
Received 16 November 2022, accepted 2 December 2022, date of publication 12 December 2022,
date of current version 19 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3228238

Piecemeal Clustering: A Self-Driven Data
Clustering Algorithm
MD. MONJUR UL HASAN 1, REZA SHAHIDI 1, (Senior Member, IEEE),
DENNIS K. PETERS 1, (Senior Member, IEEE), LESLEY JAMES2, AND RAY GOSINE 1
1Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
2Department of Process Engineering, Memorial University of Newfoundland, St. John’s, NL A1B 3×5, Canada

Corresponding author: Md. Monjur Ul Hasan (mmuhasan@mun.ca)

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), in part by Equinor
(formerly Statoil), and in part by Memorial University.

ABSTRACT Various approaches have been discussed in the literature for the clustering of data, such
as partitioning, hierarchical, and machine learning methods. Most of the approaches require some prior
knowledge about the clusters, such as their total number. Furthermore, some previous algorithms are not
robust enough to process higher-dimensional data or require a large amount of memory for computations.
We propose, herein, a data clustering algorithm, Piecemeal Clustering, that successfully clusters data
without prior knowledge of the number of clusters. The proposed clustering algorithm uses the similarity
and density of the data to identify the number of clusters in the data set and works with both low- and
high-dimensional data. We demonstrate the power of the proposed Piecemeal Clustering algorithm with
two real-world data sets. It is found that the proposed algorithm outperforms seven other state-of-the-art
algorithms on both of these data sets.

INDEX TERMS Data clustering, agglomerative clustering, density-based clustering, unsupervised learning.

NOMENCLATURE
1ij Distance of a data point from cluster center.
CD Distance matrix (Combined).
CDd Distance matrix (Euclidean).
CDs Similarity matrix (Cosine).
cL Learning rate in current iteration.
cRD Distance radius in current iteration (Euclidean).
cRS Similarity radius in current iteration (Cosine).
DT Distance cutoff threshold (Euclidean).
E(i, j) Minimum combined distance of a data point Di

in cluster Cli to another point Dj in cluster Clj.
Ed (i, j) Minimum Euclidean distance of a data point Di

in cluster Cli to another point Dj in cluster Clj.
Es(i, j) Minimum cosine similarity of a data point Di in

cluster Cli with another point Dj in cluster Clj.
I Combined Influence.
Is Similarity Influence.
Id Distance Influence.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zahid Akhtar .

K Total number of clusters determined by the algo-
rithm.

L Learning rate.
M Number of clusters generated after the Pre-

Clustering phase.
N Number of iterations in Training phase.
n Total number of data points in the data set.
RD Distance radius for Training (Euclidean).
RS Similarity radius for Training (Cosine).
ST Similarity cutoff threshold (Cosine).
T Cutoff threshold.
TDS Combined cutoff threshold.
VN A calculated difference factor between Euclidean

and cosine distance matrices.

I. INTRODUCTION
Data clustering, or simply clustering, refers to the orga-
nization of data into different groups where data in the
same group are similar, while data in different groups are
dissimilar [1]. Currently, it is possible to collect enormous

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 129985

https://orcid.org/0000-0003-1534-2655
https://orcid.org/0000-0003-4890-2137
https://orcid.org/0000-0002-8675-8925
https://orcid.org/0000-0002-8990-115X
https://orcid.org/0000-0002-5026-5416

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

amounts of data and store them. By using understandable
and meaningful data clustering methods, better decisions
can be made using these data. Some real-world appli-
cation areas of such clustering methods include: weather
forecasting [2], image processing [3], and general big-data
analysis [4].

Data may be easily clustered if a small set of rules can
be applied to determine membership in any cluster, which
is rarely possible with real world data. A good clustering
algorithm should possess all of the following characteristics:
1) automatically identifies the total number of clusters from
the data 2) is efficient and scalable to work with large-scale
high-dimensional data, 3) considers all dimensions of the data
in the clustering process, and 4) is not sensitive to outliers
and noise. A number of clustering algorithms targeting a
variety of scenarios has been developed and studied [5], [6],
[7], [8], [9].

Some existing clustering algorithms are able to produce
a pre-defined number K of good quality clusters from
high-dimensional large data that do not include outliers or
noise, e.g., K-means [10], K-medioids [11], PAM [12], and
CLARANS [13]. Other algorithms, including GMM [14],
and Self-Organizing Maps (SOM) [15] are not sensitive to
outliers or noise, and can produce good-quality clusters from
high-dimensional large data. Their performance, however,
depends heavily on the appropriate selection of underlying
models and model parameters. SOM is widely used among
the algorithms of this class [16], [17], [18], [19]. There
are density-based clustering algorithms (e.g., DBSCAN [20])
which perform clustering in real hyper-space with the
number of clusters generated from the data without any
prior knowledge. A variety of approaches can overcome the
limitations of these algorithms, such as trial and error to
find the right set of parameters, removing noise from the
data before clustering, or using a combination of multiple
methods. Further discussion of clustering algorithms and
their limitations, as well as of recent studies, is given in
Section II.

Despite being an active study area, challenges in the
design and development of data clustering algorithms remain
open. In addition, lower-cost data collection and storage
have continuously been enabling many new domains to
store enormous amounts of data. As a result, more domain
experts and practitioners have been frequently trying to
use data clustering algorithms. Therefore, there has been
a gradual shift in the required capabilities of clustering
algorithms. No single algorithm fully addresses all of the
challenges [1], [21].

To resolve the above-mentioned problems, we propose a
robust and generic data clustering algorithm. The algorithm
can calculate the number of clusters automatically. At the
same time, it can handle both lower- and higher-dimensional
data. The algorithm uses all data dimensions for the
clustering, yet is scalable to larger data sets. The final result
of the data clustering is also not greatly influenced by noise
present in the data.

The proposed algorithm can help in different scientific
studies and solve practical problems. For example, lithofacies
identification is an important study for understanding the
geology of a location. After obtaining the seismic images,
geologists often bore exploratorywells for further study. They
often collect wireline logs from such wells, e.g., Gamma
Rays, Resistivity, Resistivity, and Porosity. Such logs are
then carefully analyzed with manual effort to mark different
lithofacies. This is clearly a data clustering problemwhere the
number of clusters is unknown prior to the clustering and the
sizes and shapes of the clusters are irregular. The data point
density in the hyper-space is also not regular and therefore a
good number of data points can be found as noise. Density
based data clustering algorithms available in the literature
may be able to cluster such data sets and identify the number
of clusters in the data set, but they filter out many data points
as noise. Therefore, only supervised and semi-supervised
classifiers are used to solve the problem [22], which does not
eliminate the manual process. The proposed algorithm may
solve this problem since it can identify the number of clusters
on its own, and also works with noisy data. In Section IV
and V we demonstrate the novelty of the proposed algorithm
with further details.

The proposed algorithm utilizes a density-based clustering
method combining the concepts of hierarchical clustering
[23], model-based unsupervised learning [24], and density
based data clustering. The algorithm uses two vector distance
measures: Euclidean distance and cosine similarity, to mea-
sure pairwise distance and similarity, respectively. While
both of the measures make use of all the data dimensions,
the calculations are relatively inexpensive. Therefore, the
algorithm is not limited by data dimensionality and is capable
of handling larger high-dimensional data.

The algorithm calculates pairwise distance and similarity
values and uses their distributions in real hyper-space to
identify the clusters in three phases. First, the algorithm
starts with an agglomerative hierarchical clustering approach
and produces a large number of clusters, where each cluster
centroid is the representative model of its cluster. In the
next phase, a model-based clustering approach is used to
adjust the cluster centers to form clusters of cluster centers.
A new unsupervised learning method is proposed for this
phase. Clusters of cluster centers are then merged in the
third and final phase of the algorithm. These phases of the
proposed algorithm are named Pre-Clustering, Training, and
Post-Processing, respectively. Since the clusters are formed
progressively through the three phases, we call the algorithm
Piecemeal Clustering.

This algorithm has three parameters: 1) the cutoff thresh-
old, T , 2) the learning rate, L, and 3) the number of
iterations, N . The cutoff threshold, T , is conventionally used
in agglomerative hierarchical clustering and carries the same
meaning and purpose in this algorithm, and is only used in
the Pre-Clustering phase. The learning rate, L, and number of
iterations, N , are also conventional parameters for machine
learning training. These two parameters are used in the

129986 VOLUME 10, 2022

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

FIGURE 1. Block diagram showing the three phases of the Piecemeal
clustering algorithm. The diagram also outlines the input parameters of
each of the phases and their respective outputs.

Training phase, and carry the samemeaning and purpose. The
last phase, Post-Processing, is parameter-less, and produces
the final clustering result. Fig 1 shows a flowchart for the
proposed algorithm.

We test the proposed algorithm on two real world data
sets and compare the results with seven other well-known
clustering algorithms in the literature. In contrast to the
algorithms in the literature, Piecemeal Clustering is able
to correctly and independently identify the total number
of natural clusters. Piecemeal Clustering is also able to
correctly map the highest number of data points to their
respective clusters among the tested algorithms.

