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ABSTRACT Diriver distraction behavior is prone to induce traffic accidents. Therefore, it is necessary
to detect it to caution drivers in time for traffic safety. In driver behavior recognition, the diversity of
behaviors and driving environment can have a certain effect on detection accuracy, and most of the existing
methods have serious information loss. These make it challenging to improve the real-time accuracy
of driver distraction behavior. In this paper, we propose an improved YOLOv7 based on the channel
expansion and attention mechanism for driver distraction behavior detection, named CEAM-YOLOV7. The
global attention mechanism (GAM) module focuses on key information to improve accuracy. By inserting
GAM into the Backbone and Head of YOLOV7, the global dimensional interaction features are scaled
up, enabling the network to extract key features. Furthermore, In the CEAM-YOLOV7 architecture, the
convolution computation has been significantly simplified, which is conducive to increasing the detection
speed. Combined with the Inversion and contrast limited adaptive histogram equalization (CLAHE) image
enhancement algorithm, a channel expansion (CE) algorithm for data augmentation is presented to further
optimize the detection effect of infrared (IR) images. On the driver distraction IR dataset of Hunan University
of Science and Technology (HNUST) and Hunan University (HNU), the verification results show that
CEAM-YOLOV7 achieves a 20.26% higher mAP compared to the original YOLOv7 model and the FPS
reaches 156, which illustrate that CEAM-YOLOV7 outperforms state-of-the-art methods in both accuracy
and speed.

INDEX TERMS Deep learning, attention mechanism, YOLOV7, driver behavior recognition.

I. INTRODUCTION

Driver behavior detection is an essential component of
Advanced Driver Assistance Systems (ADAS) [1]. To make
this technology move towards practical applications, the
key issue to be addressed is how to improve accuracy and
real-time performance.
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In recent years, most of the state-of-the-art target
detection algorithms have achieved satisfactory results in
autonomous driving tasks using Convolutional Neural Net-
works (CNNs)[2], such as the two-stage detectors Fast
R-CNN [3], Faster R-CNN [4], and FPN [5], the single-stage
detectors SSD [6], RetinaNet [7], and YOLO ([8], [9],
[10], [11], [12], [13], [14]. For the CNNs mentioned, the
accuracy has been improved by increasing the network depth.
In this way, the computation load, such as floating point
operations (FLOPs), would significantly increase. So the
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detection speed and data memory were sacrificed. At present,
in-vehicle terminals with distraction behavior detection
have become important technology products of assisted
driving, which requires both high accuracy and fast speed.
To accurately identify distracted behaviors, sufficient soft-
ware and hardware resources are required to complete CNNs
algorithms. Therefore, for the practical terminals of driving
distracted behavior recognition, these CNNs algorithms are
difficult to adopt directly because of their computational
complexity.

As a single-stage detector, YOLOvV7 has the advantages
of high accuracy and speed [14]. In this study, we try
applying YOLOV7 to driver distraction behavior detection.
Meanwhile, we further optimized its accuracy and speed to
better adapt to in-vehicle terminals. In this work, we propose
the CEAM-YOLOv7 algorithm, an advanced version of
YOLOV7 for detecting driver distraction behavior. The pro-
posed algorithm can overcome the shortcomings of YOLOv7
in detection accuracy and speed. The main contributions of
the work are as follows:

1) The global attention mechanism (GAM) module is
inserted into the YOLOvV7 network. Information is
retained to amplify the global interactions across
dimensions. By capturing important features in three
dimensions, information loss is decreased, and the
accuracy of behavior recognition is raised.

2) The network layers are pruned based on the idea of
model lightweight. The computation load is greatly
reduced, which improves the recognition speed. It is
beneficial for the algorithm to be deployed on
in-vehicle terminals.

3) A channel expansion (CE) algorithm is proposed to
optimize YOLOV7 for infrared (IR) image recognition.
Combined with the Inversion and contrast limited adap-
tive histogram equalization (CLAHE) image enhance-
ment algorithms, the IR images’ channels are expanded
to three. This strategy more effectively improves the
performance and robustness of the training model.

4) The proposed method is evaluated on the IR images
dataset of Hunan University of Science and Technology
(HNUST) and Hunan University (HNU) in Fig.1. The
dataset is more suitable for real driving scenarios
compared with the visible images whose grayscale and
contrast are easily affected by lighting and flare.

