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ABSTRACT This paper develops a robust chance-constrained model for handling the uncertainties of
generation and consumption in multi-carrier energy hubs. The proposed model incorporates corresponding
loading factors for each type of electrical, heating, and cooling loads. This is done to assess the maximum
loadability of the whole system. In this respect, the chance-constrained approach is implemented for the
feasibility assessment of the operation problem with uncertainties. The uncertainties which are assumed
here include the forecast errors of electrical, heating, and cooling load demands, and the volatile solar power
generation. The overall problem formulation is developed in the mixed-integer linear programming (MILP)
framework. The standard chance-constrained approach is converted to a deterministic optimization model
by utilizing the Big M method. The main objective of the proposed model is to maximize the loadability
index with uncertainties while addressing the permissible risk index of the decision-maker. The studied
energy hub comprises electrical, heating, and cooling loads, and the energy flow technique is adopted in this
paper to model the load balance equations. The simulation results are presented for different scenarios while
addressing features of the proposed model for the summer and winter seasons. Furthermore, the developed
model is evaluated for different scenarios and a comparison is made with the information-gap decision theory
(IGDT) method.

INDEX TERMS Chance-constrained programming, energy hub, robust optimization, loadability index,
mixed-integer linear programming.

NOMENCLATURE
Indices/Sets
s Index of scenarios.
t Index of time slots.
NS Total number of scenarios.
NT Total number of time slots.
Parameters
ωs The probability associated with scenario s.
λ
Buy
t Grid-to-hub electricity price ($/kWh).
λSellt Hub-to-grid electricity price ($/kWh).

The associate editor coordinating the review of this manuscript and

approving it for publication was N. Prabaharan .

λLSt Load shedding cost ($/kWh).
λNGt Hourly NG price ($/m3).
PELs,t Electrical load demand (kW).
PHLs,t Heating demand (kW).
CCL
s,t Cooling demand (kW).

PMax,T The transformer’s capacity (kW).
SMin,CHP Minimum capacity of the CHP unit (kW).
SMax,CHP Maximum capacity of the CHP unit (kW).
PMin,CHP Minimum electrical power generated by the

CHP unit (kW).
PMax,CHP Maximum electrical power generated by the

CHP unit (kW).
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HMin,CHP Minimum heating power generated by the
CHP unit (kW).

HMax,CHP Maximum heating power generated by the
CHP unit (kW).

HMin,Boiler Minimum heat generated by the boiler (kW).
HMax,Boiler Maximum heat generated by the boiler (kW).
HMin,EH Minimum heat generated by the EH (kW).
HMax,EH Maximum heat generated by the EH (kW).
HMin,EHP Minimum heat generated by the EHP (kW).
HMax,EHP Maximum heat generated by the EHP (kW).
CMin,EHP Minimum heat generated by the EHP (kW).
CMax,EHP Maximum heat generated by the EHP (kW).
CMin,AC Minimum heat generated by the AC (kW).
CMax,AC Maximum heat generated by the AC (kW).
EMin,EES Minimum capacity of the battery (kWh).
EMax,EES Maximum capacity of the battery (kWh).
PMax,PV Capacity of the solar PV (kW).
ηEESCh EES’s efficiency in the charging mode (%).
ηEESDis EES’s efficiency in the discharging mode

(%).
ηCHPP Electrical Efficiency of the CHP (%).
ηCHPH Thermal efficiency of the CHP (%).
ηBoiler Thermal efficiency of the boiler (%).
ηEH Thermal efficiency of the EH (%).
ηEHPH Thermal efficiency of the EHP (%).
ηEHPC Cooling efficiency of the EHP (%).

Variables
PGG→H

s,t Grid to hub power at time t and scenario s
(kW).

PGH→G
s,t Hub to grid power at time t and scenario s

(kW).
PCHPs,t Power generation level of the CHP unit

(kW).
HCHP
s,t Heat generation level of the CHP unit (kW).

CEHP
s,t Operating point of the EHP (cooling mode)

(kW).
CAC
s,t Operating point of the AC (kW).

HEHP
s,t Operating point of the EHP (heating mode)

(kW).
HBoiler
s,t Heat generation level of the Boiler (kW).

HEH
s,t Heat generation level of the EH (kW).

CAC
s,t The cooling power of the AC (kW).

HAC
s,t The heating power of the AC (kW).

PLSs,t The hourly electrical power shedding (kW).
HLS
s,t The hourly heating power shedding (kW).

CLS
s,t The hourly cooling power shedding (kW).

f CHPs,t NG cost of the CHP unit.
f Boilers,t NG cost of the boiler.

PEES,Ch.s,t EES power in the charging mode (kW).

PEES,Dis.s,t EES power in the discharging mode (kW).
PEESs,t Net power injection by the EES (kW).

EEESs,t Energy stored in the EES system (kWh).
PPVs,t Solar power generation (kW).

I. INTRODUCTION
Energy hubs (EHs) are recently emerging technologies
including multiple energy carriers where they can be inter-
converted to other types to satisfy the electrical, cooling, and
heating load demands in an economic manner while provid-
ingmore flexibility for the energy system as a whole. One key
challenging issue is the usual day-ahead resource scheduling
problem, which is the target of this paper. Our aim is to
model and solve the day-ahead operation problem of one EH
subject to intrinsic uncertainties in the electrical, heating, and
cooling load demands. Consequently, the resulting problem is
a three-dimensional stochastic optimization problem whose
solution aims to decrease the potentially excessively high
operating costs of this scenario. As to be discussed throughout
this paper, an effective optimization tool is used which is
called ‘‘robust chance-constrained programming’’ to tackle
the problem in a computationally efficient manner.

A. MOTIVATION
One of themost challenging issues in the short-term operation
of EHs is handling the uncertainties from volatile renewable
energy sources and energy consumption by the end-users.
This paper presents a chance-constrained optimization model
augmented by a loadability index to increase the robustness of
serving the electrical, heating, and cooling loads of the EHs.
The main advantage of this approach is that the operating
points of the hub assets can be optimally determinedwhile the
risk of operation due to the load shedding can be minimized.
To deal with the energy conversion and energy transition
between the hub assets, the energy flow method is employed,
because it is more effective than the matrix-based represen-
tation of the multi-carrier energy system, specifically when
there are dynamic energy storage devices. The mathematical
formulation of hub operation and the proposed robust chance-
constrained model is worked out as a mixed-integer linear
programming (MILP) approach, and thus, the computational
burden of the mentioned problem can be reduced.

