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ABSTRACT In printed circuit board (PCB) defect detection, it is difficult to collect defect samples, and
the detection effect is poor due to the lack of data. On the basis of the few-shot learning method, a few-shot
PCB defect detectionmodel is proposed. This model introduces feature enhancement module andmulti-scale
fusion module. The feature enhancement module based on the improved convolution block attention module
(CBAM) can highlight the key areas of the received feature maps and suppress the interference of useless
information. Aiming at the small size of PCB defects, a multi-scale feature fusion strategy is proposed. It can
extract multi-scale feature maps of PCB and fuse them into a high-quality feature map containing different
scale information, which can improve the detection precision of the model for small object defects. A large
number of experiments on PCB dataset show that our few-shot PCB defect detection model outperforms
state-of-the-art methods under different shot settings (k=1,2,3,5,10,30). Notably, the proposed model can
take into account both detection efficiency and precision, whichmeans it has high practical application value.

INDEX TERMS PCB defect detection, few-shot learning, feature enhancement, multi-scale fusion.

I. INTRODUCTION
As the foundation of the modern information industry, PCB
is widely used in various high-end equipment manufacturing
fields such as computers, communication electronic equip-
ment and military systems [1], [2]. As an important carrier
of electrical connection and support, the quality of PCB has
great influence on the stability and safety of various high-end
equipment products [3]. Therefore, it is particularly important
to study the high-quality detection of PCB surface defects and
to eliminate them in time.

In the field of the surface defect detection, from the original
manual visual method to the traditional machine learning
method, the detection effect has made continuous progress
[4], [5]. However, the detection precision still cannot meet
the needs of modern industrial development. Deep learning
has brought unprecedented advances in the surface defect
detection [6], and convolutional neural network (CNN) is
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widely used. Various object detection algorithms based on
deep learning, such as SSD [7], YOLO [8], Region with CNN
features (R-CNN) [9], Fast R-CNN [10], Faster R-CNN [11],
etc., have improved the surface defect detection effect to a
higher level. In recent years, there are also many excellent
models to further improve the precision of object detection
algorithm. For example, Zhao et al. [12] proposed an object
detection method based on the Larger Scale ‘You Only Look
Once’ Version 4 (LS-YOLOv4) algorithm for detecting the
insulators and drop fuses. Zhang et al [13] proposed a novel
backbone network named Deep-IRTarget to solve the prob-
lems of poor texture information, low resolution and high
noise levels in infrared images. This framework superimposes
features in frequency domain and spatial domain to construct
Dual-domain features. They proposed a Resource Allocation
model for Features (RAF) to integrate the features efficiently.
This network has achieved remarkable results in infrared
target detection and further expanded the application range
of object detection algorithms. These algorithms have laid a
solid foundation for the development of defect detection.
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These surface defect detection models based on deep
learning often require a large amount of labeled data for
training. However, the replacement cycle of PCB production
line is short, and the number of defect samples is small.
Traditional object detection models often have problems such
as over-fitting or under-fitting, which cannot achieve better
detection accuracy. The limited training data brings great
challenges to defect detection, and also limits the promo-
tion of defect detection methods. With the development and
progress of industry, the demand for training high-precision
models with limited samples is growing. The few-shot prob-
lem has received great attention in the field of defect detec-
tion. Therefore, in order to solve the problem of lack of PCB
defect samples and promote the development of industrial
defect detection, a few-shot PCB surface defect detection
algorithm is proposed in this article.

Meta-learning has provided a very good solution for few-
shot surface defect detection [14], [15]. By designing an
excellent meta-learner, the meta-learning method enables the
model to get a great detection effect after a few steps of
updating on a very small amount of data. This model has a
strong generalization ability to quickly adapt to new tasks.
In order to solve the problem of few-shot object detection,
Kang et al. [16] and Yan et al. [17]. designed a meta-learner
to reweight the feature maps of the novel classes, which can
improve the prediction precision for few-shot data. The meta-
learning Few-Shot Re-Weighting model (FSRW) proposed
by Kang et al. [16] is based on YOLOv2 [18]. This model is
composed of a meta-feature extraction module, a reweight-
ing module, and a detection module. The feature extractor
uses a darknet-19 network to extract the meta-features of
the query images. The reweighting module is composed of a
lightweight CNN network. The input of reweighting module
is the support images and the corresponding location mask,
and the output of this module is reweighting vectors which
are generated by the support feature maps. The vectors are
used to reweight the features of the query images. Finally, the
detection module uses the reweighted features of the query
images to predict classes and bounding boxes.

Perez-Rua et al. [19] proposed a meta-learning method of
center point prediction based on the structure and ideas of
CenterNet [20], which can realize incremental learning. How-
ever, in the process of PCB defect detection, most methods do
not have a strong ability to mine the feature information of
key areas, which leads to low detection precision in few-shot
defect detection. At the same time, as shown in Fig. 1, for
various types of PCB defects, due to the particularity of this
products, their defects characteristics are small and their sizes
vary, which make it difficult for the model to capture defects
and judge the types of defects in the detection process.