The rest of the paper is organized as follows: Section II
discusses related work in the literature. Section III explains
the proposed algorithm, and Section IV presents experimental
results from the algorithm on both data sets. Section V
compares the proposed algorithm to the other algorithms
tested. Finally, Section VI presents conclusions.

II. LITERATURE REVIEW
The data clustering literature is vast, covering different
aspects of the same general idea. While it is difficult to
comprehensively discuss the prior literature in full depth,
the following discussion categorizes clustering algorithms
based on partitioning, hierarchy, distance and density, and
underlying models.

Clustering via partitioning of the data set is the most
common technique. Methods such as k-means, k-medioids,
PAM, and CLARANS are algorithms in this group. The core
idea of these algorithms is to start with a known number of
clusters, k, fed in as input and then partition the data sets into
k segments. Each of the segments is considered to be a cluster.
A detailed review of this group of clustering algorithms
can be found in [1]. Because the number of clusters is
preset, the results from these algorithms strongly depend
on the number as well as the shapes and the sizes, of the
clusters. Outliers also significantly disrupt the quality of the
clusters.

Another approach to identifying the clusters in a data
set is to construct hierarchical relationships among the
data [25]. Two approaches are used for this type of clustering:
agglomerative and divisive. In the agglomerative approach,
each data point is considered to be a cluster at the beginning;
after which, the two clusters with the nearest centers

are merged into a new cluster, continuing until only one
cluster is left. Many variations of this core idea exist in
the literature, including use of underlying models [26],
neighbor graphs [27], centroids of trees [28], or shared
subordinates [29]. In the divisive approach, all data points
are initially considered to be part of a single cluster and the
algorithm recursively splits the initial cluster into multiple
clusters [25]. While this group of clustering algorithms is
suitable for data sets having arbitrary attributes and shapes,
such clustering algorithms require a large amount of memory
to execute, and are therefore not suitable for large data sets.
They also often produce sub-optimal solutions.

A major disadvantage of the above-mentioned types
of clustering algorithms is that formal inference is not
possible, since the results of the algorithms are based on
heuristics. In contrast, model-based clustering algorithms
generally require analysts to formulate the probabilistic
model explicitly and then fit the data to the formulating
model using machine learning. Two main types of learning
methods are used for this type of clustering: statistical
learning and neural network learning [30]. COBWEB and
GMM are statistical-learning based clustering methods,
while SOM is a widely-accepted neural-network clustering
algorithm.

Among the neural-network based data clustering methods,
unsupervised learning algorithms [31] allow for the deter-
mination of a natural grouping of data by looking at the
structures within the data without the grouping being tied
to a specific outcome. SOM is a widely-used unsupervised
learning based clustering algorithm. A general disadvantage
of model-based clustering algorithms is that prior knowledge
of the data is required to find a good model and the result is
sensitive to the choice of parameters.

Another approach to data clustering is the use of the local
density and shortest distance of the data in hyper-space.
DBSCAN is the first algorithm proposed of this kind. One
unique advantage of such algorithms is that they do not
require prior knowledge of the number of clusters in the data
set. The algorithms themselves can identify the number of
clusters based on the densities of the data points in their
respective spaces. Another unique feature of these algorithms
is that they can identify outliers in the data and separate
them. A key disadvantage of the original DBSCAN algorithm
is that it does not work well with input data of varying
density [32]. A wide variety of algorithms based onDBSCAN
has since been proposed, DBCLASD [33], ST-DBSCAN [34]
and HDBSCAN [35]. These variants include improvements
such as: better cluster quality and higher algorithmic
efficiency, and reducing the number of parameters [36].
Interesting combinations of different concepts have also been
proposed: RNN-DBSCAN [37] incorporates k-neighbourhood
graph traversal with DBSCAN to handle large variations
in cluster densities; HDBSCAN* [38] is an improvement
derived from HDBSCAN, which combines the concept of
hierarchical clustering with density-based clustering. Block-
DBSCAN [39], one of the most recent variants, tries to

VOLUME 10, 2022 129987

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

TABLE 1. Detailed comparison of the algorithms.

improve the algorithm’s efficiency in handling large-scale,
high-dimensional data sets.

A comparison of the clustering algorithms is shown below
in Table 1. The table includes the algorithms that are related
to the current study. A comprehensive comparison that covers
a wide set of clustering algorithms can be found in [1], [21],
and [40] .

III. PROPOSED ALGORITHM
The core idea of the proposed algorithm is to keep all data
points that are close (within a certain Euclidean distance) and
similar (within a certain bound of cosine similarity) to each
other, in a single cluster. Determining the threshold for the
data points to be close in the Euclidean space, and similar
in the cosine similarity space, is challenging without prior
knowledge of the data set. The Piecemeal Algorithm uses
both of the spaces simultaneously with an adaptive approach
to overcome this challenge.

A simple two-dimensional case of combining these two
measures for grouping data points is shown in Fig 2. Four
vectors are shown in each of Figs 2a and 2b. In Fig 2a, vectors
A and B may be considered to be part of the same cluster.
However, vector C may not be part of that cluster because
C is close to neither A nor B, even though it is similar to
A. A similar argument can be applied to vector D. On the
other hand, in Fig 2b, vectors C and D may be part of the
same cluster. However, vectors A and B may not be part of
that cluster for the apparent reason of not being close to C
or D. At the same time, while the distance between A and B
is the same as the distance between C and D, A and B may
not be part of the same cluster as they are not similar to one
another.

Fig 2 shows a simple case that is easy to formulate. The
distributions of data within a cluster and their complexity
scale-up geometrically to higher-dimensional data. The
following sections describe the three phases of the Piecemeal
Clustering algorithm and explain how the clusters are
formulated while handling the complexity of higher data
dimensionality.

FIGURE 2. Example clustering of 2D data using Euclidean distances and
cosine similarity. (a) A and C, having very similar orientation, cannot be
part of the same cluster because of their distance. Same for B and D.
(b) Euclidean distances between A and B, and C and D, are the same,
however, all are not part of the same cluster.

A. PRE-CLUSTERING
The Pre-Clustering phase generates the initial set of clusters.
It considers the local density and the shortest distances
between data points, as in [44], but uses this concept within
an agglomerative hierarchical framework to find clusters by
applying a cutoff threshold. The objective is to generate an
initial set of clusters for the next phase, where the cluster
centers will be used as an initial model for the Training
phase.

The Pre-Clustering phase uses a user-defined cutoff
threshold parameter T (0 ≤ T ≤ 1), which is a fraction
of the maximum Euclidean distance and cosine similarity
between any two data points in the entire data set. The
algorithm interprets this parameter as the maximum-allowed
variation between members of any given cluster produced by
this phase. Therefore, domain experts, using this algorithm,
can incorporate their knowledge of unavoidable or natural
variation within members of the same cluster. Intuitively,
choosing a lower value for T will result in a larger number
of smaller-sized clusters, while a higher value of T will
result in a smaller number of larger-sized clusters. A value
of T = 0 indicates there is no variation allowed in any
of the clusters, leaving each data point as a cluster by
itself. In contrast, T = 1 indicates the maximum distance and
similarity between any two data points is the allowed degree

129988 VOLUME 10, 2022

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

Algorithm 1 Pre-Clustering Algorithm
Input: data,T ,VN
Output: a list of cluster centers
1: cluster_centers← data
2: while not_converge(cluster_centers,T) do
3: DT ← dist_threshold(cluster_centers,T)
4: ST ← ori_threshold(cluster_centers,T ,VN)
5: TDS ←

√
D2
T + S

2
T

6: CD← pariwise_cluster_distances(
cluster_centers,VN)

7: for all CD do
8: [i, j]← find_next_nearest_pair(CD)
9: if is_nearby(i, j,TDS) then
10: merge_clusters(i, j)
11: end if
12: CD(i, j)←∞
13: end for
14: cluster_centers←

update_clusters(cluster_centers)
15: end while

of variation within a cluster, producing one cluster for the
entire data set. The value of T can be calculated from the
maximum Euclidean distance between the data points and
knowledge about what is unavoidable or natural variation
between members of each cluster.

Algorithm 1 shows the steps to produce clusters in this
phase. The algorithm starts with identifying each of the data
points as a separate cluster. As such, each data point becomes
a cluster center (line 1). Then, the Pre-Clustering algorithm
iteratively merges the clusters (line 2–13), reducing the total
number of clusters at each iteration. This corresponds to an
agglomerative approach.

The iterations stop when one of the following two
conditions becomes true: (a) the last iteration fails to reduce
the number of clusters, or (b) the total number of clusters is
reduced to the reciprocal of T 2. Intuitively, when the first
condition is reached, it indicates that no more merging is
possible between any pair of clusters because the distance
between them is greater than the cutoff threshold. For some
data sets, this can be a case of a local minimum. The purpose
of this phase is not to necessarily reach the global minimum
but at the same time not to preclude the global minimum
from future phases. This phase aims to create the initial set
of cluster centers for the Training phase. After the Training
phase, the goal of the Post-Processing phase is to merge the
clusters to reach the global minimum.

