
Received 26 November 2022, accepted 8 December 2022, date of publication 12 December 2022,
date of current version 15 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3228441

A Novel Multi-Model Stacking Ensemble Learning
Method for Metro Traction Energy Prediction
SHAN LIN1, XINGZHONG NONG1, JIANQIANG LUO 2, (Member, IEEE), AND CHEN’EN WANG2
1Guangzhou Metro Design and Research Institute Company Ltd., Guangzhou, Guangdong 510010, China
2School of Automation, Guangdong University of Technology, Guangzhou, Guangdong 510006, China

Corresponding authors: Jianqiang Luo (jqluo@gdut.edu.cn) and Chen’en Wang (1084676593@qq.com)

ABSTRACT Metro traction energy prediction is the basis of abnormal monitoring and plays an indispensable
role in the planning and operation of the metro system. However, current studies rarely offer a satisfactory
prediction performance. To improve the prediction accuracy, a novel prediction method for metro traction
energy consumption is proposed based on gradient penalty Wasserstein generative adversarial network
(WGAN-GP) and stacking ensemble learning with multi-model integration. Firstly, aiming to collect
effective train data, WGAN-GP is used to generate characteristic data of traction energy consumption. Then,
various algorithms like BP, SVM, ELM, andXGBoost are employed to preliminarily disclose the relationship
between traction energy consumption and characteristic data of traction energy consumption via K-fold
verification. Thereafter, the XGBoost algorithm is implemented as the meta model to construct a stacking
ensemble learning prediction model. Finally, the proposed method is verified with data from Guangzhou
Metro Line 13, and the results substantiate the effectiveness of the prediction model.

INDEX TERMS Metro traction energy, gradient penalty, Wasserstein generative adversarial network,
ensemble learning, prediction model.

I. INTRODUCTION
In 2022, China’s rail transit mileage exceeds 9000km, and
Shanghai, Beijing, Guangzhou, Chengdu, andWuhan rank in
the top five cities in the world in terms of subway mileage.
The rapid development of metro rail transit has brought chal-
lenges in high energy consumption. To achieve the carbon
peak and neutrality targets, it is necessary to reduce the
energy consumption of themetro system. In themetro system,
40%∼60% of the total energy is consumed by traction [1].
Therefore, accurate traction energy consumption prediction
is conducive to reducing the total energy consumption in
the metro system. Usually, the abnormal monitoring of trac-
tion energy consumption is realized by analyzing the error
between the predicted and the actual value [2]. Therefore, the
accurate prediction of traction energy consumption plays a
significant role and also provides a basis for abnormal mon-
itoring [3], [4]. On the other hand, the energy optimization
of subway train operation also needs the prediction result of
traction energy consumption [5], [6], [7]. Current prediction
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works on metro traction energy consumption are mainly
based on historical data via either the physical model [8] or
the statistical model [9]. The physical model is to establish the
dynamics model of the metro train through force analysis.
The calculation process is complex and inaccurate, espe-
cially considering multiple trains running on the line [10].
The statistical model is mainly based on a machine learning
regressionmodel that can quickly evaluate the traction energy
consumption [11]. For example, Lü et al [12]. proposed a
prediction model based on support vector regression and ran-
dom forest regression. This model can accurately describe the
relationship between traction energy consumption and related
influencing factors with large-scale operation data. Tang et
al [13]. established the prediction model of migration energy
consumption and total energy consumption. By binary linear
regression fitting and support vector regression with two
years’ operation data, the model can achieve high accuracy
on multiple lines.

However, all the above studies are based on existing lines
and require a large amount of historical operation data, mak-
ing them difficult to directly apply to new lines with short
operation times. Moreover, the existing studies are all based
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on a single prediction model. The learning ability of a single
prediction model is limited, and the complex relationship in
the feature data of traction energy consumption cannot be
fully extracted [14]. This makes accurate predictions hard to
be achieved.