Aiming at the above problems, we improve few-shot detec-
tion model FSRW of Kang et al. [16] with a few-shot PCB
surface defect detection model based on feature enhance-
ment module and multi-scale fusion module (FPFM). The
improved model adopts YOLOv3 [21] as the backbone net-
work, and the feature extractor uses the DarkNet-53 network.

Experiments on PCB dataset show that when the number of
samples is small, our model has higher detection precision
than the original model.

The main contributions of this article are as follows:

1) We apply few-shot learning to the PCB surface defect
detection tasks, and design a few-shot PCB surface
defect detection model. The model can fully mine the
information of the samples themselves, which can solve
the problem of poor detection precision caused by few
PCB defect samples in the actual industrial surface
defect detection tasks.

2) The model introduces a feature enhancement mod-
ule. By giving different weights to PCB feature
maps, this module can highlight the important defect
information in the feature maps, suppress the interfer-
ence of irrelevant information and enhance the feature
discrimination.

3) Considering the small scale of PCB defects, a multi-
scale feature fusion module is proposed. This module
is used to extract PCB features of multiple scales and
fuse them into a feature map containing information of
different scales, which improves the recognition ability
of small surface defect features.

This article is organized as follows. In the Section 2,
we introduced some existing research results of PCB defect
detection and few-shot problems. Then, we propose our own
few-shot model in the Section 3, and analyze the model
specifically. We make a lot of experiments to verify the
effectiveness of the model in the Section 4. In the Section 5,
we make a summary for our work.

II. RELATED WORK
In this section, we will introduce the related work about PCB
surface detection and few-shot problems.

A. PCB SURFACE DEFECT DETECTION
PCB surface defect detection has always been a challenging
task, and the detection method based on deep learning has
great development potential. In view of the different sizes
of the defective PCB solder paste, Park et al. [23] improved
the traditional convolution neural network. They proposed
a double-layer defect detection point network which could
detect defects at both the micro and macro semantic levels.
Wu et al. [24] proposed a method to identify solder joint
defects using Mask R-CNN, which could simultaneously
realize the classification, location and segmentation of solder
joint defects. Aiming at the problem of high false detection
rate and low efficiency of PCB defect detection, Ding et al.
[25] proposed a tiny defect detection network (TDD-Net) and
achieved good detection results on the public PCB datasets.
Then, in order to further improve the efficiency and precision
of PCB detection, Adibhatla et al. [26] used YOLOv5 large
to detect the defects in PCB, which optimized the detection
manpower and time. Their work laid a foundation for PCB
defect detection, and also promoted the follow-up research.
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However, these models require a great number of samples
to train. In industry, the number of PCB defect samples is
insufficient. Therefore, it is very important to study the few-
shot PCB surface defect detection.

B. FEW-SHOT LEARNING
The goal of few-shot learning is to train the network with a
very small number of samples to obtain good performance
[27], this method is conducive to solving the problem of the
few PCB defect samples. In recent years, few-shot learning
methods based on meta-learning have achieved remarkable
results. Its focus is that the network can quickly learn when
the label data are limited and can be generalized to other new
tasks. Specifically, 1) based on fine-tuning, it aims to use
a small number of samples to fine-tune these initialization
parameters to achieve better results. Finn et al. [28] proposed
Model-agnostic meta-learning (MAML) based on the opti-
mizer. He used a brand-new weight optimization method to
update the trained initial weights with a small amount of data,
which could fit the new data features quickly. 2) Based on a
recurrent neural network, it uses external memory to accumu-
late prior knowledge and then uses it in new tasks to complete
classification. Santoro et al. [29] proposed a one-shot learning
with memory-augmented neural networks (MANN) which
skillfully applied the neural Turing machine to the few-shot
learning task. He designed an external memory module to
save the information of the feature maps and combined the
meta-learning idea to optimize the neural Turing machine to
achieve few-shot classification and regression. 3) Based on
the metric, it means learning an embedding function which
canmap the input images into a new space. The images can be
classified by similarity measurement. Li et al. [30] proposed
an adaptive edge loss function for few-shot learning. He used
the semantic information of the data to describe the distance
of tasks or categories, so as to achieve the purpose of opti-
mizing the boundary distance. In addition, the graph neural
network has a significant effect in few-shot learning methods.
Zhang et al. [31] proposed a feature distribution transforma-
tion to solve the problem of feature distribution mismatch
in graph based few-shot learning. By calculating the optimal
class allocation matrix, the classification precision has been
further improved. This method further promotes the devel-
opment of few-shot learning. However, most of these work
use few-shot learning to complete classification tasks. Our
work will focus on the application of few-shot learning in
PCB defect detection.

C. FEW-SHOT OBJECT DETECTION
PCB surface defect detection includes defect classification
and defect object detection and we focus on the latter in this
article. Therefore, learning about few-shot object detection
is conducive to our research. A Low-Shot Transfer Detec-
tor (LSTD) [32] and Representative-Based Metric Learning
(RepMet) [33] adopt a general migration framework to adapt
to few-shot scenes through pre-training detection models.
Meta R-CNN [17] and Few-Shot Object Detection and

FIGURE 1. Various defect types of PCB: (a) Missing hole, (b) Mouse bite,
(c) Open circuit, (d) Short, (e) Spur, (f) Spurious copper.

