊆ Rλ1A .

III. MEASURING UNCERTAINTY OF AN IVIS
This part puts forward some tools for measuring uncertainty
of an IVIS.

A. GRANULATION MEASURE FOR AN IVIS
Definition 9: For an IVIS (O,AT ), given A ⊆ AT . Then

fuzzy information granulation of (O,A) is specified as

Gλ(A) =
1
n2

n∑
i=1

|RλA(oi)| (III.1)

Example 10: Table 1 illustrates an an IVIS. Pick A =
{a1, a2, a3} and λ = 0.2, Then

Gλ(A) ≈ 0.2384.

Proposition 11: For an IVIS (O,AT ), given A ⊆ AT . Then

|A|
nm
≤ Gλ(A) ≤ 1.

Furthermore, if RλA = 4, G
λ(A) = 1

n ; if R
λ
A = ω, then

Gλ(A) = 1.
Proof: Since ∀ i, |A|m ≤ |R

λ
A(oi)| ≤ n, we have

n
|A|
m
≤

n∑
i=1

|RλA(oi)| ≤ n
2.

By Definition 9,

|A|
nm
≤ Gλ(A) ≤ 1.

Suppose RλA = 4. Then ∀ i, |R
λ
A(oi)| = 1, Gλ(A) = 1

n .

Suppose RλA = ω. Then ∀ i, |R
λ
A(oi)| = n, Gλ(A) = 1.

Proposition 12: For an IVIS (O,AT ), if A ⊆ B ⊆ AT , then
Gλ(A) ≤ Gλ(B).

Proof: Since A ⊆ B ⊆ AT , by Theorem 7, we have
RλA ⊆ RλB.

Then ∀ i, RλA(oi) ⊆ RλB(oi). Thus

∀ i, |RλA(oi)| ≤ |R
λ
B(oi)|.

By Definition 9,

Gλ(A) =
1
n

n∑
i=1

1
n
|RλA(oi)|, Gλ(B) =

1
n

n∑
i=1

1
n
|RλB(oi)|.

Hence Gλ(A) ≤ Gλ(B).

B. ENTROPY MEASUREMENT FOR AN IVIS
Definition 13: For an IVIS (O,AT ), given A ⊆ AT . Then

fuzzy information entropy of (O,A) is defined as

Hλ(A) = −
n∑
i=1

1
n
log2
|RλA(oi)|

n
(III.2)

Example 14 (Continued From Example 10): We have

Hλ(A) ≈ 2.1002.

Proposition 15: For an IVIS (O,AT ), if A ⊆ B ⊆ AT , then
Hλ(B) ≤ Hλ(A).

Proof: Since A ⊆ B ⊆ AT , by Theorem 7, we have
RλA ⊆ RλB.

Then ∀ i, RλA(oi) ⊆ RλB(oi). So

∀ i, |RλA(oi)| ≤ |R
λ
B(oi)|.

Thus ∀ i,

− log2
|RλA(oi)|

n
= log2

n

|RλA(oi)|

≥ log2
n

|RλB(oi)|
= − log2

|RλB(oi)|
n

,

Consequently, Hλ(B) < Hλ(A).
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Definition 16: For an IVIS (O,AT ), given A ⊆ AT . Then
fuzzy rough entropy of (O,A) is deemed as

Eλr (A) = −
n∑
i=1

1
n
log2

1

|RλA(oi)|
(III.3)

Example 17 (Continued From Example 10): We have

Eλr (A) ≈ 1.4847.

Proposition 18: For an IVIS (O,AT ), given A ⊆ AT . Then

log2
|A|
m
≤ Eλr (A) ≤ log2 n (III.4)

Moreover, if RλA = 4, then E
λ
r (A) = 0; if RλA = ω, then

Eλr (A) = log2 n.
Proof: Since ∀ i, |A|m ≤ |R

λ
A(oi)| ≤ n, we have

log2
|A|
m
≤ − log2

1

|RλA(oi)|
= log2 |R

λ
A(oi)| ≤ log2 n.

By Definition 16, we obtain that

log2
|A|
m
≤ Eλr (A) ≤ log2 n.

Suppose RλA = 4. Then ∀ i, |R
λ
A(oi)| = 1. Thus Eλr (A) = 0.