Il. RELATED WORK

A. DEEP LEARNING FOR DRIVER BEHAVIOR DETECTION
At present, deep learning has achieved great success in
object detection. Driver behavior detectors based on deep
learning have also been widely studied in the industrial
and academic fields. Zhao et al. [15] proposed a driver
behavior detection system based on an adaptive spatial atten-
tion mechanism. The discrimination region was extracted
adaptively according to the driver’s behavior classification.
Then K-NN was used to classify multi-scale state vectors
to identify specific driving behaviors. Masood et al. [16]
used deep convolutional networks to detect distracted drivers.
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FIGURE 1. IR images dataset of HNUST and HNU for driver distraction
behaviors.

VGG16 and VGG19 models are employed to identify the
distraction causes and effectively distinguish the driver’s
behavior. Shahverdy et al. [17] analyzed driver behavior with
recursive graph technique, converting driving signals, such
as acceleration, gravity and throttle, into images. Then CNNs
recognized the images as different behaviors. Xing et al. [18]
built a unified modeling system for multi-scale behavior
recognition based on a deep encoder-decoder framework. The
drivers’ physical and mental states are recognized together,
enhancing the unified model’s inference ability.

Furthermore, Ghizlene et al. [19] presented a method
to quickly detect the driver’s eyes to identify the driver’s
drowsiness by combining the Haar cascade and YOLO
algorithm. Based on YOLOv4-tiny, Zhao et al. [20] have
integrated the Inception V3 architecture and RES-SEBlock
module. The key feature information was extracted by
adding attention module and squeeze-and-excitation module.
As a result, the computation was reduced, and the average
precision of mask-wearing detection reached 0.86. Qin et
al. [21] built an enhanced eye-tracking object detection
dataset for driving videos and proposed the increase-decrease
YOLO network. The driver’s selective attention mechanism
was simulated to distinguish key objects in the driver’s gaze
area.

Most of the above networks use single-scale depth features,
which are difficult to improve the detection performance in
complex driving scenarios. Therefore, in the study, the GAM
module is intended to optimize the YOLO network archi-
tecture for driver distraction behavior detection. In addition,
most of the above algorithms have large models, which are
difficult to deploy on in-vehicle terminals, and the FPS is
too low to be applied in real driving scenarios. Therefore,
we apply the idea of model lightweight to the YOLOv7
structure, which greatly reduces the calculation load and
meets the application requirements.

B. IR IMAGES-BASED OBJECT DETECTION

IR images are not easily damaged by glare and lighting,
so the object detection of IR images is widely concerned.
Chen et al. [22] presented a novel R-Net based on IR image
segmentation for human action recognition. The defined loss
function comprehensively considered the shape, area and
centroid of the images, which helps solve the impact of
motion blur, low resolution and random noise on recognition
accuracy. Yao et al. [23] used an effective single-stage
algorithm for small IR targets based on FCOS and Spatio-
temporal features, which enhanced the response to targets and
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suppressed the background response. Meanwhile, in order to
eliminate the influence of static noise, time-domain features
are added to the network as image sequences so that the
network can learn the Spatio-temporal correlation features in
the image sequences.

However, due to the low SNR and fuzzy edges of IR
images, they are difficult to be used directly for recognition.
To further improve the recognition of IR images, some studies
have begun to focus on pre-processing image algorithms.
Several mainstream algorithms are listed below.

1) INVERSION

It enables the processed IR image to be closer to the grayscale
map of the visible image, which can significantly improve the
recognition performance.

2) MEDIAN FILTERING + TOP-HAT AND BOTTOM-HAT
TRANSFORM

The median filter can remove the Salt & Pepper Noise from
the IR images. And Top-Hat and Bottom-Hat transform is
used for image sharpening.

3) HISTOGRAM EQUALIZATION (HE)

Since the pixels of IR images are generally distributed in
relatively concentrated intervals, histogram equalization is
used for contrast enhancement;

4) CONTRAST LIMITED AHE (CLAHE)
Similar to HE, the processed pixel area becomes finer. In this
way, noise can be suppressed while the contrast is enhanced.
Compared with visible images, IR images have fewer
channels and thus contain less information. Therefore,
choosing a suitable data augmentation method is crucial for
IR image detection. In CEAM-YOLOvV7, the CE algorithm
consists of Inversion and CLAHE for image augmenta-
tion. In this way, we provide effective pre-processing of
IR images.