To get a better prediction model, ensemble learning can be
used to train different prediction models and select appropri-
ate combination methods [15]. Ensemble learning methods
can integrate different prediction models or the same type
of prediction models. The commonly used ensemble learning
methods are Stacking [16], Boosting [17], and Bagging [18].
They have shown excellent performance in load prediction
and other fields. For instance, Dong et al [19]. proposed a
wind power prediction method based on Stacking ensemble
learning and achieved higher accuracy and stability than
those single prediction models. Al-Hajj et al [20] proposed
A global solar short-term prediction model with integrated
stacking learning and compared and analyzed multiple stack-
ing integrated learning structures and cycle models to achieve
one-year solar radiation assessment and analysis. Zhang et al
[21] proposed four different photovoltaic prediction mod-
els of stacking ensemble learning based on random forest,
extreme gradient boosting, and other base models. Exper-
imental results showed that the prediction performance of
the stacking integrated learning model was better than that
of a single model. Therefore, given the excellent prediction
performance, it is promising to apply the ensemble learning
method in predicting traction energy consumption.

In addition, it is hard to obtain enough characteristic
data on traction energy consumption,it is difficult to build
a traction energy consumption prediction model with high
accuracy. A few data modeling methods, such as transfer
learning [22] generative adversarial network (GAN) [23], and
other methods have been successfully applied in the field of
wind power prediction.

The GAN can learn the distribution of the historical data,
and the generated data with GAN have the same statistical
properties as historical data [24], [25]. This method can pro-
vide a novel solution for the above problems. Based on the
game theory, GAN trains both generators and discriminators.
Therein, generators use noises to generate new data that
match the mathematical distribution of historical data, while
discriminators are employed to distinguish the generated data
from the original data [26]. Once proposed, GAN has been
widely used in many fields of power systems, building power
demand prediction [27] daily power demand prediction [28],
prediction of the Motor State [29], and battery state predic-
tion [30]. For example, Chen et al. [31]. proposed a data-
driven GAN to generate scenarios that capture the spatial
and temporal correlations of renewable power plants. This
method can generate real and diverse wind and photovoltaic
power distribution maps. Whereas, traditional GAN also has
the disadvantages of poor generation diversity and schema
collapse.

To emphasize the novelty of this work, two concerns
regarding the research gaps are further clarified.

1) The first concern is the data shortage issue in new
subway lines. The abnormal monitoring of metro lines is
based on the difference between predicted and measured val-
ues. Therefore, it requires a high prediction accuracy, which
is conducive to developing a more energy-saving driving
scheduling plan. However, in new subway lines, owing to
data shortage, it is difficult to establish a prediction model
with high accuracy. To overcome data insufficiency, the
WGAN-GP model is first proposed to enhance the data
samples so as to address the few-shot learning problem in
new subway lines. Compared with the original GAN, the
improved GAN can generate high-quality characteristic data
of traction energy consumption to meet the needs.

2) The second concern is how to improve prediction accu-
racy. Since deep learning algorithms require a large demand
of data, single shallow-layer network algorithms such as
SVM, BP, and random forest may lead to a large devia-
tion in prediction accuracy. To fully utilize their respective
advantages, the stacking ensemble learning is first applied to
construct a traction energy consumption prediction model.
The results in the experimental tests confirm the obvious
advantage of our proposed ensemble learning method over
the single shallow-layer network algorithms.

Therefore, in this paper, a prediction model for metro
traction energy consumption is proposed based on the gra-
dient penalty Wasserstein generative adversarial network
(WGAN-GP) and Extreme Gradient Boosting (XGBoost).
The main contributions are summarized as follows:

1) To address the data shortage problem, a novel
WGAN-GP method for traction energy consumption is pro-
posed. The limited data on traction energy consumption are
amplified by the trained WGAN-GP. The data generated by
WGAN-GP have the same statistical properties as the real
data and thus can be applied in the prediction of traction
energy consumption of new Metro lines. The method can
effectively generate characteristic data and circumvent the
dilemma of data shortage in the prediction of traction energy
consumption.