Viewpoint Estimation (FSDet) [38] add basic detectors to
perform detection processes similar to Faster R-CNN to solve
the few-shot problems. Kang et al. [16] learned the base class
meta-features based on the meta-learning method and used
the reweighting method to reweight the features to adapt
to the novel classes. However, the above methods have not
paid attention to the scale problem of samples. Therefore,
Wu et al. [40] proposed multi-scale sample thinning opera-
tion to solve the scale variance problem in the model and
emphasizes the necessity of dealing with the problem of scale
change. However, these models lack of focus on the key areas
of the images, which leads to their inability to effectively
learn the important features of the images. These problems
prevent models from achieving good effect when detecting
the few-shot PCB surface defects. Therefore, according to
the characteristics of PCB surface defects and the exist-
ing few-shot object detection model problems, we design a
few-shot detection model for PCB surface defects.

III. METHODOLOGY
In our work, the defect detection method based on meta-
learning is adopted. In this method, we divide the dataset
into the base classes Cbase and the novel classes Cnovel .
The base classes contain enough training samples and anno-
tation information, while the number of samples in the
novel classes is small. When organizing data, we generally
follow the Episode data organization method proposed by
Vinyals [34]. It means that the data entered into the net-
work each time is called a task Ti and each task consists
of a query set Q = {(Iq,L)} and a support set S =

{

(
IS1 ,MIS1

)
,
(
IS2 ,MIS2

)
, . . . ,

(
ISN ,MISN

)
. Therefore, we can

get the expression for Ti:

Ti = Qi ∪ Si = (Iqi ,Li) ∪ (I
S
1i ,MIS1i

), (IS2i ,MIS2i
), . . . ,

(ISNi ,MISNi
) (1)
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where Iqi is the query picture in the detection task of time i,
and Li is its corresponding label. ISNi and MISNi

is the support

picture and corresponding mask in the task of time i.
The training follows the two-phase training strategy

proposed by FSRW [16]. The first phase is the base train-
ing phase. In this phase, we use the base classes data with
sufficient information. Let the network learn to use the infor-
mation of the support to help the query predict. The second
phase is few-shot fine-tuning. Following the k-shot setting,
each class in the novel classes contains only k annotations to
fine-tune the model.

A. OVERVIEW OF FPFM
In this article, the structure of FPFM, a few-shot PCB surface
defect detection model based on feature enhancement and
multi-scale fusion, is shown in Fig. 2.

Formally, the query image I is input into the meta-feature
extraction module D to obtain meta-features F ∈ Rw×h×c

with c channels, which can be expressed by: F = D(I ).
The produced meta features F are enhanced by the feature
enhancement module to get enhanced query features Fc.
At the same time, the support images and label information

are input into the multi-scale feature fusion module to obtain
a high-quality feature map Fm containing different scales.
The feature reweighting module is composed of a lightweight
CNN network, which shapes the high-quality feature maps
Fm into reweighted feature vectors ωi ∈ Rc according to
classes. The model realizes the fusion of query features Fc
for novel class i and support features vectors ωi by:

Fi = Fc ⊗ ωi, i = 1, 2, . . . ,N , (2)

where ⊗ denotes channel-wise multiplication.
This model inputs the reweighted feature map Fi into the

detection module to predict the confidence o of the object
classes in the image, the position information(x, y, h,w) of
the object prediction frames, and the classification score c of
the object classes.

B. FEATURE ENHANCEMENT MODULE
In the task of few-shot defect detection, the number of the
labeled novel classes is small, the diversity of corresponding
categories is poor, and the detection precision of the model
is low. Therefore, it is very important to fully mine the infor-
mation of the samples themselves. In order to fully highlight
the important information in the samples and suppress the
interference of useless information, a feature enhancement
module is introduced in this article. This module is based on
the improved convolution block attention module.

1) BASIC STRUCTURE OF CBAM
The basic structure of the convolution block attention mod-
ule (CBAM) [22]is shown in Fig. 3. The channel attention
network filters the channels of input features, while the spa-
tial attention network focuses on the prominent areas in the
feature maps.

Specifically, the input of the CBAM module is the meta-
features F ∈ Rw×h×c extracted by the feature extractor.
We use CBAM to derive a one-dimensional channel attention
map Mc ∈ Rc×1×1 and a two-dimensional spatial attention
map MS ∈ R1×h×w in turn. The overall process can be
summarized by:

F ′ = Mc(F)⊗ F

Fc = Ms(F ′)⊗ F ′, (3)

where ⊗ denotes channel-wise multiplication. During multi-
plication, attention values are propagated accordingly.

2) EL-CBAM
On the basis of the existing CBAM, this article improves the
channel attention module and the spatial attention module to
obtain Efficient and Lightweight CBAM (EL-CBAM), whose
specific structure is shown in Fig. 4.

