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ABSTRACT The recognition of Balinese carving motifs is challenging due to the highly varying and
interrelated motifs of Balinese carvings and in addition to the scantiness of Balinese carving data. This study
proposed a method named GFF-CARVING for the recognition of Balinese carving motifs. GFF-CARVING
is a deep learning architecture based on the Graph Convolutional Network (GCN) and Convolutional Neural
Network (CNN) to extract image and graph features. GFF-CARVING applies feature fusion to improve
the discriminative ability of the model to overcome these challenges and therefore improve its recognition
performance. The proposed method consists of three main modules, the image representation learning
module, the graph representation learning module, and the prediction module. The image representation
learning module is based on ResNet and extracts the image features using global max pooling. The graph
representation learning module is based on GCN and extracts the graph features. The graph features are
handcrafted features that are built based on the occurrence relationship between the constituent sub-motifs
of Balinese carvings. The feature fusion generates new features that take into account the occurrence
relationship between the sub-motifs. These new features are used in the prediction module to accurately
recognize the Balinese carving motifs. Based on the experimental results, GFF-CARVING achieved the
highest recognition accuracy of 98.93% compared to other state-of-the-art models. These results indicated
that feature fusion based on the handcrafted graph features and image features improved the discriminative
ability of GFF-CARVING in recognizing Balinese carving motifs.

INDEX TERMS Balinese carvings, feature fusion, graph convolutional network, graph features, image
features.

I. INTRODUCTION
Balinese carvings are a work of art that is considered to
be a cultural heritage in Bali. Balinese carvings found in
sacred temples have unique motifs that adorn each element
of the temple. Motifs of Balinese carvings are carved on
a compressed sand media. Most temples in Bali that were
built in the past have unique motifs. Preservation efforts have
been carried out by digitally collecting and archiving various
motifs of Balinese carvings, in which the first step is the
automatic and accurate recognition of these motifs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Li Zhang .

However, the recognition of Balinese carving motifs is
challenging due to two reasons. Firstly, a single motif may
vary in appearance when it is present in different carvings.
Furthermore, Balinese carvings are comprised of sub-motifs
that are mostly interrelated to one another. Secondly, there are
no public Balinese carving datasets that is currently available.
The complex characteristics of the motifs and also the scant-
iness of Balinese carving data makes the recognition process
very challenging.

Several methods have been proposed to overcome the
challenges of limited or scant data and high data varia-
tion [1], [2], [3]. In the context of Balinese carving, Darma
et al. [4] proposed a data augmentation technique based on
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generative adversarial networks (GANs) and geometric trans-
formation to generate synthetic data to improve recognition
performance. A transfer learning approach was proposed
by Darma et al. [5] to improve the performance of several
pre-trained convolutional neural networks (CNNs) for the
recognition of Balinese carvings. Mahawan and Harjoko [6]
proposed a feature extraction method based on histogram of
oriented gradient (HOG) and principal component analysis
(PCA), in which the features of the training data are stored
into a table using learning vector quantization (LVQ) and
used for the recognition of Balinese carvings. However, these
methods have yet to achieve a significant recognition perfor-
mance and also have yet to fully overcome the problems faced
in the recognition of Balinese carvings, namely the highly
varying and interrelated sub-motifs.

Furthermore, several studies have proposed the use of
graph features from images to improve recognition perfor-
mance. Zhang et al. [7] proposed a modularity-based graph
learning module to build the graph representation of features
extracted using CNN and with the use of a graph convolu-
tional network (GCN) module, independent CNN features
and mutual GCN features are integrated to represent the
retinal images and boost the recognition performance. Zhang
et al. [8] proposed a structure-feature fusion adaptive GCN
(SFAGCN) for skeleton-based action recognition, in which
SFAGCN was shown to surpass the accuracy of state-of-the-
art methods by more than 0.6% on average. Mou et al. [9]
proposed a nonlocal GCN for the classification of hyperspec-
tral images which exhibited competitive results compared to
other spectral classifiers.

Based on the studies above, this study proposed a method
named GFF-CARVING which is based on GCN and CNN to
address the challenges faced in the recognition of Balinese
carving motifs, namely the highly varying and interrelated
motifs of Balinese carvings and the scantiness of Balinese
carvings data. The proposed GFF-CARVING applies feature
fusion to improve the discrimination ability of the model and
in turn improves the recognition performance of the model.
The crucial contribution of this study for the recognition of
Balinese carving motifs are summarized below:

• We propose a hybrid model that combines CNN and
GCN into a unified architecture to extract image features
and graph features for the recognition of Balinese carv-
ing motifs.

• We built handcrafted graph features based on the occur-
rence relationship between the constituent sub-motifs
of Balinese carvings that represent the Balinese carving
images.