Ill. CEAM-YOLOv7
A. DEEP LEARNING FOR DRIVER BEHAVIOR DETECTION
As the current state-of-the-art single-stage target detection
algorithm, YOLO has been iterated to YOLOvV7 since its
release in 2016. In addition, there are many derivative
algorithms based on the YOLO architecture, such as PP-
YOLO [24], YOLOx [25], Scaled-yolov4 [26], YOLOR [27],
and other optimized algorithms. The latest YOLOvV7 [14]
is optimized for deployment on edge terminals. It uses a
composite scaling method to generate models at different
scales to meet different inference speed requirements, such
as YOLOv7-e6, YOLOv7-w6 and YOLOv7-x. The superior
flexibility allows it to be easily deployed on in-vehicle
terminals. The basic framework of YOLOv7 can be divided
into three parts: Input, Backbone, and Head. The details are
as follows:

Input: The Input part enriches the dataset by stitching data
and requires only low computational cost.
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Backbone: The Backbone part mainly consists of the
E-ELAN module, which performs feature extraction through
the CBS base convolution module.

Head: The Head part uses the SPPCSP and ELAN modules
to aggregate image features. Then RepConv adjusts the
channels of output features.1 x 1 convolution is used for
prediction and output.

B. IMPROVED YOLOv7

The structure of the CEAM-YOLOV7 network is shown
in Figure 2. Firstly, the GAM module[28] is introduced
as our attention mechanism to extract key information.
Secondly, based on the idea of model lightweight, we modify
the network structure to improve the recognition speed.
Moreover, some training tricks are used to enhance the
performance of model.

1) NETWORK ARCHITECTURE

The original YOLOvV7 network architecture is modified to
make it specialized for the IR dataset. The CEAM-YOLOv7
network architecture can be divided into CBM, MP,
SPPCSPC, and GAM modules. CBM is the basic convolution
module, which consists of convolution blocks with different
step sizes. As a multiple convolution module, Catconv
uses the output of the other convolution layers for concat
operation to improve the accuracy of the network. MP is
a downsampling module that takes into account both the
maximum and local value information of local regions.
SPPCSPC is an improved spatial pyramid pooling structure
(SPP) [29] that combines spatial pyramid pooling with the
CSP structure.

The original network is designed for visible images,
so detection accuracy cannot be guaranteed when directly
used for IR images. Therefore, GAM modules are inserted at
the output of the Backbone and Head parts of the architecture.
Despite the increase in computation and memory overhead,
object detection accuracy has improved.

2) GLOBAL ATTENTION MECHANISM

Different driver behavior is a fine-grained activity, and
the attention should be directed to the region of interest.
For example, drinking is mainly recognized by focusing
on the shape and position of the hand and water bottle.
GAM is an attention mechanism module that extracts
relevant information by selectively focusing on the desired
part of the channel and space to improve recognition
accuracy. As shown in Fig.2, the sequential channel-spatial
attention mechanism from CBAM [30] is used, of which
submodules are redesigned. The channel attention submodule
uses 3D permutation to preserve information across three
dimensions. Multi-layer perceptron is used to amplify the
cross-dimensional channel-spatial correlation. The spatial
attention submodule uses two convolutional layers for spatial
information fusion. The performance of the deep neural
network is improved by reducing information loss and
amplifying global interaction features. It provides an effective
trade-off between recognition speed and accuracy, and
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improves the recognition capability of targets in IR images.
In addition, it corresponds to the CE algorithm in the data
augment processing below.

The process is shown in Fig.2 and represented in equations
(1) and (2). The given input feature mapping F', intermediate
state F» and output F3 are defined as:

Fr =M. (F1)®F; (D
F3=M;(F2)®@ F»> (2)

where M¢ and Mg represent channel and spatial attention
maps, and ® denotes element multiplication.

3) MODEL LIGHTWEIGHT
Deep neural networks are designed to extract deeper features.
IR images have much fewer features than visible images,
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Output features F3

so a deep convolutional structure applied to IR images may
bring about feature loss. Therefore, some convolution layers
are removed from the original YOLOvV7 network structure to
reduce a large number of convolution operations. And the
overall network structure has feature extraction capability
while maintaining a moderate depth which is more suitable
for object detection of IR images. As a result, we prune the
original YOLOV7 layers from 306 to 235.

