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ABSTRACT This paper presents a design of a robust switching reset controller for a class of nonlin-
ear uncertain switched systems. We consider the norm-bounded time-varying parameter uncertainties in
switched nonlinear systems obeyed by the average dwell-time switching signal. The proposed switching
reset controller uses the measured output in resetting the controller’s states, whereas the previous studies did
not. A weighted mixedL2/l2-gain is introduced to take into account the discrete disturbances induced by the
measured output when resetting the controller’s states. The proposed reset controller and switched nonlinear
uncertain plant form a closed-loop system that is a class of nonlinear impulsive switched uncertain systems.
Hence, we first provide sufficient conditions for theL2 stability of the nonlinear impulsive switched uncertain
systems. Based on the conditions, we propose linear matrix inequality (LMI)-based design conditions to
choose the dynamic output feedback control and output feedback reset laws guaranteeing the weightedmixed
L2/l2-gain performance of the controlled systems with continuous and discrete disturbances. Numerical
examples demonstrate the effectiveness of the proposed method.

INDEX TERMS Impulsive switched systems, L2-stability, linear matrix inequality, nonlinear uncertain
systems, reset control systems.

I. INTRODUCTION
Switched systems, which are typically described by a family
of subsystems and a switching signal governing the switching
logic, have attracted much attention over the past decades
due to their wide applications in communication networks,
electrical systems, machine power management, and aircraft
control, see [1], [2], [3], [4], [5], and [6]. Several interest-
ing research topics are represented in the switched systems
such as stability analysis and the design of controller and
switching signal. For example, in [7], a class of switch-
ing signals based on the state estimates was composed by
using multiple Lyapunov functions, and then the design of
feedback nonlinear controllers was proposed. In [8], the
Karush–Kuhn–Tucker condition was used to present a neces-
sary and sufficient quadratic stability condition of switched
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nonlinear systems. [9] proposed a stabilization method of
switched systems under bounded additive disturbance using
a quasi-time-varying Lyapunov functional. In [10], the robust
L2-stability and stabilization of discrete-time switched linear
systemswere presented using a set of convex lifted conditions
with minimum dwell-time switching property. In [11], the
adaptive finite-time tracking control problem was investi-
gated for a class of switched nonlinear uncertain systems
based on the backstepping control.

Many studies have been conducted to consider practical
systems’ properties. For example, output feedback control
approaches have been presented for the switched systems
as only partial state is measurable in many real-world
control applications due to various constraints such as
cost of sensor installation and collection, hardware limita-
tions, lack of measurement, and so on. In [12], network-
delay-dependent switching controllers are designed for a
class of systems over asymmetric path delay on arbitrary
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communication networks. [13] addressed the stability anal-
ysis and control design of switched linear systems based
on Lyapunov–Metzler inequalities. [14] addressed the output
tracking control for switched linear systems with time delay
using dynamic output feedback control and state-dependent
switching. In [15], the observer-based controller design prob-
lem for a class of switched systems with a semi-Markov
random switching signal was investigated. However, many
studies on switched systems mentioned above are limited to
linear systems or a class of systems that do not take into
account uncertainty. To overcome these limitations, in [16],
nonlinear switched systems were described using the T-S
fuzzy approach and proposed observer-based nonlinear out-
put feedback controllers. [17] proposed a fault detection
observer for switched systems with the Lipschitz nonlinearity
and average dwell time (ADT) switching. In [18], an adaptive
dynamic programming approach was proposed for the linear
quadratic optimal control of discrete-time switched nonlinear
systems under arbitrary switching laws. Considering uncer-
tainties, in [19], an adaptive control approach was proposed
for switched uncertain nonlinear systems. [20] proposed a lin-
ear matrix inequality (LMI)-based state-feedback controller
synthesis for switched uncertain systems under asynchronous
switching.

Meanwhile, the reset controller, which is a type of hybrid
dynamical system that its states jump to specified values
based on the predetermined reset laws, was firstly proposed
by Clegg [21]. Since the introduction of the control method-
ology, many studies have been presented for transient per-
formance improvement with its impulsive behaviors [22],
[23], [24]. [25] provided stability analysis of time-delay reset
systems. In [26], a generalized first-order reset element was
utilized to cross the theoretical limitation of improving over-
shoot and reaching-time performances. In [27] and [28], the
reset strategy was applied to unknown input observers to
estimate the states and faults for linear systems or in a class
of nonlinear uncertain systems. [29] proposed an adaptive
reset observer design scheme for states and actuator fault
estimation in a class of nonlinear time-varying delayed mod-
els. In [30], the reset control approach which consists of a
proportional-integral (PI) controller with a Clegg integrator
(CI) was utilized to synchronize multi-agent systems.

However, few studies have investigated the reset control
for the switched systems. As the switched systems suffer sud-
den changes in system parameters, the controlled output can
undergo impulsive behaviors and poor transient performance
after switching instants. Adopting the reset control strategy
can be a good choice to overcome these undesirable transient
behaviors. In [31], the design methodology of state-feedback
reset control law was proposed for switched linear parameter
varying systems. In [32], LMI-based reset controller design
method was proposed for switched linear systems under the
ADT. [33] proposed a fault detection observer-based reset
control strategy for switched linear systems under sensor and
actuator faults. Recently, [34] addressed a reset control-based
stabilization for fractional order switched linear systems

under theADT.However, the previous studies on reset control
assumed that the system parameters were perfectly known.
Furthermore, in many previous studies, linear switched sys-
tems were taken into account without consideration of the
nonlinearity of the plant model. Nevertheless, as we men-
tioned above, many practical systems are described as non-
linear systems. In addition, parameter uncertainties in the
system model can deteriorate the static and dynamic perfor-
mances, if not considered in the controller design, see [35],
[36], [37], and [38]. Finally, the feedback on the reset law has
not been applied in the previous studies. Namely, the dynamic
controller’s states were only used for resetting the controller’s
states without any information on the measured outputs.