• We propose feature fusion of the image and graph
features to improve the discriminative ability of
GFF-CARVING in recognizingBalinese carvingmotifs.

To the best of our knowledge, there are only a few studies
that conduct the recognition of Balinese carving motifs. The
experimental results show that GFF-CARVING can over-
come the challenges faced in the recognition of Balinese

carving motifs, namely the highly varying and interrelated
motifs of Balinese carvings and the scantiness of Balinese
carving data.

The rest of the paper is organized as follows: Section II
discusses the related works. Section III presents the proposed
GFF-CARVING method for Balinese carving motif recogni-
tion. Section IV discusses the experimental results. Finally,
Section V presents the conclusion and future works.

II. RELATED WORKS
Image recognition is the process of identifying images and
classifying them into classes. The classification process is
carried out based on features of the objects present in the
images. Image feature representation is the value used to
distinguish the classes of each object. Ling et al. [10] pro-
posed a self-residual attention-based CNN for deep face
recognition. This study used Resnet-50 and Resnet-101 as the
backbone networks and implemented a self-residual spatial
attention block and a self-residual channel attention block to
decrease the redundancy between channels and to focus on
the more significant parts of the face images. Wang et al. [11]
proposed a method to classify pulmonary images based on
Inception-v3 and transfer learning. Kui et al. [12] proposed a
depthwise separable residual neural network (ResNet) for the
classification of hyperspectral images that distinguishes the
spectral and spatial information of the images and reduces the
network size to prevent overfitting. Pal et al. [13] proposed a
deep metric learning-based framework that is configured into
CNNs to generate class-distinctive image feature descriptors
for the classification of cervical images. Sutramiani et al. [14]
proposed a data augmentation technique named MAT-AGCA
to improve the performance of CNNs for the recognition of
Balinese characters. MAT-AGCA addresses the challenge of
limited availability of Balinese character datasets.

Transfer learning is a strategy to improve the perfor-
mance of pre-trained models for the recognition of objects.
Zhou et al. [15] conducted transfer learning based on the
Inception-v3 and VGG19 models to differentiate benign and
malignant breast tumors. This research examined various
depths of transfer learning and evaluated the effects on the
classification performance. Huo et al. [16] used deep transfer
learning and semisynthetic training data for the classifica-
tion of underwater objects in sonar images. This research
applied fine-tuning and transfer learning to the VGG19
model. Sutramiani et al. [17] conducted transfer learning
based on theMobileNet model for the recognition of Balinese
characters. This research fine-tuned the number of trainable
parameters of the pre-trainedmodel and achieved an accuracy
of 86.23%. Fan et al. [18] carried out the recognition of rock
lithology using transfer learning based on the SqueezeNet
and MobileNet models. The research achieved the highest
recognition accuracy of 94.55% compared to other state-of-
the-art methods.

Ensemble learning is a technique that combines several
models or classifiers in an attempt to improve classifica-
tion performance. Several studies have conducted ensemble
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learning in various fields. Ali et al. [19] used ensem-
ble learning for lung nodule classification. They extracted
deep features using several CNN models and these fea-
tures were used to train two classifiers, namely SVM and
AdaBoostM2. It was shown that their method with the
used of SVM outperformed other state-of-the-art methods
and achieved an accuracy of 90.46%. Kusetogullari et al.
[20] proposed DIGITNET-rec, an ensemble of three CNN
model to recognize digit strings based on majority vot-
ing. Nanni et al. [21] proposed an ensemble of CNNs for
bioimage classification, in which the scores of the mod-
els were combined using sum rules. This study compared
the performance of several models based on learning rates,
batch sizes, and topologies. Banerjee et al. [22] proposed
an ensemble of selected features of several CNNs based
on a two-stage feature selection algorithm, namely fuzzy
entropy (FE) and total contribution score (TCS) for ery-
throcytes detection. Liu et al. [23] proposed a deep ensem-
ble model for facial expression recognition. A hybrid fea-
ture representation method was used to acquire high-level
discriminative features and a lightweight backbone fusion
based on VGG16 and ResNet was constructed to achieve
low-calculation training. The model achieved an accuracy
of over 94% on four benchmark datasets. Patel et al. [24]
proposed feature fusion based on several modalities, fea-
tures, classifier decision scores for human action recognition.
Liu et al. [25] proposed a deep feature fusion ResNet for
insect pest recognition. Based on these studies, feature fusion
can improve recognition performance by combining several
features.