2) To improve prediction accuracy, a stacking ensemble
learning method is used to excavate the complex nonlinear
relationship of metro traction energy consumption. The pre-
diction model of traction energy consumption is established
on the XGBoost ensemble learning model. The stacking
ensemble learning model is formed by the concatenation of
two-layer models. The model performance can be greatly
improved by integrating multiple models.

3) Eleven combinations of four base models are tested with
the Stacking ensemble learning method. With single models
extracting different feature information, integrated Stacking
ensemble learning can improve the prediction performance.
The best prediction model, in which the combined algorithm
with BP, SVM, ELM, and XGBoost as one layer base model
and XGBoost algorithm as the second layer meta model, is
proved to be more suitable for traction energy prediction.

The remaining of this paper is organized as follows.
Section II introduces the WGAN-GP model. Section III
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FIGURE 1. Basic structure of GAN.

presents the structure of stacking ensemble learning.
In Section IV, the model parameter setting is conducted and
the prediction process is demonstrated. Section V compares
the effectiveness of WGAN-GP data generation and the per-
formance of different basic models and meta models, and
also summarizes the advantages of the proposed method with
extensive case studies. Section VI concludes this paper.

II. DATA AMPLIFICATION MODEL
A. GAN MODEL
The basic architecture of GAN is shown in FIGURE 1.
Generator G learns the relationship between random signal
Znoise and real data R through continuous training, while
discriminator D is used to distinguish whether the input data
is real data during training.

By training the GAN, the generated data by generator G
have the same statistical properties as historical data, cheat
discriminant D; Discriminator D tries its best to identify
whether its input data is real data or generated data, and the
two constantly play games to finally reach Nash equilibrium.

The generator and discriminator interactively train and
compete with each other, so that the network is con-
stantly optimized. Finally, the trained generator can generate
high-quality new sample data, but the discriminator cannot
distinguish it from the real data. Therefore, the loss functions
of the generator and discriminator are defined as:

LG = Ez∼Pg(z)[− logD(G(z))] (1)

LG = Ex∼Pdata [logD(x)]− Ez∼Pg(z)[log(1− D(G(z)))]

(2)

where LD is the generator loss function, LG is the discrimi-
nator loss function, G is the generator, D is the discriminator,
Pg(x) is the true distribution of the original data, z ∼ Pg(z) is
the noise data conforming to the normal distribution, E is the
expectation, x is the real data, and z is the gaussian noise.
GAN is a kind of unsupervised learning neural network.

It can train models with Gaussian noise as the input and
output of the data with a similar distribution pattern to the real
data. The training objectives of GAN are defined as follows:

minGmaxD(D,G) = Ex∼Pg (x) |logD(x)|

+Ex∼Pz (z) |log[−D(G(z))]| (3)

where PZ is the generated data distribution.

B. WGAN-GP MODEL
Traditional GAN has problems like gradient vanish and can-
not learn the distribution law of the characteristic data well.

To alleviate the gradient disappearance and enhance training
stability in the original GAN, the Wasserstein generative
adversarial network (WGAN) is proposed in [32]. WGAN
can effectively utilize the real data and generate new data by
minimizing theWasserstein distance, which can be expressed
as:

W (PR,PZ ) = inf∏
(PR,PZ )

E(x,y)∼∏(PR,PZ )(‖x − y‖) (4)

where
∏
(PR,PZ ) represents the joint distribution of real data

PR and generated data PZ , (x, y) ∼
∏
(PR,PZ ) represents

sampling from
∏
(PR,PZ ),W (PR,PZ ) is the lowest value for

‖x − y‖ of all the x and y that satisfy the distribution, namely
the Wasserstein distance.