B. LITERATURE REVIEW
The optimal operation of multi-carrier energy systems is
one of the prominent research topics in recent years, with
an extensive focus on minimization of the total operating
cost of the EHs while serving the electrical, heating, and,
cooling loads. Some papers have been published on the
modeling of EHs with deterministic load demand [1], [2],
[3]. However, there are still challenging issues regarding
the mathematical modeling and problem formulation of hub
assets and their functionality, such as the computational effi-
ciency of the model and the capability to address uncer-
tainties. The effects of uncertainties in the generation and
consumption on the optimal dispatch of the hub assets have
remained a controversial topic in the specialized literature.
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Specifically, there has been relatively little work done about
uncertainty handling in the short-term operation of multi-
carrier energy systems. Several studies, carried out thus far
on the operation of EHs while addressing the stochastic
behavior of the problem can be found in [4], [5], and [6].
A scenario-based optimization framework considering the
stochastic behaviors of natural gas (NG) and electricity tariffs
in line with the uncertainties of electrical load forecasting
has been presented in [4]. The minimization of the overall
operating cost and environmental emissions in a weighted
sum framework with the concept of conditional value at
risk (CVaR) method was suggested. A two-stage stochastic
optimization model was developed in [5] to determine the
optimal reserve capacity and energy scheduling for an EH.
The expected cost of energy serving has been introduced
as the main objective function. The uncertain parameters
in the mentioned study were solar and wind power gener-
ation forecasts as well as the electrical and thermal loads.
To promote energy efficiency, the interdependency among the
natural gas and electrical energy systems was studied, and the
reliability and security assessment for the given EH has been
carried out. A bi-level stochastic optimization approach has
been presented in [6] to show the effectiveness of multiple
EHs with a simplified functionality of the control strategy
for energy transactions. To reduce the unwanted impacts of
uncertain parameters on the optimal operating points of hub
assets, the CVaR approach has been adopted in the mentioned
research. A stochastic optimizationmodel taking into account
multi-energy systems operation and power exchange with the
electricity market has been investigated in [7]. The uncertain
day-ahead and real-time clearing prices have been treated as
scenarios for the proposed model. The expected operating
cost and the potential risk using CVaR approach have been
considered in the aforementioned model to optimize the day-
ahead EH scheduling within the energy market. The mathe-
matical optimization problem has been established as a robust
optimization to address the secure operation in the worst-
case scenario. The main focus of the research is to handle
the conservativeness and computational load of the prob-
lem in a stochastic-robust coordinated manner. The optimal
scheduling of an EH in a stochastic programming paradigm
has been studied in [8] addressing the heatingmarket impacts
on the EH operation and heat demand response in line with
the electricity demand response. The uncertainties of price
and wind power generation have been studied in the prob-
lem formulation. Recent developments in the field of robust
optimization techniques have led to an increasing interest
in renewing the mathematical representation of EH opera-
tion with considerable uncertainties in both input and output
parameters, i.e. generation and consumption sides. The well-
known information gap decision theory (IGDT) approach has
extensively been applied to the problem of optimal operation
scheduling of EHs [9], [10], [11], [12], [13]. A new math-
ematical formulation has been developed in [13] to address
the uncertainties of the EH operation problem while the
combined heat and power (CHP) unit has been modeled with

a convex feasible operating region (FOR); however, the cost
function of the CHP has been represented as a non-linear
function. A risk-averse technique has been introduced in [11]
dealing with the optimal operation of a multi-carrier energy
system considering the impacts of plug-in electric vehicles
in the model. An IGDT-based mathematical representation
of the robust optimization problem has been investigated in
[10] taking into account the uncertain load demand of plug-in
electric vehicles. An IGDT-based model for investigating the
impacts of the interdependency of heat and electrical power
production in CHP units has been addressed in [9]. The
electrical and thermal energy storage devices have been con-
sidered in the model and the uncertainties due to the forecast
errors of the electricity price, renewable power generations,
as well as load demand have been characterized in the simu-
lations. Besides, the load flow constraints have been accom-
modated in the mathematical problem formulation. A new
robust optimization model based on the extended affine arith-
metic approach has been introduced in [14] to tackle the
optimal operation problem of EHs in the presence of hetero-
geneous multiple uncertainty sources. A robust optimization
approachwas developed in [15] using the control approach to
cope with the bounded uncertainties on EH parameters. The
obtained solutions reported were feasible for all values, for a
given subset, of uncertain parameters in the given simulation
case study. Another robust optimization technique has been
presented in [16] for robust scheduling of multi-carrier EHs
with techno-economic/environmental limitations, affected by
the market price uncertainty and demand response mecha-
nisms. The proposed model was evaluated in different time-
based demand response programs. Price fluctuations were
addressed in the mentioned study and the suggested model
guaranteed the minimum global optimal operating cost. A
multi-objective robust optimization framework has been pro-
posed in [17] handling the risks of combined demand and
supply uncertainties for smart residential end-users. A trade-
off between the model robustness and the solution robustness
has been made in this study with a substantial cost sav-
ing achieved by applying the robust optimization approach.
Another robust optimization method has been developed
in [18] to deal with the robust scheduling of residential build-
ings in the presence of price uncertainty. A precise margin
has been adopted for market prices instead of electricity price
forecasting to characterize the uncertainties of hourly elec-
tricity prices. A comprehensive simulation has been carried
out to address the functionality of the proposed model in a
case study with 10 smart buildings. A novel hybrid robust-
stochastic optimization technique has been investigated in
[19] for the bidding strategy of large-scale prosumers. The
robust and stochastic optimization approaches have been
incorporated respectively to model the uncertainties arising
from load and market prices. Jamalzade, et al. [20], pre-
sented an optimal operational strategy for EHs by employing
a hybrid stochastic-interval optimization method to capture
the demand uncertainties. In order to apply deterministic
programming to the EH management problem, the authors
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of Ref. [21] used the Cornish-Fisher expansion approach to
convert probabilistic constraints into deterministic ones. The
created model was solved using the interior point approach
due to the robust performance of the presented model. A two-
stage risk-oriented stochastic p-robust optimization-based
scheduling strategy was developed in Ref. [22] for EHs.
In the first phase, the EH may trade energy on the day-ahead
electricity and thermal markets. In the second phase, the EH
controls the surplus/deficit of renewable energy output on
the real-time electricity and thermal markets. Reference [23]
proposed a distributionally-robust optimization framework
for the day-ahead scheduling of EHs, aimed at maximizing
social welfare. A two-stage optimization model has been
suggested incorporating interval optimization, and the well-
known weighted-sum and fuzzy satisfying methods have
been used for solving the mathematical optimization prob-
lem. Co-optimization of the energy and reserve markets has
been carried out in [24] and the operation problem of the
multi-carrier energy systems has been dealt with as a two-
stage robust optimization model. Demand response programs
have been applied to increase the flexibility of the operation
problem. The reported results confirmed that the proposed
model can effectively increase clean energy production as
a holistic goal of demand response incorporation. So far,
chance-constrained programming has also been used for the
operation of EHs. In this regard, to improve the flexibility
of the multi-EH system including CHP and CCHP systems,
and achieve a reliable operation for the system, a novel opti-
mization framework was provided in Ref. [25] using chance-
constrained programming and multi-objective optimization.
A chance-constrained optimization approach was used in
Ref. [26] to tackle an MILP optimization problem. The
optimization was developed, aimed at supplying the elec-
tricity and cooling loads of a data center and the hydro-
gen demand of a neighboring hydrogen fuel station. In this
regard, renewable power curtailment, along with other assets
is used in the EH. Using a chance-constrained optimization
method, the uncertainties associated with the use of renew-
able energy curtailment have been accounted for. Ref. [27]
proposed a chance-constrained optimization technique for the
uncertain operational planning of EHs. By employing a con-
vexification technique, the nonlinear formulations of energy
and gas flows were handled and relaxed. A comparative
overview of the recently published papers is given in Table 1.
Besides, a comprehensive review of the optimizationmethods
used for the EH management problem has been provided in
Ref. [28].