Several studies have proposed several other techniques
to improve recognition performance of various objects. Lee
et al. [26] proposed a data augmentation method using con-
ditional GAN (cGAN) to address the scarcity of labeled
iris image data. It was shown that the method improved
the iris recognition accuracy. Man et al. [27] proposed a
method to classify breast histopathological images named
DenseNet121-AnoGAN which utilized anomaly detection
with GAN to screen mislabeled patches and DenseNet to
extract multi-layered features of the discriminative patches.
Liu et al. [28] proposed a method for Covid-19 diagnosis
from CT images based on a two-dimensional sparse matrix
profile and DenseNet. This study used the sparse matrix
profile method to generate anomaly enhanced CT images
which was used to train the DenseNet model. Furthermore,
this study also used data augmentation techniques to achieve
the best classification performance. Wang et al. [29] pro-
posed a method to classify single chromosome images into
24 types based on extended ResNet. This study used Haus-
dorff distance to calculate the vector of the input image
and the 24 label feature vectors. Furthermore, Lu et al.
[30] proposed an efficient algorithm based on the ResNet
model to predict protein-protein interactions. Other research
proposed Dimension-Based Generic Convolution Block to
improve the recognition accuracy and reduced the optimized
the model [31].

In this study, we adopted several of the approaches above
to address the challenges faced in the recognition of Balinese
carving motifs, namely the highly varying and interrelated
motifs of Balinese carvings and the scantiness of Balinese
carving data to improve the recognition of Balinese carving
motifs. The transfer learning approach can be used to improve
the recognition performance but does not overcome the chal-
lenges encountered in the recognition of Balinese carving
motifs. Furthermore, ensemble learning by combining several
models and features can also improve recognition perfor-
mance. However, in the context of Balinese carving motifs,
a more suitable approach that takes into consideration the
complex characteristics of Balinese carving motifs is needed.
Therefore, we built handcrafted features that exploit the
occurrence relationship between the sub-motifs as the graph
features. Based on these handcrafted features, we applied fea-
ture fusion to enrich the image features. Therefore, improve
recognition performance. This study proposes a method to
recognize Balinese carving motifs named GFF-CARVING
which applies feature fusion on the handcrafted graph fea-
tures extracted using GCN and the image features extracted
using ResNet. This feature fusion approach improves the dis-
criminative ability of the model to recognize Balinese carving
motifs.

III. METHODOLOGY
Fig. 1 shows the different variants of Balinese carving motifs
and the interrelated unique sub-motifs. The Balinese carv-
ing is consisted of seven sub-motifs i.e., Barong, Gajah,
Karang Goak, Karang Daun, Patra Punggel, Patra Cina, and
Keketusan Kakul kakulan. A single sub-motif may vary in
appearance when it is present in different carvings because
Balinese carvings are carved by different craftsmen and not
printed, as shown in Fig. 1a. The scantiness of Balinese
carving data is also a challenge in the recognition task. To our
knowledge, there is currently no publicly available Balinese
carving dataset. In addition, Balinese carvings have unique
sub-motifs that are interrelated to one another, as shown
in Fig. 1b. Each Balinese carving is constituted of sev-
eral interrelated sub-motifs. For example, Karang Barong
is composed of three sub-motifs i.e., Barong, Patra Cina,
and Keketusan Kakul kakulan. Barong and Keketusan Kakul
kakulan sub-motifs also appear in Karang Barong 2. Hence
these sub-motifs are interrelated. The combination of these
constituent sub-motifs is described in more detail in Table 1.
Based on the unique characteristics of Balinese carving sub
motifs, we exploit these characteristics to construct graph
features. This graph feature is combined with image features
to produce new features to improve the model’s discrimina-
tive ability in classifying Balinese carving motifs on highly
varying and limited dataset.

Fig. 2 shows the proposed Balinese carving recognition
method that consists of four steps. The first step is to con-
struct a directed graph based on a weighted adjacency matrix
to represent the occurrence relationship between the sub-
motifs. The second step is dataset vectorization. In this step,
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FIGURE 1. Images of Balinese carvings that are highly varying and interrelated: (a) Balinese carving motifs that are highly varying (b) a variety of
interrelated constituent sub-motifs.

FIGURE 2. The proposed Balinese carving motifs recognition based on graph feature fusion. The Balinese carving images are used as the input of the
image representation learning module and the carving labels as the input of graph representation and dataset vectorization process.

we applied word embedding to the BaliCarv dataset based
on the identified sub-motif labels. We utilized FastText to
generate a vectorized form of the BaliCarv dataset. The third
step is the proposed GFF-CARVING method, which con-
sists of an image representation learning module, a graph
representation learning module, and a prediction module.
In this step, we applied ResNet to extract image features and
GCN to capture graph features then predict the labels of the
motifs based on feature fusion. We combined the image and
graph features to improve the discriminative ability of the
model in recognizing Balinese carving motifs. The last step is
performance evaluation. We evaluated the performance of the
proposed GFF-CARVING with other state-of-the-art CNN
models on the BaliCarv dataset.

