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ABSTRACT Mobile edge computing (MEC) is a novel technique that can reduce computational burden of
local terminal devices by tasks offloading, which emerges as a promising paradigm to provide computing
capabilities near mobile users. Furthermore, the computing power consumption and battery capacity in the
terminal devices is generally limited inMEC, which directly affect the quality of service (QoS), which brings
new challenge in achieving the stability of the system. The trade-off between delay and energy consumption
of task offloading process under multi-user MEC scenario is in general a complicated problem that highly
correlates to the computation offloading decisions of computation tasks, i.e., whether or not to offload a task
for edge execution. To address the above issues, the task offloading decision to solve the queuing problem
of tasks to be processed in the local terminals was being considered, with an application of Lyapunov theory
to ensure the queue stability in this paper. Then, a trade-off model was formulated to minimize the delay and
energy consumption to achieve a minimum execution cost. Moreover, an improved Dynamic Niche-based
Self-organizing Learning Algorithm was presented to accelerate the speed of the search process to gain
an optimal task offloading scheme. The simulation results provided supporting evidence that the proposed
optimal scheme IDO could achieve a lower average energy consumption than LFO and a lower average
execution delay than EFO under the scenarios of the waiting queue length varies within [10, 50], the number
of users varies within [4, 20], and the number of tasks varies within [20, 100].

INDEX TERMS Lyapunov theory, mobile edge computing, task offloading, evolutionary algorithm.

I. INTRODUCTION
Recently, with the popularity of Internet and the growth of
mobile users, mobile communication technology has devel-
oped rapidly. The functions of terminal devices are con-
stantly improved, and many emerging interactive experience
applications, such as augmented reality (AR), virtual reality
(VR), video-on-demand, social networking services, motion
sensing game and so on, are booming, leading to an explosion
in the volume of mobile data. According to Cisco statistics,
mobile data volume will reach 15% of global IP traffic by
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2021 [1]. Mobile intelligent devices (mobile phones, tablet
computers, etc.), the number of which is even staggering,
have gradually become necessities in people’s daily life. With
the increase of data volume and the updating of applica-
tions, the performance and computing capability of terminal
devices are required to be higher. Nevertheless, due to their
limited size and battery capacity, there is not enough comput-
ing capability for certain service programs (such as AR and
immersive experiences) and delay requirements cannot also
be met.

Cloud computing has abundant storage space and pow-
erful computing capability. Offloading tasks to remote
cloud can provide users with rich resources and excellent
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FIGURE 1. An illustration of the MEC architecture.

experience [2], and also help alleviate the delay and energy
consumption problems caused by lacking of computing capa-
bility in mobile devices. However, moving large amounts
of data to the cloud will result in a huge cost in network
transmission. It is very difficult to reduce network delay
between remote cloud servers and user devices by leveraging
existing infrastructure.

In 2014, the European Telecommunications Standards
Institute (ETSI) proposed Mobile Edge Computing (MEC)
to reduce network delay between remote cloud servers and
user devices by leveraging on existing infrastructure. Based
on MEC technology, MEC servers are deployed at the edge
of mobile networks to sink cloud storage and computing
resources to the edge of networks, which form the mobile
edge computing networks providing computing capability
and service environment for application developers and ser-
vice providers. As shown in Fig. 1 adapted from [3], theMEC
system model mainly includes mobile user devices, access
points, base stations, andmobile edge servers.Mobile devices
communicate with base stations through wireless networks.
Network operators typically deploy MEC servers near to a
base station. A MEC server is a small server similar to a
remote cloud that has a range of functions such as computing
and storage as those in a cloud computing center.

When the edge computing nodes are deployed near to user
devices, environmental requirements are usually considered
to ensure them a long-term stable operation. In practical
applications, edge computing can be deployed independently
and plays an important role in real-time, short-period data
processing and analysis as well as local decision-making
scenarios, such as driverless cars, intelligent factories and

so on. Users offload tasks to MEC servers through wireless
channels so as to reduce the processing delay, the energy
consumption of mobile devices, and save the cost of task
processing.

Some application scenarios, such as augmented reality,
virtual reality, and self-driving car networking, put forward
high requirements for network delay, bandwidth, comput-
ing and storage. In addition to that, the computing power
consumption and battery capacity in the terminal devices is
generally limited, which directly affect the quality of service
(QoS). To guarantee the system stability, reduce the packet
loss rate, and improve the users’ satisfaction, it is important
to compromise the delay and energy according to the prac-
tical needs of different applications in the research on task
offloading decision in MEC.

One of the current challenges in MEC is how to guarantee
system stability and lower packet loss rate in the process of
offloading tasks while achieving the trade-off between delay
and energy under the multi-user multi-task scenario.

The main contributions in this paper are listed as follows.
a) Considering the trade-off between delay and energy

consumption of task offloading process under multi-
user MEC scenario, we propose a task offloading opti-
mization scheme to effectively utilize the computing
resources of mobile edge servers, reduce delay and
energy consumption of users’ tasks optimally, and
improve users’ satisfaction degree, which is close to the
actual application scenarios and makes performance
analysis exactly substantially.

b) Justification of Lyapunov queue stability theory is pro-
vided in scheduling task queue and reducing users’
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packet loss rate when users have massive amounts of
tasks exceeding terminal loads to offload.

c) A trade-off optimization between average response
time and average power is realized mathematically.
Moreover, we also consider queuing delay caused by
guaranteeing system stability which can reduce the
packet loss rate significantly and thus provide an excel-
lent user experience.

d) Since the above problem falls into the NP-hard
scope [4], an improved Dynamic Niche-based Self-
organizing Learning Algorithm (DNSLA) is proposed
to search for a trade-off solution between delay and
energy consumption of task offloading. It is demon-
strated at section VII that our improved DNSLA based
offloading scheme (IDO) has better comprehensive
performance when compared to ‘‘local first’’ offload-
ing scheme (LFO) and ‘‘edge first’’ offloading scheme
(EFO).

The rest of the paper is organized as follows. Section II
introduces the recent related work of computing offloading
in detail. In section III, the mathematical model of com-
puting offloading problem is built. Section IV describes the
problem in detail and transforms it into the optimal problem
with the minimum value. Section V carries out queue stabil-
ity via Lyapunov optimization theory. Section VI introduces
our proposed the improved DNSLA based task offloading
scheme IDO. Section VII evaluates our proposed scheme
using simulation experiments and analyses the computational
complexity. Finally, conclusions are drawn in Section VIII.