The choice of a larger value for T runs the risk of
over-clustering in this phase. The second condition is in place
to avoid such a scenario, halting the iterative process, once
a significantly-lower number of clusters, as calculated from
the value of T , has been reached. This cutoff is important for
the later phases of the algorithm which can only merge, and
therefore only reduce the number of clusters. Over-clustering

in this phase may result in an inaccurate clustering in later
phases.

In each iteration, two threshold values: the distance
threshold,DT , and the similarity threshold, ST , are calculated
from all of the cluster centers. DT is the fraction of the
normalized maximum Euclidean distances between any two
cluster centers calculated using (1).

DT =
(
1−

mini,j,i6=j ||Ci − Cj||

maxi,j,i6=j ||Ci − Cj||

)
· T (1)

where || · || denotes the Euclidean norm and Ci cor-
responds to the center of cluster i. Line 3 in Algo-
rithm 1 implements this equation for DT as the function
dist_threshold(cluster_centers,T).
The value of ST is calculated at line 4 within the function

ori_threshold(cluster_centers,T ,VN), which uses (2). The
equation is similar to that used for DT , except cosine
similarity is used in place of Euclidean distance, and the value
is scaled by VN , a value inversely-proportional to the mean
Euclidean norm of all data points. A small positive offset is
added to the mean Euclidean norm to ensure VN is finite.
Both DT and ST are combined to form TDS in the next step
(Line 5) to produce a single threshold. This value of TDS
helps to determine whether or not a pair of clusters can be
merged. Therefore, the scaling of cosine similarity using VN
is important.Multiplication by theVN is amapping to account
for differences between the Euclidean and cosine distance
metrics. If the mean Euclidean distance of the data is smaller,
then the data points will be closer to the origin. In such cases,
data points within the same Euclidean distance will tend to
have a larger difference in angle. As a result, larger threshold
values should be used to separate different clusters based on
cosine similarity, and vice versa.

ST =

1−
mini,j,i6=j

Ci·Cj
||Ci||||Cj||

maxi,j,i6=j
Ci·Cj
||Ci||||Cj||

 · T · VN (2)

An array of pairwise cluster distances, CD, is then
calculated (line 6), where CD(i, j) indicates the distance
between the centers of clusters i and j. The value of CD(i, j)
is calculated using the normalized distance CDd(i, j) and
the normalized similarity CDs(i, j). The normalized distance
CDd(i, j) is the Euclidean distance between the centers
of clusters i and j divided by the maximum Euclidean
distance between any two cluster centers at that iteration.
The normalized similarity CDs(i, j) is also calculated in a
similar fashion, except the cosine similarity is used in place of
Euclidean distance. These two values are combined using (3)
to generate CD(i, j).

CD(i, j) =
√
CDd

2(i, j)+ VN · CDs
2(i, j) (3)

Then all pairs of clusters are considered for merging
sequentially in non-decreasing order of their corresponding
CD values (line 7–13). A pair of clusters (i, j) is merged if
and only if both of the following two conditions hold:

VOLUME 10, 2022 129989

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

FIGURE 3. Example outcome of the Pre-Clustering phase on
two-dimensional data. The figure shows a group of two dimensional
points that are close to one another. The Pre-Clustering phase groups the
points into three clusters. The ‘#’ symbols indicates the calculated cluster
centers’ positions in each of the three clusters.

1) CD(i, j) < TDS
2) CD(m, n) < TDS ∀m 3 clusters i and m have already

been merged in this iteration, and ∀n 3 clusters j and n
have already been merged in this iteration.

These conditions are checked inside the function
is_nearby(i, j,TDS) at line 9 of Algorithm 1 and the clusters
are merged at line 10. During merging, all members of cluster
j are marked as members of cluster i and the distance between
the centroids of clusters i and j is set to ∞ so that the two
clusters will not be considered for merging again in future
iterations (line 12). This process is repeated, until all CD
values have been processed.

Throughout this entire procedure, clusters are grouped
together and new larger clusters created. Once all cluster
pairs have been checked, the cluster_centers are updated
to be the set of centroids of the newly-updated clusters
(line 14). The process (line 2–15) is repeated with the updated
cluster_centers, until the convergence criteria are satisfied at
line 2.

The purpose of the Pre-Clustering phase is to create a basis
for identifying the number of clusters from the data. The set
of cluster centers generated in this phase is used as the initial
set of models for the Training phase, described in the next
subsection. At the end of training, the clusters are merged to
form the appropriate clusters in Post-Processing. As a result,
a small variation in T does not overly affect the final result.
Fig 3 shows an example with two-dimensional data where
three irregular clusters are formed within one apparent cluster
because of the choice of a lower value for T . The algorithm’s
later phases can merge them to form an appropriate cluster.
We recommend selecting a lower value for T to obtain a more
granular set of clusters at the beginning. The user can later
vary the initial value if they are unsatisfied with the result or
want to try different scenarios.

B. TRAINING
The Training phase is also iterative, with cluster centers
dynamically updated at each iteration. The basic steps for
this phase are slightly modified from the steps of the

Algorithm 2 Training Algorithm
Input: data, cluster_centers,L,N
Output: Updated cluster centers
1: RD←

maxi,j,i6=j‖Ci−Cj‖−mini,j,i6=j‖Ci−Cj‖
2

2: RS ←
maxi,j,i6=j

Ci .Cj
‖Ci‖‖Cj‖

−mini,j,i6=j
Ci .Cj
‖Ci‖‖Cj‖

2
3: for iter ← 1,N do
4: cRD← RD · e−

iter
L

5: cRS ← RS · e−
iter
L

6: cL ← L · e−
iter
L

7: for all data do
8: cData← get_next(data)
9: for all cluster_centers do
10: cCluster←

get_next(cluster_centers)
11: d ← ‖cData− cCluster‖
12: s← cData·cCluster

‖cData‖‖cCluster‖
13: if d < cRD and s < cRS then

14: ID← e
−

d2

2cR2D

15: IS ← e
−

s2

2cR2S

16: I ←
√
ID · IS

17: cCluster← cCluster−
cL · I · (cCluster− cData)

18: update_cluster(cluster_centres,
cCluster)

19: end if
20: end for
21: end for
22: end for

training algorithm used for the SOM algorithm. This phase
uses a user-defined number of iterations N , and learning
rate L.

Algorithm 2 shows the detailed steps of this phase.
The algorithm uses exponentially-shrinking radii values.
The radii values start with RD and RS for distance and
similarity, respectively, calculated using the equations shown
in lines 1 and 2 of Algorithm 2, where Ci indicates the center
of cluster i. At each training iteration RD, RS , and L decay
exponentially, and new values are calculated (lines 4–6).
After calculating the new values, each of the data points is
taken one at a time, in random order (line 8). For each of
the data points, all the cluster centers, which are within the
decayed distances and similarity values for that iteration, have
their positions updated (lines 9–20). The degree of update is
determined by the distances and similarities between each
of the data points and the cluster centers. The closer and
more similar a data point is to a cluster center, the stronger
the position update that the cluster center receives. This is
achieved by calculating the influence factors for both of the
metrics separately (lines 14–15). The influence decreases
exponentially with increasing distance and similarity. Both of
the factors are then combined and multiplied by the learning

129990 VOLUME 10, 2022

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

rate for that iteration and applied to the signed difference of
each of the attributes separately (line 16).

The training algorithm holistically pulls each of the cluster
centers towards its neighboring high-density data points,
where density is defined considering both distances and
similarities between the data points and the cluster centers.
This phase decreases the average distances between cluster
centers and their respective members.

To determine the values of N and L, trial-and-error
methods are recommended. The objective of the trials is
to lower the mean intra-cluster average Euclidean dis-
tance, promoting tighter clusters. The cosine similarity
should not be considered in this case, since the cluster
centers will move towards the center of the neighboring
high-density data points, which will average out the cosine
similarity.

At the end of this phase, if multiple cluster centers become
closer to the same dense data point neighborhood (i.e., Fig 3),
they will overlap or become closer to each other. If a group of
cluster centers has a marginal magnitude of separation at this
stage, the Post-Processing phase, defined in Section III-D,
merges them and produces a new cluster with a single cluster
center. The following sections describe how to calculate the
membership of a data point to a cluster, an important element
of the Post-Processing phase.