C. CONTRIBUTIONS
Themain contributions of this paper with respect to the litera-
ture are as follows: Investigating the EHs by using the energy
flow model; the energy flow model can be used to address
the dynamic features of the energy storage devices and the
input-output functionality of each asset can be extensively
addressed.

TABLE 1. A comparative overview of recent publications.

• Proposing a MILP model to tackle the EH opera-
tion problem; the optimal scheduling of EH’s assets
in the presence of diverse producers, converters, stor-
age systems, and consumers is a complicated optimiza-
tion problem. Therefore, the scenario-based stochastic
optimization problem is formulated as the standard
MILP model in this paper to reduce the computational
complexity.

• Handling the uncertainties using the robust chance-
constrained approach; The stochastic optimization
model is tackled as a robust chance-constrained opti-
mization problem addressing the forecasting errors of
both generation and consumption profiles. Furthermore,
the robustness of the solutions is evaluated by using the
loadability index.

D. PAPER ORGANIZATION
The remainder of the paper is organized as follows where
the fundamentals of the chance-constrained programming
are described in Section II and, Section III comprises the
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mathematical modeling of the EH day-ahead operation prob-
lem. Simulation results are given and discussed in Section IV
and lastly, concluding remarks are included in Section V.

II. CHANCE-CONSTRAINED OPTIMIZATION APPROACH
One of the biggest current challenges relates to the tackling
of large-scale problems. The chance-constrained method is
one of the most efficient approaches used in stochastic opti-
mization problems with a high uncertainty level. It constrains
a number of more unlikely scenarios so that the decision-
maker can choose the level of reliability and risk intended
and considered adequate. This type of solution is robust, but
in real-dimension problems, it may become difficult to solve.
The typical formulation for this type of problem is as follows:

Min f (x, ξ )

subjectto : g(x, ξ ) = 0

h(x, ξ ) ≥ 0 (1)

It is noteworthy that the decision vector, the uncertainty
vector, as well as the equality and inequality constraints, are
denoted by x, ξ , g, and h, respectively. In this regard, the
equality constraints would be rewritten as follows by using
the chance-constrained method [44]:

Pr (g(x, ξ ) = 0) ≥ 1− ε (2)

where ε indicates the risk level to be specified by the decision-
maker. The chance-constrained programming is solved in
several ways. One of the solutions may involve reformulation
and solving the problem by the equivalent deterministic prob-
lem. This problem can be derived through the Big M method
or through the bilinear reformulation. By employing the Big
M method, a binary variable is used indicating whether the
associated scenario should be considered or may be violated,
and thus the problem is converted into MILP.

Equation 2 can be converted by utilizing the BigMmethod
as follows:

−M zω ≤ g(x, ξ ) ≤ +M zω ∀ω ∈ � (3)∑
ω∈�

πωzω ≤ ε , zω ∈ {0, 1} (4)

where zω is the binary variable representingwhether or not the
scenario is active; M represents the Big M parameter which
should be sufficiently large. Moreover, ε represents the pre-
defined risk level, defined by the decision-maker.

III. PROBLEM FORMULATION
A. ENERGY FLOW MODEL
Themathematical modeling of the optimal operation problem
of the EH is represented in this section and Fig. 1 depicts a
typical EH, including a microturbine (MT), a battery energy
storage (BES), a TES, a CHP unit, a solar PV system, a boiler,
and a wind turbine (WT), serving electrical loads (ELs) and
Thermal loads (TLs). This system has bidirectional electrical
power transactions with the electrical grid and the required
natural gas is supplied through the natural gas network.

FIGURE 1. A typical EH.

• Objective Function
The objective function represented in (5) comprises three
items, where the first one indicates the cost due to transacting
electrical power with the upstream network. This item is
derived by multiplying the amount of transacted power at
each hour by the corresponding market price. The second
part of the cost function relates to the NG-powered genera-
tion units, i.e. the boiler and the CHP unit. The third item
indicates the cost due to load shedding, either electrical,
heating, or cooling loads. In this respect, the penalty factor is
denoted by and determined such that the load shedding cost
is minimized. Eq. (6) and Eq. (7) show the generation cost
functions of the CHP unit and the boiler while taking into
account the electrical and heating efficiencies, respectively,
as in (5)–(7), shown at the bottom of the next page.
• CHP

The FOR of the studied CHP unit is convex and the con-
straints of the electrical and heating power generation have
been shown in (8)-(10). Constraints (11) and (12) indicate the
flows of electrical power and heat produced by the CHP unit.
The electrical power generated by the CHP unit can be deliv-
ered to the electrical load,PCHP→EL

s,t , electrical energy storage
(EES), PCHP→EES

s,t , electric heat pump (EHP), PCHP→EHP
s,t ,

electric heater (EH), PCHP→EH
s,t , or in case it is economical,

sold to the main grid, PCHP→G
s,t .

SMin,CHPICHPs,t ≤ PCHPs,t + H
CHP
s,t ≤ S

Max,CHPICHPs,t (8)

PMin,CHPICHPs,t ≤ PCHPs,t ≤ P
Max,CHPICHPs,t (9)

HMin,CHPICHPs,t ≤ HCHP
s,t ≤ H

Max,CHPICHPs,t (10)

PCHPs,t = PCHP→EL
s,t + PCHP→EES

s,t + PCHP→EHP
s,t

+PCHP→EH
s,t + PCHP→G

s,t (11)

HCHP
s,t = HCHP→HL

s,t + HCHP→AC
s,t (12)

• Boiler
The constraint of heat generation by the boiler is expressed
in (13) while the heat flow equation has been shown in (14).
This relationship states that the heat output of the boiler can
be delivered to the heating load demand,, or even the AC,
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to provide the cooling power.