Specific improvement strategies are described from two
aspects: channel attention and spatial attention.

a: CHANNEL ATTENTION
In the traditional channel attention module, two fully con-
nected layers are used to distribute the attention weights.
However, this method will produce many redundant calcu-
lations and cause negative effects. Therefore, this article uses
the idea of document [35] for reference and replaces the fully
connected layers with a 1D-convolution to reduce the num-
ber of parameters and achieve better results. For the input
features F , max pooling and average pooling are performed
on the basis of channels to obtain two different spatial con-
text descriptors Fcmax and Fcavg. The information of k chan-
nels in the channel’s neighborhood is aggregated by the
1D-convolution which replaces the original fully connected
layers. The convolution kernel length of this 1D-convolution
is k . The output features are subjected to element-wise
weighting operation and sigmoid activation operation to
generate the final Mc ∈ Rc×1×1. Finally, Mc and the
meta-feature map F are multiplied element-wise to generate
the intermediate feature F ′. Therefore, the improved channel
attention calculation formula is expressed as follows:

MC (F) = σ (f
k×k
1D (AvgPool(F))+ f k×k1D (MaxPool(F)))

= σ (f k×k1D (Fcavg)+ f
k×k
1D (Fcmax)) (4)

where σ denotes the sigmoid function, and f k×k1D represents a
one-dimensional convolution operation with the filter size of
k×k . Where the size of k is provided by the equation in [35]:

k =

∣∣∣∣ log2 cγ
+
b
γ

∣∣∣∣ (5)

where c denotes the number of feature map channels. γ and b
are hyperparameters, which are taken as 2 and 1 in this article.

b: SPATIAL ATTENTION
In traditional spatial attention, the traditional convolution of
the 7× 7 receptive field is used to aggregate spatial features,
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FIGURE 2. The model mainly consists of five parts: feature extraction module, feature enhancement module, multi-scale feature fusion module, feature
weighting module, and detection module. The backbone of the detection model is chosen as YLOLv3.

which has a large number of parameters and also omits
a lot of information between channels. Therefore, in this
article, the traditional convolution is replaced by the depth-
wise separable convolution. This convolution method has
fewer parameters under the same receptive field size. It can
realize information exchange between channels, which can
help the attention mechanism to notice rich and important
information. We do max pooling and average pooling on its
c-dimensional channel of the intermediate feature F ′ with
its spatial position as the unit to obtain two maps F ′Smax
and F ′Savg,and then splice the two maps. The dimension of
the spliced tensors is reduced to a channel of w × h ×
1 by convolution with the depth-wise separable convolution.
After the sigmoid function, MS ∈ R1×h×w is generated.
Finally, MS and the meta-feature map F ′ are multiplied
element-wise to generate the final feature map Fc. The
improved spatial attention calculation formula is expressed
as follows:

MS (F ′) = σ (f
5×5
depth([AvgPool(F

′);MaxPool(F ′)]))

= σ (f 5×5depth([F
′S
avg;F

′S
max])) (6)

where σ denotes the sigmoid function, and f 5×5depth represents
depth-wise separable convolution operation with the filter
size of 5× 5.

C. MULTI-SCALE FUSION MODULE
The deep convolution network calculates the feature hierar-
chy layer by layer and generates feature maps with different
spatial resolutions within the network. The high-resolution
feature map has weak semantics and strong structure, while
the low-resolution feature map has strong semantics. PCB
defects have the characteristics of small size. Therefore, the
bi-directional feature pyramid network (BiFPN) [37] is used,

and we proposed the BiFPN and fusion strategy (BI-FU) to
solve the problem of small objects. The module structure is
shown in Fig. 5.

1) BI
In order to extract the multi-scale features in the support
more effectively, the algorithm uses VGG16 [36] and BiFPN
layer [37] as the basic blocks of themulti-scale feature extrac-
tion part. VGG16 consists of 13 convolutional layers and
5 pooling layers to form 5 Blocks (Block1-Block5), and the
size of the feature map in each Block becomes 1/2 of the
input size. Compared with ordinary FPN, BiFPN integrates
bidirectional cross-scale connections and fast normalization
fusion. In the network operation, we put the N images of
the support into the multi-scale feature extraction part. This
part can generate 5N feature maps from the images. Finally,
a plurality of feature maps with different scales are input into
the fusion module FU.

2) FU
In the feature fusion part, the network adaptively learns a fea-
ture compression vector (a1, a2, a3, a4, a5). Specifically, the
elements of each feature compression vector are obtained by
convolving the corresponding feature map. The correspond-
ing feature map is compressed into a tensor of size 1 × 1 to
obtain ak, k=1,2,3,4,5. The BI part generates 5 feature maps
from every image.We reweight the 5 featuremaps through the
feature compression vector, and then through element wise
add, the FU part fuses those reweighted feature maps into one
feature map. Therefore, the final feature map contains dif-
ferent scale information. This feature map can integrate low-
resolution and strong semantic features with high-resolution
and strong structural features perfectly, so that the network
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FIGURE 3. The convolution block attention module consists of two parts:
Channel Attention Module (CAM) and Spatial Attention Module (SAM),
which carry out channel and space attention respectively.

has a better ability to extract and detect the defect features of
small objects in PCB.