C. MAPPING
The mapping algorithm labels a data point as a member of a
cluster based on the cluster center nearest to it. The nearest
cluster center is identified by the index corresponding to the
minimum value of 1ij, which is the distance between data
point i and cluster center j, calculated using the weighted
PowerMean formula.We use both the Euclidean distance and
cosine similarity in this Power Mean calculation, where each
is normalized using maximum inter-cluster center distances
and similarities, respectively. As described in Section III-A,
VN is used here since both measures are from two different
metric spaces with different distances: Euclidean and cosine.
The exact mathematical formula is shown in (4), where the
value of 1ij is calculated for a cluster centre Ci and a data
point Dj as follows:

eij =
||Ci − Dj||

maxm,n(||Cm − Cn||)

cij =

Ci·Dj
||Ci||||Dj||

maxm,n
Cm·Dn
||Cm||||Dn||

a =
1

1+ VN

1ij =

(
(a · eij)

1
VN +

(
(1− a) · cij

) 1
VN

)VN
(4)

The advantage of using the weighted Power Mean with
VN is it protects the 1ij from being over-biased by one
domain. For example, when VN is larger, the weighted Power
Mean in the equation for 1ij can be shown to approach

the geometric mean between the Euclidean distance and the
cosine similarity. On the other hand, when VN is smaller,
the cosine similarity can be shown to be weighted more
strongly. This makes sense intuitively, as the mean Euclidean
distance will be larger in this case, meaning that small
variations in cosine similarity will correspond to larger
Euclidean distances between data points, and thus the cosine
similarities should be weighted more strongly to reflect this
fact.

D. POST-PROCESSING
Post-Processing is the final iterative process that merges
the closest pair of clusters at each iteration. To deter-
mine the distance between a pair of clusters (e.g., Cli and
Clj), the inter-cluster distance, E(Di,Cj), is calculated, where
Di is a data point from cluster Cli and Cj is the cluster
center for cluster Clj. This distance is calculated from the
Euclidean distance, the cosine similarity, and the number of
elements in the cluster pair. The minimum value E(Di,Cj)
found between any two clusters i and j is selected in each
iteration and the two corresponding clusters are merged
together.

The three factors that constitute the value for E(Di,Cj)
are: Ed (Di,Cj), Es(Di,Cj), and En(Di,Cj). The normalized
distance between the cluster Clj having cluster center at Cj
and the data point Di belonging to cluster Cli, is defined to
be Ed (Di,Cj), while Es(Di,Cj) is the normalized similarity
between the data pointDi and the cluster centerCj.En(Di,Cj)
is equal to the sum of the square root of the number of
elements in the cluster Cli and the square root of the number
of elements in the clusterClj. This latter factor is related to the
distance between the two cluster centersCi andCj, assuming
both clusters have a circular shape in a normalized data set.
In this case the radius of each of the cluster grows with the
square root of the number of elements in the cluster, assuming
the cluster elements are evenly spaced. Normalization is
performed by dividing each value by respective maximum
value over all ordered pairs of data points Di and cluster
centers Cj. Theoretically, we expect the cluster radius to
be roughly proportional to the nth root of the number of
elements in the cluster for evenly-spaced n-dimensional data
in a cluster. However, in practice when the dimension of
the data is large, the nth root of the number of cluster
elements will be close to unity regardless of the number
of elements in the cluster. Therefore, we instead used the
square root of the number of elements in the cluster, which
worked well on the data sets we tested in this paper. The
exact mathematical formula for calculating E(Di,Cj) is given
at (5).

E(Di,Cj) = FdFsFn,where

Fd = 1+
Ed (Di,Cj)

VN
Fs = 1+ Es(Di,Cj)

Fn = 1+ En(Di,Cj) (5)

VOLUME 10, 2022 129991

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

The merging of a pair of clusters in each iteration is
followed by an update of the newly-formed cluster’s center.
In the next iteration, the new values of Ed , Es and En are
recalculated with the new set of cluster centers. At each
iteration, the ratio between the maximum and minimum
Euclidean distances among all the data points within a cluster
is also calculated. The iterations continue until the step where
the average ratio attains its maximum value. Therefore, the
iterations must continue until one cluster remains in order to
backtrack and correctly identify the right stopping iteration.
An example of finding the correct stopping iteration is shown
in Section IV-A where the algorithm is run on the Iris flower
data set [45].

E. ALGORITHM COMPLEXITY
In this section, we determine the computational and space
complexity of the proposedPiecemeal Clustering algorithm.
The Pre-Clustering phase initially calculates distances

between all pairs of input data. The complexity of this
operation is O(n2) and it generates an n×n symmetric
matrix. To make the iterative process efficient, a min-heap
can be created containing these n2 values, which has a
complexity of O(n2 log n). Then the algorithm iterates at
most n times, where in each iteration it searches for a
minimum value on the heap. The searching has constant-time
complexity since the minimum will always be at the top of
the heap. In each iteration, a new data point also replaces
two of the existing data points, therefore n new distance
values are calculated while eliminating 2n data points from
the heap. The worst case complexity for a sequence of
n insertion and deletion operations can be calculated as
O(n log n). Therefore, the overall complexity of this phase
is O(n2 log n).
The Training phase takes N outer iterations, where N is a

user-defined value. In each iteration, it updates K (K ≤ n)
number of cluster centers at most n times. The value of N
is much less than, and is independent of the number of data
points for real-world data sets. Thus, it cannot be replaced
with n. Therefore the worse case complexity for the Training
phase is O(Nn2).

The Post-Processing phase also requires K iterations,
where in each iteration it searches over n2 values. Using
a similar min-heap technique as mentioned above, we can
complete this phase with a time complexity of O(n2 log n).
Combining the complexity of all three phases, the overall

time complexity for the algorithm is O(n2 log n + Nn2 +
n2 log n). The value of N outweighs the the value of log n.
Therefore we determine the time complexity for the entire
algorithm to be O(Nn2).
We determine the space complexity for this algorithm to be

O(n2), since it generates n2 all-pairs distance values that need
to remain for all three phases.

IV. EXPERIMENTAL RESULTS
The algorithm was tested on two real world data sets:
1) Iris flower, a small data set with three known clusters,

TABLE 2. Numerical summary of Iris Flower data set.

TABLE 3. Parameters used for clustering Iris Flower data set in Piecemeal
Clustering algorithm.

where two of the them are not linearly separable [46];
and 2) Character Trajectories [47], a large database of
pen-tip trajectories captured while writing individual English
characters. Applying the algorithm to the Iris flower data
set demonstrates the correctness of the algorithm, whereas
clustering the Character Trajectories data set shows the
robustness of the algorithm to higher-dimensional data and
outliers.

For both data sets, the value of T was varied incrementally
from 0.01 to 1 with a step size of 0.01 until the final
results did not greatly vary between one value of T and
the next. The trials that used the maximum value of T
without the result varying greatly are reported in the paper
for both data sets. The results from each data set are given
below.

A. IRIS FLOWER DATA SET
The Iris flower data set consists of 50 samples from each
of three species of Iris plants, present in the data in
sequential order. Four features were measured from each of
the samples. Table 2 shows a numerical summary of the
data.

The data were prepared for the algorithm by normalizing
each attribute to the interval [0,1] before applying the
algorithm. This reduces the effect of different attribute
variances on the clustering process. Normalization also
normalizes the shape of the clusters in all dimensions. Table 3
shows the parameters used to cluster the data set.

The results after the Pre-Clustering and Training phases,
as well as the final clustering, are shown in Fig 4. In each
of the subfigures, data points are numbered sequentially
starting from 1 and plotted on the horizontal axis. The
cluster IDs are numbered sequentially and plotted on the
vertical axis. The Pre-Clustering phase generates 17 clusters
as shown in Fig 4a. However, we can also see that the
17 clusters are segmented into three groups. Next, the
Training phase moves the cluster centers towards the most

129992 VOLUME 10, 2022

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

FIGURE 4. Data cluster results after each of the three steps for the Iris
Flower data set. The x-axes in (a), (b), and (c) indicate the 150 data
points, while the y-axes indicate the cluster IDs. The cluster IDs are
natural numbers starting from 1 and are assigned arbitrarily to each of
the observed clusters.

dense data points in their respective neighbourhoods, without
considering membership of the points to the clusters. The
result is shown in Fig 4b. Because of the change in the

FIGURE 5. Change in average of pairwise maximum-to-mean Euclidean
distance ratio over Post-Processing iterations.

locations of the cluster centers, the data points now have
different cluster memberships than in Fig 4a. This Training
phase also prepares the data for Post-Processing. Finally, the
Post-Processing phase merges one pair of clusters in each
iteration, based on the algorithm described in Section III-D.
Therefore, the algorithm continues for 16 iterations, leaving
one cluster at the final iteration. At the end of each iteration,
the new cluster centers are saved and the data points are
mapped to the new cluster centers based on the method
described in Section III-C. Next, for each cluster, the ratio
of the maximum distance between any two elements of the
cluster to the mean distance between any two elements of
the cluster is determined. Logically, when two clusters are
merged which should not have been, the mean distance
between any two elements of the cluster will be higher
than it should be since there will be a large number of
samples from each cluster which is far from many other
samples in the other cluster just merged. Thus if we take
the mean of this ratio over all clusters in the new clustering,
then it should steadily increase up to the point that a good
clustering is found, and then decrease immediately after
that. Therefore, we took the cluster centers corresponding to
this maximum ratio as the ones corresponding to the final
clustering.