HMin,Boiler IBoilers,t ≤ HBoiler
s,t ≤ HMax,Boiler IBoilers,t (13)

HBoiler
s,t = HBoiler→HL

s,t + HBoiler→AC
s,t (14)

• EH
The EH’s feasible operating interval has been indicated
in (15). The heat power equation of the EH is shown in
Eq. (16) in which the electrical power-to-heat conversion
equation has been stated. The efficiency of EHs is relatively
high and denoted by ηEH . The electrical power required by
the EHwould be supplied through the solar photovoltaic (PV)
panel, PPV→EH

s,t , battery, PEES→EH
s,t , CHP unit, PCHP→EH

s,t ,
or even directly from the main grid, PG→EH

s,t . Besides, the
heating power output of the EH can be delivered to the
heating load and it is not possible to supply the AC by using
the EH, HEH→HL

s,t . This limitation has been modeled in the
relationship (17).

HMin,EH IEHs,t ≤ HEH
s,t ≤ H

Max,EH IEHs,t (15)

HEH
s,t =

(
PPV→EH
s,t + PEES→EH

s,t +

PCHP→EH
s,t + PG→EH

s,t

)
ηEH (16)

HEH
s,t = HEH→HL

s,t (17)

• EHP
EHPs are devices used to provide heating or cooling power
by using electrical power. These devices are not able to
concurrently work in the mentioned modes. Thus, a binary
variable would be defined to specify each mode. Constraint
(20) is used to apply this operational limitation. The heating
power generation relationship and cooling power genera-
tion relationship are expressed in constraints (21) and (22),
respectively. Some research studies have used the concept
of coefficient of operation instead of efficiency [45]. The
input power balance equation is indicated in (23) and the
output power balance equations are stated in relationships
(24) and (25), respectively. As Eq. (23) shows, the electrical
power required by the EHP can be supplied by the CHP unit,
PCHP→EHP
s,t , battery, PEES→EHP

s,t , solar PV panel, PPV→EHP
s,t ,

or even directly from the main grid, PG→EHP
s,t . As relation-

ships (24) and (25) state, heating power and cooling power

would be directly delivered to the heating load, HEHP→HL
s,t ,

and cooling load, CEHP→CL
s,t .

HMin,EHPIEHP,Hs,t ≤ HEHP
s,t ≤ H

Max,EHPIEHP,Hs,t (18)

CMin,EHPIEHP,Cs,t ≤ CEHP
s,t ≤ C

Max,EHPIEHP,Cs,t (19)

0 ≤ IEHP,Hs,t + IEHP,Cs,t ≤ 1 (20)

HEHP
s,t = PEHPs,t η

EHP
H (21)

CEHP
s,t = PEHPs,t η

EHP
C (22)

PEHPs,t = PCHP→EHP
s,t + PEES→EHP

s,t

+PPV→EHP
s,t + PG→EHP

s,t (23)

HEHP
s,t = HEHP→HL

s,t (24)

CEHP
s,t = CEHP→CL

s,t (25)

• AC
Relationships (26)-(29) illustrate the mathematical model of
the AC. The cooling power generation constraint is stated
in (26) while the heat-to-cooling power conversion equation
is shown in (27). As previously mentioned, the heating load
demand of the AC can be met by the CHP unit, HCHP→AC

s,t
and the boiler, HBoiler→AC

s,t , indicated in (28). The cooling
power output of the AC is directly delivered to the cooling
load demand, CAC→CL

s,t , as indicated in (29).

CMin,AC IACs,t ≤ CAC
s,t ≤ C

Max,AC IACs,t (26)

CAC
s,t = HAC

s,t η
AC (27)

HAC
s,t = HCHP→AC

s,t + HBoiler→AC
s,t (28)

CAC
s,t = CAC→CL

s,t (29)

• EES
The EES system is regarded as a key asset of the EH and
it is modeled as (30)-(37). As constraint (30) indicates, the
amount of energy available in the battery at every time slot of
the scheduling period should fall within the feasible operating
interval specified by the manufacturer and the battery opera-
tor. Furthermore, as stated in the relationship (31), the amount
of energy available in the battery at each time slot is defined
as the function of the energy available in the system in the
previous slot plus the charging power andminus the discharg-
ing power, taking into account the efficiencies of these two
operating modes. The hourly charging and discharging power
constraints of the battery are modeled through relationships

Min
Ns∑
s=1

ωs

NT∑
t=1



(
PG→H
s,t λ

Buy
s,t − P

H→G
s,t λSells,t

)
︸ ︷︷ ︸
Power Grid Transactions Costs

+

(
f CHPs,t + f

Boiler
s,t

)
︸ ︷︷ ︸
Natural Gas Costs

+ λLSt

(
PLSs,t + H

LS
s,t + C

LS
s,t

)
︸ ︷︷ ︸

Load Shedding Costs

 (5)

f CHPs,t =

(
PCHPs,t

ηCHPP

+
HCHP
s,t

ηCHPH

)
λNGs,t (6)

f Boilers,t =

(
HBoiler
s,t

ηBoiler

)
λNGs,t (7)
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(32) and (33), respectively. It is worth mentioning that the
battery can work in one of the charging, discharging, or idle
modes at a time as emphasized in constraint (34). To meet
the operational requirements for the subsequent scheduling
period, the amount of energy available in the battery once
the scheduling period is over, should meet its initial value.
The battery would be charged by the power supplied through
the CHP unit, PCHP→EES

s,t , solar PV panel, PPV→EES
s,t , or even

directly from the main grid, PG→EES
s,t , as stated in (36). Rela-

tionship (37) shows that the battery can deliver power to
the electrical load, PEES→EL

s,t , the EHP, PEES→EHP
s,t , the EH,

PEES→EH
s,t , or the main grid, PEES→G

s,t .

EMin,EES ≤ EEESs,t ≤ E
Max,EES (30)

EEESs,t = EEESs,t−1 +

(
PEES,Ch.s,t ηEESCh.

)
−

(
PEES,Dis.s,t

ηEESDis.