Suppose RλA = ω. Then ∀ i, |RλA(oi)| = n. Thus Eλr (A) =
log2 n.
Proposition 19: For an IVIS (O,AT ), if A ⊆ B ⊆ AT , then

Eλr (A) ≤ E
λ
r (B).

Proof: Since A ⊆ B ⊆ AT , by Theorem 7, we have
RλA ⊆ RλB.
Then ∀ i, RλA(oi) ⊆ RλB(oi). So

∀ i, |RλA(oi)| ≤ |R
λ
B(oi)|.

Thus ∀ i,

− log2
1

|RλA(oi)|
= log2 |R

λ
A(oi)|

≤ log2 |R
λ
B(oi)| = − log2

1

|RλB(oi)|

Thus, Eλr (A) < Eλr (B).
Theorem 20: For an IVIS (O,AT ), given A ⊆ AT . Then

Eλr (A)+ H
λ(A) = log2 n (III.5)

Proof:

Eλr (A)+ H
λ(A) = −

1
n

n∑
i=1

(log2
1

|RλA(oi)|
+ log2

|RλA(oi)|
n

)

= −
1
n

n∑
i=1

log2
1
n
= log2 n.

Corollary 21: For an IVIS (O,AT ), given A ⊆ AT . Then

0 ≤ Hλ(A) ≤ log2
nm
|A|

(III.6)

Moeover, if RλA = 4, then H
λ(A) = log2 n; if R

λ
A = ω, then

Hλ(A) = 0.

Proof: By Proposition 18, log2
|A|
m ≤ E

λ
r (A) ≤ log2 n.

By Theorem 20, Hλ(A) = log2 n− Eλr (A).
Consequently, 0 ≤ Hλ(A) ≤ log2 n− log2

|A|
m = log2

nm
|A| .

Suppose RλA = 4. Then ∀ i, |R
λ
A(oi)| = 1. Thus Hλ(A) =

log2 n.
Suppose RλA = ω. Then ∀ i, |RλA(oi)| = n. Thus

Hλ(A) = 0.

C. FUZZY INFORMATION AMOUNT IN AN IVIS
Definition 22: For an IVIS (O,AT ), given A ⊆ AT . Then

fuzzy information amount of (O,A) is regarded as

Eλ(A) =
n∑
i=1

1
n
(1−
|RλA(oi)|

n
) (III.7)

Example 23 (Continued From Example 10): We have

Eλ(A) ≈ 0.7616.

Proposition 24: For an IVIS (O,AT ), if A ⊆ B ⊆ AT , then
Eλ(B) ≤ Eλ(A).

Proof: Since A ⊆ B ⊆ AT , by Theorem 7, we have
RλA ⊆ RλB.

Then ∀ i, RλA(oi) ⊆ RλB(oi). So

∀ i, |RλA(oi)| ≤ |R
λ
B(oi)|.

Thus ∀ i, 1 ≤ |RλA(oi)| ≤ |R
λ
B(oi)|.

Hence Eλ(B) < Eλ(A).
Theorem 25: For an IVIS (O,AT ), given A ⊆ AT . Then

Gλ(A)+ Eλ(A) = 1 (III.8)

Proof:

Gλ(A)+ Eλ(A) =
1
n2

n∑
i=1

[|RλA(oi)| + (n− |RλA(oi)|)] = 1.

Corollary 26: For an IVIS (O,AT ), given A ⊆ AT . Then

0 ≤ Eλ(A) ≤ 1−
|A|
nm

(III.9)

Furthermore, if RλA = 4, then E
λ(A) = 1 − 1

n ; if R
λ
A = ω,

then Eλ(A) = 0.
Proof: By Proposition 11, |A|nm ≤ G

λ(A) ≤ 1.
By Theorem 25, Eλ(A) = 1− Gλ(A).
Thus

0 ≤ Eλ(A) ≤ 1−
|A|
nm
.

Suppose RλA = 4. Then ∀ i, |R
λ
A(oi)| = 1, Eλ(A) = 1− 1

n .

Suppose RλA = ω. Then ∀ i, |R
λ
A(oi)| = n, Eλ(A) = 0.

IV. EXPERIMENTAL EVALUATION
This part designs some experiments and does effectiveness
analysis to the proposed measures.
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TABLE 2. Six data sets from UCI.