At the end of 16 iterations, the ratio values for each
iterations are plotted in Fig 5. The horizontal axis represents
the iteration number, while the vertical axis represents the
mean ratio. Since the ratio peaked at iteration 15, the saved
cluster centers from the end of iteration 14 are chosen, as they
were used to calculate the ratio in iteration 15, and the data
points are mapped to these cluster centers. This generates
three clusters, as shown in Fig 4c. The final result shows
145 data points out of 150 are clustered properly, giving
an overall accuracy of 100% for finding the correct total
number of clusters in the data and an accuracy of 96.7%
for mapping data points to their correct clusters for the
Piecemeal Clustering algorithm.

VOLUME 10, 2022 129993

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

FIGURE 6. Example of diverse visual appearances of the instances of the
characters in the Character Trajectory data set. (a) Three instances of the
English letter w where all of them differ in appearance, (b) three
instances of the English letter h, u, and n, which all look similar, and
(c) three character instances that are hard to identify as any English letter.

B. CHARACTER TRAJECTORIES DATA SET
The Character Trajectories data set consists of 2858 samples
of pen tip trajectories recorded whilst writing individual
English lower case letter characters. The original data col-
lection consisted of a series of two-dimensional coordinates
(x, y), and pen tip force on a WACOM tablet, sampled
at a rate of 200 Hz. Only letters with a single pen-down
segment were considered for that experiment. Therefore a
total of 20 letters were included in the data sets, and the
letters: ‘f’, ‘i’, ‘j’, ‘k’, ‘t’, ‘x’ were excluded. The objective
of our experiment was to cluster the data sets based on
their trajectories. Therefore, only the Cartesian coordinates
were used, and the pen tip force data were excluded from
consideration.

The data set consists of a variety of visually diverse
character instances. Some character instances were written
for a single letter, but were very different in appearance.
Some other instances appear to be similar, but were written
for different letters. And there were instances that were hard
to recognize as any English letter. Fig 6 shows examples of
the diverse visual appearance of character instances in the
data set. Fig 6a shows three instances of the letter w. Fig 6b
shows three instances of the letters h, u, and n from left to
right, which all look very similar to the letter w. Fig 6c shows
three character instances that are very difficult to identify.
The diverse visual appearance of the instances makes the
proposed Piecemeal Clustering algorithm a good candidate
to determine a natural clustering of the data, where each
cluster will consist of character instances that are visually
similar.

The character instances in the data set consisted of a
maximum of 205 points in the Cartesian plane. Therefore,
each instance had a total of at most 410 attributes. As a result,
the robustness of the algorithm can be tested using this data
set, both in terms of the number of attributes and number of
data points in the data set.

TABLE 4. Clustering parameters for Character Trajectories data set.

A pre-processing step was performed on the data before
applying the algorithm. As previously mentioned, the data
set consisting of the trajectory of the pen tip was collected
with a constant sampling frequency. Therefore, the trajectory
lengths for each character instance were not necessarily the
same. The characters were also written in different quadrants
with different scaling. Hence, the trajectory length of each
of the symbols was normalized using linear interpolation.
We also found that not all the characters were drawn at the
same scale, which is natural for handwriting. To bring all
the character instances into the same scale and quadrant,
they were normalized to values between 0 and 1 along
both the x and y axes. Principal Component Analysis (PCA)
was then applied to the data to increase the stability of the
clusters [48].

After pre-processing of the data, the algorithm was applied
with the parameters shown in Table 4. The Pre-Clustering
phase generated 188 clusters. Each of these clusters was
smaller in size with their samples visually similar to each
other. After passing through the Training and Post-Processing
phases, a total of 20 clusters were generated.

We compared the mapping of individual data points using
a confusion matrix as shown in the Fig 7 with the known
result of the data set. We labeled the 20 clusters based on
the dominating characters instances. For example, we found
a cluster containing 219 character instances (data points);
among them, 167 were identified as ‘a’, 17 as ‘d’, 1 as ‘n’,
31 as ‘o’, and 3 as ‘u’ in the known result. We labeled
this cluster as ‘a’ since this character is found most in this
cluster. In Fig 7, this cluster is in column 1. We repeated
the process for all 20 predicted clusters. We were able to
find one cluster for each of the 20 letters in the data set and
name them accordingly. We placed them in the confusion
matrix in the order from left to right, in the same sequence
as the dominating letters appear in the English alphabet.
Since the Piecemeal Clustering was able to find the exact
20 clusters as found in the data set, the proposed algorithm is
100% accurate in finding the number of clusters. The varying
colour density in the diagonal of the confusion matrix also
demonstrates that the proposed algorithm can find clusters of
varying sizes.

As discussed above and illustrated in Fig 6, it is difficult
to avoid mapping character instances to a cluster where
the dominating character is not a match. We counted such
mismatches in each cluster. We found that 13 clusters had
zero to ten instances of mismatches. The rest of the clusters
had a 9-38% mismatch in their mappings. The seven clusters
with highest mismatches present were: ‘a’, ‘c’, ‘g’, ‘l’, ‘n’,
‘u’, ‘w’, with the details shown in Table 5. Some of these

129994 VOLUME 10, 2022

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

FIGURE 7. Confusion matrix comparing the mapping of Character
Trajectories data set with true result. The diagonal represents the number
of data points accurately mapped by the Piecemeal Clustering algorithm.
The number of elements in each cell is coded with varying colour density.
The darker the cell, the higher the value it represents.

TABLE 5. Clusters with highest mismatch after clustering the Character
Trajectories data set.

mixes are expected for the natural handwriting curvature
of hand written small letter English characters, such as: ‘a’
with ‘d’ or ‘o’, ‘c’ with ‘l’, ‘g’ with ‘y’, ‘m’ with ‘w’, and
‘n’ with ‘u’. We also noticed an unexpected mix, ‘n’ with
‘w’. The cluster labeled as ‘z’ stands out among all of these
clusters. This cluster separated all the character instances of
‘z’ without any mix with any other clusters, and no other
character instances were mixed with ‘z’ either. ‘s’ is another
such cluster. We counted all the incorrectly mapped character
instances to calculate the mapping efficiency of Piecemeal
Clustering. A total of 281 instances was mismatched,
leaving 2,577 mapped correctly. Therefore, our algorithm
shows an accuracy of 90.2% in clustering on this difficult
high-dimensional data set.

V. COMPARISONS
We compared the performance of the proposed Piece-
meal Clustering algorithm with K-means, SOM, Hier-
archical, DBSCAN, RNN-DBSCAN, HDBSCAN*, and

Blocked-DBSCAN. The first four clustering algorithms are
generic and widely used in various fields of study. The other
three are more advanced and have been proposed within
the last decade to overcome some of the limitations of the
generic algorithms. Clustering was performed with these
seven algorithms on both the Iris Flower and Character
Trajectory data sets. The accuracy of finding the correct
number of clusters, the degree of accuracy of mapping data
to each of their respective clusters, and the total numbers
of correctly mapped data points are compared. Subjective
analyses were also performed to understand the incorrect
mapping.

The MATLAB R© implementations of K-means, SOM,
Hierarchical, and DBSCAN algorithms from Release 2019a
with the Machine Learning toolbox were used to gen-
erate results. The MATLAB R© functions that were used
were kmeans, selforgmap, clusterdata, and dbscan for
their respective algorithms. For RNN-DBSCAN we used
the RNN DBSCAN package [49] from the MATLAB R©

Library. The Scikit Learn Python package [50] was used
for HDBSCAN*. Author-provided C++ code was used for
Blocked-DBSCAN.
K-means and SOM both require prior knowledge of the

number of clusters; therefore, such information was provided
when clustering both of the data sets. The Hierarchical
algorithm can cluster data with and without prior knowledge
of the total number of clusters. Both methods were tried.
DBSCAN and Blocked-DBSCAN can work without any prior
knowledge of the data. We used a k-distance graph to
determine the values of the ε parameter of DBSCAN and
used prior knowledge of the data sets to limit the max value
for the minimum number of elements in each cluster. For
RNN-DBSCAN we applied an exhaustive search method
using KNN-Search for both data sets. HDBSCAN* was
configured to use an approximation of theminimum spanning
tree with varying α and leafsize to cluster the data sets.

The parameters of each algorithmwere optimized to obtain
the best results. The set of parameters giving the maximum
number of correctly clustered data points was considered as
the best result for an algorithm. The results are compared for
the data sets in the the following sections.

A. IRIS FLOWER DATA SET
K-means clustering was performed with the parameters K=3
and Replicates = 1000 in the MATLAB R© kmeans function.
A variety of distance metrics was tested with different
numbers of iterations. The squared Euclidean distance
yielded the best result with 100 iterations.

For SOM, 1-by-3, 3-by-1, and 2-by-2 maps were tested
with different network topologies. A wide range of numbers
of iterations was also tested with both Euclidean distance and
cosine similarity as distance metrics. Initial neighborhood
sizes of 1, 2 and 3 were tested in combination with the above
settings. The best result was found with a 1-by-3 network,
hextop network topology, Euclidean distance for the distance
calculation, initial neighborhood size 2, and 50 iterations.

VOLUME 10, 2022 129995

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

For theHierarchical algorithm, a brute force approach was
used for cutoff from 0 to 2. A cutoff value of 3 was also used to
identify amaximum of 3 clusters. All these cutoff values were
tried with both Euclidean and cosine similarity as distance
metrics, and different combinations of linkage methods. The
best result found was with the Euclidean distance metric,
single linkage, and a cutoff value of 3.