4) ACTIVATION FUNCTION

The SiL.U activation function is replaced with Mish [31],
whose upper-bound-free, smooth, and non-monotonic func-
tion properties allow better information deep into the
network, thus contributing to training stability and final
accuracy. Mathematically defined as:

f (x) = xtanh (softplus (x)) = xtanh (In (1 +¢*))  (3)
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Infrared image

FIGURE 4. Channel expansion algorithm.

where softplus(-) represents the normalized exponential
function which is a generalization of the binary classification
function sigmoid on multi-classification, and x denotes input.
In addition, we remove the Mosaic operation from the
original YOLO to avoid reducing feature information due to
image stitching.

C. CE ALGORITHM FOR IR IMAGE AUGMENTATION

Image enhancement algorithms can be broadly classified into
color-oriented (e.g., luminance, contrast, and color projec-
tion) and geometry-oriented (e.g., scaling, flipping, panning,
and zooming). The former enrich image information. And
the latter artificially expands the size of the training dataset
by data distortion or oversampling. Especially for IR images
with low SNR, it is necessary to study a data enhancement
method to enrich the image information and expand the
dataset. So combined with Inversion and CLAHE, the CE
algorithm is proposed in this study. The main functions of
Inversion and CLAHE in the CE algorithm are as follows.

1) INVERSION

Inversion makes the network more adaptable to the processed
IR image through the idea of domain migration. The Inversion
operation can enhances the details of white and gray in dark
areas of an image, facilitating the extraction of dark features.

2) CLAHE

CLAHE operation can make the grayscale distribution
more uniform, enhance the contrast and suppress the noise
simultaneously to increase the detail information of IR
images.

CE algorithm generates images adapted to this work,
increases the information content of the images, and improves
the detection accuracy of the network. Besides, using data
augmentation methods such as rotation and offset enrich the
dataset for better training results. The application flow of the
CE algorithm is shown in Fig.4.
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D. LEARNING ALGORITHM

The task of driver behavior recognition is implemented
using the well-trained CEAM-YOLOvV7 model. The training
procedure is summarized in Algorithm 1. The details are
explained as follows.

1. Inline 1, the structure of the CEAM-YOLOvV7 model is
constructed. The model consists of data augmentation,
convolution, pooling, attention modules and activation
functions.

2. In line 2, the parameters in the model are initialized.
The parameters 6 include weights w, bias b, reduction
ratio r and learning rate .

3. In lines 3-9, the CEAM-YOLOvV7 model is trained
using forward and backward propagation. In backward
propagation, the optimization algorithm of SGD is used
to update the parameters.

4. Inline 9, the model training is completed when the end
condition is satisfied to obtain the CEAM-YOLOv7
model with the best parameters for driver behavior
recognition.

IV. EXPERIMENT AND ANALYSIS

A. EXPERIMENTAL SETTING

We implemented CEAM-YOLOvV7 on PyTorch 1.10.1 and
used NVIDIA GeForce RTX 2070 SUPER GPUs for training
and testing. A partially pre-trained model of YOLOv7
was used in the training phase. Because CEAM-YOLOv7
and YOLOv7 share part of the network architecture,
many weights can be transferred from YOLOvV7 to
CEAM-YOLOV7, and a lot of training time can be saved
by using these weights. The model is trained on the dataset
set for 300 epochs, using SGD optimizer for training, with
0.1 as the initial learning rate. The input image size is
640 x 320 pixels, and the batch size is 16. We use the
evolve hyper-parameters method during the training process
to optimize hyper-parameters continuously. Each baseline
network architecture is trained with an identical optimization
scheme.
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Algorithm 1 Training Strategy of CEAM-YOLOv7