A. DATA SETS AND EXPERIMENTAL CONTENTS
Six data sets from UCI (Machine Learning Repository) are
picked (see TABLE 2).

The above data sets come fromUCI. They are all real num-
ber type. They can change to interval-valued data. Then, the
interval-valued number a′(x) converted from the information
value of the object oi under the attribute ai can be obtained
by formula a′(x) = [a(x) − ξσ, a(x) + ξσ ], where σ is the
standard deviation. Usually, we pick ξ = 5.
For the dataset Ir, denote Li = {a1, · · · , ai} (i = 1, · · · , 4).

Define

XGλ (Ir) = {G
λ(L1), · · · ,Gλ(L4)},

XEλ (Ir) = {E
λ(L1), · · · ,Eλ(L4)},

XEλr (Ir) = {E
λ
r (L1), · · · ,E

λ
r (L4)},

XHλ (Ir) = = {H
λ(L1), · · · ,Hλ(L4)}.

For the dataset Ec, denote Mi = {a1, · · · , ai} (i =
1, · · · , 7). Define

XGλ (Ec) = {G
λ(M1), · · · ,Gλ(M7)},

XEλ (Ec) = {E
λ(M1), · · · ,Eλ(M7)},

XEλr (Ec) = {E
λ
r (M1), · · · ,Eλr (M7)},

XHλ (Ec) = = {H
λ(M1), · · · ,Hλ(M7)}.

For the dataset Pa, denote Ni = {a1, · · · , ai} (i =
1, · · · , 23). Define

XGλ (Pa) = {G
λ(N1), · · · ,Gλ(N23)},

XEλ (Pa) = {E
λ(N1), · · · ,Eλ(N23)},

XEλr (Pa) = {E
λ
r (N1), · · · ,Eλr (N23)},

XHλ (Pa) = {H
λ(N1), · · · ,Hλ(N23)}.

For the dataset Se, denote Oi = {a1, · · · , ai} (i =
1, · · · , 7). Define

XGλ (Se) = {G
λ(O1), · · · ,Gλ(O7)},

XEλ (Se) = {E
λ(O1), · · · ,Eλ(O7)},

XEλr (Se) = {E
λ
r (O1), · · · ,Eλr (O7)},

XHλ (Se) = {H
λ(O1), · · · ,Hλ(O7)}.

For the dataset So, denote Ai = {a1, · · · , a2×i} (i =
1, · · · , 15). Define

XGλ (So) = {G
λ(A1), · · · ,Gλ(A15)},

XEλ (So) = {E
λ(A1), · · · ,Eλ(A15)},

XEλr (So) = {E
λ
r (A1), · · · ,E

λ
r (A15)},

XHλ (So) = {H
λ(A1), · · · ,Hλ(A15)}. FIGURE 2. pcc .
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TABLE 3. The corresponding correlation between S and T .

FIGURE 2. (Continued.) pcc .

For the dataset Wd, denote Qi = {a1, · · · , ai} (i =
1, · · · , 30). Define

XGλ (Wd) = {G
λ(Q1), · · · ,Gλ(Q30)},

XEλ (Wd) = {E
λ(Q1), · · · ,Eλ(Q30)},

XEλr (Wd) = {E
λ
r (Q1), · · · ,Eλr (Q30)},

XHλ (Wd) = {H
λ(Q1), · · · ,Hλ(Q30)}.

B. EXPERIMENTAL RESULTS
From FIGUREs 2a−2f , we obtain the following experimen-
tal results.

Gλ, Eλr are both monotonically increases and Eλ, Hλ are
both monotonically decreasing as the cardinality of attribute
subset increases. Thus, Gλ, Eλ, Eλr and Hλ are applied to
measure the uncertainty of an IVIS.

C. DISPERSION ANALYSIS
Define

CV (S) =
σ (S)
s

(IV.1)

where

S = {s1, · · · , sn}, s =
1
n

n∑
i=1

si, σ (S) =

√√√√1
n

n∑
i=1

(si − s)2.

CV (S) is called the standard deviation coefficient of S. It is
used for analyzing the effectiveness of the proposed measures

Continue the above experiment, CV -values of four mea-
sure sets are shown in FIGURE 3.

FIGURE 3. The work process of this paper.