D. DETECTION MODULE
The detection module consists of convolution layers and fully
connected layers and is used to locate and predict the confi-
dence for the reweighted query picture features. The classifi-
cation score of the novel classes is given by this module, and
the classification score is corrected by the softmax function.
The classification score of the class i object class is ci. The
actual classification score after correction is ĉi:

ĉi =
eci

N∑
j=1

ecj
(7)

The loss function of the object category is as follows:

Lc = −
N∑
i=1

I(·, i) log(ĉi) (8)

where I(·, i) is an indicator function for whether current
anchor box really belongs to class i or not.
The loss function of bounding box regression is Lbbx , and

the loss function of objectiveness is Lobj. These two loss
functions are similar to the loss function defined byYOLOv3.

Lbbx = λcoord
S2∑
i=0

B∑
j=0

1obji,j (2−wi × hi)[(xi−x̂i)+(yi − ŷi)
2

+ (wi − ŵi)2 + (hi − ĥi)2] (9)

Lobj = λnoobj
S2∑
i=0

B∑
j=0

1noobji,j (ci − ĉi)2

+ λobj

S2∑
i=0

B∑
j=0

1obji,j (ci − ĉi) (10)

where S2 denotes the feature map areas, and B represents the
number of bounding boxes.

Thus, the overall detection loss function is Ldet = Lc +
Lbbx + Lobj.

E. OTHER MODULES
1) FEATURE EXTRACTOR
We use this module to extract the feature information in the
query images. Its input is the query images, and its output is
the featuremapsF of the query images.We adopt DarkNet-53
network to replace the original model DarkNet-19 network.
Compared with DarkNet-19, DarkNet-53 introduces resid-
ual structures and uses conv2d to replace maxpooling2d,
which increase the network depth and help to extract deeper
features.

2) REWEIGHTING MODULE
The module is constructed by light-weight CNN. In our
work, the module receives the feature maps Fm obtained
from BI-FU module. We use the light-weight CNN to shape
the feature maps Fm into vectors of size 1× 1× c. Their
feature is embedded in the vector set of specific classes. These
vectors are used to reweight the query feature maps Fc.

IV. EXPERIMENTS
In this section, we will evaluate the performance of the FPFM
model in few-shot PCB defect detection through compre-
hensive experiments. The model is compared with several
most advanced methods [16], [17], [38], [39], [40], [41]. The
results are given and analyzed below to show that our model
can detect few-shot PCB defects more accurately.

The experiments in this article are based on the 64-bit
operating system Ubuntu 18.04 and Python 3.6 under the
PyTorch deep learning framework. The CPU is an Intel Core
i7-6850K. The reference frequency is 3.60GHz, the GPU is
NVIDIA GeForce GTX 1080 Ti, and the memory is 11GB.
CUDA 10.1 is used to accelerate the training.

A. DATASETS AND TRAINING SETTINGS
1) DATASETS INFORMATION
Our dataset consists of two parts, the base classes and the
novel classes. In this article, the Few-Shot Object Detection
Dataset (FSOD) [42] is used as our base classes. The FSOD
is a professional few-shot object detection dataset created
by Tencent in 2020. It is rich in category diversity, covering
1,000 categories, with a total of 66,502 images and 182,000
annotated boxes. We use FSOD dataset as the base classes,
which is conducive to better meta-learning for the model,
thereby improving the detection effect. The novel classes
are the PCB defect image dataset from the Intelligent Robot
Open Laboratory of Peking University. The dataset consists
of 693 PCB defect images and corresponding annotation files
in total, including 6 defect types, and the types and quantity
are shown in the Table 1.

2) TRAINING SETUP
The model in this article adopts a two-phase training strategy.
The first phase is the base training phase. In this phase, the
support images and query images are obtained from the base
classeswhich have enough labeled information.We randomly

129916 VOLUME 10, 2022



H. Wang et al.: Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion

FIGURE 4. Schematic diagram of the proposed EL-CBAM structure. The feature enhancement module constructed by EL-CBAM is embedded
in the last layer of the meta-feature extractor, and it receives the feature maps F ∈ Rw×h×c of the query images. This module learns the
relationship between the foreground and background in the query samples, assigns different weights inside the feature maps to highlight the
key feature information in the samples, which can enhance the feature expression ability of the query samples.

FIGURE 5. The multi-scale fusion module consists of a multi-scale feature extraction module BI and an adaptive feature fusion module FU. Blue line
means the down sampling, red line means the up sampling, and the black line represents the scale invariant convolution operation in the BiFPN part.

sample images from the dataset to form the query set and
the support set. A query set has only one image, and the
support set has N images per class. Every image has only one
corresponding class’s object, and the other object pixels in
the image are set to 0. In this process, we use the momentum
parameter of 0.9 and the parameter attenuation of 0.0001 to
run the SGD optimizer, and the batch size is set to 8. The
model uses FSOD as the base classes for meta-learning, and
adopts end-to-end training methods. we train the model for
14k, 12k, 10k iterations at the learning rate of 5e-3, 5e-4 and
5e-5 respectively. In few-shot fine-tuning phase, we use the
PCB defect dataset as the novel classes for fine-tuning, and
we get the data in the same ways as first stage. The difference
is that each class in the novel classes only has k annotations

(k-shot) for training. In this phase, we train the model for
8k, 6k, 4k iterations at the learning rate of 5e-3, 5e-4 and
5e-5 respectively. In order to balance the difference in the
number of samples at this stage, only k annotations are also
selected from each base class for fine-tuning. In this article,
experiments are carried out under the conditions of k = 1, 2,
3, 5, 10, 30 respectively.