Motivated by the above discussions, this study presents a
robust switching reset controller design strategy for uncer-
tain nonlinear switched systems with the ADT switch-
ing property. We define the weighted mixed L2/l2-gain to
consider the influence of discrete disturbances at impulse
instants. Considering nonlinear impulsive switched systems
with norm-bounded time-varying parameter uncertainties,
the LMI-based stability analysis guaranteeing the weighted
L2/l2-gain performance was presented. Moreover, we pro-
pose an LMI-based design conditions for the dynamic output
feedback control and output feedback reset laws. It is worth
mentioning that it is difficult to design controller parameters
for complex reset-controlled switched systems. Furthermore,
there is no analytical methodology to design a robust reset
controller for nonlinear switched systems with time-varying
uncertainty due to the high system complexity. Therefore,
the use of LMI inequalities is a reasonable approach for
designing a robust reset controller for nonlinear uncertain
switched systems as LMI constraints are convex constraints,
meaning that the controller parameters can be effectively
obtained in polynomial time using numerical optimization
methods such as primal-dual interior point methods. Finally,
a convex optimization problem is presented using the pro-
posed LMI-based design condition, enabling the L2 gain to
be minimized. Hence, the reset controller can be designed to
reduce influence of the exogenous disturbances. We present
numerical examples to show the effectiveness of the proposed
design methodology. The main contributions of this study are
summarized as follows:

1) This study addresses the simultaneous design method-
ology of the switched dynamic output feedback control
and output feedback reset law for nonlinear uncertain
switched systems.

2) The weighted mixed L2/l2-gain is addressed to con-
sider not only the continuous-time disturbance but also
discrete-time disturbances induced by output feedback
reset laws when switching occurs.

3) We provide LMI-based controller design conditions for
the switched nonlinear systems in the presence of time-
varying norm-bounded uncertainties.

4) An optimization problem using the proposed LMI con-
ditions is presented to optimize the proposed controller,
reducing the influence of the exogenous disturbances.
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TABLE 1. Qualitative comparison with the existing studies.

FIGURE 1. Schematic diagram of the switched system with the proposed
controller.

The numerical examples show the effectiveness of the
proposed controller in the ADT switching scenario.

Finally, based on the above-mentioned discussions, Table 1
presents the comparison of characteristics between our study
and the existing ones.

The rest of this paper is organized as follows. Section II
presents the representation of the nonlinear uncertain
switched plants and switching reset controllers. Section III
provides the LMI-based L2 stability analysis for switched
impulsive nonlinear uncertain systems. Subsequently,
we present the LMI-based design methodology of the
switching reset controller for switched nonlinear uncer-
tain systems. The numerical simulations are presented
in Section IV. Finally, the conclusions are made in
Section V.
Notation: Throughout this paper, R denotes for the set of

real numbers andZ+ for the positive integer numbers.Rn and
Rn×m stand for the set of real n-dimensional vectors and real
n×mmatrices, respectively.L2 [0,∞) is the space of square-
integrable vector functions over [0,∞), while l2 [0,∞) is
the space of square-summable vector sequences over [0,∞).
‖·‖L2

stands for the L2 [0,∞) norm over [0,∞), ‖·‖l2
denotes the l2 [0,∞) norm over [0,∞). The Hermitian
operator He{·} represents that He{A} = A + AT for real
matrices. diag {· · · } stands for a block-diagonal matrix, the
symbol ? in LMIs is used to denote a term that is induced by
symmetry.

II. PROBLEM STATEMENT
We consider the following uncertain nonlinear switched
system:

ẋp = Aσ xp + Bf ,σ fσ (xp)+ Bw,σw+ Bu,σu (1a)

y = Cy,σ xp + Dyw,σw+ Dyu,σu, (1b)

z = Cz,σ xp + Dzw,σw+ Dzu,σu (1c)

where xp ∈ Rnx is the plant state, u ∈ Rnu is the control
input, y ∈ Rny is the measurement output, z ∈ Rnz is the con-
trolled output, and w ∈ Rnw is the disturbance. We consider
a plant that includes model uncertainty. Aσ is represented
by the sum of the nominal plant matrix A0,σ and the time-
varying parametric uncertainty 1Aσ (t) that is represented
as E1,σ1σ (t)F1,σ , i.e., Aσ = A0,σ + E1,σ1F1,σ with
1T
σ1σ ≤ I . fσ (xp) ∈ Rnf is a nonlinear function where

fσ (0) = 0 and σ (t) : R+ → 6, 6 := {1, . . . ,M} is a
switching signal that is a piecewise constant function of time
andM ∈ Z+ is the number of subsystems. Given a switching
time sequence 0 < t1 < t2 < · · · , σ is continuous from the
right everywhere and obeys the ADT switching logic [39].
When t ∈ [tk , tk+1), the σ (tk )th subsystem is activated and
thus the trajectory xp(t) of the switched system (1) is the
trajectory of the σ (tk )th subsystem. We present the following
assumptions for the uncertain nonlinear switched system.
Assumption 1: The system (1) is stabilizable and

detectable for all i ∈ 6.
Assumption 2: Dyu,i = 0 in the system (1) for all i ∈ 6.
Assumption 3: The smooth nonlinear function fσ (xp) in

the system (1) satisfied the following Lipschitz condition

‖fσ (x)− fσ (y)‖ ≤ β‖x − y‖, ∀x, y ∈ Rn

where β > 0 is the Lipschitz constant.
Remark 1: It should be noted that the first assumption

guarantees the existence of a dynamic output-feedback con-
troller to stabilize each subsystem of the switched system
and the second one can be relaxed by loop transformation,
see [40]. The Lipschitz condition described in Assumption 3
is often used because of the advantages of solving problems
using LMI. In addition, the Lipschitz condition for nonlin-
earity has been applied to various systems such as inverted
pendulums, chaotic systems, and power systems. It is also
reasonable to assume the local Lipschitz condition in the
specified interval that a plant operates.