A. WEIGHTED ADJACENCY MATRIX FOR GRAPH
REPRESENTATION
The occurrence relationships between the sub-motif labels
are represented by a weighted adjacency matrix and shown

as a graph. A graph is a structure that encodes object con-
nections. Objects in a graph are represented by nodes, while
edges that connect nodes reflect the relationship between
nodes. Weights can be assigned to edges to indicate the
strength of the link between nodes. Aweighted directed graph
is used to represent the graph in this scenario. Each Balinese
carving contains sub-motifs that constitute the carving as a
whole. The weighted graph is based on the occurrence of two
different sub-motifs in one Balinese carving.

We constructed handcrafted graph features based on the
occurrence relationships between the sub-motif labels. Each
sub-motif label is represented as a node in the graph and each
directed edge between the nodes has a weight that represents
the probability of occurrence of other sub-motif labels when
a particular sub-motif label is present. Furthermore, each
sub-motif label has a probability of occurrence which is
calculated by the number of sample images that contain this
particular sub-motif divided by the total number of sample
images. A conditional probability can be used to represent
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TABLE 1. Balinese carving motifs combination with its constituent sub-motifs, the number of motif images, and the number of sub-motif images.

TABLE 2. Co-occurrence matrix of sub-motif pairs (A ∈ RC×C ) and Number of the sub-motif occurrences in the Balinese carving motif combination (N).

TABLE 3. Conditional probabilities of the sub-motif pairs.

FIGURE 3. (a) The illustration of the conditional probabilities between sub-motifs, (b) The directed graph relationship of carving sub-motifs and the
corresponding conditional probabilities, and (c) The adjacency matrix that represents the directed graph relationship of the carving sub-motifs.

the occurrence relationship between sub-motif labels, namely
P
(
Lj |Li

)
, to indicate the probability that the Lj label appears

when the Li label appears.
The graph and the corresponding weighted adjacency

matrix can be constructed based on the Balinese carving
motifs combination. First, we identified the different motifs
present in the Balinese carving images, which are shown in
Table 1. Each Balinese carving motif is composed of sub-
motifs. The combination of this sub-motifs is spread over

2,364 images in the BaliCarv dataset, consisting of 9,326 sub-
motifs. Afterward, we counted the number of occurrences
of sub-motif pairs in the Balinese carving motifs combina-
tion to obtain the co-occurrence matrix of sub-motif pairs
A ∈ RC×C , where C is the number of labels is shown
in Table 2. Then, we counted the number of occurrences
of each sub-motif in the Balinese carving combination (N ).
Finally, the weighted adjacency matrix of the occurrence
relationship between sub-motif pairs based on the conditional
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FIGURE 4. Carving sub-motif vectorization process: (a) The sub-motif label vectorization through word embedding process. (b)The
illustration of vector data that represents each carving sub-motif. Each carving sub-motif is represented as a vector data to be processed
in the graph representation learning module.

probabilities of sub-motif pairs is constructed by dividing
each row of the co-occurrence matrix A by the number of
occurrences of the corresponding labels (N ). The conditional
probability P

(
Lj |Li

)
for the pair of sub-motif labels Lj and

Li is calculated using the following formula:

P
(
Lj |Li

)
=
Aij
Nj

(1)

where Aij is the number of occurrences of the sub-motif
pairs Lj and Li, and Nj is the number of occurrences of Lj.
We calculated the conditional probabilities for each pair of
sub-motif labels using Eq. 1. The conditional probabilities
for each pair of sub-motif labels are shown in Table 3 and
the final weighted adjacency matrix is shown in Figure 3c.
The conditional probability that the Li label appears when the
label itself appears is represented with a weight of 1.

Fig. 3a depicts the nodes of sub-motif labels, the cor-
responding directed edge that connects the nodes, and the
weight that is given to each edge based on the conditional
probability between the sub-motifs. It can be seen that when
the gajah label appears, the probability that the Patra Punggel

TABLE 4. The BaliCarv dataset sub-motif labels. Each Balinese carving
image is labeled with the interrelated constituent carving sub-motifs.

label appears is represented with a weight of 1. However,
as the edges are directed, this does not apply the other way
around. When the Patra Punggel label appears, the prob-
ability that the gajah label appears is represented with a
weight of 0.5. Another example is the relationship between
the Patra Cina label and the Keketusan label. When the Patra
Cina label is present, the probability of occurrence of the
Keketusan label is represented with a weight of 1, but when
the Keketusan label is present, the probability of occurrence
of the Patra Cina label is represented by a weight of 0.3.
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FIGURE 5. The GFF-CARVING model. The model consists of three main modules, namely the image representation learning module to extract the
image features, the graph representation learning module to capture the graph features, and the prediction module that utilizes feature fusion to
predict the motif labels.