LD = Ex∼PZ (fw(x))− Ex∼PR (fw(x))

+ λEx∼Px̂ [(
∥∥∇ x̂fw(x̂)∥∥2 − 1)2] (5)

LG = −Ex∼PZ (fw(x)) (6)

where LD is the generator loss function, LG is the discrimina-
tor loss function, fw(∗) is the fitting function of the neural
network, λ is the penalty coefficient, ‖∗‖2 represents the
binary norm, and Px̂ is the generated sample distribution.

III. ENSEMBLE LEARNING METHOD
A. MACHINE LEARNING ALGORITHM
Popular deep learning methods require massive data for train-
ing [33], [34], whereas the traction energy consumption data
are limited in new lines. As a result, it would be very hard
to build effective deep learning models. Therefore, some
excellent machine learning methods are selected to establish
the prediction model instead of a single algorithm.

1) XGBOOST ALGORITHM
XGBoost is a Boosting ensemble learning algorithm based
on gradient lifting. XGBoost optimizes Boosting algorithm
based on the gradient lifting decision tree, reducing the prob-
lem that the traditional gradient lifting decision tree is easy to
overfit [35], [36], [37], and its model is shown in Equation (7).

ŷ(i) =
M∑
m=1

fm(xi), fm ∈ F (7)

where ŷ(i) is the predicted value of the ith sample, M is the
number of trees, fm(∗) is the state of the m-th tree, xi is the ith
sample, and F is the set space of trees.
The objective function of XGBoost is shown in

Equation (8):

0 =

n∑
i=1

L[y(i), ŷ(i)]+
M∑
m=1

�(fm) (8)

where L[y(i), ŷ(i)] is the training error between the predicted
value and the actual value, and �(fm) is the tree complexity.
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The complexity of the tree is calculated as shown in
Equation (9):

�(fm) = γT +
λ

2

T∑
j=1

(ω2
j ) (9)

where γ is the control coefficient of the number of leaf nodes,
T is the number of leaf nodes, λ is the control coefficient of
leaf node fraction, and ω is the leaf node fraction.

XGBoost algorithm can realize parallel computing for
nodes in each layer of the network, which is conducive to
improving the training speed of the model. By inputting mul-
tiple characteristics of metro train traction energy consump-
tion into the XGBoost model and aiming at measured traction
energy consumption, XGBoost’s metro train traction energy
consumption prediction model can be established. Through
several iterations, a good fitting effect can be obtained.

2) EXTREME LEARNING MACHINE
Extreme Learning Machine (ELM) is an improved model
of the feedforward neural network, which has the advan-
tages of fast training speed and simple parameter adjustment
[38], [39], [40]. ELM, as a new type of feed-forward neural
network, randomly generates input weights during training
and keeps them unchanged. Only the weights of the training
outputs are needed to make the network model constantly
approximate the training samples.

3) SUPPORT VECTOR MACHINE
Support Vector Machine (SVM) is a machine learning
method based on statistical learning theory. It is mainly
divided into two categories, which are commonly used in
classification and nonlinear regression tasks [41], [42], [43].
When SVM is used in a regression task, low-dimensional
samples can be mapped to high-dimensional vector space
through a nonlinear mapping function ϕ(x) to better solve the
small-sample problem. The function relation of SVM is as
follows:

fSVM(x) = ωSVM · ϕ(x)+ bSVM (10)

where fSVM(x) is the predicted value for sample x, ωSVM is
the weight coefficient matrix of SVM, and bSVM is the bias
coefficient matrix of SVM.

4) ERROR BACKPROPAGATION ALGORITHM
Error back Propagation (BP) neural network is a neural net-
work that adjusts the weights and bias parameters among
network layers according to the training errors [44], [45],
[46], [47]. At the same time, through different activation
functions, the complex nonlinear relations in the features can
be further extracted, so that the BP neural network can be
infinitely close to the real distribution of features.