B. COMPARISON OF TESTING RESULTS
In order to verify that the FPFM model can detect PCB
surface defects with higher detection precision under the
condition of fewer training samples, the FPFM model and
several excellent few-shot object detection models are ana-
lyzed under different shot settings. The experimental results
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are shown in the following Table 2 and Table 3. For fair com-
parison, the training strategies and settings of the comparison
models are the same as our model.

1) COMPARISON OF FEW-SHOT RESULTS
In the above table, AP represents the average precision
obtained by testing under different settings of IoU (from
0.5 to 0.95, step size 0.05). AP50 and AP75 refer to the
precision of IoU of 0.5 and 0.75. APL means the objects’
average precision whose bounding box area is larger than
96∗96, APS represents the average precision in which the
bounding box area is less than 32∗32, and APM refers to
the average precision whose bounding box area is between
the above.

We compare our FPFM model with the recent state-of-
the-art methods. In order to evaluate the performance of
the model more comprehensively, we also report the time
required for the model tuning process. It can be seen from
Table 2 that our method FPFM outperforms recent state-of-
the-art (SOTA)methods inmost indicators. For AP, compared
with the SOTAmethods, our FPFMhas achieved about 2.57%
and 3.39% performance improvement under 10-shot and
30-shot respectively. When k = 10 and k = 30, AP50 reached
69.52% and 78.86%, respectively, 7.33% and 5.45% higher
than the SOTA methods. In addition, due to the addition of
the BI-FUmulti-scale feature fusion module, the small object
defects precision APS which is difficult to be optimized is
improved by 3.36% in 10-shot and 4.89% in 30-shot, which
shows that this module has a great role in the detection of
PCB small object defects.

Besides, we also compare the tuning time of our FPFM
model and other few-shot object detection models. When
k = 10, the time required for the proposed model is not
the shortest, but it is very close to SOTA time. When k =
30, the model tuning time can reach the level of the SOTA
methods. We analyze the following two main reasons: First,
the feature enhancement module improves the adaptation
speed of the model, so that the model can achieve better
detection results in fewer iterations. Second, the addition of
the feature enhancement module and the BI-FU module does
not increase the computational complexity of the model too
much. The feature enhancement module is built on the basis
of the CBAM module. This module has the characteristics of
high lightweight and strong versatility, and it itself brings less
calculation increment to the model. In addition, we further
improve the CBAMmodule. The inner fully connected layers
are replaced by 1D-convolution, and the traditional convolu-
tion is replaced by depth-wise separable convolution, which
further reduce the parameters generated by the model. For the
BI-FU module, the module first extracts the multi-scale fea-
ture maps of the PCB images, which increases the computa-
tional complexity. However, after that, through feature fusion,
the multi-scale information of the feature maps is retained,
and the calculation increment of the module is reduced. These
improvements not only improve the detection precision of

TABLE 1. Number of various defects in PCB defect dataset.

PCB defects, but also ensure the detection efficiency of the
model.

Then, further comparative experiments are conducted to
verify the few-shot detection effect of our FPFMmodel under
different shot settings (k=1, 2, 3, 5). As shown in Table 3, the
AP50 of our FPFMmodel can be 3.95%-8.42% better than the
state-of-the -art methods under different shot settings. Inmost
other indicators, the FPFM model can also outperform other
methods, which shows the general effectiveness of the model
under various few-shot settings in PCB defect detection.

2) ADAPTATION SPEED
In order to further verify the detection effect of the model,
we further compare the adaptation speed and precision of
different methods under the 5-shot setting, as shown in
Figure 7. We use the number of iterations required for model
convergence to express the adaptation speed of the model.
If the current novel class AP no longer exceeds the best
recorded AP for consecutive 2000 iterations, we consider that
the model has converged, and determine the iteration of the
best recorded as the model’s adaptation speed. In Figure 7,
we show the visualization results of the model training pro-
cess and the number of iterations when the model converges
under the 5-shot setting. The curve shows the fine-tuning
results in all periods of the novel class AP, and our proposed
method achieves better detection precision. Besides, because
of the addition of the feature enhancement module, the key
features of the feature maps can be highlighted, which helps
the model grasp the key feature information of the images
faster, and suppresses the interference of useless informa-
tion. Therefore, our model exhibits a faster adaptation speed.
It takes only 3100 iterations to reach the peak, which is still
400 fewer iterations than the FSRW model with the sec-
ond fastest convergence speed. More importantly, the FPFM
model only needs 2000 iterations to achieve 95% peak perfor-
mance. This represents that 33% training time can be saved,
and the performance is only reduced by 5%. This shows that
our model has a better adaptation speed and reflects a strong
generalization ability. These properties are very helpful for
few-shot PCB defect detection.