The proposed switching reset control scheme, which con-
sists of a dynamic output-feedback switching controller and
a reset law, is represented as follows:[

ẋc
u

]
=

[
Ac,σ Bc,σ
Cc,σ Dc,σ

] [
xc
y

]
, t 6= tk (2a)

x+c = R1,ijy+ R2,ijxc, t = tk (2b)

where xc ∈ Rnc is the controller state, the subscript of the
reset matrices R1,ij and R2,ij are used to denote the indices of
the pre-switching subsystem i and the post-switching subsys-
tem j, i.e., at the switching instant, we have σ = i, σ+ = j.
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From the nonlinear uncertain system (1) and controller (2),
we obtain the following closed-loop system formed as a class
of switched nonlinear impulsive systems:[

˙̄x
z

]
=

[
Āσ B̄σ
C̄σ D̄σ

] [
x̄
w

]
+

[
B̄f ,σ
0

]
fσ (xp), t 6= tk (3a)

x̄+ = R̄1,ijx̄ + R̄2,ijw, t = tk (3b)

where x̄ = [xTp , x
T
c ]

T and

Āσ = Ā0,σ + Ē1,σ1σ F̄1,σ ,

Ā0,σ =
[
A0,σ + Bu,σDc,σCy,σ Bu,σCc,σ

Bc,σCy,σ Ac,σ

]
,

Ē1,σ =
[
E1,σ
0

]
, F̄1,σ =

[
F1,σ 0

]
,

B̄f ,σ =
[
Bf ,σ
0

]
, B̄σ =

[
Bw,σ + Bu,σDc,σDyw,σ

Bc,σDyw,σ

]
,

C̄σ =
[
Cz,σ + Dzu,σDc,σCy,σ Dzu,σCc,σ

]
,

D̄σ =
[
Dzw,σ + Dzu,σDc,σDyw,σ

]
,

R̄1,ij =
[

I 0
R1,ijCy,i R2,ij

]
, R̄2,ij =

[
0

R1,ijDyw,i

]
.

Note that there exist both continuous and discrete
disturbances in the closed-loop system (3). To take into
consideration of the influence of the continuous and discrete
disturbances together with the ADT, for a given scalar 0 <
λ < 1, we define the following weighted mixed L2/l2-gain:∫

∞

0
e−λtzT (t)z(t)dt ≤ γ 2

{
‖w(t)‖2L2

+ ‖w(tk )‖2l2

}
(4)

where the disturbance attenuation level γ > 0.
Remark 2: We introduced a weighted mixed L2/l2-gain

condition to consider the influence of discrete disturbances
at impulse times. The conventional weighted L2-gain does
not consider the l2 norm of discrete disturbance sequences
because the discrete disturbances do not exist in the con-
ventional switched systems. However, as seen from (3b),
disturbances are applied to the controller’s states at reset
instants, making the closed-loop impulsive switched system
(3) have discrete disturbances at switching instants.

We give the following definitions used in the next section.
Definition 1: [39] Given a switching signal σ (t) and each

t2 ≥ t1 ≥ 0, let Nσ (t1, t2) denote the number of discon-
tinuities of σ (t) in the open interval (t1, t2). We denote by
Save[τa,N0] the set of all switching signals for which

Nσ (t1, t2) ≤ N0 +
t2 − t1
τa

, ∀t2 ≥ t1 ≥ 0

for the given constants τa, N0 > 0, which are called the ADT
and the chatter bound, respectively.
Definition 2: [39] Given a set of piecewise constant

switching signals Save[τa,N0], we say that (1) is globally
uniformly asymptotically stable over Save[τa,N0] if there
exists a function α of class KL such that, for each σ ∈ Save,

‖xp(t)‖ ≤ α(‖xp(t)‖, t − τ ), ∀t ≥ τ ≥ 0,

along solutions to (1).

Here, we are interested in providing the L2 stabil-
ity analysis of the closed-loop system (3) and deriv-
ing the design condition of the controller’s parameters
Ac,σ , Bc,σ , Cc,σ , Dc,σ , R1,ij, and R2,ij in (2) for the switched
system under the ADT switching.

III. MAIN RESULTS
In this section, we provide the L2-gain analysis of the closed-
loop switched nonlinear uncertain systems (3). Subsequently,
the LMI-based design methodology of switching reset con-
troller for switched nonlinear uncertain systems.

A. WEIGHTED MIXED L2/l2 ANALYSIS FOR IMPULSIVE
SWITCHED SYSTEMS WITH THE ADT
Before we present our main results, we introduce the fol-
lowing lemmas that are necessary for the proof of the main
results.
Lemma 1: [41] Let V0(ζ ) and V1(ζ ) be two arbitrary

quadratic forms over Rn. Then V0(ζ ) < 0 is a consequence
of V1(ζ ) ≤ 0 if and only if there exists ρ ≥ 0 such that

V0(ζ ) < ρV1(ζ ), ∀ ζ ∈ Rn
− {0}.

Lemma 2: [42] Let x ∈ Rn, Q = QT
∈ Rn×n and B ∈

Rm×n such that rank(B) < n. The following statements are
equivalent:

1) xTQx < 0 for all Bx = 0, x 6= 0;
2) B⊥TQB⊥ < 0 where B⊥ is the kernel of B, i.e.,

BB⊥ = 0;
3) ∃V ∈ Rn×m: Q+ VB + B⊥V⊥ < 0.

The following theorem provides sufficient conditions for the
L2 stability of the closed-loop system (3).
Theorem 1: For given scalars γ > 0, β > 0, µ ≥ 1,

ν ≥ 1, 1 > λ > 0, ε1, and ε2, the impulsive switched system
(3) is globally uniformly asymptotically stable (GUAS) for
every switching signal σ with the ADT τa ≥ ln (µ)/λ and
achieves the weighted mixedL2/l2-gain (4) under zero initial
condition if there exist matrices Pi > 0, Si, T2,i with appro-
priate dimensions satisfying the following matrix inequalities
∀i, j ∈ 6 ×6, i 6= j:

9 < 0, (5)Pj − Sj − S
T
j ? ?

R̄T1,ijSj −µPi ?

R̄T2,ijSj 0 −γ 2I

 ≤ 0, (6)

where 9 = {9kl}, k, l ∈ {1, 2, . . . , 6} is the symmetric
matrix whose components are given as following matrices:

911 = STi Āi + Ā
T
i Si + λPi,

921 = Pi − Si + ε1STi Āi, 922 = −ε1(STi + Si),

931 = B̄Ti Si, 932 = ε1B̄Ti Si, 933 = −γ
2 I ,

941 = ε2Uf T T2,iĀi + B̄
T
i Si,

942 = −ε2Uf T T2,i + ε1B̄
T
i Si, 943 = ε2Uf T T2,iB̄i,

944 = −νiI + ε2(Uf T T2,iB̄i + B̄
T
i T2,iU

T
f ),
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951 = C̄i, 953 = D̄i, 955 = −I ,

961 = Up, 966 = −(νβ)−1I ,

Uf =
[
I 0
]
∈ Rnf×nx̄ , Up =

[
I 0
]
∈ Rnx×nx̄ .