II. RELATED WORK
The main goal of computing offloading lies in offloading
the computing tasks in terminal devices to appropriate des-
tinations according to task offloading algorithms and thus
achieving a minimum cost of the whole system. Based on
the review below, the research work of MEC mainly focused
on the optimization of delay and energy consumption caused
by data transmission and task processing during offload-
ing process of computing tasks. [5] proposed a GA-based
multi-edge and cloud collaborative computing offloading
model. This computing offloading solution combines local
edge and remote edge to perform task offloading; it used a
GA to achieve the minimum system cost considering both
delay and energy consumption at the same time; the GA
improved the resource utilization of the edge node, mini-
mizes the data flow between the edge and the cloud and
relieves the pressure of core networks between the edge and
the cloud. [6] presented a resource allocation and offloading
decision algorithm based on the divided time slot to improve
the resource utilization of edges and relieve the potential
congestion of core networks by reducing the cloud-edge
communication traffic. However, these work did not take the
stability of task queues into account and also ignored the
tradeoff between energy consumption and delay. [7] formu-
lated the task offloading problem asminimizing the long-term

response delay of the MEC system under the constraint of
long-term average leasing cost and proposed the single-slot
service chain caching and task offloading algorithm which
integrates computation and utility-based caching algorithm,
cross-server caching algorithm and relative-distance-based
task offloading algorithm to reduce the long-term average
response delay of the MEC system while keeping the long-
term average leasing cost at a relative low level from the per-
spective of application service providers. [8] investigated the
energy-delay tradeoff for dynamic offloading in anMEC sys-
tem with energy harvesting devices and proposed an online
dynamic Lyapunov optimization based offloading algorithm
to make decisions for tasks assignment to solve a problem
of minimizing energy consumption with the buffer queue
and battery energy level stable. [9] considered a general
mobile cloud computing system consisting of multiple users
and one remote cloud server, where each user has multiple
independent tasks. To minimize a weighted total cost of
energy, computation, and the delay of all users, the pro-
posed multi-user multi-task offloading algorithm uses sepa-
rable semidefinite relaxation and binary recovery to jointly
compute the offloading decision and communication resource
allocation.

To address the problem of multi-user dependent task
offloading, [10] established a user dependent task model
based on the comprehensive consideration of delay and
energy consumption and proposed a multi-user task offload-
ing strategy based on delay acceptance to solve the problem
of minimizing energy consumption under delay constraints,
which can solve the problem of multi-user task offload-
ing using a two-step non-dominated single user optimal
offloading strategy and adjustment strategy to solve resource
competition. [11] considered a MEC enabled multi-cell wire-
less network where each base station (BS) was equipped
with a MEC server that assists mobile users in executing
computation-intensive tasks via task offloading and studied
the problem of joint task offloading and resource alloca-
tion in order to maximize the users’ task offloading gains,
which was formulated as a mixed integer nonlinear program
that involved jointly optimizing the task offloading decision,
uplink transmission power of mobile users, and computing
resource allocation at the MEC servers. [12] developed a
unified MEC design framework with joint energy beam-
forming, offloading, and computing optimization in emerg-
ing wireless powered multiuser MEC systems and proposed
an efficient wireless powered multiuser MEC design by
considering the latency-constrained computation, for which
the access point minimizes the total energy consumption
subject to the users’ individual computation latency con-
strains. Finally, the optimal solution is obtained in a semi-
closed form by adopting the Lagrange duality method. [13]
investigated the optimal computation offloading and time
allocation for multi-access MEC, in which the mobile user
(MU) uses non-orthogonal multiple access (NOMA) to
offload the computation-workloads to a group of edge-servers
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simultaneously, aiming at minimizing the overall-delay for
the MU to complete its computation requirement, by jointly
optimizing theMU’s offloaded workloads to the edge-servers
and the NOMA transmission-time. The authors proposed an
efficient algorithm to compute the MU’s optimal offloading
solution for the single MU’s offloading and the distributed
algorithm to find the MUs’ optimal offloading solution as
well as the MUs’ NOMA transmission time for the multi-
MUs’ offloading. [14] evaluated whether advanced trans-
mission techniques proposed for 5G can improve the per-
formance of mobile edge computing, and investigated the
possible gain of the joint allocation of radio and computa-
tional resources to minimize the total transmission energy
consumption for computational offloading under individual
delay constraint by considering the allocation of three differ-
ent resources, including resource blocks, transmission power
and computational units.

[15] proposed a distributed dynamic heterogeneous task
offloading methodology algorithm by exploiting game the-
ory and Lyapunov optimization, which could achieve het-
erogeneous control and allocation of computation resources
by dynamic quote price mechanism. In order to solve the
problems of small coverage density and hotspot overload of
the central node in the current MEC network, [16] designed a
distributed edge computing architecture for ultra-dense net-
works and proposed a multi-base station game offloading
algorithm to minimize the system overhead. In the proposed
algorithm, the Lagrange multiplier method was used to solve
the problem of computing resource allocation, and then the
matching game theory was exploited to obtain the optimal
offloading strategy, so that the mutual benefits of both users
and MEC servers could be maximized. [17] studied the
multi-user computation offloading problem in MEC from a
behavioral perspective and applied the framework of prospect
theory to model mobile device users’ realistic behavior when
making the computation offloading decision. The authors cast
the users’ decision making of whether to offload or not as a
prospect theory-based non-cooperative game and proposed a
distributed computation offloading algorithm to achieve the
Nash equilibrium. [18] investigated the use of cooperative
communications in computation offloading for a wireless
power transfer (WPT) MEC system, in which an access
point (AP) acts as an energy source via WPT and serves
as an MEC server to assist two near-far mobile devices to
complete their computation-intensive latency-critical tasks.
Joint power and time allocation for cooperative computation
offloading was considered based on a block-based harvest-
then-offload protocol, with the aim to minimize the transmit
energy of the AP for completing the computation tasks of the
two users. [19] studied the joint computation offloading and
transmission scheduling for delay-sensitive applications in
mobile edge computing and a queueing model to characterize
the dynamic management of the system with potential net-
work uncertainties. By considering tradeoffs between local
and edge computing, wireless features and non-cooperative

game behaviors of smart mobile users, the authors proposed a
multi-user computation offloading and transmission schedul-
ing mechanism to jointly determine the computation offload-
ing scheme, the transmission scheduling discipline and the
pricing rule.