From the FIGURE 3, we can draw a conclusion that the
CV -values of Gλ and Eλr are much higher than those of
Eλ and Hλ. For these six datasets, the CV -value of Eλ

is obviously the smallest and indicates that the dispersion
degree of Eλr is minimum, that is to say, Eλ has much better
performance for measuring uncertainty of an IVIS.
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TABLE 4. pcc-values of sixteen pairs of four measure sets on Ir.

TABLE 5. pcc-values of sixteen pairs of four measure sets on Ec.

TABLE 6. pcc-values of sixteen pairs of four measure sets on Pa.

TABLE 7. pcc-values of sixteen pairs of four measure sets on Se.

TABLE 8. pcc-values of sixteen pairs of four measure sets on So.

D. CORRELATION ANALYSIS
Define

pcc(S,T ) =

n∑
i=1

(si − s)(ti − t)√
n∑
i=1

(si − s)2
√

n∑
i=1

(ti − t)2
(IV.2)

where S = {s1, · · · , sn}, T = {t1, · · · , tn}, s = 1
n

n∑
i=1

si,

t = 1
n

n∑
i=1

ti.

pcc(S,T ) is called Pearson correlation coefficient between
S and T . It reflects the degree of linear correlation between
S and T .

The correlation between S and T can be obtained according
to TABLE 3.

Continue the above experiment, pcc-values between two
measurement sets are shown in TABLEs 4-9.

TABLE 9. pcc-values of sixteen pairs of four measure sets on Wd.

TABLE 10. The correlation between two measures on Ir.

TABLE 11. The correlation between two measures on Ec.

TABLE 12. The correlation between two measures on Pa.

TABLE 13. The correlation between two measures on Se.

TABLE 14. The correlation between two measures on So.

From TABLEs 4-9, the correlation degrees between
the four measures on the six data sets are obtained (see
TABLEs 10-15). Obviously, the six tables are the same. The
correlation between the four measures on the six data sets is
consistent.

E. FRIEDMAN TEST AND NEMENYI TEST
To further assess the performance of the proposed four mea-
surement uncertainties, Friedman test and Nemenyi test are
presented in this part.
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TABLE 15. The correlation between two measures on Wd.

Friedman test is a statistical test on the basis of ranking
method. It is defined as

χ2
F =

12N
k(k + 1)

k∑
i=1

r2i − 3N (k + 1),

where N and k are the number of data sets and algorithms,
respectively, ri expresses the average ranking of the i-th algo-
rithm. Nevertheless, the Friedman test is too conservation that
is substituted by the following statistic

FF =
(N − 1)χ2

F

N (k − 1)− χ2
F

.

The statistic FF follows a Fisher distribution with k−1 and
(k − 1)(N − 1) degrees of freedom.

Nemenyi test is able to further explore which algorithm is
better in the statistical term. And the critical distance CDα is
defined as

CDα = qα

√
k(k + 1)

6N
(IV.3)

where qα is the critical tabulated value and α is the sig-
nificance level of the test. If the average level of distance
exceeds CDα , then the performance of two algorithms will
be significantly different.

Continued from Subsection 4.2, we have

Gλ(Ir) = 0.5058,Eλ(Ir) = 0.0238,Hλ(Ir) = 0.1808,

Eλr (Ir) = 0.3584,Gλ(Ec) = 0.6514,Eλ(Ec) = 0.1559,

Hλ(Ec) = 0.6409,Eλr (Ec) = 0.4145,Gλ(Pa) = 0.5869,

Eλ(Pa) = 0.0290,Hλ(Pa) = 0.2171,Eλr (Pa) = 0.3721,

Gλ(Se) = 0.3935,Eλ(Se) = 0.0100,Hλ(Se) = 0.1184,

Eλr (Se) = 0.2946,Gλ(So) = 0.3994,Eλ(So) = 0.0063,

Hλ(So) = 0.1030,Eλr (So) = 0.4119,Gλ(Wd) = 0.5484,

Eλ(Wd) = 0.0148,Hλ(Wd) = 0.1921,Eλr (Wd) = 0.3111,

Four UMs can be seen as four algorithms. We demon-
strate the statistical significance by using Friedman test and
Nemenyi test.
We list the ranking of CV-values of the four measure sets

on six datasets in TABLE 16.
Friedman test is used on four measurements under ten data

sets. Thus, FF follows the distribution with 3 and 15 degrees
of freedom. It is noted that the critical value of Fisher
distribution F0.05(3, 15) is 3.2874. Then FF = 35.9091.
Obviously, the value FF is much bigger than 3.2874.