Fig. 3b shows the illustration of weighted directed graph of
the occurrence relationship between sub-motif labels. Fig. 3c
is the final weighted adjacency matrix that represents the
weighted directed graph. This graph will be used in the graph
representation learning module.

B. SUB-MOTIF LABEL VECTORIZATION
We applied sub-motifs label vectorization to enrich the motif
carving features so as to improve the discriminative ability
of the model. Fig. 4 shows the sub-motif label vectorization
through word embedding process and the illustration of the
vector values of the carving sub-motif labels. The vectorized
form of the BaliCarv dataset was generated by applying word
embedding based on the sub-motif labels. Word embedding
maps each label of the BaliCarv dataset into a dense vector.
The dense vector is a numerical representation of the semantic
meaning of each sub-motif label. Each sub-motif label in the
Balinese carving dataset is encoded into a very dense and
high-dimensional vector. The abstract meaning and relation-
ship of each label are coded numerically.

Fig. 4a shows the sub-motif label vectorization through
word embedding process. The BaliCarv dataset consists of
seven sub-motif classes. The vectorization process is imple-
mented for all the seven motif labels of the BaliCarv dataset
that consists of 2,364 images which contains 9,326 sub-
motifs labels. Table 4 shows the sub-motif labels of the
BaliCarv dataset along with the number of occurrences of
each sub-motif label within the images. The FastText model
was applied to map each sub-motif label into a vector to
generate the vectorized form of the BaliCarv dataset. The
training process using FastText was carried out for 10,000
iterations using a vector dimension of 300. This vectorized
form of the BaliCarv dataset and the weighted adjacency

matrix are used as input data to the graph representation
learning process. As an illustration, Fig. 4b shows the vector
values that represent each carving sub-motif.

C. GRAPH FEATURE FUSION CARVING
Fig. 5 shows in detail the GFF-CARVING process, which
consists of three main modules. The first module is the
image representation learning module, which is responsible
for extracting image features. An image feature is part of
the pattern of an image object to recognize or differentiate
from other objects. The second module is the graph represen-
tation learning module, which is responsible for extracting
graph features based on the interrelationships between the
sub-motif labels. The third module is the prediction module,
which is responsible for feature fusion of the extracted image
and graph features, and also predicting the Balinese carving
motifs. The purpose of extracting image and graph features
is to produce new features of Balinese carving by combin-
ing image features and graph features, thereby enriching the
features, and increasing the model’s discriminatory ability in
classifying Balinese carving motifs.

1) IMAGE REPRESENTATION LEARNING
The first module aims to extract features from the images.
In our experiment, we used ResNet as the base model. The
resolution of the input image is 500 × 500 pixels. To obtain
the features from the images, we used global max pooling
with the following formula:

x = fGMP (fcnn (I ; θcnn)) ∈ RD (2)

where x is the features extracted from the image, I is the input
image, θcnn is the model parameter, and D is the dimension
of the feature map where D = 2048.
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To optimize the neural network, we used SGD as the
optimizer with a momentum = 0.9, L2 regularization with
a weight decay = 1 × 10−4, and an initial learning rate
= 1 × 10−2 which decays every 40 epochs by a factor of
10. The image representation learning module generates a
2048-dimensional feature map.

2) GRAPH REPRESENTATION LEARNING
The second module aims to extract graph features. This mod-
ule implemented a GCN network consisting of two layers.
Each GCN layer received a node representation from the pre-
vious layer and outputs a new node representation. In the first
layer, the weighted adjacency matrix is used as input for the
label-level word embedding, where d is the vector dimension
of the word embedding and d = 300. The output from the
first layer goes through the LeakyReLU activation function;
hence the model can learn the relationship between complex
labels by stacking multiple GCN layers. The results of the
GCN convolution in the first layer produces an output with
a dimension d ′ = 1024. The output of the first layer and the
weighted adjacency matrix is used as the input for the second
layer to produce a feature vector with a dimension of 2048.
The final output of the GCN module is a 2048-dimensional
feature map that is based on the graph of interrelated sub-
motif labels.

The weighted adjacency matrix and the vectorized form of
the BaliCarv dataset are used as the input for the graph repre-
sentation learning module. The weight adjacency matrix rep-
resents the occurrence relationship between the sub-motifs
that constitute the Balinese carvings. The vectorized form
of the BaliCarv dataset is built through the word embedding
process.