3) COMPARISON OF DIFFERENT TYPES OF DEFECTS
In Fig. 8, we compare the FPFMalgorithm under 10-shot with
four other few-shot object detection algorithms that are also
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TABLE 2. Few-shot detection performance on PCB dataset under 10-shot and 30-shot. ‘‘Time’’ means the tuning time. The best results are shown as black
bold.

TABLE 3. Few-shot detection performance on PCB dataset under different k-shot settings (k=1, 2, 3, 5). The best results are shown as black bold.

FIGURE 6. Few-shot detection performance on PCB dataset under
different k-shot settings. The line graph shows that the proposed method
is obviously superior to other state-of-the-art methods, where the IoU
threshold is 0.5.

based on meta-learning. These four models are Meta R-CNN
[17], FSDet [38], MetaDet [39], FSRW [16]. We can find that
among the 6 types of defects, the detection precision of the

FIGURE 7. Comparison of iterative process of different few-shot methods
under 5-shot. The triangle in the figure represents the model convergent
point, and the IoU threshold is 0.5.

missing hole and spurious copper defects is relatively high
on all models, while the precision of mouse bite, open circuit,
short and spur is relatively lower. The main reason is that the
defect features of the missing hole and spurious copper are
relatively obvious, the defect size is relatively large, and it
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FIGURE 8. Detection precision of various types of PCB defects by different meta-learning algorithms. Several models are trained using the
same few-shot learning strategy, where the IoU threshold is 0.5.

TABLE 4. Comparison of experimental results of different base class datasets.

is easy to be detected by the model. Open circuit, short, and
spur are generally small in size, so they are easily ignored
by ordinary models. For mouse bite defects, the defect char-
acteristics vary greatly, and the sizes of mouse bite defects
at different positions are also different, so it is difficult for
general models to accurately judge the defect type.

From Fig 8, due to the introduction of the BI-FU multi-
scale fusion module and feature enhancement module, the
detection precision of small object defects such as open
circuit, short, and spur has been greatly improved by the
model, and the detection precision of mouse bite defects with
different scales has also been significantly improved. For the
detection of the missing hole and spurious copper, although
the improvement is small, it is still better than other detection
models, indicating that FPFM has the highest comprehensive
performance for PCB defect detection. When k = 10, some
visual detection results are shown in Fig. 9.

C. ABLATION EXPERIMENT
In this section, we conduct comprehensive ablation experi-
ments to analyze the effect of various modules in the model.

1) EFFECTS OF DIFFERENT BASE CHLASSES
When training the model, we use the FSOD dataset as the
base classes for model pre-training. As a control experiment,

TABLE 5. AP and mAP on different backbone networks.

we select PASVAL VOC [44], [45] and MS-COCO [46] as
the base classes for the same pattern of pre-training.

a: FSOD
This dataset is a professional few-shot learning dataset with
high category diversity, including 83 parent semantics, which
are further divided into 1000 leaf categories with a total of
66502 images. In addition, the dataset contains objects with
large differences in object size and aspect ratio, which are
very conducive to few-shot learning for the model. We use
1000 subcategories as the base classes to pre-train the FPFM
model. PASVAL VOC: The dataset is a small-scale object
detection dataset containing 20 object classes with a total of
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FIGURE 9. The detection results of the same defect image on the baseline algorithm FSRW and the improved algorithm FPFM
are given. Every two lines in the figure represent a type of defect, from top to bottom: (a) Missing hole, (b) Short, (c) Mouse
bite, (d) Spur, (e) Open circuit, and (f) Spurious copper. In every two lines, the top is based on the FSRW algorithm and the
bottom is based on the FPFM algorithm. All results are obtained under the 10-shot setting.
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TABLE 6. Ablation studies to verify the impact of different modules on model performance.

16,551 images. We use VOC 07-12 as our base classes to pre-
train the model for comparison.MS-COCO: The dataset is a
large-scale object detection dataset containing 80 categories,
with a total of 123287 images. We selected the 80 category
images as our other group of comparison base classes and
pre-trained the model. For fair comparison, the novel classes
select the same images in the PCB dataset and fine-tune the
model under the same shot settings to compare the experi-
mental results.

It can be seen from Table 4 that when FSOD dataset is used
as the base classes for pre-training, the model achieves the
highest detection precision under all shot settings. With the
increase of shots, the precision gap becomes more and more
obvious. When PASVALVOC is used for pre-training model,
the detection precision is the worst. Compared with PASVAL
VOC, MS-COCO has larger scale and more pictures, which
is more helpful for the model to learn low-level semantic
information in the images, so it can achieve higher detection
precision. However, the key of few-shot learning is to improve
the generalization ability of the model. Therefore, the FSOD
dataset with a large number of objects and high diversity is
more conducive to the meta-learning for the model and can
help the model achieve better detection results.