box_loss
Input: Given training samples X = {x1, ..., x¢} and labels 0.1512 obj_loss
Y= {y1 P yk} k (S N+. 0.15 1colzgloss
Output: The well-trained model CEAM-
YOLOv7 @
1: Construct the CEAM-YOLOv7 model shown in Fig. 2; 20
2: Initialize the parameters 6 (w, b, r, @); :é
3: repeat &
4:  Randomly select a batch of instances Xj from X; 0.05 4
5:  Forward learn training samples through 0.02652
CEAM-YOLOV7 mode;
6:  Compute the training loss L(0) by 000
L (0) = box__loss + object__loss + class__loss I > . . 5
shown in Fig. 5; B
pochs
7:  Propagate L(#) back through CEAM-YOLOV7 and
update the parameters with SGD; FIGURE 5. Training process of CEAM-YOLOV7.
8 F_md 0 by ml'n}mlz.lng L(G) with Xp; TABLE 1. Model performance comparison.
9: until End condition is satisfied.
Method Model size (M) mAP FPS
) ) ) Faster R-CNN 108 0.695 11
The HNUST and HNU infrared images datasqt is used SSD 92.6 0.407 46
for the experiment. The dataset was collected in a real
driving situation, and the infrared camera was installed YOLOv3 17 0.671 62
on the car center console to record the driver’s behavior. YOLOv4 105.6 0.63 135
The participants consisted of multiple male and female YOLOVSs 144 0.603 142
drivers in different driving environments to complete the YOLOV7 749 0612 66
dataset. The dataset contains four types of driver behaviors:
C 1. . h CEAM-YOLOV7 10.6 0.736 156
normal(Safe), drinking (Drink), using a cell phone (Phone), M
and hands off the wheel (Danger). The drink and phone
type are divided into left and right-handed, and the phone 1 “
type is further subdivided into play phone and phone call. mAP = n ZAP ! ®)

The numbers of safe, drink, phone, and danger images are
1000, 1200, 1500, and 1400, respectively. 3000 images were
used for this experiment. They are randomly divided into
training, validation and test set according to the 8:1:1 ratio.
To avoid overfitting problem, there are different drivers in
different sets. Fig. 1 shows the visual features of the original
images. Based on the dataset, the Inversion and CLAHE
data enhancement operations are used, with the proposed CE
algorithm.

B. EVALUATION PARAMETERS

To demonstrate the advantages of the CEAM-YOLOV7,
we use the following metrics: precision (P), recall (R), F1
score, average precision (AP), mean average precision (mAP),
model size, parameters, FLOPs, and frames per second
(FPS). The evaluation parameters equation is as follows:

P

ion (P) — 1 4
precision (P) TP+ FP “4)
NR) =~ )
reca = —
TP + FN
PxR
F1 score = 2 % (6)
P+R
1
AP; =/ Pi (R;) dR; (N
0
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In the above equation, TP represents true positive samples,
FP represents false positive samples, and FN represents false
negative samples. In addition, P represents the number of true
positive predictions in the overall prediction results, while R
is the number of true positive predictions in all ground truths.
F1 score is the harmonic mean of P and R. A higher FI score
indicates better target detection accuracy. AP evaluates the
model’s performance for each category by considering both
P and R metrics. The mAP represents the average of AP and
is used to measure the overall detection accuracy of the target
detection algorithm. In summary, for the YOLO algorithm,
the AP and mAP are the best metrics to measure the detection
accuracy of the model.

C. EXPERIMENTAL ANALYSIS

1) CONVERGENCE ANALYSIS

To observe the convergence of CEAM-YOLOvV7, we ana-
lyzed the training process. In the experiments, we set the
initial parameters. The task is to identify four driver behaviors
in the dataset. A mini-batch learning scheme of 16 per batch is
used to speed up the training process. In an epoch, the model
updates all parameters once after each mini-batch training is
completed. Fig.5 illustrates the curve of training loss relative
to the number of epochs. In this figure, the loss is a sum
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TABLE 2. Effect of using different methods on the YOLOv7.

Method Model size (M) mAP@0.5 Parameters (M) FLOPs (G) FPS
YOLOv7 74.9 0.612 364 103.4 66
YOLOvV7+CE 74.9 0.698 36.4 103.4 65
YOLOV7+AM 10.6 0.679 5.1 12.7 158
CEAM-YOLOvV7 10.6 0.736 5.1 12.7 156

of box_loss, object_loss and class_loss. As the number of
training epochs increases, the curve becomes flat. It indicates
the convergence of CEAM-YOLOv?7. Starting from epoch
200, the training loss of CEAM-YOLOV7 is basically stable.

2) ALGORITHM COMPARISON

We evaluated CEAM-YOLOv7 on NVIDIA GeForce
RTX 2070 SUPER GPU and compared it with the two-
stage detector Faster R-CNN and one-stage detectors SSD,
YOLOvV3, YOLOv4, YOLOVSs and the original YOLOV7.
The detailed results are shown in Table 1.