To address the tradeoff issue within the systems exe-
cuting all applications in fog nodes in terms of average
response time and average cost, [20] presented an online
algorithm called unit-slot optimization, which is a quanti-
fied near-optimal online solution based on the technique
of Lyapunov optimization to balance the three-way tradeoff
among average response time, average cost and average num-
ber of application loss. [21] discussed multi-user multi-task
offloading scheduling schemes in a renewable mobile edge
cloud system. The authors proposed the centralized and dis-
tributed greedy maximal scheduling algorithms to determine
the energy harvesting strategy, a set of offloading requests
and a sub-set of wireless devices to compute the workload
for the admitted offloading request to maximize the overall
system utility. To exploit the computing capacity at the green
mobile edge cloud thoroughly, the scheduling algorithms
match the offloading energy consumption at the mobile edge
cloud to its harvestable energy. [22] studied the optimal joint
energy and task allocation problem for a single-user wire-
less powered MEC system with dynamic task arrivals over
time to minimize the transmission energy consumption at
the energy transmitter subject to the energy/task causality
and task completion constraints at the user within a finite
horizon of multiple slots. Leveraging the convex optimization
techniques, the authors obtained the well-structured optimal
offline solutions with non-causal channel/task state informa-
tion known a-priori, in the scenarios with static and time-
varying channels, respectively, and further proposed heuristic
online joint energy and task allocation designs with only
causal channel/task state information available. [23] studied
multi-servermulti-usermulti-task computation offloading for
MEC networks, with the aim to guarantee the network’s qual-
ity of service and to minimize wireless devices’ energy con-
sumption. By formulating different real-time task offloading
decisions as static optimization problems, the authors inves-
tigated a linear programing relaxation-based algorithm to
approximate the optimum and further investigated the hetero-
geneous distributed deep learning-based offloading algorithm
forMECnetworks by taking advantage of deep reinforcement
learning.

To sum up, there are still many problems to be solved
under the scenario of multi-user and multi-task offloading
over mobile edge networks. Our work focus on how to realize
efficient computing offloading and resource allocation while
ensuring system performance and guaranteeing end users’
quality of service (QoS). In the paper, system performance
includes availability, reliability, throughput, response time,
task blocking probability and other metrics. QoS parameters
considered in our manuscript mainly refer to delay and packet
loss rate.
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The main advantages of our proposed task-offloading
scheme IDO in this paper are listed as follows.

a) Formalization of the trade-off optimization between
average response time and average power consumption
during the multi-task offloading process under multi-
user MEC scenario. The result is expressed through
Equation (34).

b) Leverage Lyapunov queue stability theory by
controlling the Lyapunov drift and adjusting the value
of Lyapunov function in the scheduling task queue
to guarantee system stability. The result is expressed
through Equations (57) and (58).

c) An improved Dynamic Niche-based Self-organizing
Learning Algorithm carries out a self-organizing learn-
ing process consisting of global learning, neighborhood
learning and self-learning where each population in
the ecosystem studies and searches synchronously, and
exchanges individual dynamically one another to accel-
erate the speed of searching process to gain the optimal
solution. The algorithm is presented in Algorithm 2;
the comparative results with other existing scheme are
depicted in Figure 3, 5 and 6 will provide evidence
that the proposed Algorithm outperforms against the
selected schemes.

III. COMPUTING OFFLOADING MODEL

We consider a scenario of providing computing offloading
services by a two-layer system consisting of MEC edge
servers and the local devices in their coverage areas.We solve
the problemwhether the tasks generated by local devices need
to be offloaded to the edge servers under the condition of
guaranteeing system performance. The local terminal node
can offload tasks to edge nodes within its direct communi-
cation range to expand its computing capability and reduce
energy consumption. The data transmission between the ter-
minal devices and the MEC base stations is carried out by
wireless communication links. Different wireless links are
transmitted by orthogonal channels andwill not interfere with
each other.

Running process of the system is divided into many time
slots in the time domain. The set of time slot is repre-
sented by t = {1, 2, . . . ,T }, and the length of each time
slot is l. The terminal layer composed of various terminal
devices generates task data to be processed in each times-
lot. The data are generated in timeslot t-1, and then the
resource allocation module decides the offloading strategy
in timeslot t . Therefore, we assume that the data will begin
execution at time slot t . The offloading strategy decides
that whether executing the tasks from terminal devices
locally or offloading them to edge nodes for processing.
Based on the definition of discrete time system [24], the
task processing process of terminal device can be mod-
elled into a discrete time system, which has the following
characteristics:

• In each time slot, the tasks from each terminal device are
randomly generated and assumed to be independent of
each other;

• The number of tasks from the terminal devices in each
time slot is subject to Independent and Identical Distri-
bution (I.I.D);

• The number of CPU cycles and data size required by task
execution also obey I.I.D.

In particular, different tasks require different execution
timing, that is, some tasks may not be completed in one
timeslot andwill continue to be processed in the next timeslot.
Therefore, the queuing delay must be counted into comput-
ing task delay if a task in the last time slot has not been
completed. The queuing model of the system is displayed
in Fig.2.

A. MATHEMATICAL FORMULATION OF TASK OFFLOADING
MODEL
The taskW (t)

(i,j) denotes the j-th task from terminal nodeMi in

time slot t . TheW (t)
(i,j) can further be described as {D

(t)
(i,j),C

(t)
(i,j)}

where D(t)
(i,j) represents packet size of task W (t)

(i,j) and C (t)
(i,j)

represents the number of CPU cycles required for processing
task W (t)

(i,j). We assume that an edge server covers M mobile
terminal nodes and arrival process of tasks into the terminal
device obeys the Poisson distribution. Let λi(t) denote the
arrival rate of tasks into terminal device Mi at time slot t .
In each time slot, the resource allocation module provides
offloading strategies that determinewhich tasks are processed
in terminal devices locally or offloaded to the edge servers.
Let X locali (t) and Xmeci (t) denote the task sets processed in the
local and edge node in time slot t respectively; N local

i (t) and
Nmec
i (t) denote the number of tasks in X locali (t) and Xmeci (t)

respectively. Based on the above expressions, we conclude
the relationship in (1).

N local
i (t)+ Nmec

i (t) = λi(t) (1)

In addition to the computing delay of tasks in devices,
the queuing delay may arise when the task W (t)

(i,j) is exe-
cuted locally. Furthermore, the transmission delay and energy
may also occur when the tasks are offloaded from local
nodes to the edge nodes. Therefore, the delay T(i,j)(t) and
energy consumption E(i,j)(t) of taskW

(t)
(i,j) can be expressed as

follows.

T(i,j)(t) = I l(i,j)(t)T
l
(i,j)(t)+ I

m
(i,j)(t)T

m
(i,j)(t) (2)

E(i,j)(t) = I l(i,j)(t)E
l
(i,j)(t)+ I

m
(i,j)(t)E

m
(i,j)(t) (3)

where I l(i,j)(t) + Im(i,j)(t) = 1 and they indicate the target
devices of the task offloading in the system. When the task
W (t)

(i,j) is processed locally, I
l
(i,j)(t) = 1; otherwise I l(i,j)(t) = 0.

When task W (t)
(i,j) is processed in the edge server, Im(i,j)(t) = 1;

otherwise Im(i,j)(t) = 0. Table 1 below lists the main notations
and their meanings in this paper.
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FIGURE 2. The multi-user and multi-task offloading model.