TABLE 16. The ranking of CV-values of the four measure sets on six
data sets.

FIGURE 4. Nemenyi test.

This means that at the significant level α = 0.05, the perfor-
mance of the four measurements are different in the statistical
significance.

The following results can be obtained from FIGURE 4,
1) Compare the performance of four measurements from

statistics, Eλ is better than Hλ; In the same way, Hλ is better
than Eλr and Eλr is better than Gλ.

2) There is no significant difference between the perfor-
mance of Eλ and Hλ, Hλ and Eλr , E

λ
r and Gλ, respectively.

But Eλ is significant difference from Gλ and Eλr .

F. PAIRED t-Test
The paired t-test may be regarded as an extension of the
single-object t-test, except that Observations change from
a group of independent objects of normal distribution to
a pair of paired objects. For two paired objects O1 =

{o11, o12, . . . , o1n} and O2 = {o21, o22, . . . , o2n}, the dif-
ferential between the paired observations is defined as di =
{o1i − o2i}. If the differentials between the two pairs is inde-
pendent of each other, and derived from normal distribution,
then statistics below is able to be employed to determine
whether the expectation of di is 0:

T =
d̄

Sd/
√
n

(IV.4)

where d̄ = 1
n

∑n
i=1 di, Sd =

√
1

n−1

∑n
i=1(di − d̄)2, n is

the number of paired objects. Under the null hypothesis, the
statistic T follows t-distribution with degrees of freedom
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df = n − 1. For a given significance level α, one can obtain
rejection domain in the following:

Wt = {|T | ≥ t1− α2 (n−1)} (IV.5)

The value of T computed by objects falls into the rejection
domain that means two objects are significantly different.
Since the smaller the CV-values, the better the measurement,
we conduct paired t-tests on the CV-values. We treat the
CV-values ofGλ and Eλ as a pair of paired objects. Likewise,
we treat the CV-values of Eλ and Hλ, Eλ and Eλr , H

λ and
Eλr , H

λ and Gλ, Eλr and Gλ as five pairs of paired objects,
respectively. The tests are under the assumption that each
pair objects come from normally distributed populations with
unknown but equal variances. Pick α = 0.05, the test results
are shown in TABLE 17.

If d̄ < 0 and p − value < 0.05, it means the CV-values
of the first measurement is significantly smaller than that of
the second measurement. Thus, the performance of the first
measurement is significantly better than that of the second.
From TABLE 17, we obtain the following results:
a) The performance of Eλ is significantly better than that

of Gλ, Hλ and Eλr ;
b) The performance ofGλ is the worst of the four measures.

G. THE INFLUENCE OF PARAMETER λ ON THE
FOUR MEASURES
The parameter λ is utilized to adjust the fuzzy relation; it has
a significant influence on UM. We select an attribute subset
P = {a1, a2, a3} for Ecoli data set and Parkinsons data set
by adjusting the value of the parameter to vary from 0.1 to
0.9 with a step of 0.05. Then, we calculate the values of Gλ,
Eλ,Hλ and Eλr . The results are shown in FIGUREs 5a-5d and
FIGUREs 6a-6d.

From FIGUREs 5a-5d and FIGUREs 6a-6d, we obtain the
following conclusions.
Gλ and Eλr are both monotonically decreasing as the

parameter λ increases. By contraries, Eλ and Hλ are both
monotonically increasing with the parameter λ growth. But
they are not strictly monotonous.

V. AN APPLICATION IN ATTRIBUTE REDUCTION
FOR AN IVIS
This part gives an application of the proposed measures in
attribute reduction for an IVIS.
Definition 27: For an IVIS (O,AT ), given A ⊆ AT . Then

A is referred to as a λ-consistent subsets of AT , if RλAT = RλA.
The family of all λ-consistent subsets of AT is denoted by

coλ(AT ).
Definition 28: For an IVIS (O,AT ), given A ⊆ AT . Then A

is referred to as a λ-reduct of AT , if A ∈ coλ(AT ) and ∀ a ∈ A,
A− {a} 6∈ coλ(AT ).
The family of all λ-reducts of AT is denoted by redλ(AT ).
Theorem 29: For an IVIS (O,AT ), given A ⊆ AT . Then

the following conditions are equivalent:
(1) A ∈ coλ(AT ); FIGURE 5. Paired t-test.
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TABLE 17. Test results of paired t-test.