3) PREDICTION BASED ON FEATURE FUSION
The prediction module combines the extracted image fea-
tures and graph features. Feature fusion is implemented on
both features by utilizing the matrix multiplication function.
We used the torch.matmul function to combine image fea-
tures and graph features instead of torch.mm and torch.bmm.
Torch.mm and torch.bmm function does not broadcast matrix
product, so it cannot treat arrays with different shapes dur-
ing arithmetic operations. On the other hand, torch.matmul
functions treat arrays of different shapes during arithmetic
operations. The smaller array is broadcast across the larger
array to have a compatible shape. In addition, torch.matmul
can perform tensor multiplication with high-dimensional
input. The feature fusion is calculated with the following
formula:

(x1x2 . . . xn)


y1
y2
...

yn

 = x1×y1x2 × y2 . . . xn × yn (3)

In Eq. 3, x1x2 . . . xn is the first vector and y1y2 . . . yn is
the second vector. The torch.matmul function calculates both

vectors to perform feature fusion to generate a new vec-
tor value. After applying feature fusion, the results are fed
through a fully connected layer to predict the labels of the
Balinese carving motifs. In addition, the feature fusion gen-
erates features that takes into account the occurrence relation-
ship between sub-motifs and can improve the discriminative
ability of the model; therefore, improving the performance of
the model in recognizing Balinese carving motifs.

IV. EXPERIMENT RESULTS AND DISCUSSION
A. DATASET
We used the BaliCarv dataset, composed of 2,364 images
containing 9,326 sub-motif labels and seven sub-motif
classes. The BaliCarv dataset was built through a data gen-
eration process using neural style transfer and geometric
transformation described in [4]. We applied K-Fold cross-
validation to the model training process. First, we split
the dataset into 5-folds, thus dividing the dataset into five
types of data trained on each model. Then, each train-
ing process was conducted on 1,892 train and 472 test
data.

B. PERFORMANCE EVALUATION
We evaluated the performance using precision, recall, F1, and
accuracy on a RTX3060 GPU.We evaluated the performance
of GFF-CARVING by comparing the performance with other
benchmark CNN models. These models were trained using
the BaliCarv dataset that consists of 2,364 Balinese carving
images. The performance is evaluated with the following
formula:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(4)

Precision =
TP

TP+ FP
(5)

Recall/True Positive Rate(TPR)

=
TP

TP+ FN
(6)

F1 = 2×
precision× recall
precision+ recall

(7)

False Positive Rate(FPR) =
FP

TN + TP
(8)

AUC =
∫ 1

0
TPRd(FPR) (9)

where TP is the number of correctly predicted positive labels,
TN is the number of correctly predicted negative labels, FP is
the number of incorrectly predicted positive labels, and FN is
the number of incorrectly predicted negative labels. Accuracy
is the ratio of true predictions to the overall data. Precision is
the ratio between TP to the total number of positive predic-
tions. Recall/TPR is the ratio between TP to the total number
of positive data. The F1 score is the harmonic mean of the
precision and recall. In addition, we applied K-Fold cross
validation, receiver operating characteristic (ROC), and area
under the curve (AUC) scores to evaluate each model.
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TABLE 5. Detailed view of the proposed model summary. We experimented with three variants of ResNet as the GFF-CARVING backbone.

TABLE 6. Experimental results of GFF-CARVING using several variations of ResNet using K-Fold cross validation.

C. BALINESE CARVING RECOGNITION
We conducted the recognition of Balinese carving motifs
by applying our proposed method, namely GFF-CARVING,
on the BaliCarv dataset. The Balinese carving recognition
process was carried out by first extracting the image fea-
tures and the graph features. Subsequently, feature fusion
was applied to combine the image and graph features to
generate features that takes into account the occurrence rela-
tionship between the sub-motifs. Finally, these features are
fed through a fully connected layer for label prediction.

We used ResNet as the backbone model for the image
representation learning module. We trained the model for
150 epochs. In the graph representation learning module,
we used the final weighted adjacency matrix as the graph
data and the vectorized form of the BaliCarv dataset to train
the GCNmodel. The graph representation learning module is
built based on GCN with two layers. The first layer accepts
input data with a vector dimension= 300. Convolution in the
first layer produces a 1024-dimensional feature vector based
on the graph data and vectorized form of the BaliCarv dataset.
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FIGURE 6. Confusion matrix comparison on three ResNet variant based on the model. (a) GFF-CARVING-ResNet-50, (b)
GFF-CARVING-ResNet-101, (c) GFF-CARVING-ResNeXt-50.

We used LeakyReLU to learn and model the interrelated
nodes in the graph convolution process in the first layer.
In the second layer, the graph convolution process generates
a 2048-dimensional feature vector. The features generated in
the graph representation learningmodule contain information
on the occurrence relationship between the sub-motif labels.