Proof Consider the Lyapunov-like functions as

Vi = x̄TPix̄, ∀i ∈ 6. (7)

By applying the Schur complements [41] to (5), we have ϒ1 ? ? ?

ϒ2 ϒ3 ? ? ϒ4 ε1ϒ4 −γ
2I ?

ϒ4 + ϒ5 ε1ϒ4 + ϒ6 ϒ7 ϒ8


+ḠT Ḡ+ νβH̄T H̄ < 0, (8)

where

ϒ1 = STi Āi + Ā
T
i Si + λPi, ϒ2 = Pi − Si + ε1STi Āi,

ϒ3 = −ε1(Si + STi ), ϒ4 = B̄Ti Si, ϒ5 = ε2Uf T T2,iĀi,

ϒ6 = −ε2Uf T T2,i, ϒ7 = ε2Uf T T2,iB̄i,

ϒ8 = −νI + ϒ7 + ϒ
T
7 , Ḡ =

[
C̄i 0 D̄Ti 0

]
,

H̄ =
[
Up 0 0 0

]
.

Let us define the state vector ζ := (x̄, ˙̄x,w, fi(xp)) ∈ Rnζ

and Z := diag{−βUT
p Up, 0, 0, I } ∈ Rnζ×nζ where nζ =

2nx̄ + nw + nf . Because fi(xp) is β-Lipschitz, we have

fi(xp)T fi(xp) ≤ βxTp xp ⇐⇒ ζ TZζ ≤ 0. (9)

Then, from (8) with Lemma 1, we have (10).
ϒ1 + C̄T

i C̄i ? ? ?

ϒ2 ϒ3 ? ?

ϒ4 ε1ϒ4 ϒ9 ?

ϒ4 + ϒ5 ε1ϒ4 + ϒ6 ϒ7 He {ϒ7}

 < 0, (10)

where ϒ9 = −γ
2I + D̄Ti D̄i.

From (3a), we have

[
Āi −I B̄i B̄f ,i

]
x̄
˙̄x
w

fi(xp)

 = 0, ∀i ∈ 6. (11)

We obtain the following inequality by (10) and (11):
C̄T
i C̄i + λPi ? ? ?

Pi 0 ? ?

D̄Ti C̄i 0 −γ 2I + D̄Ti D̄i ?
0 0 0 0



+He




STi
ε1STi
0

ε2Uf T T2,i

[Āi −I B̄i B̄f ,i]
 < 0. (12)

Then, we apply Lemma 2 to (12) to get

˙̄xTPix̄ + x̄TPi ˙̄x < −λx̄TPix̄ − zT z+ γ 2wTw

and thus,

V̇i(t) < −λVi(t)− zT (t)z(t)+ γ 2wT (t)w(t). (13)

Moreover, we can derive the following equation from (3b)
and

[
−I R̄1,ij R̄2,ij

]x̄(t+k )x̄(tk )
w(tk )

 = 0, ∀i ∈ 6. (14)

From (6) and (14) with Lemma 2, we have

Vj(t
+

k )− µVi(tk ) ≤ γ
2wT (tk )w(tk ). (15)

at every impulse time tk .
According to [39], [43], (13) and (15) for all i, j ∈ 6

are sufficient to guarantee the globally uniformly asymptotic
stability of the closed-loop system (3) with w = 0. From
now on, we will show the closed-loop system (3) satisfies the
weighted mixed L2/l2-gain condition (4) under zero initial
condition. Given the switching signal σ , t1 < · · · < tk
(k > 1) represent the switching instant of σ over the interval
(0, t). Integrating (13) for t ∈

[
t+k , t

)
yields

Vσ (t) ≤ Vσ (t
+

k )e
−λ
(
t−t+k

)
−

∫ t

tk
e−λ(t−τ)χ (τ )dτ, (16)

where χ (τ ) = hz(τ )−γ 2hw(τ ), hx(·) := x(·)T x(·). According
to (15) and (16), we have

Vσ (t) ≤
(
µVσ (tk )+ γ 2hw(tk )

)
e−λ(t−tk )

−

∫ t

tk
e−λ(t−τ)χ (τ )dτ

≤ µ
(
(Vσ (tk−1)e−λ(tk−tk−1)

−

∫ tk

tk−1
e−λ(tk−τ)χ (τ )dτ

)
e−λ(t−tk )

−

∫ t

tk
e−λ(t−τ)χ (τ )dτ + γ 2hw(tk )e−λ(t−tk )

...

≤ µke−λtVσ (0)− µk
∫ t1

0
e−λ(t−τ)χ (τ )dτ

− · · · − µ0
∫ t

tk
e−λ(t−τ)χ (τ )dτ

+γ 2
(
µk−1hw(t1)e−λ(t−t1) + · · ·

+hw(tk )e−λ(t−tk )
)

= eNσ (0,t) lnµe−λtVσ (0)

−

∫ t

0
eNσ (τ,t) lnµe−λ(t−τ)χ (τ )dτ

+γ 2
∑

tk∈(0,t)

eNσ
(
t+k ,t

)
lnµe−λ(t−tk )hw(tk ). (17)

By using the fact Vσ (0) = 0 and multiplying both side of
(17) by e−Nσ (0,t) lnµ, we have

e−Nσ (0,t) lnµVσ (t) ≤ −
∫ t

0
e−λ(t−τ)−Nσ (0,τ ) lnµχ (τ )dτ

+γ 2
∑

tk∈(0,t)

e−λ(t−tk )−Nσ (0,tk ) lnµhw(tk ).
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As V (t) ≥ 0 ∀ t > 0, we have the following from the above
inequality:∫ t

0
e−λ(t−τ)−Nσ (0,τ ) lnµχ (τ )dτ

≤ γ 2
∑

tk∈(0,t)

e−λ(t−tk )−Nσ (0,tk ) lnµhw(tk ). (18)

BecauseNσ (0, τ ) ≤ τ/τ ∗a and τa > τ ∗a = lnµ/λ, we have
Nσ (0, τ ) lnµ ≤ λτ [43], [44]. Thus, it follows from (18) that∫ t

0
e−λ(t−τ)−λτhz(τ )dτ ≤ γ 2

{∫ t

0
e−λ(t−τ)hw(τ )dτ

+

∑
tk∈(0,t)

e−λ(t−tk )hw(tk )
}
. (19)

By integrating (19) from t = 0 to∞, one can have∫
∞

0

∫ t

0
e−λ(t−τ)−λτhz(τ )dτdt

≤

∫
∞

0
γ 2
{∫ t

0
e−λ(t−τ)hw(τ )dτ

+

∑
tk∈(0,t)

e−λ(t−tk )hw(tk )
}
dt

⇔

∫
∞

0
e−λτhz(τ )

(∫
∞

τ

e−λ(t−τ)dt
)
dτ

≤ γ 2
{∫

∞

0
hw(τ )

(∫
∞

τ

e−λ(t−τ)dt
)
dτ

+

∑
tk∈(0,∞)

hw(tk )
(∫
∞

tk
e−λ(t−tk )dt

)}
⇔

1
λ

∫
∞

0
e−λτhz(τ )dτ

≤
γ 2

λ

{∫
∞

0
hw(τ )dτ +

∑
tk∈(0,∞)

hw(tk )
}
.