2) BACKBONE NETWORK
In this article, the feature extractor uses DarkNet-53 as the
backbone network to extract query features, instead of the
original DarkNet-19. The experimental results of the two
networks under 10-shot are shown in Table 5.

The detection precision of DarkNet-53 is 69.52%, which
is better than 66.58% of DarkNet-19. DarkNet-53 draws on
the idea of feature pyramid network and introduces residual
mechanisms, so it has stronger ability to extract small defects
in PCB and has higher detection precision. Therefore, the
DarkNet-53 network is adopted as the feature extractor

3) EFFECTS OF DIFFERENT MODULES
As shown in Table 6, in order to verify the effect of dif-
ferent modules on model performance, we conduct ablation
experiments under different shot settings (k = 1, 2, 3, 5, 10,
30). In the table, DN-53 indicates that the feature extractor
adopts the DarkNet-53 network, EL refers to the addition of
EL-CBAM feature enhancement module, and BI-FU repre-
sents the addition of multi-scale fusion module.

TABLE 7. Comparative experiment of different fusion methods. The table
records the mAP of three different feature fusion methods under k-shot
(k=5, 10), where the IoU threshold is 0.5.

TABLE 8. Ablation experiment of feature enhancement module based on
EL-CBAM. The table records the influence of the addition of various
attention mechanisms on the model detection precision when the IoU
threshold is 0.5 under k-shot (k = 5 and 10).

When only the feature extractor network is replaced, the
model detection precision improvement is small due to the
lack of enhancement of key feature information and the lack
of multi-scale feature information for small object defects.
When the feature enhancement module or multi-scale fusion
module is added separately, the performance of the model is
further improved, which proves the effectiveness of the two
modules respectively.When the twomodules are joined at the
same time, the model detection precision reaches the highest
level, which shows that the combination of the two modules
is very useful for improving the model performance.

4) COMPARISON OF FEATURE FUSION STRATEGIES
The multi-scale feature fusion module is composed of multi-
scale feature extraction part BI and adaptive feature fusion
part FU to realize image multi-scale feature extraction and
fusion. In Table 7, we record the effects of three different
feature fusion methods under 5-shot and 10-shot settings.
(1) The N feature maps extracted from the feature extraction
part BI are directly input into the reweighted module and
converted into reweighting vectors. (2) We connect N feature
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maps according to the channel dimension. Then, we use
convolution operation to directly compress the feature map
by channel to obtain the fused feature maps. (3) We adopt
the method in this paper, that is, we use feature compression
vectors to achieve feature maps fusion.

From Table 7, we can find that method 1 achieves the high-
est detection precision. However, Method 1 directly inputs
N feature maps into the feature reweighting module, which
increases the computational complexity of the model and
affects the detection efficiency. Method 2 adopts direct con-
volution compression. It is easy to operate, but too much
feature information is lost, which leads to poor detection
precision. In order to further balance the model precision and
calculation speed, Method 3 is selected as our final feature
fusion method.

5) COMPARISON OF FEATURE ENHANCEMENT MODULE
In order to fully mine the key information of samples and
suppress the interference of useless information, a feature
enhancement module based on EL-CBAM is introduced in
this article.

In this article, the feature enhancement module is con-
structed based on SENet [43], ECANet [35], CBAM [22], and
EL-CBAM. As can be seen from Table 8, after adding the
feature enhancement module, the detection precision of the
model has been greatly enhanced. CBAM, which combines
both spatial and channel attention, has a better effect on fea-
ture enhancement than single dimensional attention of SENet
and ECANet. Compared with CBAM, the EL-CBAMmodule
increases the mAP by 0.38% and 0.40% at k = 5 and k = 10,
respectively, which reflects the effectiveness of EL-CBAM.
It can further highlight the key feature information of the
feature map and help the network detect PCB.

V. CONCLUSION
In this article, we propose a PCB defect detection method
FPFM based on few-shot learning. Based on FSRW, the
proposed method improves the network in the feature extrac-
tor to darknet-53. What’ s more, we introduce a feature
enhancement module based on the improved CBAM to high-
light key regional features, which effectively suppress useless
interference information and improve the feature extraction
ability of query samples. Meanwhile, the few-shot learning
method combined with multi-scale feature fusion is used for
PCB defect detection for the first time. This module can
extract multi-scale features and fuse them into a high-quality
feature map, which improves the detection precision of small-
scale defects. Finally, we use the FSOD dataset as the base
classes and the PCB dataset as the novel classes to conduct a
large number of experiments. We can find that the proposed
model outperforms the recent state-of-the-art results under
different shot settings. At the same time, we take into account
the efficiency and precision of detection, which is conducive
to the application of industrial production. However, there
is still some work to continue to be researched. At present,
the defect types studied in this article are relatively fixed,

and there are still more defect types on PCB that need to
be experimentally analyzed. In addition, this article does not
consider the multi-label problem and the correlation between
labels. In the future work, we consider expanding the model
to more PCB defect types, even to other industrial products.
At the same time, we will consider the study of multi-label
problem, which means that we predict both the types and
locations of PCB defects and other attributes such as defect
severity.
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