B. EXECUTING TASKS AT LOCAL NODES
1) LOCAL DELAY
Computing delay Tel(i,j)(t) of executing the task W (t)

(i,j) locally
is calculated in (4). Since the local processing ability is
limited, we formulate the task processing in each terminal
node into a real-time task queuing model based on [25]. Task
queue length Qi(t + 1) in terminal nodeMi can be calculated
in (5) where Qi(0) = 0. Waiting delay Twl(i,j)(t) of the

taskW (t)
(i,j) processed locally is calculated in (6). Accordingly,

the total delay T l(i,j)(t) of the task W (t)
(i,j) processed locally is

derived in (7).

Tel(i,j)(t) = C (t)
(i,j)/fi,l (4)

Qi(t + 1) = max[Qi(t)− µi(t), 0]+ N local
i (t) (5)

Twl(i,j)(t) =
Qi(t)∑
j=1

(
C (t)
(i,j)/fi,l

)
(6)

T l(i,j)(t) = Tel(i,j)(t)+ Tw
l
(i,j)(t) (7)

2) LOCAL ENERGY CONSUMPTION
The power consumption Pi,0 of local node i is a superlinear
function of execution frequency fi,l , namely Pi,0 = α(fi,l)γ ,
usually α = 10−11, γ = 2 according to [26]. When tasks
are processed locally, power consumptions is mainly derived
from CPU operations. Therefore, the energy consumption
E l(i,j)(t) of executing task W (t)

(i,j) locally at the time slot t can
be calculated in (8).

E l(i,j)(t) = Pi,0Tel(i,j)(t) = α(fi,l)
γ Tel(i,j)(t) (8)

C. EXECUTING TASKS AT EDGE SERVERS
A typical process of offloading tasks to edge nodes con-
sists of three steps: (1) The local nodes upload the tasks
to the edge nodes; (2) The edge nodes allocates comput-
ing resources to the offloaded tasks; (3) The edge nodes
return the computing results to the local nodes. Without
loss of generality, we ignore the cost of the last step,
so the cost of offloading tasks to edge nodes is com-
posed of the following two parts: (1) The transmission

TABLE 1. Notations definition list.

time and energy consumption of offloading tasks to edge
nodes; (2) Processing time of the offloaded tasks on edge
nodes.

1) DELAY IN TRANSMISSION OF TASKS
Data transmission rateW (t)

(i,j) of offloading tasks to edge nodes
is calculated in (9), where hi = d−sn and usually s = 4,
dn = [0, 50] according to [27]. Thus, the delay Ttm(i,j)(t) of
transmitting tasks from local nodes to edge nodes can be
calculated in (10). Computing delay Tem(i,j)(t) of executing the
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taskW (t)
(i,j) at the edge nodes is calculated in (11). Accordingly,

the total delay Tm(i,j)(t) of offloading the task W (t)
(i,j) to execute

at edge nodes is calculated in (12).

Ri = W log2(1+ p
up
i hi/N0) (9)

Ttm(i,j)(t) = D(t)
(i,j)/Ri (10)

Tem(i,j)(t) = C (t)
(i,j)/fi,m (11)

Tm(i,j)(t) = Tem(i,j)(t)+ Tt
m
(i,j)(t) (12)

2) ENERGY CONSUMPTION
Our work focuses on analyzing the energy consumption and
delay cost from the users’ perspective. Therefore, if the
task is offloaded to edge processing, the energy consump-
tion will not be included. So energy consumption Em(i,j)(t)
of offloading tasks from local nodes to edge nodes can be
calculated in (13), where we only consider the energy con-
sumption on uploading tasks and ignore the energy con-
sumption on executing tasks that is saved by the offloading
strategy.

Em(i,j)(t) = Pupi Tt
m
(i,j)(t) (13)

D. AVERAGE DEALY AND ENERGY CONSUMPTION
According to (2)-(13), the average delay and average energy
consumption of offloading tasks to edge nodes at the time slot
t are respectively calculated as follows.

Tavg(t) =
M∑
i=1

λi(t)∑
j=1

T(i,j)(t)/
M∑
i=1

λi(t) (14)

Eavg(t) =
M∑
i=1

λi(t)∑
j=1

E(i,j)(t)/
M∑
i=1

λi(t) (15)

Further, long-term average expectation of the delay and
energy consumption of offloading tasks to the edge node can
be expressed as follows.

Tavg = lim
T→∞

1
T

T−1∑
t=0

E[Tavg(t)] (16)

Eavg = lim
T→∞

1
T

T−1∑
t=0

E[Eavg(t)] (17)

IV. PROBLEM DESCRIPTION AND TRANSFORMATION
A. PROBLEM DESCRIPTION
Minimizing the energy consumption at user’s side, namely
Eavg in (17), is our optimization objective. Simultaneously,
in order to avoid heavy task loads in local nodes resulting in
the serious queuing delay, the average waiting time of the task
queues in local nodes meets the following condition.

lim
T→∞

1
T

T−1∑
t=0

E[Tavg(t)] <∞ (18)

Lemma 1: if the queueQi(t) = {Q1(t),Q2(t), . . . . . .QM (t)}
remain stable, then the condition (18) holds.

Proof: Assume the maximum completion time of tasks
at time slot t is D, according to the definition of system
stability [28]:

Qi(t + 1) = max[Qi(t)− D, 0]+ Tavg(t) (19)

Thus the following relationship exists:

Qi(t + 1) ≥ Qi(t)− D+ Tavg(t) (20)

Take expectations of both sides in (20):

E[Qi(t + 1)]− E[Qi(t)] ≥ −D+ E[Tavg(t)] (21)

Expression (22) can be derived by accumulating the values
at each time slot.

E[Qi(T )]− E[Qi(0)] ≥ −TD+
T−1∑
t=0

E[Tavg(t)] (22)

Dividing both sides of (22) by T :

E[Qi(T )]− E[Qi(0)]
T

≥ −D+
1
T

T−1∑
t=0

E[Tavg(t)] (23)

Since Qi(0) = 0, we arrive at

E[Qi(T )]
T

≥ −D+
1
T

T−1∑
t=0

E[Tavg(t)] (24)

Let T →∞, then

lim
T→∞

E[Qi(T )]
T

≥ −D+ lim
T→∞

1
T

T−1∑
t=0

E[Tavg(t)] (25)

If the average rate of Qi(T ) is stable, then lim
T→∞

sup (E[Qi(T )]/T ) = 0. So we can get

0 ≥ −D+ lim
T→∞

sup
1
T

T−1∑
t=0

E[Tavg(t)] (26)

Namely,

lim
T→∞

sup
1
T

T−1∑
t=0

E[Tavg(t)] ≤ D (27)

Leveraging the task waiting queues, we transform the con-
straint condition (17) into a queue stability problem. There-
fore, if we can ensure that the queue is stable, then the
condition (18) holds and Lemma 1 is proved.