Finally, we have∫
∞

0
e−λτhz(τ )dτ

≤ γ 2
{∫

∞

0
hw(τ )dτ +

∑
tk∈(0,∞)

hw(tk )
}
,

implying that the inequality (4) holds. This completes the
proof. �
Theorem 1 presents the LMI-based L2-gain analysis for

impulsive switched nonlinear uncertain systems for the first
time. The introduction of the additional matrix variable Si
based on Lemma 2 enables the LMI-based design of dynamic
output feedback controller parameters Ac,σ , Bc,σ , Cc,σ , c,σ ,
and reset control parameters R1,ij, R2,ij. In other words, the
use of the variable allows the multiple Lyapunov matrices Pσ
to be multiplied by the control parameters to avoid the occur-
rence of BMI terms, and the LMI-based sufficient conditions
for the controller design scheme can be induced. Finally,
we present the controller synthesis to be achieved as shown
in the next subsection.

B. ROBUST SWITCHING RESET CONTROLLER DESIGN
In this subsection, a robust reset controller design scheme
is proposed for switched nonlinear uncertain systems. The
LMI-based design conditions and procedures to obtain the
controller parameters are provided through the following
theorem.
Theorem 2: For given scalars γ > 0, β > 0, ρ > 0,

µ ≥ 1, ν ≥ 1, 1 > λ > 0, ε1, and ε2, the closed-loop system
(3) is GUAS for every switching signal σ with the ADT
τa ≥ ln (µ)/λ and achieves a weighted mixed L2/l2-gain
(4) under zero initial condition if there exist matrices P̂i >
0, Xi,Yi,Zi, Âc,i, B̂c,i, Ĉc,i, D̂c,i, R̂1,ij, R̂2,ij with appropriate
dimensions such that ∀i, j ∈ 6 ×6, i 6= j:

� < 0, (20)P̂j −2
T
2,j −22,j ? ?

4T
1,ij −µP̂i ?

4T
2,ij 0 −γ 2I

 ≤ 0 (21)

where � = {�kl}, k, l ∈ {1, 2, . . . , 8} is the symmetric
matrix whose components are given as follows:

�11 = 21,i +2
T
1,i + λP̂i, �21 = P̂i −2T

2,i + ε121,i,

�22 = −ε1(22,i +2
T
2,i), �31 = 2

T
3,i, �32 = ε12

T
3,i,

�33 = −γ
2 I , �41 = ε2Uf21,i +24,i,

�42 = −ε2Uf22,i + ε124,i, �43 = ε2Uf2T
3,i,

�44 = νiI + ε2(Uf2T
4,i +24,iUT

f ), �51 = 25,i,

�53 = 26,i, �55 = −I , �61 = 27,i,

�66 = −(νβ)−1I , �71 = 28,i, �72 = ε128,i,

�74 = ε228,iUT
f , �77 = −ρ

−1I ,

�81 = 29,i, �88 = −ρI ,

21,i =

[
A0,iXi + Bu,iĈc,i A0,i + Bu,iD̂c,iCy,i

Âc,i YiA0,i + B̂c,iCy,i

]
,

22,i =

[
Xi I
Zi Yi

]
, 23,i =

[
Bw,i + Bu,iD̂c,iDyw,i
YiBw,i + B̂c,iDyw,i

]
,

24,i =

[
BTf ,i B

T
f ,iY

T
i

]
,

25,i =
[
Cz,iXi + Dzu,iĈc,i Cz,i + Dzu,iD̂c,iCy,i

]
,

26,i =
[
Dzw,i + Dzu,iD̂c,iDyw,i

]
, 27,i =

[
Xi I

]
,

28,i =
[
ET1,i E

T
1,iY

T ] , 29,i =
[
F1,iXi F1,i

]
,

41,ij =

[
Xi I
R̂2,ij Yj + R̂1,ijCy,i

]
, 42,ij =

[
0

R̂2,ijDyw,i

]
.

Furthermore, the controller’s parameters can be obtained
using the following steps ∀i, j ∈ 6 ×6, i 6= j:
Step 1: Find Âc,i, B̂c,i, Ĉc,i, D̂c,i,Xi,Yi and Zi such that

(20) and (21).
Step 2: Obtain Mi and Ni from the relation that MiNT

i =

Zi − XiYi.
Step 3: Calculate the controller’s parameters as follows:[
Ac,i Bc,i
Cc,i Dc,i

]
=

[
Ni YiBu,i
0 I

]−1 [Âc,i − YiAc,iXi B̂c,i
Ĉc,i D̂c,i

]
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×

[
MT
i 0

Cy,iXi I

]−1
, (22)

R1,ij = N−1j R̂1,ij,

R2,ij = N−1j

(
R̂2,ij − YjXi − R̂1,ijCy,iXi

)
M−Ti .

Proof: Please see the Appendix for the proof. �
The above LMI conditions were able to be obtained by

means of the introduction of additional matrix variables Si
in Theorem 1 and the newly proposed change of variables
in reset law R2,ij. For the details on the derivation of the
LMI-based design condition of Theorem 2, see the proof in
Appendix.
Remark 3: Since, for given β, ρ, µ, ν, ε1, ε2 and λ, the

conditions (20) and (21) are formulated in terms of a set of
LMIs, which are not only over the matrix variables but also
over the scalar γ 2, letting γ̄ = γ 2, γ can be minimized by
the following optimization problem:

minimize γ̄

subject to (20)− (21). (23)

IV. NUMERICAL EXAMPLES
We demonstrate the effectiveness of the controller proposed
in this paper through two examples in this section. In exam-
ple 1, we show the stability of the switched system by the
switching reset controller and discuss the effect according
to uncertainty. In example 2 and example 3, we present
the effectiveness of the proposed method by comparing the
results when the reset control scheme is applied and it is not
and by applying it to a nonlinear switched DC motor system
as a practical application, respectively.