)
(31)

0 ≤ PEES,Ch.s,t ≤ PEES,Ch.,MaxIEES,Ch.s,t (32)

0 ≤ PEES,Dis.s,t ≤ PEES,Dis.,MaxIEES,Dis.s,t (33)

0 ≤ IEES,Ch.s,t + IEES,Dis.s,t ≤ 1 (34)

EEESs,t=T = EEESs,t=0 (35)

PEES,Ch.s,t = PCHP→EES
s,t + PPV→EES

s,t + PG→EES
s,t (36)

PEES,Dis.s,t = PEES→EL
s,t + PEES→EHP

s,t

+PEES→EH
s,t + PEES→G

s,t (37)

• PV
The hourly solar power generation by the PV panel is a
function of the solar irradiance, ambient temperature, and
also manufacturing characteristics of the panel. The electrical
power generation equation of the PV panel is stated in (38)
while constraint (39) applies the power generation limitation
[46]. Besides, as expression (40) shows, solar power can
be consumed by the electrical load, PPV→EL

s,t , the battery,

PPV→EES
s,t , EHP, PPV→EHP

s,t , EH, PPV→EH
s,t , or sold to the main

grid, PPV→G
s,t , as shown in (40).

PPVs,t =
Gas,t
Ga0

[
PMMax,0+

µPmax

(
T as,t + G

a
s,t

NOCT−20
800 − TM ,0

)]
(38)

0 ≤ PPVs,t ≤ P
Max,PV (39)

PPVs,t = PPV→EL
s,t + PPV→EES

s,t + PPV→EHP
s,t

+PPV→EH
s,t + PPV→G

s,t (40)

• Grid
The power exchange between the hub and the main grid is
characterized by using relationships (41)-(45). The electrical
power delivered to the main grid can be satisfied by utilizing
the CHP unit, PCHP→G

s,t , battery, PEES→G
s,t , or the PV panel,

PPV→G
s,t , as indicated in (41). Moreover, the power imported

from themain gridwould be delivered to the battery,PG→EES
s,t ,

EH, PG→EH
s,t , EHP, PG→EHP

s,t , or other electrical loads of the
consumer, PG→EL

s,t , as stated in (42). The amount of power
transaction at each time slot is limited to the transformer,

connecting the hub to the grid as shown in (43) and (44).
It is worth noting that the variable showing the hourly power
transaction with the grid is a positive variable. It should
be noted that it would not be permitted to concurrently
import/export power from/to the grid as emphasized in (45).

PH→G
s,t = PCHP→G

s,t + PEES→G
s,t + PPV→G

s,t (41)

PG→H
s,t = PG→EES

s,t + PG→EH
s,t + PG→EHP

s,t + PG→EL
s,t

(42)

0 ≤ PH→G
s,t ≤ PMax,T IH→G

s,t (43)

0 ≤ PG→H
s,t ≤ PMax,T IG→H

s,t (44)

0 ≤ IH→G
s,t + IG→H

s,t ≤ 1 (45)

• Load Balance
The most significant constraints of the problem of any multi-
carrier energy system operation problem are electrical, heat-
ing power, and cooling power balance equations stated in
relationships (46)-(48), respectively. As Eq.(46) shows, the
electrical load demand of the consumer would be supplied
by utilizing the solar PV panel, PPV→EL

s,t , battery, PESS→EL
s,t ,

CHP unit, PCHP→EL
s,t , and power transaction with the main

grid, PG→EL
s,t . In case the electrical power generation by the

assets and power imported from the main grid do not meet the
load demand, load sheddingwould occur. It is noteworthy that
all variables are positive variables. Likewise, the heating and
cooling power balance equations are expressed in (47) and
(48), respectively. The heating load demand can be supplied
by using the CHP unit, HCHP→HL

s,t , boiler, HBoiler→HL
s,t , EHP,

HEHP→HL
s,t , and EH, HEH→HL

s,t . In addition, the cooling load
demand can be supplied by employing the AC, CAC→CL

s,t , and
EHP, CEHP→CL

s,t .

PG→EL
s,t + PESS→EL

s,t + PPV→EL
s,t + PCHP→EL

s,t

= PELs,t − P
LS
s,t (46)

HCHP→HL
s,t + HBoiler→HL

s,t + HEHP→HL
s,t + HEH→HL

s,t

= HHL
s,t − H

LS
s,t (47)

CEHP→CL
s,t + CAC→CL

s,t = CCL
s,t − C

LS
s,t (48)

B. ROBUST CHANCE-CONSTRAINED APPROACH FOR
SOLVING EH OPERATION
The robust chance-constrained optimization has been
deployed in this paper to ensure the robustness of the solution
against the uncertainties due to solar power generation and
the three load types. In this regard, the objective of the
system operator is to maximize the loadability of the EH
with the load demand supply, associated with the probability
1-ε, where ε is the risk index of the decision maker. The
higher values of ε would ensure the higher loadability of
the EH against the uncertainties. Accordingly, the balance
equations of electrical, heating, and cooling power would be
rewritten as (49)–(51), shown at the bottom of the next page,
respectively.

The Big M technique is used to transform the stochas-
tic problem into a deterministic one. As a result,
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constraints (49)-(51) would be rewritten as constraints
(52)-(54), and the corresponding constraints would be
(55)-(57) and (58)-(60).[
PG→EL
s,t + PESS→EL

s,t + PPV→EL
s,t + PCHP→EL

s,t

]
+PLSs,t − (1+ α)P

EL
s,t ≤ M zELs,t , zELs,t ∈ {0, 1} (52)[

HCHP→HL
s,t + HBoiler→HL

s,t + HEHP→HL
s,t + HEH→HL

s,t

]
+HLS

s,t − (1+ α)H
HL
s,t ≤ M zHLs,t , zHLs,t ∈ {0, 1} (53)[

CEHP→CL
s,t + CAC→CL

s,t

]
+ CLS

s,t

− (1+ α)CCL
s,t ≤ M zCLs,t , zCLs,t ∈ {0, 1} (54)

where z is an auxiliary binary variable to ensure the balance
between generation and consumption. It is noteworthy that
the total loadability of the system is studied showing theworst
scenario for the load demand increase.

0 ≤ PLSs,t ≤ M zELs,t , zELs,t ∈ {0, 1} (55)

0 ≤ HLS
s,t ≤ M zHLs,t , zHLs,t ∈ {0, 1} (56)

0 ≤ CLS
s,t ≤ M zCLs,t , zCLs,t ∈ {0, 1} (57)

Constraints (55)-(57) indicate that the load shedding is
a positive variable where if it is true, its associated binary
variable would also be true.