Based on (2), the vectors of scheduling position strategies
for λi(t) tasks at time slot t are shown as follows, where
π(i,j)(t) = [I l(i,j)(t), I

m
(i,j)(t)] denotes the vector of scheduling

position strategy for tasksW (t)
(i,j1)

,W (t)
(i,j2)

, · · · ,W (t)
(i,jn)

.

π i(t) = [π(i,1)(t), π(i,2)(t), . . . , π(i,λi(t)(t)] (28)
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For all the local nodes, the vectors of task scheduling position
strategies can be represented as follows.

π (t) = [π (1)(t), . . . , π (i)(t), . . . , π (M)(t)] (29)

The Eavg in (17) depends on π (t), so E[Eavg(t)] can further
be denoted as E[Eavg(π (t))] and the task offloading problem
aiming to minimize the energy consumption can be described
as follows.

min Eavg = lim
T→∞

1
T

T−1∑
t=0

E[Eavg(π (t))]

= lim
T→∞

1
T

T−1∑
t=0

M∑
i=1

λi(t)∑
j=1

E(i,j)(t)

M∑
i=1
λi(t)

,

∀t ∈ {0, 1, 2, . . . ,∞}, (30)

S.t. (1), (18)

N local
i (t) =

∑
i∈X locali (t)

I l(i,j)(t) (31)

Nmec
i (t) =

∑
i∈Xmeci (t)

Im(i,j)(t) (32)

where (30) can be determined by (17) constraint (1) describes
the service model of system, constraint (18) ensures system
stability, constraints (31) and (32) are the task offloading
strategy following π (t).

The problem can further be equivalent to how to
gain the optimal offloading strategy π∗(t) under time
series of t = 0, 1, . . . ,∞ and minimize the expec-
tation of energy consumption in (30), where π∗(t) =
[π (1)∗(t), . . . π (i)∗(t), . . . π (M )∗(t)].

B. PROBLEM TRANSFORMATION
The optimization problem of (30) can be converted to:

min E[Eavg(π (t))], ∀t ∈ {0, 1, 2, . . . ,∞}

S.t. (1), (18), (31), (32). (33)

Based on Lemma 1, the optimization problem in this paper
can be transformed into:

min E[Eavg(π (t))] =
M∑
i=1

(
λi(t)∑
j=1

E(i,j)(t))/
M∑
i=1

λi(t),

∀t ∈ {0, 1, 2, . . . ,∞}

S.t. Tavg ≤ D, ∀i ∈ {1, 2, . . .M}, (1), (18), (31), (32).

(34)

V. LYAPUNOV THEORY BASED STABILITY ANALYSIS
A. BOUNDING UNIT-SLOT LYAPUNOV DRIFT

In order to avoid a large number of tasks queuing at terminal
nodes, the stability of queues should be guaranteed first by
Lemma 1. Lyapunov optimization is a method to optimize
system control. As in [29], we define a Lyapunov function,

L(Qi(t)) = Q2
i (t)/2 as themeasure of the overstocking degree

in a task queue. Moreover, to indicate the change rate of
Lyapunov function L(Qi(t)), from a time slot to the next time
slot, we define the conditional unit-slot Lyapunov drift as
follows.

1Qi(t) = E[(L(Qi(t + 1))− L(Qi(t)))|Qi(t)] (35)

If all the task queues are relatively short, then the value
of L(Qi(t)) is relatively small. If a certain queue in the sys-
tem is congested, then the value of L(Qi(t)) can increase
rapidly. The value of Lyapunov function can be main-
tained at a relatively low level by controlling the Lyapunov
drift 1Qi(t).
Lemma 2:We can obtain an upper bound of the Lyapunov

drift1Qi(t) as shown in (36) according to the above dynamic
relationship of the queues in the system.

1Qi(t) ≤ H + Qi(t)E[−D+ Tavg(t)|Qi(t)] (36)

H = [maxE[Tavg(t)2]+ D2]/2 (37)

Proof: From (35), we derive

1Qi(t) = E[L(Qi(t + 1))− L(Qi(t))|Qi(t)]

=
1
2
E[Q2

i (t + 1)− Q2
i (t)|Qi(t)] (38)

Applying the definition of (19), (37) can be further
expressed as below:

1Qi(t) =
1
2
E[[max[Qi(t)− D, 0]+ Tavg(t)]2

−Q2
i (t)|Qi(t)] (39)

For any Qi(t) ≥ 0, D ≥ 0, Tavg(t) ≥ 0

[max[Qi(t)− D, 0]+ Tavg(t)]2

≤ Q2
i (t)+ Tavg(t)

2
+ D2

+ 2Qi(t)(Tavg(t)− D) (40)

So we can further get (41).

1Qi(t) ≤
1
2
E[Tavg(t)2 + D2

+ 2Qi(t)(Tavg(t)− D)|Qi(t)]

≤ E[
Tavg(t)2 + D2

2
|Qi(t)]

+Qi(t)E[−D+ Tavg(t)|Qi(t)]

≤
1
2
[maxE[Tavg(t)2]+ D2]

+Qi(t)E[−D+ Tavg(t)|Qi(t)]

= H + Qi(t)E[−D+ Tavg(t)|Qi(t)] (41)

Thus (36) is proved.

B. MINIMIZING DRIFT-PLUS-PENALTY PERFORMANCE
While minimizing the bound on 1Qi(t) every time
slot would stabilize the system, the resulting cost
might be unnecessarily large. Instead, we minimize a
bound on the following drift-plus-penalty expression (42),
where the coefficient V can be set to any nonnegative
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value that represents the weight on minimizing energy
consumption.

1Qi(t)+ VE[Eavg(t)|Qi(t)] (42)

Next, we use (42) instead of1Qi(t) in (36) and get a bound
on the drift-plus-penalty as shown in (43).

1Qi(t)+ VE[Eavg(t)|Qi(t)]

≤ H + E[Qi(t)Tavg(t)|Qi(t)]− DQi(t)

+VE[Eavg(t)|Qi(t)] (43)

At each time slot, we minimize the following expres-
sion (44) instead of (34).

min
∀j∈J

E[Qi(t)Tavg(t)|Qi(t)]+ VE[Eavg(t)|Qi(t)] (44)

Finally, we define the One-time Slot Optimization Prob-
lem (OSOP) as in (45)–(50), shown at the bottom of the
next page.

The optimization goal (34) can be achieved by minimizing
the above one-time slot optimization problem at each step.
We can achieve a quantified near optimal solution by mini-
mizing (45) at each time slot, which is proved at the section
below.