Algorithm 1 Attribute Reduction Algorithm on the Basis of
Fuzzy Information Granulation in an IVIS (FIEr-IVIS)
Input: An IVIS (O,AT ).
Output: One reduct A.
Initialization: A← AT , flag = 1.
Calculate Eλr (AT ).
while flag do

for each attribute a ∈ AT do
if Eλr (A− {a}) = Eλr (AT ) then

A← A− {a}
else

flag = 0
break

end
end

end
return A.

Algorithm 2Attribute Reduction Algorithm Based on Fuzzy
Information Entropy in an IVIS (FIE-IVIS)
Input: An IVIS (O,AT ).
Output: One reduct A.
Initialization: A← ∅, flag = 1.
Calculate Eλ(AT ).
while flag do

for each attribute a ∈ AT do
if Eλ(A ∪ {a}) = Eλ(AT ) then

A← A ∪ {a}
else

flag = 0
break

end
end

end
return A.

(2) Gλ(A) = Gλ(AT );
(3) Hλ(A) = Hλ(AT );
(4) Eλr (A) = Eλr (AT );
(5) Eλ(A) = Eλ(AT ).

Proof: (1)⇒ (2). Clearly.
(2)⇒ (1). Suppose Gλ(A) = Gλ(AT ). Then

1
n2

n∑
i=1

|RλA(oi)| =
1
n2

n∑
i=1

|RλAT (oi)|.

TABLE 18. Four data sets from UCI.

TABLE 19. Reduction results of four data sets from UCI.

So
n∑
i=1

(|RλAT (oi)| − |R
λ
A(oi)|) = 0.

Note that RλA ⊆ RλAT . Then ∀ i, R
λ
A(oi) ⊆ RλAT (oi). This

implies that

∀ i, |RλAT (oi)| − |R
λ
A(oi)| ≥ 0.

So ∀ i, |RλAT (oi)| − |R
λ
A(oi)| = 0. It follows that ∀ i,

RλAT (oi) = RλA(oi).
Thus RλAT = RλA. Hence

A ∈ coλ(AT ).

(2)⇔ (5). It can be proved by Theorem 25.
(1)⇒ (3). Clearly.
(3)⇒ (1). Suppose Hλ(A) = Hλ(AT ). Then

−

n∑
i=1

1
n
log2
|RλA(oi)|

n
= −

n∑
i=1

1
n
log2
|RλAT (oi)|

n
.

So
n∑
i=1

log2
|RλAT (oi)|

|RλA(oi)|
= 0.

Note that RλA ⊆ RλAT . Then ∀ i, R
λ
A(oi) ⊆ RλAT (oi). This

implies that

∀ i, log2
|RλAT (oi)|

|RλA(oi)|
≥ 0.
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FIGURE 6. Parameter test.

FIGURE 7. The influence of λ on Algorithm 1.

FIGURE 8. (a) The distribution before reduction on Wine. (b) The
distribution after reduction on Wine.

So ∀ i, log2
|RλAT (oi)|
|RλA(oi)|

= 0. It follows that ∀ i, RλAT (oi) =

RλA(oi).
Thus RλAT = RλA. Hence

A ∈ coλ(AT ).

(4)⇔ (3). It follows from Theorem 20.

129802 VOLUME 10, 2022



L. Li: New Measures of Uncertainty for Interval-Valued Data With Application to Attribute Reduction

FIGURE 9. (a) The distribution before reduction on Leaf. (b) The
distribution after reduction on Leaf.

Corollary 30: For an IVIS (O,AT ), given A ⊆ AT . Then
the following conditions are equivalent:
(1) A ∈ redλ(AT );
(2) Gλ(A) = Gλ(AT ) and ∀ a ∈ A, Gλ(A−{a}) 6= Gλ(AT );
(3) Hλ(A) = Hλ(AT ) and ∀ a ∈ A, Hλ(A − {a}) 6=

Hλ(AT );
(4) Eλr (A) = Eλr (AT ) and ∀ a ∈ A, E

λ
r (A−{a}) 6= Eλr (AT );

(5) Eλ(A) = Eλ(AT ) and ∀ a ∈ A, Eλ(A−{a}) 6= Eλ(AT ).
Proof: It is easy to be proved from Theorem 29.