Ns∑
s=1

NT∑
t=1

zELs,t ≤ εNsNT (58)

Ns∑
s=1

NT∑
t=1

zHLs,t ≤ εNsNT (59)

Ns∑
s=1

NT∑
t=1

zCLs,t ≤ εNsNT (60)

Constraints (58)-(60) show that load management is allowed
only in case the number of load shedding occurrences would
not exceed the limit determined by the risk index. It should be
noted that the value of ε falls in the interval [0, 1]. Moreover,
the number of scenarios and the number of time slots of the
scheduling period are denoted by NS and NT , respectively.
Accordingly, the primary optimization problem is converted
into the optimization of the loadability of the EH. Thus, the
problem will be iteratively solved and intended to maximize
α. Then, themaximum loadability would be specified, subject
to minimizing the operating cost of the hub. The conceptual
structure of the proposed robust chance-constrained opti-
mization framework is demonstrated in Fig. 2.

FIGURE 2. The flowchart of the robust chance-constrained optimization
problem.

C. ROBUST IGDT APPROACH FOR SOLVING EH
OPERATION
This part describes the implementation of the IGDT approach
into the deterministic framework that was provided in the
previous section to accommodate the extreme uncertainty
that was caused by the power demand and the intermittent
nature of wind generation. The overall operating cost may
be expressed as a function of the uncertain source, where X
indicates the vector of choice factors [47], [48].

Total Cost = f (X ,PELs,t ,H
HL
s,t ) (61)

It is noteworthy that the IGDT model deployed in this paper
uses the envelope bound model as [49] and [50], expressed in
(62) and (63) to characterize the parameter uncertainty.

PELs,t ∈ U (α, P̃ELs,t )

U (a, P̃ELs,t ) =

∣∣∣∣∣PELs,t − P̃ELs,tP̃ELs,t

∣∣∣∣∣ ≤ α (62)

HHL
s,t ∈ U (α, H̃HL

s,t )

Pr
( [

PG→EL
s,t + PESS→EL

s,t + PPV→EL
s,t + PCHP→EL

s,t
]

+PLSs,t − (1+ α)P
EL
s,t = 0

)
≥ 1− ε (49)

Pr
( [

HCHP→HL
s,t + HBoiler→HL

s,t + HEHP→HL
s,t + HEH→HL

s,t
]

+HLS
s,t − (1+ α)H

HL
s,t = 0

)
≥ 1− ε (50)

Pr
( [

CEHP→CL
s,t + CAC→CL

s,t
]
+

CLS
s,t − (1+ α)C

CL
s,t = 0

)
≥ 1− ε (51)
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U (a, H̃HL
s,t ) =

∣∣∣∣∣HHL
s,t − H̃

HL
s,t

H̃HL
s,t

∣∣∣∣∣ ≤ α (63)

The uncertainty horizon of PELs,t is denoted by α. Furthermore,
P̃ELs,t is the expected value of PELs,t and U (a, P̃ELs,t ) is the set

of values relating to the deviation of PELs,t from P̃ELs,t less than
αP̃ELs,t . Besides, H̃

HL
s,t depicts the expected value ofHHL

s,t while
U (a, H̃HL

s,t ) indicates a set of values relating to the deviation
of HHL

s,t from H̃HL
s,t less than αH̃HL

s,t . A significant advantage
of the IGDT is that it makes the decision maker, the system
operator in this case, to prevent the risk of achieving the
lowest expected values taking the parameter uncertainty into
account. The robustness function is an effective risk assess-
ment tool. In the IGDT approach, the robustness function is
defined by the highest values that α may achieve at a cost less
than the maximum expected cost shown by Rc [51], [52].

RF(k,PELs,t ,H
HL
s,t )

= Max
α

{
(α) : Maximum cost which is not
higher than a given biggest cost

= Max
α

{
(α) : Max

PELs,t ∈U (α,P̃ELs,t ) & HHL
s,t ∈U (α,H̃HL

s,t )

}
(64)

where RF(k,PELs,t ,H
HL
s,t ) indicates the input/output architec-

ture of the systemmodel. That is to say, it shows the operator’s
award for the selected values of decision variable k taking
into account the uncertain parameters PELs,t and HHL

s,t . At the
highest degree of uncertainty, the robustness function pro-
vides the best performance, meaning that the operating cost
is less than the predetermined cost Rc. Thus, the robustness
function represents the performance of risk–hedging. The
greater the value of this robustness function, the more solid,
risk-hedging, and impervious to existing uncertainties the
decision. A risk-hedging operator must adhere to a schedule
that limits exposure to losses or excessive cost levels. Conse-
quently, the robust performance may be described as in (65),
shown at the bottom of the next page. Rc expresses the critical
cost, while R0 represents the minimal expected cost based on
the predicted input factors. σ is the cost aberration factor used
to determine the greatest expected cost. The purpose of the
IGDT in the robust EH scheduling for risk-hedging strategy
is to maximize the uncertainty parameter α so that the desired
performance is achieved.

According to the IGDT technique, the proposed optimiza-
tion framework would be expressed as follows, (66)–(70), as
shown at the bottom of the next page.

IV. SIMULATION RESULTS
The simulation results and the case study including an EH
equipped with a solar PV panel as well as electrical, heating,
and cooling loads, are discussed in this section. Table 2 rep-
resents the equipment of the EH together with the associated
data [45]. The analysis has been carried out for two seasons,
i.e. winter and summer.

TABLE 2. The technical data of EH assets.

The uncertain parameters of the problem are electrical,
heating, and cooling load demands besides the volatile solar
power generation. It is noteworthy that the uncertainties have
been characterized by generating scenarios and an efficient
scenario reduction approach has been used to alleviate the
number of scenarios, i.e. 10 scenarios for each uncertain
parameter. Fig. 3 depicts the market price where the selling
price and market price are the same in summer because of
the relatively high load demand of the main grid. The selling
price refers to the price of energy sold to the main grid by the
EH. In the winter, the amount of load demand of the main grid
is relatively lower and accordingly, the selling price would be
80% of the market price. The scenarios used in this study for
the uncertain parameters in the summer and winter have been
depicted in Fig. 4.

A. CASE A: STOCHASTIC OPTIMIZATION RESULTS
The problem of optimal operation of the EH is tackled in
this case as a stochastic optimization problem, intended to
optimize the total operating cost. In other words, the problem
is investigated while skipping the risk measure, i.e. ε =0.
In this relation, the problem is studied for the base case
without considering the loadability index. The simulation
results indicate that the expected value of the total operating
costs for a typical day in the summer and winter would be
$1582.766 and $1530.01, respectively. In the summer, the
NG price is considerably low at 0.006 $/kWh and as a result,
the CHP is scheduled to generate more electricity. Hence, the
CHP unit is employed at its maximum capacity to generate
electricity, and heat generation would be set at the permitted
value. A fraction of the heat output of the CHP unit would be
used as the input heat of the AC, while the remaining would
be deployed to satisfy the heating load demand over the day.
The boiler would also be employed to serve the heating load
demand and for heating-to-cooling power conversion in the
AC. The hourly heat output of the boiler is illustrated in
Fig. 5. The AC and EHP are deployed to supply the cooling
power demand in the winter. It is worth mentioning that
the cost of the NG used by the AC is more than the cost
of electricity consumed by the EHP to supply the heating
load demand. Thus, the operator tends to employ the AC to
supply the cooling load demand rather than generate heat.
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FIGURE 3. Electricity tariff for different seasons.