We experimented with three variants of ResNet as the
GFF-CARVING backbone. Table 5 shows a detailed view
of the proposed model summary. Each model has a different
number of parameters, especially in Resnet-101, which has
almost twice the parameter size. Table 6 shows the experi-
mental results of the GFF-CARVING method using different
variations of ResNet. We conducted experiments using three
variants of ResNet as the backbone network. We performed
K-Fold cross-validation to evaluate the model’s performance.
We split the dataset on each training into 5-folds. We used
ResNet-50 as the backbone network in the first scenario to
learn the image features. The experimental results in the first
scenario show that the model can recognize Balinese carvings
with an accuracy of 97.88%. Furthermore, we also evaluated

the performance of GFF-CARVING with the use of ResNet-
50 as the backbone network using precision, recall, and F1,
in which it achieved the best results with 93.85%, 98.81%,
and 96.27%, respectively.

In the second scenario, we applied ResNet-101 as the
backbone network to extract image features. ResNet-101
has more parameters than ResNet-50. This second scenario
aims to determine the number of network parameters in the
feature learning process. The experimental results show that
the used of ResNet-101 produced better recognition per-
formance compared to the used of ResNet-50 as the back-
bone network. The GFF-CARVING method with the use of
ResNet-101 achieved the best precision, recall, and F1 of
94.50%, 97.26%, and 95.86%, respectively. The 5-fold cross-
validation yielded an average accuracy of 98.06%.

In the third scenario, we carried out the recognition of
Balinese carving motifs using ResNeXt-50 as the backbone
network. ResNeXt-50 is a variant of ResNet that applies a
repeated building block that aggregates a set of transforma-
tions with the same topology [32]. The results of the third
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FIGURE 7. ROC curves and AUC scores comparison on three ResNet variant. (a) GFF-CARVING-ResNet-50, (b) GFF-CARVING-ResNet-101, (c)
GFF-CARVING-ResNeXt-50.

scenario were better than the previous two scenarios. The 5-
fold cross-validation yielded an average accuracy of 98.93%.
The GFF-CARVING method with the use of ResNetXt-50
achieved a precision, recall, and F1 of 92.04%, 98.18%, and
95.01%, respectively.

Fig. 6 shows the confusion matrix of the three ResNet
variants used as the GFF-CARVING backbone. The three
variants of ResNet showed almost the same performance,
with the performance of recognizing Balinese carving motifs
in each class with the lowest error of 5%. Karang Barong
1 is the motif with the lowest recognition results per
class, with 95% in the GFF-CARVING-ResNet-50 and
GFF-CARVING-Resnet-101 models. In GFF-CARVING-
ResNeXt-50, Karang Barong 1’s recognition performance
increased to 98%. Generally, the experimental results showed
that a high recognition performance reached 98.93% using
different variants of ResNet. Based on the experimental
results, the model with the highest performance yielded
by GFF-CARVING-ResNeXt-50 model. However, the
GFF-CARVING-ResNet-101 outperforms GFF-CARVING-
ResNeXt-50 based on the precision and F1, but this model has
more parameters and higher FLOPs than the other ResNet
variants. Fig. 7 shows the ROC curves and AUC scores
comparison on three ResNet variants. The ROC curve on
GFF-CARVING-ResNet-50 shows Karang Barong 1 has

the lowest AUC score of 0.913. On the other hand, GFF-
CARVING-ResNet-101 and GFF-CARVING ResNeXt-50
achieved higher AUC scores in Karang Barong 1 were
0.972 and 0.994, respectively. Based on AUC scores, GFF-
CARVING-ResneXt-50 produced the best performance with
a higher AUC score than the ResNet-50 and Resnet-101
variants.

Therefore, based on evaluation metrics and parameter
size, ResNeXt-50 as the backbone produced the highest
performance. The higher FLOPs on GFF-ResNet-101 are
because the ResNet-101 variant used in the image represen-
tation learning module has a larger parameter. Therefore, the
ResNeXt-50 model was chosen as the primary model in GFF-
CARVING. In the next section, we extend our experiment to
compare the performance of the GFF-CARVINGmodel with
benchmark CNN models.

D. RECOGNITION PERFORMANCE COMPARISON
Table 7 shows the comparison of recognition performance
of benchmark CNN models and the GFF-CARVING model.
We evaluated the performance of GFF-CARVING by com-
paring it to benchmark CNNmodels in previous research that
applied transfer learning and data augmentation strategies to
overcome limited or scant data and high variation. Based
on the previous method, we applied a fine-tuning strategy
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TABLE 7. Comparison of recognition performance.

and data augmentation method to each benchmark model to
improve recognition performance on limited and high data
variation data. In addition, we also compared the performance
ofGFF-CARVINGwith our previousmethod [4], that applied
neural style transfer and geometric transformation as data
augmentation method. Furthermore, we conducted further
experiments by conducting an ablation study on the effect of
the handcrafted graph features on the final prediction. Each
benchmark CNN model was also trained using the BaliCarv
dataset.