B. STACKING ENSEMBLE LEARNING
A single prediction model has limited prediction perfor-
mance. Ensemble learning can integrate the advantages of

FIGURE 2. Structure of stacking ensemble learning.

single prediction models and build a better prediction model.
A large number of studies show that Stacking ensemble learn-
ing has excellent prediction performance [48]. In stacking
ensemble learning, the training set is divided into several
subsets. The prediction results of the first layer model are
obtained from the base learning model and implemented as
the input features of the meta model. Then, the output of
multiple base models is combined to form the input features
of the meta model. The rules among these features are learned
via the meta model, and the desired prediction results are
finally obtained. Stacking ensemble learning improves the
performance of the model by integrating multiple models.
The stacking ensemble learning model for traction energy
consumption prediction is shown in FIGURE 2.

For metro traction energy consumption characteristics of
the sequence of Q = {(yn, xn)}, n = 1, · · · ,N , xn for the first
n samples of characteristics, yn as the traction energy con-
sumption; The sequence Q is randomly divided into K equal
subsets S1, S2, · · · , Sk . Where S−k = S-Sk , Sk and S−k are
respectively defined as the k-th folding test set and training
set in k-folding cross verification. For layer 1, the prediction
algorithm contains K base learning [49], the training set S−k
training gets the base model using the first k algorithm Mk ,
k = 1, . . . , K .

For each sample xn in the k-folding test set Sk in the
k-folding cross validation, the prediction of it by the base
learner Mk is expressed as zkn. After completing the cross-
validation process, the output data of K base learners
is constituted into a new data sample, namely Snew =
{(yn, z1n, · · · , zkn)}, n = 1, · · · ,N . The second layerMnew is
trained by using xn as the input of the second layer Stacking
ensemble learning learner.

The detailed implementation of the Stacking ensemble
learning algorithm is illustrated in Algorithm 1.

IV. MODEL PARAMETER SETTING AND
PREDICTION PROCESS
A. WGAN-GP PARAMETER SETTINGS
TheWGAN-GPmodel of themetro traction energy consump-
tion is shown in Fig.3.
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Algorithm 1 Stacking Ensemble Learning Algorithm
Input:
Training dataQ = {(x1, y1), (x2, y2), · · · , (xn, yn)}, One layer learn-
ing algorithm ξ1, · · · , ξT , Two-level learning algorithm ξ ;
Output:
Ensemble learning model Mnew;
1. Step one: The primary learner is generated by training a layer
learning algorithm through the training set dataset Q;
2. for t = 1 to K do
3. ht = ξt (Q);
4. end for
5. Step two: Create a new training data Snew;
6. Snew = ∅;
7. for i = 1 to n do
8. for t = 1 to K do
9. zit = ht (xi);
10. end for
11. Snew = Sneww ∪ {yn, z1n, · · · , zkn};
12. end for
13. Mnew = ξ (Snew);
14. returnMnew

FIGURE 3. Metro traction energy consumption WGAN-GP model.

TABLE 1. The structure information of the generative adversarial network.

In this paper, the deconvolution layer and the convolution
layer are used to build theWGAN-GPmodel ofmetro traction
energy consumption. The generator is composed of 5 hidden
layers, while the discriminator D is composed of 4 hidden
layers. The basic parameters are shown in Table 1.
where nDconvis the number of deconvolution layers, kernel
size is the size of the convolution kernel, nup is the number
of upsampling layers, nfc is the number of neurons in the
fully connected layer, and nconv is the number of convolution
layers.

The input of generator G is gaussian noise, and the output
is traction energy consumption data of the metro train. The
input of discriminator D is the real data set of metro traction
energy consumption and the generated data set to form a
1 × 5 tensor. In the training process, both generator G and
discriminator D use the Adam optimization algorithm, and
the initial learning rate is 0.001. After training, generator
G can generate traction energy consumption data consistent

TABLE 2. Stacking ensemble learning parameter settings.

with the real train, so as to realize the data amplification of
the traction energy consumption.