However, the AC alone would not be sufficient to thoroughly
meet the cooling load demand and accordingly, the EHP
would also be necessarily utilized to this end. The amounts of
cooling power delivered by the AC and EHP in the summer
are depicted in Figs. 6 and 7, respectively. The amount of
electrical energy available in the battery over the day in the
summer is demonstrated in Fig. 8. This device is charged
during the initial time slots of the scheduling period and
delivers power to the system from time slot 11, associated
with high energy prices. The battery is again charged during
the final time slots to meet the pre-scheduled energy value
of 200 kWh at the end of the day. The amount of power
transacted between the EH and the utility grid in the summer
is illustrated in Fig. 9. The hub exports power to the utility
grid over the initial time slots of the scheduling period as its
electrical load demand is significantly low. It is noteworthy
that the price of electrical energy provided by the EH taking
into account the heating power generation would be approxi-
mately 12 $/MWh. Meanwhile, the minimum market price is
16 $/MWh. Consequently, it is economical to deploy the CHP
unit over the day for electricity generation. Therefore, the EH
is capable of selling the surplus energy to the main grid and

benefits from the power transaction. The EH imports power
from the main grid during hours 8-21, and sells electrical
energy to the grid during hours 1-7 and hours 22-24. The
hourly amount of NG purchased from the NG network for
different scenarios in the summer is depicted in Fig. 10.
The results obtained from simulating the problem for the
winter are different due to the different load profile in this
season. The amount of heating load demand is substantially
higher in the winter, while the NG price is 0.0085 $/kWh.
Furthermore, the electricity selling price in the winter is lower
than in summer, i.e. 80% of the market price. This issue
implies the fact that any transaction with the main grid to
sell the surplus electrical power would be possible in case the
electrical energy generation is economical with respect to the
market price.

The efficiency of the CHP unit is around 40% and accord-
ing to the NG price and market price, selling electrical energy
generated by the CHP unit to the grid would be possible if
the market price is at least 26.56 $/MWh, while the price
over on-peak hours is 24 $/MWh. So it is not economically
justified to sell electricity produced by the CHP system to
the main grid. However, it should be noted that if all assets
operate together, the electricity generation cost for the EH
would be around 21.25 $/MWh, which is lower than 24
$/MWh. Thus, the hub can sell the surplus power to the main
grid at time slots with a market price higher than this value.
The hourly electrical power and heat outputs of the CHP
unit for different scenarios in the winter are demonstrated in
Figs. 11 and 12, respectively. As expected, the CHP unit gen-
erates power during the time slots at which the market price
is 24 $/MWh, i.e. time slots 8-22, and it is not economical to
operate at other slots. On the other hand, the capacity of the
transformer linking the hub to the main grid is 300 kW and
the amount of peak electrical load is lower than this amount.

Max
α



(α) :
Max

PELs,t ∈ U (α, P̃ELs,t )
...&
HHL
s,t ∈ U (α, H̃HL

s,t )

RF(k,PELs,t ,H
HL
s,t ) ≤ Rc = (1+ σ )R0

(65)

Max α (66)

Ns∑
s=1

ωs

NT∑
t=1



(
PG→H
s,t λ

Buy
s,t − P

H→G
s,t λSells,t

)
︸ ︷︷ ︸
Power Grid Transactions Costs

+

(
f CHPs,t + f

Boiler
s,t

)
︸ ︷︷ ︸
Natural Gas Costs

+ λLSt

(
PLSs,t + H

LS
s,t + C

LS
s,t

)
︸ ︷︷ ︸

Load Shedding Costs

 ≤ (1+ σ )R0(6)− (48) (67)

PG→EL
s,t + PESS→EL

s,t + PPV→EL
s,t + PCHP→EL

s,t = (1+ α)PELs,t (68)

HCHP→HL
s,t + HBoiler→HL

s,t + HEHP→HL
s,t + HEH→HL

s,t = (1+ α)HHL
s,t (69)

CEHP→CL
s,t + CAC→CL

s,t = (1+ α)CCL
s,t (70)
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FIGURE 4. Generation and consumption scenarios; summer (left) and winter (right).

FIGURE 5. The hourly heat generation of the boiler.

So, it is not needed to use the CHP unit during the initial
and final time slots of the day. The boiler is also capable
of satisfying the peak load demand. The heat generation
cost of the boiler is 14.16 $/MWh (8.5/0.6=14.16 $/MWh),
which is lower than the electricity price over the entire day.

FIGURE 6. The hourly cooling power generation by the AC in the summer
for different scenarios.

As a result, it would not be economically justified to use
the EH and EHP to supply the heating load. The efficien-
cies of the EH and EHP are 85% and 90%, and accord-
ingly, the heat generation cost of these two assets would be
17.64 $/MWh (15/0.85=17.64 $/MWh), and 16.67 $/MWh
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FIGURE 7. The hourly cooling power generation by the EHP in the
summer for different scenarios.

FIGURE 8. The hourly amount of energy available in the battery in the
summer_Case A.

FIGURE 9. Power transaction between the energy hub and grid in
summer.

FIGURE 10. The hourly amount of NG purchased from the NG network for
different scenarios in the summer.

FIGURE 11. The hourly electrical power output of the CHP system for
different scenarios in the winter.

(15/0.9=16.67 $/MWh), respectively. Thus, over the off-
peak time slots, at which the electricity price is 15 $/MWh,

FIGURE 12. The hourly heat generation of the CHP unit for different
scenarios in the winter.

FIGURE 13. The hourly heat generation of the boiler for different
scenarios in the winter.

it is yet not economical to use these devices. In this regard,
the heating load demand of the hub would be supplied by
the boiler and CHP unit. The hourly heat generation of the
boiler is shown in Fig. 13. This asset operates at its maximum
capacity over the initial and final hours of the day with
considerable heating load demand. The boiler along with the
CHP unit provides the heating load demand of theAC over the
day. It is noteworthy that the AC can supply the entire cooling
load demand, and there would be no need to use the EHP.
The hourly energy available in the battery can be observed in
Fig. 14. As this figure depicts, the battery is charged over the
initial hours of the daywith low electricity prices, and it deliv-
ers power to the system during the hours with relatively high
market prices. Finally, the battery is charged over the final
hours of the day to meet the constraint of the final available
energy, i.e. 200 kWh. The simulation results in the base case
for the studied scenarios show that the system operator would
be able to reliably supply the electrical, heating, and cooling
load demand, and the operating points of the assets are in
the permitted operating ranges. The next section evaluates the
problem in the probabilistic and robust state.