The MobileNet model achieved the lowest performance
with an accuracy of 81.70%. MobileNet is a model with
small parameters. MobileNet achieved precision, recall, and
F1 of 87%, 78%, and 79%, respectively. The VGG16 and
VGG19 models that applied transfer learning strategies with
larger parameter size and higher model complexity exhib-
ited better performance than the MobileNet model, in which
the models achieved an accuracy of 85% and 84.52%,
respectively. Furthermore, the ResNet-101 model achieved
a higher recognition performance of 88.37%, while the
MobileNetV2 achieved the performance with an accuracy of
85.46% and a precision, recall, and F1 of 91%, 84%, and
85%, respectively. Furthermore, we performed more experi-
ments using several different architectures i.e., DenseNet169,
InceptionResNetV2, Xception, and EfficientNetB4 that
yielded accuracy of 88.76%, 87.16%, 89.31%, and 88.21%,
respectively.

The highest accuracy achieved by the benchmark models
was only 89.31%. Our previous study proposed a data aug-
mentation technique based on neural style transfer and geo-
metric transformation to address the scantiness of Balinese
carving data [4], which increased the recognition accuracy
to 91.60%. These results indicated that the previous studies
that applied transfer learning strategy and data augmentation

method could not fully overcome the challenges faced in
recognition of Balinese carving motifs. The GFF-CARVING
model proposed in this study was designed to overcome chal-
lenges faced in the recognition of Balinese carving motifs.
The proposed graph-based fusion feature increased the recog-
nition accuracy of Balinese carving motifs, which reached
98.93%. Furthermore, compared to our previous data aug-
mentation technique, GFF-CARVING enhanced the recogni-
tion accuracy, which reached 7.33%.

We conducted further experiments by conducting an abla-
tion study on the effect of the handcrafted graph features
on the final prediction. We compared our GFF-CARVING
models with the baseline ResNet-50, ResNet-101, and
ResNeXt-50 that only used imaging features to determine
the performance improvement of the GFF-CARVINGmodel.
Table 7 shows that the GFF-CARVING outperforms the
baseline ResNet variants. Baseline ResNet variants can only
achieve accuracy that reaches 90.46%. These results indi-
cated that the handcrafted features built by utilizing the occur-
rence relationship between the sub-motifs label enhanced
the recognition accuracy of Balinese carving motifs. Fur-
thermore, feature fusion of the image and graph features
increased the model’s discriminative ability to recognize
Balinese carving motifs. However, our proposed method has
a larger FLOPs size than the MobileNet variants in terms
of model complexity due to the used of ResNet variants in
the image representation module. Hence, it requires higher
computing resources.

Based on these exhaustive experiments, GFF-Carving
outperformed other state-of-the art models in experiments.
Handcrafted features that are built based on the characteris-
tics of Balinese carving motifs can enrich features, thereby
increasing model recognition performance. In other research
domains, a similar strategy by exploiting data characteristics
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to build new graph features can be a strategy to improve
recognition performance.

V. CONCLUSION
In this study, we proposed GFF-CARVING, a Graph Fea-
ture Fusion method for the recognition of Balinese carving
motifs that addresses the challenges faced in the recogni-
tion of Balinese carving motifs, namely the highly vary-
ing and interrelated sub-motifs of Balinese carvings and
the scantiness of Balinese carving data. The proposed GFF-
CARVING consists of three modules, namely the image rep-
resentation learning module, graph representation learning
module, and prediction module. GFF-CARVING combines
CNN and GCN into a unified architecture to extract image
and graph features for Balinese carving recognition. We built
handcrafted graph features based on the occurrence relation-
ship between the constituent sub-motifs of Balinese carvings
and extracted image features using ResNet from images of
Balinese carvings. Then, feature fusion was implemented
on the image and graph features to improve the discrimina-
tive ability of GFF-CARVING in recognizing Balinese carv-
ing motifs. Based on the experimental results, the proposed
GFF-CARVING outperforms benchmark CNN models and
achieved an accuracy of 98.93%. The experimental results
indicate that the handcrafted graph features can significantly
enhance the recognition of Balinese carving motifs. In addi-
tion, the proposed feature fusion of the image and graph
features can generate enriched features that can improve the
discriminative ability of GFF-CARVING; therefore, over-
coming the challenges faced in the recognition of Balinese
carving motifs. However, the proposed model requires a
higher computational cost than theMobileNet variant. There-
fore, it cannot be applied to mobile devices.

In future work, there is still a need for improvement
in terms of model complexity in the hybrid deep learning
approach. Therefore, the hybrid model can be applied to
mobile devices with limited computing resources. In addi-
tion, we will apply GFF-CARVING for image retrieval of
Balinese carvings to digitally archive Balinese carvings in
various temples to preserve cultural heritage. This study is
a significant breakthrough in the conservation of Balinese
carvings. In addition, further research can be done by trying
to apply GFF-Carving to other domains, by exploiting the
characteristics of the data.
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