By Theorems 25 and 20, we have

Gλ(A)+ Eλ(A) = 1, Eλr (A)+ H
λ(A) = log2 n,

where (O,AT ) is an IVIS andA ⊆ AT . Then, In the following,
we only study the reduction algorithms on the basis of Eλr and
Eλ and their overall time complexity are both O(|A|2).

A. CLUSTER ANALYSIS
In this subsection, clustering on the reduced IVIS is con-
sidered. We pick four data sets from UCI to do experiment
(see TABLE 18). All real valued data in the these datasets
must be converted into interval-valued data. The specific
conversion method can be seen in Subsection 4.1. Each of
these four data sets can be considered as an IVIS.

FIGURE 10. (a) The distribution before reduction on Algerian Forest Fires.
(b) The distribution after reduction on Algerian Forest Fires.

Below, we only use Algorithm 1 to get the reduction of
each IVIS.

The parameter λwill have a certain impact on Algorithm 1.
We first discuss the value of parameter λ and select Parkin-
sons data set by adjusting the value of the parameter λ to
vary from 0.1 to 0.9 with a step of 0.05. After setting λ,
Algorithm 1 is run for 20 times, and the mean and variance
of the reduced subset size are counted. The results are shown
in FIGURE 7.

From FIGURE 7, it can be seen that the reduced subset
size is decreasing with the increase of λ, but it is not strictly
decreasing, and its variance is also relatively large. To balance
the reduction rate and the stability, it is recommended that λ is
between 0.2 and 0.6 in practical application. In the following
experiments of this paper, λ is set at 0.4.
These reduction results are shown in TABLE 19. From

TABLE 19 show that Algorithm 1 can effectively reduce the
dimension of data.

In order to verify the performance of the algorithm, Based
on the work of Rouseeuw et al [25], we use k-medoids
clustering algorithm to cluster the data sets before and after
reduction.
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FIGURE 11. (a) The distribution before reduction on Climate. (b) The
distribution after reduction on Climate.

FIGURE 12. Silhouette coefficient.

The following distance between objects is to deal with
interval-valued data.
Definition 31 [8]: For an IVIS (O,AT ) with AT =

{a1, a2, · · · , am}, given o, o′ ∈ O. Then the distance between
o and o′ is defined by

Dis(o, o′) =

√√√√ m∑
k=1

(|p(ak (o), ak (o′))− p(ak (o′), ak (o))|)2

(V.1)

It is worth noting that the number of clusters is set
to the number of classes of the data set in all experi-
ments. In order to intuitively display the clustering results,
we take the midpoint of each interval to get the real value,
and then reduce the dimension with PCA. The results
are shown in FIGUREs 8a,8b,9a,9b,10a,10b,11a and 11b.
The silhouette coefficient values of four data sets before
and after reduction are shown in FIGURE 12. From
FIGUREs 8a,8b,9a,9b,10a,10b,11a and 11b, it can be seen
that the reduced data on these four data sets is more con-
centrated within the class and more dispersed among the
classes. They indicate that the quality of reduced data is better.
Figure 12 shows that the value of silhouette coefficient of the
reduced data set is larger, indicating that the reduced data set
has a better clustering effect.

VI. CONCLUSION
Considering that ‘‘The similarity between information values
that is fed back to the attribute set’’, a new fuzzy symmetry
relation on the object set of an IVIS has been constructed
by introducing a variable parameter to control the similarity
between information values. The advantage of this fuzzy
symmetry relation is to facilitate fuzzy computation and then
fuzzy Information granules have been obtained. Four UMs
have been investigated by means of fuzzy information gran-
ules. The effectiveness of the investigated UMs has been
proved by statistical analysis. The purpose of statistical anal-
ysis is to select two better measures to construct attribute
reduction algorithm. Two attribute reduction algorithms on
account of the selected UMs have been proposed. The exper-
imental results of cluster analysis demonstrated the effective-
ness of the proposed algorithm according to the evaluation
indicator of clustering performance. In the future, we will
apply the proposed measures for attribute reduction on large-
scale gene data, and considers the possible application of our
method in health-care waste treatment technologies assess-
ment problems.
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