WithDBSCAN andBlock-DBSCAN, brute force approaches
were applied to find the best selection for the values of ε and
numpts. The brute force method searched for all the values
between 0.1 and 2.0 with step size of 0.00001 for ε, and all the
integers between 1 and 40 for numpts. The maximum allowed
value 2.0 for ε was determined by using the k-distance graph.
The values ε = 0.159, minpts = 16, and Euclidean distance
yielded the best result for DBSCAN, while ε = 0.242,
minpts = 10, and Euclidean distance yielded the best result
for Blocked-DBSCAN.
A brute force approach was also used for RNN-DBSCAN

with the maximum value of 20 for nNeighborsIndex.
nNeighbors = 6 yielded the best results. For HDBSCAN*
an α value between 0.1 and 1.0 with step size of 0.001 was
searched for. The values α = 0.5, leafsize = 2, and
minkowski for pairwise distance yielded the best result.

Table 6 shows a comparison of the algorithms. Except for
the first row, all the rows in the table represent a result from
an algorithm mentioned in the first column. The following
five columns are used for objective comparison of the results,
while the last column is used for subjective analysis.

In Table 6, the ‘‘Number of Identified Clusters’’ and
‘‘Number of Unique Clusters’’ columns are used to under-
stand the accuracy of Piecemeal Clustering to find the
correct number of clusters. All the algorithms, except K-
means, can produce any number of clusters. We observe that
Hierarchical and HDBSCAN* identified only two clusters
from the data. Block-DBSCAN produced four clusters.
We labeled all the identified clusters based on the number of
dominating members, described in Section IV-B. We noticed
that two algorithms, RNN-DBSCAN and Blocked-DBSCAN,
produced more than one cluster from one known cluster. For
instance, RNN-DBSCAN produced two clusters from the first
50 data points, where all these data points are part of the
same cluster in the known result. The third identified cluster
contained the last 100 data points, wherein the one hundred
data points were part of two clusters in the known result.
RNN-DBSCAN also identified seven data points from the first
50 as noise, mentioned in the ‘‘Size of Noise’’ column in the
table. When any algorithm produced more than one cluster
from the same clusters in the known result, we merged them
and considered them as one unique cluster for the purpose of
this analysis.

We know the last 100 data points were mapped to two
clusters but are not linearly separable. RNN-DBSCAN and
HDBSCAN* were not able to separate them. On the other
hand, the other algorithms, including Piecemeal Clustering,
were able to separate them successfully. Blocked-DBSCAN
was able to identify three unique clusters while splitting

the entire data into four clusters. On the other hand,
DBSCAN detected no noise in the data set, which is aligned
with the known result. RNN-DBSCAN, HDBSCAN* and
Blocked-DBSCAN incorrectly identified some data points as
noise.

Piecemeal Clustering showed similar performance in
finding the correct number of clusters and the correct unique
number of clusters to the other three algorithms: K-means,
SOM, and DBSCAN. In contrast, Piecemeal Clustering
outperformed all seven algorithms in mapping the data points
correctly, mapping 145 out of 150 data points correctly
(96.7% accuracy). The incorrect mapping is consistent across
all the algorithms. All algorithms could uniquely identify the
first 50 data points and mismatched other points in the other
two clusters.

B. CHARACTER TRAJECTORY DATA SET
K-means clusteringwas performedwith the parametersK=20
and Replicates = 1000. A variety of distance metrics was
tested with different numbers of iterations. The squared
Euclidean distance yielded the best result with 100 iterations.

Like K-means, different sets of parameters were selected
for SOM to cluster the data set. Both 4-by-5 and 5-by-4
networkswere tested alongwith different network topologies,
distance metrics, and numbers of iterations. The best result
was found with a 4-by-5 network, hextop network topology,
Euclidean distance, initial neighborhood size of 3, and
100 iterations.

For the Hierarchical algorithm, finely-quantized cutoff
values between 0 to 2 were tested with both the Euclidean
distance and cosine similarity as distance metrics. The
minimum number of clusters produced using the Euclidean
distance was 793, while with cosine similarity, 472 clusters
were produced. Since both of these approaches produced a
large number of clusters, their results were incomparable with
the other results. Next, a cutoff value of 20 was tested with
both the Euclidean distance and cosine similarity. Both of the
distance metrics yielded nine significant clusters. Since both
the Euclidean distance and cosine similarity metrics provided
similar results, the result generated using the Euclidean
distance metric was used for comparison.

A brute force approach was used to search for ε between
0 to 5 with step size 0.00001, and all integer values between
0 and 100 were tested for the value of numpts, for DBSCAN
and Block-DBSCAN clustering. Different distance metrics
were used in combination with the ε and numpts values.
For DBSCAN, the best result was found for an ε value of
0.0061, numpts value of 6 and cosine similarity. For Blocked-
DBSCAN, a combination of ε value of 2.3, numpts equal to 6,
and Euclidean distance produced the best result.

A brute force approach was also used for RNN-DBSCAN
with a maximum value of 20 for nNeighborsIndex, and
nNeighbors = 7 yielding the best results. For HDBSCAN*,
α values between 0.1 and 1.0 with step size of 0.001 were
searched. α = 0.9, leafsize = 5, and minkowski for pairwise
distance yielded the best result.

129996 VOLUME 10, 2022

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

TABLE 6. Performance comparison of clustering algorithms on Iris Flower data set. Highest accuracies and correct number of noise samples are
highlighted.

TABLE 7. Comparison of performance of clustering algorithms on Character Trajectory data set. Highest accuracies are highlighted.

Results from all tested algorithms are summarized in
Table 7. As with the Iris Flower data set experiment, all
the algorithms were set to produce an arbitrary number of
clusters, except K-means. All but the Hierarchical algorithm
produced 20 clusters. The clusters were labeled with the
letters in the alphabet present the most in the data set. Only
Piecemeal Clustering produced 20 unique clusters, one for
each of the letters. Piecemeal Clustering also outperformed
the other algorithms in mapping the data points correctly
with an overall accuracy of 90.2%. K-means, SOM, RNN-
DBSCAN andHDBSCAN* also produced good results, except
they each, in their individual results, incorrectly combined
pairs of distinct clusters into one.

Further exploration of the results of these four algorithms
reveals merging of clusters could be expected for K-
means, SOM, RNN-DBSCAN because of the curvature of
the participating character instances. For HDBSCAN*, one
such merging is expected, (‘h’,‘n’); while the other one was
not expected, (‘b’,‘p’). Nonetheless, in terms of mapping
HDBSCAN* produced the second-best result after Piecemeal
Clustering.

While Piecemeal Clustering could produce the correct
number of clusters, separating the letters as unique clusters,
and mapping the highest number of data points, incorrect
mappings were found in more clusters than from some
of the other algorithms. In this comparison, the K-means,
SOM,DBSCAN,RNN-DBSCAN, andHDBSCAN* algorithms
were more successful in isolating more clusters without
mixing with other letters. At the same time, we also
observed that the small number of incorrect mappings (281
and 456 incorrect mapping by Piecemeal Clustering and
HDBSCAN*, respectively) in the Piecemeal Clustering can
be expected because of the similar curvatures shared by
character instances across the clusters.

C. STATISTICAL SIGNIFICANCE
To understand the statistical significance of the results
generated by the Piecemeal Clustering algorithm over the
other algorithms, we ran the McNemar Tests [51]. Three
cost-insensitive tests were performed to compare the results
from our study with the results found from the algorithms
used in the comparison. The three tests are: asymptotic

VOLUME 10, 2022 129997

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

TABLE 8. Statistical significance of Piecemeal Clustering result on Iris
Flower data set vs. the other algorithms.

TABLE 9. Statistical significance of Piecemeal Clustering result on
Character Trajectory data set vs. the other algorithms.

test, the exact-conditional test, and the mid-p-value test.
We calculated the h and p values for all the tests. The h value
was calculated at the 0.05 significance level. The p for the
tests for the Iris Flower and Character Trajectory data sets
are shown in Table 8 and Table 9, respectively. We compare
the results for Iris data set for all seven algorithms, while we
skip results from Hierarchical for Character Trajectory data
set, since it was not generating comparable results as shown
in Table 7. According to the McNemar tests, a lower value of
p indicates more statistical significance.

The null hypothesis is rejected for all the tests in both data
sets, which indicates that thePiecemeal Algorithm has better
accuracy than the other algorithms compared. All the p values
are close to zero for all three tests, which further emphasizes
the null value rejections.

We also noticed from Table 6, for the Iris Flower data set,
K-means provides the second best results after Piecemeal
Clustering in terms of mapping the data points to their
respective clusters. At the same time, the statistical signifi-
cance of the results fromK-means algorithm is comparatively
less than the DBSCAN algorithm, an alignment with the
literature as found in Table 1. For the Character Trajectory
data set,HDBSCAN* is consistent in both accuracy count and
statistical significance comparison.