B. STACKING ENSEMBLE LEARNING PARAMETER
SETTINGS
In this paper, the stacking ensemble learning model is divided
into two layers. The first layer uses XGBoost, SVM, BP, and
ELMmodels as the base learning model, and the second layer
uses XGBoost as the meta-learning model.

Detailed parameter Settings of different models are shown
in Table 2.

C. WGAN-GP AND STACKING PREDICTION PROCESS
The flow chart of traction energy consumption prediction is
illustrated in FIGURE 4 below.

According to FIGURE 4, the prediction process mainly
consists of three steps: 1) data preprocessing, 2) WGAN-GP
model training and data generation, and 3) base learning
model training and meta-learning model training.

1) Data preprocessing: Eliminate the influence of outliers
and extreme values through data processing, and provide
an excellent data source for data generation and prediction
model.

2) WGAN-GP model training and data generation: The
WGAN-GP data generation model suitable for metro train
traction energy consumption is trained and established to
provide sufficient data for the prediction model.

3) Base learning model training and meta-learning model
training: Fully mine the characteristic data of traction energy
consumption, establish the stacking ensemble learning model
of traction energy consumption prediction, and conduct
experimental verification.

V. CASE STUDIES
To verify the effectiveness of the proposed prediction model
in this paper, this section employs the measured data of
Guangzhou Metro for verification. All simulation experi-
ments are implemented with Keras deep learning framework
under Python 3.8. The configuration of the simulation plat-
form is Intel core i5-10210U processors running at 2.11 GHz
with a memory capacity of 16 GB under Windows 11
Operating System.

A. DATA DESCRIPTION
In this paper, a total of 120 data pieces are collected includ-
ing the daily train operation energy consumption, auxil-
iary equipment energy consumption, passenger flow, depot
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FIGURE 4. WGAN-GP-Stacking prediction process.

commissioning mileage, positive commissioning mileage,
passenger car mileage, empty train number, and actual train
number from January to February 2022 in Guangzhou Metro
Line 13 (first phase, Yuzhu station – Xinsha Station).

The first 60 points are set as the training set and the last
60 points as the test set. All features aremapped to the interval
[0,1] according to the following formula:

x istd =
x i − x imin

x imax − x
i
min

(µu − µd )+ µd (11)

where x istd is the value after mapping the i-th feature, x i is the
original value of the i-th feature, x imax and x

i
min are the max-

imum and minimum values of the i-th feature respectively,
µu and µd are the lower and upper bounds of normalization,
in this paper µu = 1 and µd = 0.
To reduce the difficulty of model training, the Pearson cor-

relation coefficient is applied to select the above 8 features,
as displayed in Table 3.
To select suitable variables as the input of the prediction

model, the Pearson prod-moment correlation coefficient is
calculated in Table 2. It can be figured that the correlation
coefficient between some variables is high, such as actual
train number, and passenger car mileage. But some vari-
ables have lower correlation coefficients, which indicates that
these variables have less relation with the traction energy
consumption and should be discarded. Thus, the top four
variables with the largest correlation coefficients are selected

TABLE 3. Characteristic correlation coefficient.

FIGURE 5. Training loss curve of WGAN-GP.

as input features, viz, the actual train number, passenger car
mileage, passenger flow, and energy consumption of auxil-
iary equipment.

B. PREDICTION PERFORMANCE EVALUATION INDICES
To evaluate the prediction performance, mean absolute error
(MAE), root mean square error (RMSE), and mean abso-
lute percentage error (MAPE) are chosen as the evalua-
tion indices. The corresponding calculation formulas are
expressed in Equations (12) - (14).

eMAE =
1
N
(
N∑
i=1

∣∣y(i)− ŷ(i)∣∣) (12)

eRMSE =

√√√√ 1
N

N∑
i=1

∣∣y(i)− ŷ(i)∣∣ (13)

eMAPE =
1
N

N∑
i=1

∣∣∣∣y(i)− ŷ(i)y(i)

∣∣∣∣× 100% (14)

where N is the number of samples, y(i) is the measured
traction energy consumption value, and ŷ(i) is the predicted
traction energy consumption value.