A. EXAMPLE 1
We consider the following uncertain nonlinear switched sys-
tem (1), modified from the example in [32] and [45]:

A0,1 =

 0.5108 −0.9147 −0.2
−0.6563 0.1798 0.113
0.881 −0.7841 0.1

 , E1,1 =
 0
0
θ1


F1,1 =

[
1 0 0

]
, 11 = sin (5t), Bf ,1 =

 0
0

0.05

 ,
Bw,1 =

0.10560.1284
0.1

 , Bu,1 =
0.32571.2963

2.43

 ,
Cz,1 =

[
0.01 0.06 0.03

]
, Cy,1 =

[
−5 0.2 0.5

]
,

Dzw,1 = Dzu,1 = 0, Dyw,1 = 0.1,

A0,2 =

 −0.125 −0.9833 −0.34−0.5305 0.3848 0.58
1.0306 0.6521 0.1

 , E1,2 =
 0
0
θ2


F1,2 =

[
1 0 0

]
, 12 = sin (4t), Bf ,2 =

 0
0

0.04

 ,

FIGURE 2. Switching signal σ (t).

Bw,2 =

0.74250.1436
0.1

 , Bu,2 =
1.09920.6532

3.5

 ,
Cz,2 =

[
0.01 0.02 0.05

]
, Cy,2 =

[
−6 6 −1

]
,

Dzw,2 = Dzu,2 = 0, Dyw,2 = 0.1

where θi for i ∈ {1, 2} are unknown constants used for
discussions and fi(xp) = sin (3xp1) is the nonlinear function
with β = 1.
We select the following parameters λ = 0.1, ε1 = 0.1,

ε2 = −0.5, ν = 0.05, ρ = 5, and µ = 1.5. Then, given
θ1 = 0.05 and θ2 = 0.04, the reset controller (2) is designed
based on Theorem 2 as follows:

Ac,1 =

 −17.8577 1.9928 3.4230× 10−4

36.8266 −5.0967 4.9544× 10−4

−446.8741 24.1520 −18.5694

 ,
Bc,1 =

[
59.6176 −119.4748 1.4951× 103

]T
,

Cc,1 =
[
1.2491 −0.1482 −2.5136× 10−5

]
,

Dc,1 = −4.2254,

R1,12 =
[
−0.2859 5.7040 240.4930

]T
,

R2,12 =

 1.7170 −0.0196 8.6202× 10−6

−1.1190 −0.4621 −4.3634× 10−5

−80.0655 9.9483 −0.0014

 ,
Ac,2 =

 −5.834 51.8977 0.0440
2.4474 −26.0976 −0.0088
−41.8892 420.4544 −15.6989

 ,
Bc,2 =

[
120.8324 −59.2046 1.2263× 103

]T
,

Cc,2 =
[
0.1627 −1.6522 −0.0014

]
,

Dc,2 = −3.8194,

R1,21 =
[
0.2883 10.4825 −20.4461

]T
,

R2,21 =

 0.6048 0.1089 5.5572× 10−5

0.1462 2.7527 0.0024
−0.4840 5.9095 0.0329

 .
We give a time-domain simulation to verify the controller

parameters obtained by the LMI conditions and procedure in
Theorem 2. The switching signals were randomly generated
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FIGURE 3. Trajectory of the controlled output z(t) in Example 1.

FIGURE 4. Trajectory of the control input u(t) in Example 1.

TABLE 2. γmin according to various µ in Example 1.

and switching occurs twenty-two times for seven seconds
(Fig. 2). The ADT of the generated switching signals was
calculated by τa = 7/22 = 0.3181. Therefore, one can
see that the ADT condition in [44] τa ≥ τ ?a =

lnµ
λ
=

4.0547 is satisfied. For the simulation, the disturbancew(t) =
0.1 sin(0.3t) was applied and the initial condition was set
as xp(0) = [1, 0, 0]T and xc(0) = [0, 0, 0]T . Fig. 3 and 4
show the simulation results of the controlled output and
control input trajectories, respectively. It shows that the pro-
posed controller designed based on the LMI conditions and
procedure in Theorem 2 effectively stabilizes the nonlinear
switched system with uncertainty.

Moreover, the minimum disturbance attenuation level γmin
from various µ can be obtained based on the optimization
problem (23) using Theorem 2. (Table 2) It can be seen that
as the value µ increases, the attenuation level γmin decreases.
In other words, by allowing a large rate of change at the
impulsive instants, it provides better performance against
disturbance. From Fig. 5, we can see that the attenuation
level gradually increases as the magnitude of the uncertainty

FIGURE 5. γmin according to various θ1 and θ2 with µ = 2.5 in Example 1.

increases. It means that the uncertainty degrades the robust-
ness of the controller against disturbance.

B. EXAMPLE 2
Consider the following uncertain nonlinear switched
system (1):

A0,1 =
[
1 1
0 0.5

]
, E1,1 =

[
0
θ1

]
, F1,1 =

[
1 0
]
,

11 = sin (5t), Bf ,1 =
[

0
−0.6

]
, Bw,1 =

[
2.1
−1.1

]
,

Bu,1 =
[
1.6
2

]
, Cz,1 =

[
0.5 0.2

]
, Cy,1 =

[
−3 0.2

]
,

Dzw,1 = Dzu,1 = 0, Dyw,1 = 0.1,

A0,2 =
[
0.2 1
0.5 0.2

]
, E1,2 =

[
0
θ2

]
, F1,2 =

[
1 0
]
,

12 = sin (4t), Bf ,2 =
[
0
0.2

]
, Bw,2 =

[
1.5
1.2

]
,

Bu,2 =
[
1.8
1

]
, Cz,2 =

[
−0.1 0.1

]
, Cy,2 =

[
−2 0.7

]
,

Dzw,2 = Dzu,2 = 0, Dyw,2 = 0.1

where the unknown system uncertainty parameters are θ1 =
0.1 and θ2 = 0.08. The nonlinear term is defined as fi(xp) =
sin (3xp1) with β = 1.
We chose the following parameters λ = 0.02, ε1 = 0.1,