C. OPTIMALITY ANALYSIS
As in [30], let †denote any S-only offloading policy, and
T †
avg(t) and E†

avg(t) denote the average delay and average
energy consumption based on the policy †at time slot t . Then,
expression (43) can be written as below

1Qi(t)+ VE[Eavg(t)|Qi(t)]

≤ H + E[Qi(t)Tavg(t)|Qi(t)]− D|Qi(t)

+VE[Eavg(t)|Qi(t)]

≤ H + Qi(t)E[T †
avg(t)− D|Qi(t)]+ VE[E

†
avg(t)|Qi(t)]

= H + Qi(t)E[T †
avg(t)− D]+ VE[E

†
avg(t)] (51)

If δ > 0, there exists an S-only policy achieving
E[T †

avg(t)] ≤ D − δ [31], and among all feasible S-only
policies, E∗avg(δ) is the optimal average energy consumption.
Then, (51) can be transformed into (52).

1Qi(t)+ VE[Eavg(t)|Qi(t)] ≤ H − Qi(t)δ + VE∗avg(δ)

(52)

Taking expectations of (52), we get the following (53).

T−1∑
t=0

E[1(Qi(t))]+ V
T−1∑
t=0

E[E[Eavg(t)|Qi(t)]]

≤ TH −
T−1∑
t=0

E[Qi(t)]δ + VTE∗avg(δ) (53)

Using the law of iterated expectations as before,
we sum (53) for some positive integer t ∈ [0,T − 1] and

get the following (54).

E[L(Qi(t))− E[L(Qi(0)]+ V
T−1∑
t=0

E[Eavg(t)]

≤ TH −
T−1∑
t=0

E[Qi(t)]δ + VTE∗avg(δ) (54)

After omitting the non-negative quantities, (54) is divided
by T δ and VT respectively, and thus we get (55) and (56).

1
T

T-1∑
t=0

E[Qi(t)]

≤
H
δ
+

VE∗avg(δ)−
V
T

T−1∑
t=0

E[Eavg(t)]

δ
+
E[L(Q(0))]

T δ
(55)

1
T

T−1∑
t=0

E[Eavg(t)]

≤
H
V
+ E∗avg(δ)+

E[L(Q(0))]
VT

(56)

Taking limits of (55) and (56) as T → ∞ respectively,
we deduce (57) and (58) below, where E∗avg is the opti-
mal long-term average energy consumption achieved by any
policy.

lim
T→∞

sup
1
T

T−1∑
T=0

E[Qi(t)] ≤
H + V [E∗avg(δ)− E

∗
avg]

δ

(57)

lim
T→∞

sup
1
T

T−1∑
T=0

E[Eavg(t)] ≤
H
V
+ E∗avg(δ) (58)

The bounds (57) and (58) indicate queue stability and
demonstrate an [O(V ), O(1/V )] tradeoff between average
delay and average energy consumption. We can use an
arbitrarily large V to make M /V arbitrarily small, so that
the (58) illustrates that with the increasing of parameter
V , the energy consumption is closer to E∗avg(δ). However,
when V is too large, (57) illustrates that the data queue is
not stable, which means the delay will exceeded the pre-
defined system expected finish time; when V decreases,
(57) illustrates that the data queue tends to be stable,
but (58) illustrates that the average energy consumption will
increase. Tuning the parameter V can change queue sta-
bility and delay at the same time. There will be a trade-
off between the average queue delay and average energy
consumption.

VI. IMPROVED DNSLA BASED OPTIMIZATION
Considering that the mathematical model of our proposed
optimization problem which falls into the class of NP-hard
problems [4], we develop an improved DNSLA to solve it and
thus obtain a trade-off offloading decision. If the offloaded
task is a delay-sensitive type, then its delay will be considered

129892 VOLUME 10, 2022



R. Li et al.: Trade-Off Task-Offloading Scheme in Multi-User Multi-Task Mobile Edge Computing

first when making the trade-off decision; on the contrary,
if the offloaded task is an energy-sensitive type, then its
energy will be considered first when making the trade-off
decision.

DNSLA is a dynamic niche-based evolutionary algo-
rithm, which carries out a self-organizing learning process
consisting of global learning, neighborhood learning and
self-learning. In the global learning, the learning rate of an
individual is dynamically adjusted based on the fitness of
the individual and the average fitness of the population to
which the individual belongs. If the fitness of the individual
is greater than the average fitness of the population, the
global learning rate is enhanced to help the best individual
in the current whole ecosystem to carry out an intensive
search. In the neighborhood learning, the learning rate of an
individual is dynamically adjusted based on the Hamming
distance between the individual and the best individual of
the current population to which the individual belongs. With
the dynamic learning rate, the Hamming distance between
them is shortened as much as possible to assist in the best
individual of the current population to carry out an intensive
search. In the self-learning, the learning rate of an individual
is dynamically adjusted depending on the ratio of the average
fitness of the population to the fitness of the individual. If the
fitness of the individual is worse than the average fitness of
the population, its self-learning rate will quickly rise to a
relatively high level and obtain the dual individual by the dual
mapping to the current individual. With the ongoing learn-
ing, when a niche population finds a better global solution
than before, the other populations will assign some of their
individuals into the existing niche population to carry out an
intensive search; however, if a niche population never finds
a better global solution than before during its evolutionary
process, all the individuals in the population will be gradually
transferred to the other niche populations and finally this
niche population will disappear. The ecosystem is divided

Algorithm 1 Initial Solutions Acquisition

Input: W (t)
(i,j)

Output: π∗(t), λ∗(t)
1: FOR each time slot t DO
2: Initialize TUopt ←∞
3: FOR each MEC server j ∈ J DO
4: Set I(i,j) (t)← 1, I(i,k) (t)← 0,∀k ∈ J (k 6= j)
5: Let the derivate of (45) with respect to λi(t) is zero

and derive feasible solution TUmin that makes
objective minimum

6: IF TUmin < TUopt THEN
7: TUopt ← TUmin
8: I∗

(i,j) ← I(i,j) (t)
9: λ∗i (t)← λi(t)
10: END IF
11: END FOR
12: The optimal solution at time slot t is I∗

(i,j) and λ
∗
i (t)

13: END FOR
14: RETURN π∗(t) and λ∗(t).

into many niche populations, so both carrying out the study
and search synchronously in each population and exchanging
individual dynamically among the populations can acceler-
ate the speed of the search process to gain an optimal task
offloading scheme.