As can be seen from formula (12)-(14), the smaller the
values of eMAE, eRMSE and eMAPE, the better the prediction
effect.
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FIGURE 6. Characteristic distribution of traction energy consumption.

FIGURE 6. (Continued.) Characteristic distribution of traction energy
consumption.

TABLE 4. Feature-similarity degree.

TABLE 5. Prediction index results of the base model.

C. CASE 1: GENERATION AND ANALYSIS OF WGAN-GP
TRACTION ENERGY CONSUMPTION DATA
To verify the effectiveness of WGAN-GP, 30 data are gener-
ated withWGAN-GP to expand the data by 50%. Fig.5 shows
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FIGURE 7. Prediction curves of four base models.

TABLE 6. Prediction index results of different meta model.

FIGURE 8. Different meta model predicted curve.

the training loss curve of the generator and adversarial, and
Fig.6 presents the distribution of the generated data and real
data.

As can be seen from Fig.5, in the multi-iteration training
of the proposed WGAN-GP model, the loss of generator
and adversarial tends to be stable after 800 iterations. The
final generator loss function value is stable at 1.3 ∼ 1.4, and
the loss function value of the determination device is stable

TABLE 7. Stacking ensemble learning prediction index results of different
base model combinations.

FIGURE 9. Prediction index results of different base model combinations.

between −0.33 ∼ −0.15. Therefore, the iteration number of
the WGAN-GP model is set to 800.

From FIGURE 6 characteristic distribution of traction
energy consumption, the distribution of generated data basi-
cally consistent with that of real data, indicating that the data
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TABLE 8. Time complexity.

generation model is effective. From Table 4, the similarity
between the generated features and the original features is
higher than 0.7, which indicates that the generated data has a
strong correlation with the original data.

D. CASE 2: EFFECTIVENESS ANALYSIS OF WGAN-GP
GENERATED DATA
To further verify the data validity of WGAN-GP, four base
models i.e., XGBoost, SVM, ELM, and BP are employed in
the comparative analysis. They share the same input with the
original metro train feature series and generate new feature
series respectively. The prediction indicators of the four base
models are shown in Table 5, and the predicted curves are
drawn in FIGURE 7.
The following conclusions can be drawn from Table 5 and

FIGURE 7:

(1) Compared with BP, SVM and ELM, the XGBoost
model achieves the best prediction performance with all three
evaluation indices. Statistically speaking, in the prediction
with original data, the eMAE index is reduced by 5.19%,
9.72%, and 29.19%, respectively, the eMAPE index is reduced
by 3.14%, 10.05%, and 26.90%, respectively, and the eRMSE
index is decreased by 13.50%, 4.95%, and 31.90%, respec-
tively. Therefore, the XGBoost model is selected to build the
prediction model for traction energy consumption.

(2) Compared with the original data, the data generated
by GAN play a more significant role in improving the pre-
diction performance in all four base models. Take the MAE
indicator as an example, the eMAE indexes are reduced by
3.97%, 2.97%, 1.20%, and 2.30 with BP, the SVM, ELM and
XGBoost respectively. In addition, the eRMSE and eMAPE
indexes are also decreased with the data from GAN.
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TABLE 9. Model stability verification with repetitive experiments.
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TABLE 9. (Continued.) Model stability verification with repetitive experiments.
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(3) Compared with the GAN generated data, the data
generated by WGAN-GP play a more significant role in
improving the prediction performance in all four basemodels.
Take the MAE indicator as an example, the eMAE indexes are
reduced by 1.08%, 6.22%, 1.72%, and 2.55% with BP, the
SVM, ELMandXGBoost respectively. In addition, the eRMSE
and eMAPE indexes are also decreased with the data from
WGAN-GP. Therefore, the WGAN-GP can provide useful
data for traction energy consumption and effectively improve
the prediction performance.