ε2 = −0.01, ν = 0.1, ρ = 5 and µ = 2.15 for obtaining
controller’s parameters using (23). Based on Theorem 2, the
reset controller (2) is obtained as

Ac,1 =
[
−12.3626 −0.1065
488.2267 −15.9618

]
, Bc,1 =

[
1.1579
−56.2608

]
,

Cc,1 =
[
12.1417 0.2024

]
, Dc,1 = −0.0571,

R1,12 =
[
0.2647
0.0327

]
, R2,12 =

[
−0.8384 −0.0075
1.2914 0.0075

]
,

Ac,2 =
[
1.0068 0.4631
0.1198 −15.7937

]
, Bc,2 =

[
0.7099
7.0875

]
,

Cc,2 =
[
4.4337 0.2830

]
, Dc,2 = 1.5753,
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FIGURE 6. Trajectories of the controlled output z(t) when the reset
control is applied and when it is not applied.

FIGURE 7. Trajectories of the control input u(t) when the reset control is
applied and when it is not applied.

R1,21 =
[
0.1950
1.7727

]
, R2,21 =

[
0.2346 0.0065
−0.5697 −0.0178

]
.

To show the effectiveness of the proposed controller,
we compare the case where the reset control is applied with
the case where it is not applied using a time-domain simula-
tion. For the simulation, the switching signal σ (t) is applied
in the same way as in Example 1, which satisfies the ADT
condition for the selected parameters. As in Example 1, the
disturbance w(t) = 0.1 sin(0.3t) was applied during the sim-
ulation. The initial condition was set as xp(0) = [1, 0]T and
xc(0) = [0, 0]T . Fig. 6 and Fig. 7 show the controlled output
and control input trajectories for the two cases, respectively.
The simulation results show that the proposed reset controller
effectively reduced the transient behavior of the controlled
outputs compared to the conventional switching controller
when the switched system experience impulsive behavior in
its controlled output by switching. In addition, the L2 gains
in the presence or absence of a reset action are analytically
calculated as 1.7086 and 4.3374, respectively. That is, the
L2 gain in the case where the controller is applied is only
39.3934% of that in the case where it is not applied. This
shows that the proposed controller effectively handles the
disturbance.

FIGURE 8. Nonlinear switched motor model.

FIGURE 9. Trajectory of the controlled output z(t) in Example 3.

FIGURE 10. Trajectory of the control input u(t) in Example 3.

C. EXAMPLE 3
Let us consider the following nonlinear switched DC motor
system (Fig. 8) [46], [47]:

ẋp =

[
0 1
0 −Be,σ

Je,σ

]
xp +

[
0
−1

]
fσ (xp)+

[
0
Am
Je,σ

]
u

where xp = [θT , θ̇T ]T is the plant state and Am is the
actuator gain. Je,σ andBe,σ are the total moment of inertia and
equivalent damping term, respectively, which are switched
by the switching sigmal σ . The friction parameter fσ (xp) is
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expressed as the following nonlinear function:

fσ (xp) = 0.0174sgn(xp2)+ 0.0087e−
|xp2|
0.064 sgn(xp2).

Then, the system can be expressed in the uncertain nonlinear
switched system (1) as follows:

A0,1 =
[
0 1
0 −34.3333

]
, E1,1 =

[
0
θ1

]
, F1,1 =

[
1 0
]
,

11 = sin (5t), Bf ,1 =
[
0
−1

]
, Bw,1 =

[
0.1
−0.3

]
,

Bu,1 =
[

0
61.3038

]
, Cz,1 =

[
−0.5 0.3

]
, Cy,1 =

[
1 0
]
,

Dzw,1 = Dzu,1 = 0, Dyw,1 = 0.1,

A0,2 =
[
0 1
0 −51.9444

]
, E1,2 =

[
0
θ2

]
, F1,2 =

[
1 0
]
,

12 = sin (4t), Bf ,2 =
[
0
−1

]
, Bw,2 =

[
−0.2
0.1

]
,

Bu,2 =
[

0
71.5212

]
, Cz,2 =

[
0.6 −0.4

]
, Cy,2 =

[
1 0
]
,

Dzw,2 = Dzu,2 = 0, Dyw,2 = 0.1

where the switching parameters of the motor system are
Je,1 = 0.0021, Be,1 = 0.0721, Je,2 = 0.0018, and Be,2 =
0.0935. The unknown system uncertainty parameters are
θ1 = 0.1 and θ2 = 0.08. We chose the parameters λ = 0.02,
ε1 = 0.1, ε2 = −0.01, β = 3, ν = 0.1, ρ = 5 and µ = 2 to
design the controller.

Through the scheme in Theorem 2, the controller (2) is
designed as

Ac,1 =
[
−8.4414 −3.3876
6.9309 0.3367

]
, Bc,1 =

[
−0.7432
1.3880

]
,

Cc,1 =
[
6.3852 2.8766

]
, Dc,1 = 0.0312,

R1,12 =
[
−0.0029
6.1547

]
, R2,12 =

[
0.1724 0.0722
290.1550 163.7795

]
,

Ac,2 =
[
−22.8664 −0.0043
150.1907 −19.8642

]
, Bc,2 =

[
−1.6969
51.7697

]
,

Cc,2 =
[
17.0229 0.0056

]
, Dc,2 = −0.9759,

R1,21 =
[
−0.3172
0.6477

]
, R2,21 =

[
0.5708 2.0744× 10−4

5.1779 0.0023

]
.

For the time-domain simulation with the obtained controller,
the switching signal σ (t) and the disturbance w(t) are applied
in the same way as in example 1. The initial condition was set
as xp(0) = [1, 0]T and xc(0) = [0, 0]T . Fig. 9 and 10 show the
simulation results of the controlled output and control input
trajectories, respectively. It shows that the proposed controller
designed based on the LMI conditions and procedure in
Theorem 2 effectively stabilizes the nonlinear switchedmotor
system with uncertainty.

V. CONCLUSION
This paper has proposed a design methodology of the output
feedback robust switching reset controller for switched non-
linear uncertain systems. The proposed controller has a reset
action every switching instant, and the measured output has



STi Ā0,i + Ā
T
0,iSi + λPi ? ? ? ? ?

Pi − Si + ε1STi Ā0,i −ε1(Si + STi ) ? ? ? ?

