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ABSTRACT To manufacture synthetic rubber, rubber manufacturers require optimal recipes to ensure that it
satisfies the required quality standards. Several experiments are required to create the optimal recipe, which
adversely affects not only the cost and time required but also the health of workers. Suppose the experimental
results can be predicted in advance at the recipe design stage before direct experimentation. In that case,
the cost of the experiment can be reduced, and the workers’ health can be significantly less impacted. For
this purpose, a method called the prediction walk model using a machine learning model was developed to
generate the temperature trajectory in a kneading machine. A cross-updating method to predict the quality
of the kneading operation is also proposed. From the results of the experiment, it was confirmed that the
performance of the proposed models was superior to that of the existing prediction models.

INDEX TERMS Synthetic rubber, rubber manufacturing, synthetic rubber recipe, prediction walk model.

I. INTRODUCTION
Synthetic rubber is a vital product in several manufacturing
industries. Because it is used in various ways, the quality
standards required vary depending on the product. It is
difficult to design different optimal recipes to satisfy the
quality requirements of various products. The synthetic
rubber manufacturing process comprises nine steps: masti-
cation, kneading, extrusion, calendaring, stamping, sealing,
molding, vulcanization, and finishing. To design an optimal
recipe for all these processes, the number of experiments
required and the cost increase significantly [1]. Additionally,
the synthetic rubber manufacturing environment adversely
affects the health of workers [2]. Therefore, reducing the
number of experiments required is important for company
profitability, and a solution to this problem is considered in
this study. A data-driven method was introduced that can
generate results through simulations of the recipe design
without conducting experiments. This study contributes to the
reduction of the time and cost required for optimal recipe
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design by predicting the experimental results in advance.
A simulation method that uses data from the kneading
operation, which corresponds to the second stage of the
synthetic rubber manufacturing process, is presented.

The kneading operation is the process of compounding
rubber by mixing and dispersing ten or more types of solid
or liquid compounding agents, such as cross-linking agents,
fillers, and vulcanization accelerators. During the kneading
process, the operator frequently checks the temperature of
the material, and when a certain temperature is obtained,
the material is placed in a Banbury mixer, which mixes
the materials during the kneading operation. In the Banbury
mixer, heat is generated as the rotor rotates and the tem-
perature inside the channel increases. When the temperature
exceeds the critical point, vulcanization of the rubber occurs,
which deteriorates the quality of the synthetic rubber.
Therefore, it is extremely important to design the process
such that the temperature does not exceed the critical point
in the optimal recipe’s design stage. Hence, the proposed
simulation method predicts the degree of temperature change
to determine whether the temperature exceeds the critical
point for the recipe design. A prediction walk model (PWM)
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that predicts the temperature change by simultaneously
predicting the kneading operation temperature and time
is introduced. As previously mentioned, the temperature
change during the kneading operation significantly affects the
quality of the synthetic rubber. Based on this characteristic,
we predicted the quality level of the synthetic rubber using
the temperature change predicted by the PWM. To predict
the results of the kneading operation, we introduce a
cross-updating prediction, which refers to cross-predicting
synthetic rubber qualities that are highly correlated with each
other. It was confirmed that this method improves the pre-
diction performance compared with the existing prediction
methods.

Because the proposed data-driven method can accurately
predict temperature changes and the results of the kneading
operation, it has the advantage of simulating recipes for
various combinations. It can also reduce the number of
experiments required by filtering recipe candidates diagnosed
as having poor quality levels. Thus, synthetic rubber manu-
facturers can experience a positive effect on operational costs
and the health of workers. The remainder of this paper is
organized as follows. Section II introduces related studies
and explains the need for a new approach to time series data
prediction. Section III describes the data used for the training,
PWM, and cross-updating prediction. Section IV presents the
experimental results to prove the performance of the proposed
model, and finally, Section V contains the conclusions and
limitations of the study.