First, it can be seen that the model size of CEAM-YOLOvV7
is 10.6 M, which is easy to deploy on in-vehicle terminals
and can be used for vehicle-side real-time detection. The
parameters in the training process are 5.1 M, and the FLOPs
are 12.7 G. Therefore, our model is trained faster and
easy to deploy on hardware devices. Secondly, the mAP
of CEAM-YOLOV7 reaches 0.736, which is significantly
higher than other methods. As shown in Fig.6, the AP in
all categories is higher than other methods, and the hard
case ’Safe’ is significantly improved, which proves the
effectiveness of the new network structure. Finally, using
FPS as an index to evaluate the object detection speed shows
that our method can meet the real-time requirements for
detection, especially faster than the two-stage detector Faster
R-CNN by 14 times. Overall, our method has high accuracy
for IR image detection and can achieve a balance between
recognition accuracy and speed. The model size is suitable
for deployment on in-vehicle terminals and has application
meaning.

We visualize the detection results, as shown in Fig.7.
Our method successfully identifies four types of driver
behaviors, including Danger, Drink, Phone, and Safe, with
high recognition accuracy and almost no missed and false
detection.

D. ABLATION STUDY
In order to distinguish the respective features of the methods
more visually, ablation experiments were conducted for all

the proposed optimization methods, and the results are shown
in Table 2.

1) EFFECT OF CE ALGORITHM
With data augmentation operation, the CE algorithm extends
the number of channels of IR images from 1 to 3, which

greatly increases the amount of information. In table 2,
the mAP of YOLO+CE is increased to 0.698, which is

129122

- Danger Drink - Phone - Safe

0.8

Average Precision

0.2

T I T AL s T o L R T DA

A T L U T T T LT

W TS T T T DT TS TS T

i i A ]

T R B T e
S T T 8 T T s T B T s T T

%

T T T s T T T T T T BT AT

Faster R-CNN  SSD YOLOv3 YOLOv4 YOLOvSs YOLOv7 Ours

FIGURE 6. Comparison of the AP of different models.

14.05% higher than that of YOLOv7. However, FLOPs are
almost unchanged. Even compared with YOLOv7+AM, the
mAP slightly improved from 0.679 to 0.698. Obviously, the
addition of CE can improve recognition accuracy without
increasing computation.

2) EFFECT OF GAM

With the insertion of attention mechanism and layer prune,
model size and parameters are significantly reduced by more
than 80%. Moreover, compared with YOLO, the FPS of
YOLO7+AM is nearly 2.5 times higher, and FLOPs rapidly
drop to 12.7. These sufficiently indicate that the GAM
module and layer prune can achieve an excellent balance
between FPS and mAP.

3) EFFECT OF MODEL ENSEMBLE

Fig.8 shows the visualization results of the ablation experi-
ments on the YOLOvV7 model. It is observed from the results
that the mAP of CEAM-YOLOV7 increased by 23.20%.
According to the analysis of each recognition category, it can
be found that the impact of algorithm optimization on the
detection performance of each category is different, where the
biggest improvement is in the ’Safe’ category, with the mAP
doubled. The "Phone’ category is raised to about 0.6. And the
recognition ability of ’Danger’ and ’Drink’ remains better,
with mAP staying above 0.875. The mAP indexes indicate that
the method has achieved good results in target identification.
Meanwhile, the small model size means faster network
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FIGURE 7. Detection results.
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FIGURE 8. Comparison of indexes after YOLOv7 optimization. The black numbers are the evaluation
index values, and the bolded blue numbers are the change rates of the index after optimization.

training speed and lower training equipment requirements.
Our method can be easily deployed on in-vehicle terminals
with an FPS of 156, which meets the requirements of
real-time vehicle-side detection.

V. CONCLUSION
In this study, we propose the CEAM-YOLOV7, which
outperforms the existing single-stage detections. The GAM
module inserted into the network promotes the feature
extraction ability of driver behavior. Layer prune operation
makes IR image features easier to be extracted and models
easier to be deployed. The data augmentation strategy
optimizes the dataset through the CE algorithm. Based on the
driver distraction IR images dataset of HNUST and HNU, the
trained model can better adapt to the light changes of driving
scenes. The experimental results show that the method has
a fast detection speed of 156 FPS, and the mAP increases
by 20.26% over the original YOLO7 network. The trained
model is small in size and can be easily deployed on in-
vehicle terminals for real-time driver behavior recognition.
There are many more distraction behaviors of drivers with
different manifestations from person to person. We plan to
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explore further a more comprehensive object detection model
and deploy it on in-vehicle terminals.
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