VI. CONCLUSION
A novel and robust data clustering algorithm, Piece-
meal Clustering, is described in this paper. It is an
unsupervised-learning based algorithm combining ideas from

Hierarchical clustering, SOM, and DBSCAN. It is a generic
algorithm that can robustly handle variability within clusters.
In particular, it can correctly identify the number of clusters
from the natural clustering of both higher- and lower-
dimensional data, even if the clusters are not linearly
separable. In this paper, the algorithm was tested on two
data sets, with both small and large numbers of attributes
and uneven cluster sizes. It was also benchmarked against
established and recently proposed algorithms. ThePiecemeal
Clustering algorithm outperforms all the algorithms on
both the Iris Flower and Character Trajectory data sets,
identifying the correct number of clusters and mapping data
points to the correct clusters. The results were also found to be
statistically significant when compared with the other tested
algorithms.

While the proposed algorithm provides good clustering
results without prior knowledge of the number of clusters in
the data, it has some limitations. Normalizing the attributes
to provide equal weight to all of the attributes is key to
the result. Therefore pre-processing of the data is required
before applying the algorithm. The algorithm has slightly
higher time complexity than some of the algorithms in
literature. The algorithm also uses three parameters. Like any
machine learning algorithm, determining the learning rate
and number of training iterations in the learning phase of the
algorithm is a trial-and-error procedure, and any trial cannot
be validated without executing the Post-Processing phase.
Both Pre-Clustering and Post-Processing phases are iterative,
and therefore, may take a long time to compute for large data
sets.

In the future, the proposed algorithm can be improved by
automating the selection of some or all of its parameters.
Mathematical equations can be explored to determine the
optimum cutoff threshold, T . Further studies can also be
conducted on the impact of batch processing on the Pre- and
Post-Processing phases on the quality of clusters obtained
by the algorithm. Batch processing can reduce the time
complexity of the algorithm significantly. More methods can
also be explored for optimizing the time complexity of the
algorithm. A parallel version of this proposed algorithm may
also be developed for clustering big data. The Piecemeal
Clustering algorithm may also be applied to different fields
of study, e.g., identifying lithofacies fromwell logs in oil field
exploration and generating customer clusters based on their
shopping patterns.

ACKNOWLEDGMENT
The authors would like to thank Memorial University for
logistical support.

REFERENCES
[1] A. C. Benabdellah, A. Benghabrit, and I. Bouhaddou, ‘‘A survey of

clustering algorithms for an industrial context,’’ Proc. Comput. Sci.,
vol. 148, pp. 291–302, Jan. 2019.

[2] C. Pan and J. Tan, ‘‘Day-ahead hourly forecasting of solar generation
based on cluster analysis and ensemble model,’’ IEEE Access, vol. 7,
pp. 112921–112930, 2019.

129998 VOLUME 10, 2022

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

[3] C. Kolluru, J. Lee, Y. Gharaibeh, H. G. Bezerra, and D. L. Wilson, ‘‘Learn-
ing with fewer images via image clustering: Application to intravascular
OCT image segmentation,’’ IEEE Access, vol. 9, pp. 37273–37280, 2021.

[4] C.-E. B. Ncir, A. Hamza, and W. Bouaguel, ‘‘Parallel and scalable Dunn
index for the validation of big data clusters,’’ Parallel Comput., vol. 102,
May 2021, Art. no. 102751.

[5] W. Qi, Q. Song, X. Wang, L. Guo, and Z. Ning, ‘‘SDN-enabled
social-aware clustering in 5G-VANET systems,’’ IEEE Access, vol. 6,
pp. 28213–28224, 2018.

[6] J. Majumdar, S. Udandakar, and B. M. Bai, ‘‘Implementation of cure
clustering algorithm for video summarization and healthcare applica-
tions in big data,’’ in Emerging Research in Computing, Informa-
tion, Communication and Applications, N. R. Shetty, L. M. Patnaik,
H. C. Nagaraj, P. N. Hamsavath, and N. Nalini, Eds. Singapore: Springer,
2019, pp. 553–564.

[7] D. Huang, C.-D. Wang, J.-S. Wu, J.-H. Lai, and C.-K. Kwoh, ‘‘Ultra-
scalable spectral clustering and ensemble clustering,’’ IEEE Trans. Knowl.
Data Eng., vol. 32, no. 6, pp. 1212–1226, Jun. 2020.

[8] I. Annaki, M. Rahmoune, M. Bourhaleb, N. Rahmoun, M. Zaoui,
A. Castilla, A. Berthoz, and B. Cohen, ‘‘Computational analysis of human
navigation in a VR spatial memory locomotor assessment using density-
based clustering algorithm of applications with noise DBSCAN,’’ in
Digital Technologies and Applications, S. Motahhir and B. Bossoufi, Eds.
Cham, Switzerland: Springer, May 2022, pp. 190–198.

[9] J.-S. Lee, H.-T. Lee, and I.-S. Cho, ‘‘Maritime traffic route detection
framework based on statistical density analysis from AIS data using a
clustering algorithm,’’ IEEE Access, vol. 10, pp. 23355–23366, 2022.

[10] J. Macqueen, ‘‘Some methods for classification and analysis of multivari-
ate observations,’’ in Proc. Berkeley Symp. Math. Statist. Probab.Berkeley,
CA, USA: Univ. of California Press, 1967, pp. 281–297.

[11] E. Schubert and P. J. Rousseeuw, ‘‘Fast and eager k-medoids clustering:
O(k) runtime improvement of the PAM, CLARA, and CLARANS
algorithms,’’ Inf. Syst., vol. 101, Nov. 2021, Art. no. 101804.

[12] D. P. Ismi and M. Murinto, ‘‘Clustering based feature selection using
partitioning around medoids (pam),’’ Jurnal Informatika, vol. 14, no. 2,
pp. 50–57, May 2020.

[13] K. Indira, S. Karthiga, C. V. N. Angeline, and C. Santhiya, ‘‘Parallel
CLARANS algorithm for recommendation system in multi-cloud environ-
ment,’’ inComputer Networks and Inventive Communication Technologies,
S. Smys, R. Palanisamy, Á. Rocha, and G. N. Beligiannis, Eds. Singapore:
Springer, 2021, pp. 461–472.

[14] C. E. Rasmussen, ‘‘The infinite Gaussian mixture model,’’ in Proc. Int.
Conf. Neural Inf. Process. Syst. Cambridge, MA, USA: MIT Press, 1999,
pp. 554–560.

[15] T. Kohonen, ‘‘The self-organizing map,’’ Proc. IEEE, vol. 78, no. 9,
pp. 1464–1480, Sep. 1990.

[16] D. K. Jain, S. B. Dubey, R. K. Choubey, A. Sinhal, S. K. Arjaria, A. Jain,
and H. Wang, ‘‘An approach for hyperspectral image classification by
optimizing SVM using self organizing map,’’ J. Comput. Sci., vol. 25,
pp. 252–259, Mar. 2018.

[17] H.-C. Yang, C.-H. Lee, and C.-Y. Wu, ‘‘Sentiment discovery of social
messages using self-organizing maps,’’ Cogn. Comput., vol. 10, no. 6,
pp. 1152–1166, Dec. 2018.

[18] A. Huang and F.-J. Chang, ‘‘Using a self-organizing map to explore local
weather features for smart urban agriculture in northern Taiwan,’’ Water,
vol. 13, no. 23, p. 3457, Dec. 2021.

[19] X. Zheng, X. Yang, H.Miao, H. Liu, Y. Yu, Y.Wang, H. Zhang, and S. You,
‘‘A factor analysis and self-organizing map based evaluation approach for
the renewable energy heating potentials at county level: A case study in
China,’’ Renew. Sustain. Energy Rev., vol. 165, Sep. 2022, Art. no. 112597.

[20] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc. Int.
Conf. Knowl. Discovery Data Mining. Palo Alto, CA, USA: AAAI Press,
1996, pp. 226–231.

[21] A. E. Ezugwu, A.M. Ikotun, O. O. Oyelade, L. Abualigah, J. O. Agushaka,
C. I. Eke, and A. A. Akinyelu, ‘‘A comprehensive survey of clustering
algorithms: State-of-the-art machine learning applications, taxonomy,
challenges, and future research prospects,’’ Eng. Appl. Artif. Intell.,
vol. 110, Apr. 2022, Art. no. 104743.

[22] M. W. Dunham, A. Malcolm, and J. K. Welford, ‘‘Improved well log
classification using semisupervised Gaussian mixture models and a new
hyper-parameter selection strategy,’’ Comput. Geosci., vol. 140, Jul. 2020,
Art. no. 104501.

[23] J. H. Ward, Jr., ‘‘Hierarchical grouping to optimize an objective function,’’
J. Amer. Statist. Assoc., vol. 58, no. 301, pp. 236–244, 1963.

[24] C. Bouveyron and C. Brunet-Saumard, ‘‘Model-based clustering of high-
dimensional data: A review,’’ Comput. Statist. Data Anal., vol. 71,
pp. 52–78, Mar. 2014.