B. PROBABILISTIC OPTIMIZATION RESULTS
This case study evaluates the loadability of the EH consid-
ering the problem’s uncertainties. In this regard, the worst
scenario faced by the system operator is intended, i.e. the
concurrent increase in the three types of load demands.
To this end, the load demand is continuously increased until
the solution becomes infeasible. This is done for different
values of ε specified by the system operator. The obtained
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FIGURE 14. The hourly energy available in the battery for different
scenarios in the winter.

TABLE 3. EH loadability for different.

simulation results show that the loadability of the EH is
relatively higher in the winter compared to that of the sum-
mer. This is due to the fact that a substantial fraction of
the load relates to the heating load demand which can be
supplied by utilizing the boiler, EH, EHP, and CHP unit. It is
noteworthy that first, the heating power-related constraints
cause the solution infeasibility. The electrical and cooling
load demands are considerable in the summer. The cooling
load demand can be supplied by using the AC and EHP,
while the AC operates at its maximum capacity during on-
peak hours. On the other hand, the EHP consumes electricity
which in turn causes the electrical load demand to increase.
Thus, an increase in the cooling load demand would directly
impact the electrical load demand. The electrical load demand
supply would encounter severe difficulty since the capacity
of the transformer is limited to 300 kW. Table 3 includes the
simulation results, obtained from studying the EH loadability
in different seasons. The results verify that the loadability
of the EH increases by increasing ε, i.e. a more risk-taking
operational strategy. In this regard, 5% and 10% increases in
ε result in 22% and 32% increases in the loadability of the hub
compared to the case without any load shedding. For the 5%
and 10% increases in ε during the summer, 24% and 31.5%
increases in the loadability of the hub compared to the base
case have been observed.

Furthermore, Fig. 15 depicts the simulation results for dif-
ferent values of α while ε =0 in the summer and winter. The
obtained results show that individually increasing any of the
three load types would result in different loadability indexes
in different seasons. As it is expected, the highest value of
the loadability index in the winter pertains to the cooling
load demand by α = 4.785. The loadability indexes for the
heating and electrical loads are 1.495 and 1.486, respectively.
The loadability for the heating load demand in the summer
is 7.573 while the loadability indexes for the electrical and
cooling loads are 0.378 and 1.270, respectively. These results
mean that the total loadability index which is equal to 0.308
in the summer is highly dependent upon the loadability of the
electrical loads.

FIGURE 15. Individual loadability indexes for the electrical, cooling and
heating loads in the summer (a), and in the winter (b) for ε =0.

C. IGDT RESULTS
The results obtained from the chance-constrained program-
ming are compared to those obtained from the IGDT tech-
nique to validate its performance. In this respect, the robust
optimization problem is simulated for two days in winter and
summer. The main difference between the IGDT and chance-
constrained programming models relates to the power bal-
ance constraint that must be satisfied in all scenarios without
any curtailment. The system loadability can be assessed and
compared to the base case for the increase in the operat-
ing cost. Hence, the loadability can be simulated only for
ε = 0. As Table 3 shows, the maximum loadability in winter
and summer disregarding any increase in the operating cost
would be 1.019 and 0.308, respectively. In other words, the
maximum loadability has been derived without violating any
constraint. Using the IGDT technique, the system operator
is looking for the maximum loadability constrained to the
maximum limit set for the operating cost. It is obvious that
by increasing the operating cost beyond the maximum load-
ability, no change would occur in the system loadability.
Fig. 16 depicts the numerical comparison made between
the chance-constrained programming and IGDT techniques.
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FIGURE 16. Comparative system loadability index in the summer (a), and
in the winter (b).

As expected, once the cost deviation is zero, the variations
in the loadablity would also be zero. On the other hand,
when the system operator accepts to tolerate higher operating
costs, the total system loadability would also increase in line
with the increase in the total operating cost. As Fig. 16(a)
demonstrates, the maximum system loadability values by
using the IGDT and chance-constrained programming tech-
niques have the same trend. It is noted that the maximum
loadability in summer is 0.308 corresponding to the 45.7%
increase in the base case cost. On the other hand, the maxi-
mum loadability in winter is 1.019 for the chance-constrained
programming and IGDT techniques. As can be observed
in Fig. 16(b), the maximum loadability by using the IGDT
technique by increasing the operating cost is higher than the
chance-constrained programming. However, both methods
have finally led to the same maximum loadability. It is also
noteworthy that the maximum loadability in this case requires
119.26% increase in the base case cost.

V. CONCLUSION
This paper investigated the problem of optimal operation
of the EH by using a robust chance-constrained approach.
The optimal day-ahead operation problem was formulated
by utilizing a MILP model. The Big M technique was used
to transform the primary probabilistic optimization problem
into a deterministic one that can be solved by the available
commercial MILP solvers. Moreover, the robustness of the
operation model against the uncertainties was assessed by
employing a loadability index within the chance-constrained
framework. Besides, a comparison was also made between
the chance-constrained programming and the IGDT tech-
nique. It was indicated that elevating the chance-constrained
model to the robust chance-constrained one would enable
the system operator to implement the optimal operational

strategy with respect to the risk index. The simulation results
showed that the loadability index for the worst scenario in
the winter was significantly higher than that of the summer.
This is due to the fact that there were various assets available
in the winter to supply the heating load demand, i.e. CHP
unit, EH, and EHP. On the other hand, the options to serve
the electrical and cooling loads, forming the major part of the
total load demand, were limited in the summer. Besides, the
simulation results for different risk indexes revealed that in
the winter, first, the constraints relating to the electrical and
then, heating power-related ones were violated. The results
showed that there was no difficulty in serving the cooling
load. It is noteworthy that as the loadability index in all cases
was greater than 1, the uncertainty level should be more than
100% to provide the opportunity to serve the load demand
without any shedding. The loadability index in the summer
is limited due to the increased electrical load demand and the
first violated constraint relates to the electrical load demand.
It is noteworthy that the IGDT is indeed equivalent to the
chance-constrained programming in case ε =0. In other
words, the chance-constrained programming is a more com-
plete model compared to the IGDT technique. In the Nordic
region with extremely cold winters, the heating load demand
is considerably high, and as a result, the total loadability
index highly depends on the loadability for the heating load.
Accordingly, the total loadability index is mainly dependent
upon the electrical loadability in the summer. Therefore, the
capacity expansion in the solar PV panel, battery, transformer,
and CHP unit would help to reinforce the EH.
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