A. INITIAL SOLUTIONS ACQUISITION
We first solve the relaxation problem of OSOP via
Algorithm 1, where has an additional constraint (59). The
solutions will be regarded as the initial solutions of our
improved DNSLA.∑

j∈J

Im(i,j)(t) = 1, ∀i (59)

B. RELATED DEFINITION
Each solution is viewed as an individual in the niche popu-
lation. Let E = {P1,P2, · · · ,Pk , · · · ,Pn} be an ecosystem
consisting of n niche populations, Nk represents the number

TU = min
λi(t),π (t)

V (

M∑
i=1

λi(t)∑
j=1

I l(i,j)(t)(α(fi,l)
γ
C (t)
(i,j)
fi,l

)+ Im(i,j)(t)(
Pupi D

(t)
(i,j)

Ri
)

M∑
i=1
λi(t)

)

+ Qi(t)(

M∑
i=1

λi(t)∑
j=1

I l(i,j)(t)(
C (t)
(i,j)
fi,l
+

Qi(t)∑
j=1

C (t)
(i,j)
fi,l

)+ Im(i,j)(t)(
D(t)
(i,j)
Ri,j
+

C (t)
(i,j)

fi,m
)

M∑
i=1
λi(t)

) (45)

S.t. I l(i,j)(t), I
m
(i,j)(t) ∈ {0, 1} , ∀i, j (46)

I l(i,j)(t)+ I
m
(i,j)(t) = 1 (47)

N local
i (t)+ Nmec

i (t) = λi(t) (48)

N local
i (t) =

∑
i∈X locali (t)

I l(i,j)(t) (49)

Nmec
i (t) =

∑
i∈Xmeci (t)

Im(i,j)(t) (50)
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of individuals in population Pk , Pik represents the ith indi-
vidual in Pk . The fitness f ik of individual Pik is calculated
according to (14). Pbestk denotes the individual with the best
fitness inPk , fk denotes the average fitness ofPk in the current
generation, fE denotes the average fitness of the ecosystem in
the current generation, Pbest denotes the individual with the
best fitness in the current ecosystem, Imax denotes the largest
number of iterations.

The self-organizing learning consists of three kinds of
learning strategies: global learning, neighborhood learning
and self-learning, which are described below respectively.

C. GLOBAL LEARNING
All the individuals in each population start to learn from the
individual with the best fitness in the whole ecosystem in this
phase, that is, Pbest . The global learning rate of Pik is defined
in (60), where Grate is an initial value of the global learning
rate.

Grateik = Grate+
(
f ik/fk

)
− 1 (60)

D. NEIGHBORHOOD LEARNING
All the individuals in a population Pk start to learn from the
individual with the best fitness in the population in this phase,
that is, Pbestk . The neighborhood learning rate of Pik is defined
in (61), where Nrate is an initial value of the neighborhood
learning rate, HDk,h denotes the Hamming distance between
the individual and Pbestk , Length denotes the encoding length
of identifying an individual in the ecosystem.

Nrateik = Nrate−
(
HDk,h/Length

)
+ 1 (61)

E. SELF-LEARNING
An individual starts to learn from itself based on dual map-
ping in this phase. The self-learning rate of Pik is defined
in (62), where Srate is an initial value of self-learning rate.

Srateik = Srate×
(
fk/f ik

)
(62)

Our improved DNSLA is described in the follow-
ing Algorithm 2. Here, lines 1–2 are the initialization
phase; lines 5–17 are to calculate the fitness of popula-
tion; lines 18–26 are the self-organizing learning process;
lines 29–30 are the exchange process of the best individ-
uals among the populations when the average fitness and
the best individual of ecosystem do not change in the last
generation.

F. COMPUTATION COMPLEXITY ANALYSIS
Our improved DNSLA initializes the relevant parameters
in O(N1 + N2 + · · · + Nk + · · ·Nn). At each iteration,
it takes O(N1 + N2 + · · · + Nk + · · ·Nn)+ O(n) to calculate
the fitness: f ik , fk and fE ; updating Pbestk and Pbest needs
O(n) time; for each Pk , Pik has the worst case (that is,
global learning, neighborhood learning and self-learning are
all executed) time complexity of O(N 2

k ), and thus for all

Algorithm 2 Improved DNSLA
Input: π∗(t), λ∗(t)
Output: π∗opt (t), λ

∗
opt (t)

1: Initialize the related parameters: n← n0, Nk ← nk ,
Grate← 0.5, Nrate← 0.5, Srate← 0.8, F ik ← 0, iter ← 1;
//n0 and nk denote the initial values of n and Nk respectively.
// To keep the population diversity and guarantee a reasonable evolu-

tion rate,
// we set Grate ← 0.5,Nrate ← 0.5 and Srate ← 0.8 according

to [32].
2: Get Pik ← π ik by Algorithm 1;
3: For iter ← 1 to Imax do
4: For k ← 1 to n do
5: Calculate f ik ← TU i

k of individuals in Pk .

6: fk ←
(∑

f ik

)
/Nk ; //Calculate average fitness fk of Pk .

7: If the individual with the best fitness in Pk is unique then
8: Set it as Pbestk ;
9: Else set the individuals with the best fitness in Pk as

Pbest_1k ,Pbest_2k , · · · ,Pbest_mkk ;
//Assume the number of the individuals with the best fitness in

Pk is mk .
10: Store all the individuals with the best fitness inPk to a set of elitist

solutions:
ESbestk =

{
Pbest_1k ,Pbest_2k , · · · ,Pbest_mkk

}
;

11: End-If
12: If the individual with the best fitness in the ecosystem is unique

then
13: Set it as Pbest ;
14: Else set the individuals with the best fitness in the ecosystem as

Pbest_1,Pbest_2, · · · ,Pbest_m;
//Assume the number of the individuals with the best fitness in

Pk is m.
15: Store all the individuals with the best fitness in the

ecosystem to a set of elitist solutions:

ESbest =
{
Pbest_1,Pbest_2, · · · ,Pbest_m

}
;

16: End-If
17: fE ←

(∑
fk
)
/n; //Calculate the average fitness of the ecosystem.

18: F ik ← Grateik ; //Carry out the global learning andF
i
k is a temporary

variable to store learning rate.
19: Update f ik ;
20: If the fitness of Pik is not improved then
21: F ik ← Nrateik ; //Carry out the neighborhood learning.
22: Update f ik ;
23: If the fitness of Pik is still not improved then
24: F ik ← Srateik ; //Carry out the self-learning.
25: Update f ik ;
26: End-If
27: End-For
28: Update fk ,Pbestk (or ESbestk ), fE and Pbest (or ESbest );
29: If fE and Pbest (or ESbest ) do not change before and after this round

of iteration then
30: Pbestk ↔ Pbestl , l ∈ {1, 2, · · · , n}, l 6= k; //Exchange the best

individuals among populations.
31: End-For
32: Obtain Pbest ;
33: Return π∗opt (t) and λ

∗
opt (t).

the populations the worst case time complexity is O(N 2
1 +

N 2
2 + · · · + N 2

k + · · ·N
2
n ); calculating new fE and Pbest

requires O(N1 + N2 + · · · + Nk + · · ·Nn) = O(n). Iter-
ations repeat Imax times, so the total time complexity is
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TABLE 2. Parameters settings in our simulation.

O
(
n+Imax×

(
n+n+

(
N 2
1+N

2
2 + · · · + N

2
k + · · ·N

2
n
)
+n
))
=

O
(
n2
)
.