B̄Ti Si ε1B̄Ti Si −γ 2I ? ? ?

ε2Uf T T2,iĀ0,1 + B̄
T
i Si −ε2Uf T

T
2,i + ε1B̄

T
i Si ε2Uf T

T
2,iB̄i −νI + ε28 ? ?

C̄i 0 D̄i 0 −I ?

Up 0 0 0 0 −(νβ)−1I



+He





STi Ē1,i
ε1STi Ē1,i

0
ε2Uf T T2,iĒ1,i

0
0


[
F̄1,i 0 0 0 0 0

]

< 0, (24)

8 = Uf T T2,iB̄i + B̄
T
i T2,iU

T
f (25)

STi Ā0,i + Ā
T
0,iSi + λPi ? ? ? ? ? ? ?

Pi − Si + ε1STi Ā0,i −ε1(Si + STi ) ? ? ? ? ? ?

B̄Ti Si ε1B̄Ti Si −γ 2I ? ? ? ? ?

ε2Uf T T2,iĀ0,1 + B̄
T
i Si −ε2Uf T

T
2,i + ε1B̄

T
i Si ε2Uf T

T
2,iB̄i −νI + ε28 ? ? ? ?

C̄i 0 D̄i 0 −I ? ? ?

Up 0 0 0 0 −(νβ)−1I ? ?

ĒT1,iSi ε1ĒT1,iSi 0 ε2ĒT1,iT2,iU
T
f 0 0 −ρ−1I

F̄1,i 0 0 0 0 0 0 ρI


< 0, (26)
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been used for resetting the controller state, whereas the previ-
ous studies did not use the measured output in the reset law.
Because the measured output has been affected by the dis-
turbance, the controller’s reset action has been also affected
by disturbance at switching instants. To take into account the
discrete disturbance, the weighted mixedL2/l2-gain has been
introduced. Due to the controller’s reset action, the closed-
loop systemwas formulated as the nonlinear uncertain impul-
sive switched system. Thus, we first provide the L2-gain
analysis for the nonlinear uncertain impulsive switched sys-
tems using the weighted mixed L2/l2-gain. Then, based on
the analysis, an LMI-based controller design methodology
was proposed, enabling the controller’s parameters to be opti-
mized using convex optimization methods. The two numer-
ical examples demonstrated the feasibility of the proposed
design method and the fact that the proposed switching reset
controller outperforms the conventional switching controller.

In real applications, delays inevitably occur and become
one of the factors that degrade the stability and performance
of the system. Furthermore, the complexity and interconnec-
tions of controlled systems continue to increase. Therefore,
research for the controller design scheme for multi-agent
switched systems having system or measurement delays is
still an open problem and would be an interesting research
direction.

APPENDIX
Before providing the proof of Theorem 2, we present the
following lemma that are necessary for the proof.
Lemma 3: [48] Given constant matrices M, N , Y; posi-

tive semi-definite matrix R with appropriate dimensions and
Y = YT , then for any1 satisfying1T1 ≤ R, the following
inequality holds:

Y +M1N +N T1TMT < 0

if and only if there exists a constant ρ > 0 such that:

Y + νMMT
+ ρ−1N TRN < 0.

Proof of Theorem 2: Considering Ai = A0,i + E1,i1F1,i,
(5) can be rewritten as (24), shown at the bottom of the
previous page. By applying Lemma 3 and Schur comple-
ments [41], we can obtain (26), as shown at the bottom of
the previous page.

Let us define auxiliary matrix Si ∈ R(n+nc)×(n+nc) and

T1,i =
[
Xi I
MT
i 0

]
, T2,i =

[
I Y Ti
0 NT

i

]
, ∀i ∈ 6 (27)

such that SiT1,i = T2,i and MiNT
i = ZTi −

XTi Y
T
i . Then, pre- and post-multiplying (5) by a matrix

diag{T T1,i,T
T
1,i, I , I , I , I , I , I } and its transpose, one has by

congruent transformation

T T1,iS
T
i Ā0,iT1,i = T T2,iĀ0,iT1,i

=

[
A0,iXi + Bu,iĈc,i A0,i + Bu,iD̂c,iCy,i

Âc,i YiA0,i + B̂c,iCy,i

]
,

T T1,iPiT1,i = P̂i, T T1,iS
T
i T1,i = T T2,iT1,i =

[
Xi I
Zi Yi

]
,

BTcl,iSiT1,i = BTcl,iT2,i

=

[
BTw,i + D

T
yw,iD̂

T
c,iB

T
u,i B

T
w,iY

T
i + D

T
yw,iB̂

T
c,i

]
,

B̄Tf ,iSiT1,i = B̄Tf ,iT2,i =
[
BTf ,i B

T
f ,iY

T
i

]
,

C̄iT1,i =
[
Cz,iXi + Dzu,iĈc,i Cz,i + Dzu,iD̂c,iCy,i

]
,

UpT1,i =
[
Xi I

]
,

ĒT1,iSiT
T
1,i = ĒT1,iT

T
2,i =

[
ET1,i E

T
1,iY

T
i

]
,

F̄1,iT1,i =
[
F1,iXi F1,i

]
,

where

Âc,i = Yi
(
Ai + Bu,iDc,iCy,i

)
Xi + NiBc,iCy,iXi

+ YiBu,iCc,iMT
i + NiAc,iM

T
i , (28a)

B̂c,i = YiBu,iDc,i + NiBc,i, (28b)

Ĉc,i = Dc,iCy,iXi + Cc,iMT
i , (28c)

D̂c,i = Dc,i. (28d)

Thus, we obtain (20) and P̂i > 0 for all i ∈ 6. We multiply
(6) to the right by a matrix diag{T1,j,T1,i, I }, to the left by its
transpose. Then, the following equations can be obtained as

T T1,jS
T
j R̄1,ijT1,i = T T2,jR̄1,ijT1,i

=

[
Xi I
R̂2,ij Yj + R̂1,ijCy,i

]
,

T T1,jS
T
j R̄2,ij =

[
0

R̂1,ijDyw,i

]
,

where

R̂1,ij = NjR1,ij, (29a)

R̂2,ij = YjXi + R̂1,ijCy,iXi + NjR2,ijMT
i . (29b)

Then, the condition (21) is deduced. Finally, the reset
control law (22) can be obtained by using relations in
(28) and (29). �
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