E. CASE 3: PERFORMANCE VALIDATION OF DIFFERENT
META MODELS
To verify the effect of different meta models, based on the
data generated by the characteristics of metro train sequences,
with four different models (XGBoost, SVM, ELM, and BP
model) as a meta model to constitute a stacking ensemble
learning model. Table 5 shows the predicted index results,
and FIGURE 8 shows the predicted curve.

FromTable 6and FIGURE 8, four meta models show
different performances, and the best performance is the
XGBoost meta model, and the worst effect is the ELM meta
model. Compared with BP, SVM, and ELM, eRMSE index of
XGBoost decreased by 8.50%, 8.23%, and 10.28%, respec-
tively. eRMSE index decreased by 8.98%, 12.63% and 10.47%,
respectively. eMAPEindex decreased by 8.49%, 13.97% and
10.02%, respectively. The experimental results show that
XGBoost is more suitable as a stacking ensemble learning
meta model for traction energy consumption prediction. This
is because the XGBoost model selects nodes with the largest
information gain to construct the Classification and Regres-
sion Tree, and reduces the overfitting. In addition, the model
can train in parallel in feature granularity and improve the
training speed.

F. CASE 4: STACKING ENSEMBLE LEARNING VALIDATION
OF DIFFERENT BASE MODEL COMBINATIONS
To verify the combinations of different base models, using
XGBoost as the meta model, different stacking ensemble
models are built. The same data are used for analysis. The
index results are shown in Table 7.

From Table 7 and FIGURE 9, in all indexes, the first
combination, viz, BP, SVM, ELM, andXGboost, achieves the
best performance. Therefore, the stacking ensemble predic-
tion model, in which the combined algorithm with BP, SVM,
ELM, and XGBoost as one layer base model and XGBoost
algorithm as the second layer meta model, is more suitable
for traction energy consumption prediction. Different single
models can extract different feature information, and then be
integrated by Stacking ensemble learning, which is conducive
to improving the prediction performance.

The model time complexity and running time of different
models are shown in Table 8. It can be found that the time
complexity of the generation model and ensemble learning
prediction model proposed is O(n2), and thus guarantees a
relatively fast runtime to obtain the prediction results.

G. CASE 5: STABILITY VERIFICATION
To further verify the stability of the predictionmodel, all mod-
els were repeated 30 times, and the standard deviation (estd) of
each evaluation index was calculated based on equation (15).

estd =

√√√√√ n∑
i=1

(ei − ē)2

n
(15)

Table 9 shows the experimental results of different methods
involved in this paper. It can be seen that the standard devi-
ation of all models is between 0.1 and 0.3, showing good
stability, which confirms the effectiveness of the proposed
method.

VI. CONCLUSION
In this paper, a novel prediction model for metro traction
energy consumption is proposed. In addition to limited orig-
inal data, extra data are generated by WGAN-GP using
gradient penalty to alleviate the gradient disappearance and
enhance training stability in the original GAN. The stack-
ing ensemble learning with multiple models is employed
to improve the prediction performance. Satisfactory predic-
tions are obtained and verified by extensive experiments.
Conclusions are drawn as follows:

1) The WGAN-GP model can learn the distribution pat-
terns of traction energy consumption and the characteristics
of metro trains. WGAN-GP can provide the data needed
for prediction and effectively improve prediction accuracy.
This is particularly suitable for predicting the traction energy
consumption of new lines.

2) The stacking ensemble prediction model, in which the
combined algorithm with BP, SVM, ELM, and XGBoost
algorithms work as one layer base model and XGBoost algo-
rithm as the second layer meta model, can offer the best
prediction performance.

3) The ensemble learning model with other single pre-
diction models can still achieve good results, and thus can
also be applied in other prediction programs accordingly.
For example, high-speed railway or load prediction of a new
industrial park.
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