VII. SIMULATION
A. ENVIRONMENT SETTING
The scenario of simulation experiment includes 5 mobile
edge servers and 30 terminal devices, which are randomly
distributed within the range of 500m×500m. The unit time
slot length is 5 minutes, and the maximum queue length is 50.
We assume that 1) the generated tasks in our experiments fol-
low the 18 kinds of service classes according to the definition
from ITU-T [33]; 2) the task arrival rate λi(t) of the terminal
device in simulation obeys Poisson distribution; 3) the data
size of the tasks in each time slot follows uniform distribution;
and 4) the number of CPU cycles required to complete the
tasks follows an exponential distribution. In addition, CPU
frequency of the edge node is set to 20GHz, and that of the
terminal node is set to 1GHz-1.5GHz. Simulation parameters
are shown in Table 2. Simulation results are averaged over
100 independent processes.

B. BENCHMARK SCHEMES
In order to evaluate the performance of our proposed algo-
rithm, we take the ‘‘edge first’’ algorithm, the ‘‘local first’’
algorithm, the ‘‘asynchronous advantage actor-critic (A3C)’’
algorithm in [34] and the ‘‘heuristic joint task offloading
scheduling and resource allocation (hJTORA)’’ algorithm
in [11] as our benchmark.

• IDO scheme, namely our improved DNSLA based
offloading scheme.

• LFO scheme, namely ‘‘local first’’ offloading scheme.
The generating tasks are first processed locally until the
waiting queue length preset in the local nodes is reached,
and the remaining tasks will be sent to process in the
edge nodes.

• EFO scheme, namely ‘‘edge first’’ offloading scheme.
The task distribution strategy tends to first send the
generating tasks to process in the edge nodes.

FIGURE 3. The impact of waiting queue length on performance.

• A3C scheme, namely an online task offloading algo-
rithm based on a state-of-the-art deep reinforcement
learning technique.

• hJTORA scheme, namely a novel heuristic algorithm
to tackle the task offloading problem that achieves a
suboptimal solution in polynomial time.

C. PERFORMANCE EVALUATION
1) WAITING QUEUE LENGTH IMPACT
The comparison results on average energy consumption and
average delay with different limitation of the backlog in the
waiting queue shown in Fig. 3 indicate that for the LFO
scheme, the average energy consumption increases and the
average delay decreases when the limitation of the allowed
maximum length in the waiting queue increases. This is
because more applications are allocated to the local nodes for
their processing. A3C scheme and our proposed IDO scheme
have the same energy consumption trend and average delay
trend as the LFO scheme. A3C scheme costs more average
energy and average delay than our proposed IDO scheme,
because A3C scheme does not find a tradeoff online solution
compared to IDO scheme. The hJTORA scheme performs
closely to average energy consumption and average delay
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FIGURE 4. The impact of penalty factor on performance.

of the proposed IDO scheme while both schemes signifi-
cantly outperform the other baselines. However, IDO scheme
scheme still outperforms the hJTORA scheme for both aver-
age energy and average delay. We further observe that the
average energy consumption and average delay of the EFO
scheme remain nearly constant because of the task distribu-
tion strategy in the EFO scheme being independent of waiting
queue length in the local nodes. As for the tradeoff between
average energy consumption and average delay, from Fig. 3.
there is evidence to suggest that our proposed IDO scheme
has the best profile among five schemes.

2) PENALTY FACTOR IMPACT
Following, we investigate the impacts of the penalty factor
V on system performance in our proposed IDO scheme,
we observed how the average energy consumption and aver-
age delay change accordingly when we set V with different
values. In our above definition, V represents the importance
of the average energy consumption will impact the system
performance. As depicted in Fig. 4, when the value of V is
a relatively small one, we observed that the average delay
remains small while the average energy consumption remains

FIGURE 5. The impact of user number on performance.

large. This is due to the penalty of energy consumption is
low in the system, so that the tasks are processed locally
in order to get a better delay. However, if we set V to a
relatively large value, the significant decrement of the average
energy consumption and increment of the average delay can
be observed. Furthermore, when the average delay drops, the
average energy consumption grows rapidly.

3) USER NUMBER IMPACT
We now evaluate average energy consumption and average
delay of the MEC system against different number of users
wishing to offload their computing tasks, as shown in Fig. 5.
In particular, we vary the number of users from 4 to 20 and
perform the comparison among five schemes. From Fig. 5,
we also observe that for the LFO scheme, IDO scheme and
A3C scheme, the average delay increased sharply when the
number of users is relatively large. This is because when
there are more users competing for the limited resources,
the chance that a user can benefit from offloading its task
is lower than before. Furthermore, offloading more tasks to
MEC servers also results in the rate of growth in the average
energy consumption to decline when the number of users
relatively large. For the hJTORA scheme, average energy
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FIGURE 6. The impact of task number on performance.

consumption and average delay vary almost linearly when
there is a small number of users, but the former varies slowly
and the latter varies sharply when there is a large number of
users. For the EFO scheme, Fig. 5 shows the average energy
consumption and the average delay vary very slowly when
the number of users varies. The former remains far smaller
values than other schemes and the latter always stays at far
larger values than other schemes.

4) TASK NUMBER IMPACT
Figure 6 depicts the average energy consumption and average
delay with varying number of tasks. It is observed that for
the LFO scheme, IDO scheme, A3C scheme and hJTORA
scheme, once the number of tasks is beyond local thresholds,
the average delay begins to increase rapidly (but lower than
the scenario in the varying number of users). The reason is
that the increasing number of tasks require more computa-
tion resources, which leads to a part of tasks having to be
offloaded to the MEC servers and thus resulted in longer task
execution delay. In addition, we can also observe that the
average energy consumption varies similarly to the scenario
of the changing users. Unexpectedly, for the EFO scheme,
the varying number of tasks has almost no influence on

the average delay and only cause a slight increase in the
average energy consumption. Compared to the other four
schemes, our proposed IDO scheme performs excellently at
relatively lower average energy consumption than LFO, A3C
and hJTORA scheme, and significantly lower average delay
than the EFO scheme. The gap among them illustrates the
efficiency of optimal offloading achieved by jointly consid-
ering Lyapunov theory and improved DNSLA algorithm.

VIII. CONCLUSION
The rapid increasing Internet traffic can be processed as
quickly as possible by offloading tasks to edge nodes, so the
two-layer MEC system can provide users with efficient expe-
rience. In this paper, we propose a reliable online task offload-
ing scheme to achieve the tradeoff between data processing
delay and energy consumption and provide efficient data
service. Simulation results indicate that our proposed scheme
achieves the expected goal. In the future, we will further
study the task offloading decision in three-layerMEC system.
In particular, we shall construct a safe and reliable cloud-fog
collaboration mode that takes task priority into consideration
and is in line with the requirements of the actual various
applications. Furthermore, we shall consider to extend our
future research by generalizing and verifying our approaches
from the current MEC testbed to various prototype systems
and some classic real systems in our subsequent work.
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