[25] M. Roux, ‘‘A comparative study of divisive and agglomerative hierarchical
clustering algorithms,’’ J. Classification, vol. 35, no. 2, pp. 345–366,
Jul. 2018.

[26] F. Alalyan, N. Zamzami, and N. Bouguila, ‘‘Model-based hierarchical
clustering for categorical data,’’ in Proc. IEEE 28th Int. Symp. Ind.
Electron. (ISIE), Jun. 2019, pp. 1424–1429.

[27] W.-B. Xie, Y.-L. Lee, C. Wang, D.-B. Chen, and T. Zhou, ‘‘Hierarchical
clustering supported by reciprocal nearest neighbors,’’ Inf. Sci., vol. 527,
pp. 279–292, Jul. 2020.

[28] Y. Ma, H. Lin, Y. Wang, H. Huang, and X. He, ‘‘A multi-stage hierarchical
clustering algorithm based on centroid of tree and cut edge constraint,’’ Inf.
Sci., vol. 557, pp. 194–219, May 2021.

[29] J. Shi, Q. Zhu, and J. Li, ‘‘A novel hierarchical clustering algorithm with
merging strategy based on shared subordinates,’’ Int. J. Speech Technol.,
vol. 52, no. 8, pp. 8635–8650, Jun. 2022.

[30] R. Petegrosso, Z. Li, and R. Kuang, ‘‘Machine learning and statistical
methods for clustering single-cell RNA-sequencing data,’’ Briefings
Bioinf., vol. 21, no. 4, pp. 1209–1223, Jul. 2020.

[31] M. Alloghani, D. Al-Jumeily, J. Mustafina, A. Hussain, and A. J. Aljaaf,
‘‘A systematic review on supervised and unsupervised machine learning
algorithms for data science,’’ in Supervised and Unsupervised Learning
for Data Science. Cham, Switzerland: Springer, Sep. 2020, pp. 3–21.

[32] J.-H. Kim, J.-H. Choi, K.-H. Yoo, and A. Nasridinov, ‘‘AA-DBSCAN:
An approximate adaptive DBSCAN for finding clusters with varying
densities,’’ J. Supercomput., vol. 75, no. 1, pp. 142–169, Jan. 2019.

[33] X. Xu, M. Ester, H.-P. Kriegel, and J. Sander, ‘‘A distribution-based
clustering algorithm for mining in large spatial databases,’’ in Proc. Int.
Conf. Data Eng. Washington, DC, USA: IEEE Computer Society, 1998,
pp. 324–331.

[34] D. Birant and A. Kut, ‘‘ST-DBSCAN: An algorithm for clustering spatial–
temporal data,’’ Data Knowl. Eng., vol. 60, no. 1, pp. 208–221, 2007.

[35] R. J. G. B. Campello, D.Moulavi, and J. Sander, ‘‘Density-based clustering
based on hierarchical density estimates,’’ in Advances in Knowledge
Discovery and Data Mining, J. Pei, V. S. Tseng, L. Cao, H. Motoda, and
G. Xu, Eds. Berlin, Germany: Springer, 2013, pp. 160–172.

[36] A. A. Bushra and G. Yi, ‘‘Comparative analysis review of pioneering
DBSCAN and successive density-based clustering algorithms,’’ IEEE
Access, vol. 9, pp. 87918–87935, 2021.

[37] A. Bryant and K. Cios, ‘‘RNN-DBSCAN: A density-based clustering
algorithm using reverse nearest neighbor density estimates,’’ IEEE Trans.
Knowl. Data Eng., vol. 30, no. 6, pp. 1109–1121, Jun. 2018.

[38] L. McInnes and J. Healy, ‘‘Accelerated hierarchical density based
clustering,’’ in Proc. IEEE Int. Conf. Data Mining Workshops (ICDMW),
Piscataway, NJ, USA, Nov. 2017, pp. 33–42.

[39] Y. Chen, L. Zhou, N. Bouguila, C. Wang, Y. Chen, and J. Du, ‘‘BLOCK-
DBSCAN: Fast clustering for large scale data,’’Pattern Recognit., vol. 109,
Jan. 2021, Art. no. 107624.

[40] D. Xu and Y. A. Tian, ‘‘A comprehensive survey of clustering algorithms,’’
Ann. Data Sci., vol. 2, no. 2, pp. 165–193, Jun. 2015.

[41] H.-S. Park and C.-H. Jun, ‘‘A simple and fast algorithm for k-medoids
clustering,’’ Expert Syst. Appl., vol. 36, no. 2, pp. 3336–3341, Mar. 2009.

[42] C. Malzer andM. Baum, ‘‘A hybrid approach to hierarchical density-based
cluster selection,’’ in Proc. IEEE Int. Conf. Multisensor Fusion Integr.
Intell. Syst. (MFI), Sep. 2020, pp. 223–228.

[43] G. Stewart and M. Al-Khassaweneh, ‘‘An implementation of the
HDBSCAN∗ clustering algorithm,’’ Appl. Sci., vol. 12, no. 5, p. 2405,
Feb. 2022.

[44] A. Rodriguez and A. Laio, ‘‘Clustering by fast search and find of density
peaks,’’ Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 2014.

[45] R. Fisher. (1936). Iris Data Set. [Online]. Available: https://archive.ics.
uci.edu/ml/datasets/iris

[46] R. A. Fisher, ‘‘The use of multiple measurements in taxonomic problems,’’
Ann. Eugenics, vol. 7, no. 2, pp. 179–188, Sep. 1936.

[47] B. H. Williams. (2006). Character Trajectories Data Set. [Online].
Available: https://archive.ics.uci.edu/ml/datasets/Character+Trajectories

[48] A. Ben-Hur and I. Guyon, ‘‘Detecting stable clusters using principal
component analysis,’’ in Functional Genomics: Methods and Protocols,
M. J. Brownstein and A. B. Khodursky, Eds. Totowa, NJ, USA: Humana
Press, 2003, pp. 159–182.

VOLUME 10, 2022 129999

M. M. U. Hasan et al.: Piecemeal Clustering: A Self-Driven Data Clustering Algorithm

[49] T. Vannoy. (2022). RNN DBSCAN. [Online]. Available: https://
www.mathworks.com/matlabcentral/fileexchange/97924-rnn-dbscan

[50] L. McInnes, J. Healy, and S. Astels, ‘‘Hdbscan: Hierarchical density based
clustering,’’ J. Open Source Softw., vol. 2, no. 11, p. 205, Mar. 2017.

[51] Q. McNemar, ‘‘Note on the sampling error of the difference between
correlated proportions or percentages,’’ Psychometrika, vol. 12, no. 2,
pp. 153–157, Jun. 1947.

MD. MONJUR UL HASAN received the B.Sc.
degree in computer science and engineering from
the Chittagong University of Engineering and
Technology, Bangladesh, in 2005, and the M.Sc.
degree in geovisual analytics from the Memorial
University of Newfoundland, Canada, in 2015,
where he is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering. His research interests include data
clustering, data analytics, and machine learning.

REZA SHAHIDI (Senior Member, IEEE) is
currently an Adjunct Professor and a Teaching
Assistant Professor with the Faculty of Engineer-
ing and Applied Science, Memorial University of
Newfoundland. He is the author of over 40 peer-
reviewed journals and conference publications.
His research interests include algorithm design,
software engineering, machine learning, signal
processing, image processing, radar, remote sens-
ing, and seismic imaging.

DENNIS K. PETERS (Senior Member, IEEE)
is currently an Associate Dean of undergraduate
studies and a Professor with the Department of
Electrical and Computer Engineering, where he
has been a member of the Faculty, since 1998. His
research interests include techniques for design
and verification of software and computer sys-
tems, with a particular focus on high-performance
computing, real-time applications, and parallel or
distributed processing. His teaching activity is

primarily in the area of software, ranging from introductory programming
courses to advanced topics such as real-time operating systems, and
concurrent programming.

LESLEY JAMES is currently a Professor with
the Department of Process Engineering, Memo-
rial University of Newfoundland. Her research
interests include sustainable offshore (Newfound-
land and Labrador) oil and gas production and
carbon capture, utilization, and storage (CCUS).
From molecular level interactions to large field
scale optimization, the challenge is to recognize
the right tools given the uncertainty of the
question/answer. AI/ML is proving beneficial in

analyzing the complex data for the energy industry. She has led numerous
large multidisciplinary research and development projects related to offshore
energy. She has been awarded the Society of Petroleum Engineer’s
Distinguished Achievement Award for Faculty.

RAY GOSINE received the bachelor’s degree in
electrical engineering from the Memorial Uni-
versity of Newfoundland, Canada, and the Ph.D.
degree in robotics from Cambridge University,
U.K. He held teaching and research positions at
Cambridge University, The University of British
Columbia (UBC), Memorial University of New-
foundland, and the University of Toronto. These
appointments included an NSERC Jr. Chair in
Industrial Automation at UBC (supported by B. C.

Packers) and the J. I. Clark Chair of Intelligent Systems for Operations in
Harsh Environments at Memorial University (supported by C-CORE).

130000 VOLUME 10, 2022