II. RELATED WORKS AND PROBLEM DESCRIPTION
A. PREDICTION OF MACHINE TEMPERATURE
Because machine temperature prediction is important in
the manufacturing industry, several studies regarding it
have been conducted in various fields for a long time.
Furthermore, several of these studies were based on machine
learning (ML) and neural networks (NNs). The temperature
prediction algorithms using ML have exhibited satisfactory
performance. Previous research has improved air conditioner
operation efficiency through temperature prediction of data
centers using regression analysis and support vectormachines
(SVM) [19]. Moreover, support vector regression (SVR) is
applied to the hydration heat of mass concrete temperature
prediction [28]. An artificial neural network (ANN) has
been applied to predict the temperature change inside
the tunnel [20]. A methodology to solve the problem of
insufficient data for predicting the heat of a machine was also
introduced. In this study, the problem was solved using an
ensemblemodel [18]. Because several predictivemodels have
been utilized for temperature prediction, a study comparing
MLmodels andANNhas also been published [21], [22], [23].
According to previous research, convolution neural networks
(CNNs), recurrent neural network (RNNs), and long short-
term memory (LSTM) NNs exhibit good performance in
predicting the temperature of transmission modes [24].
Similarly, a previous study showed that gated recurrent unit

(GRU) outperformed SVR and ANN for air temperature
prediction [29]. However, ML and DL models are inherently
deterministic and often yield overconfident results [26]. Thus,
a hybrid ML model was proposed to overcome this limitation
[30]. In terms of predicting the temperature of the kneading
operation, this disadvantage of ML and DL models leads to
the issue of realistic predictions not being presented, such as
an excessive predicted manufacturing time or temperature.
Therefore, it is necessary to devise a prediction method that
overcomes this problem. In this paper, we introduce a method
for correcting the prediction values using the PWM.

B. TIME-SERIES FORECASTING MODEL
The temperature change problem during the kneading opera-
tion includes values that change with time. This problem is a
type of time-series forecasting problem, but the temperature
prediction of the kneading operation has slightly different
properties. Traditional time-series models forecast the future
by using past information. However, the temperature change
in the kneading operation does not contain past information
at the start of the experiment. Therefore, even if our problem
handles temporal temperature changes, it must be estimated
using past experimental results and recipe information.
Furthermore, at the start of the kneading process, the start
temperature must be reset, and the change in temperature for
the process must be predicted using the features affecting the
temperature change.

Because we do not use historical data as a time series,
the volume of the feature data may not be sufficient to train
our model. To obtain good ML predictive models, sufficient
data must be applied for learning to converge to a global
minimum. However, when the size of the collected data
is limited, a particular type of ML model is required [4].
Therefore, it is necessary to consider a methodology that
predicts the expected results of an experiment by only using
limited information. When the temperature is predicted with
time series characteristics, it is known that applying non-
linear model results in better performance than linear models.
[5]. Therefore, a method that employs a non-linear time series
model is widely used to predict the future temperature. For
applying non-linear predictive models, we must consider the
model’s reproducibility and reliability because the model’s
performance is affected by the environment and conditions
[6]. The model must also be robust. Especially in studies
of time series data analysis, such as the prediction of sea
surface temperature, the robustness of the model needs to be
considered when learning the MLmodel [7]. In other studies,
temperature prediction algorithms that take advantage of
stochastic properties have been introduced because the
temperature is not deterministic [8]. Therefore, a new
approach is required to compensate for the shortcomings of
time-series prediction models and reflect the conditions of
various recipes. The PWM presented in this study secured
robustness while avoiding problems that may occur in time-
series data prediction.
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C. FEATURE EXTRACTION FOR ML
Appropriate features must be used for learning to train
an effective ML predictive model. These input features
should be selected by considering the correlation between
the input variables and the target value. According to
previous research, the commonly-used features for machine
learning can be extracted from the industry domain [25].
In the kneading process, several features are collected,
from which the features that can play an important role in
prediction must be selected. The quality of synthetic rubber
is sensitive to temperature changes during the kneading
operation. Therefore, we define the temperature change
predicted by the PWM as a trajectory to predict the quality
of the synthetic rubber. Trajectory refers to information that
records the movement path of objects over time and can
be collected in various ways [10]. Because trajectory data
are expressed in the form of a sequential matrix, they must
be appropriately converted to a scalar value for use in ML
prediction. Therefore, we convert them by measuring the
similarity between two trajectories through methods such
as dynamic time wrapping, Hausdorff distance, and Frechet
inception distance [11], [12].

D. ML MODELS
Several ML models can be applied to predict the temperature
and quality of kneading operations. In this study, we apply
seven ML models: linear regression (LR), general additive
model (GAM), random forest (RF), support vector regressor
(SVR), recurrent neural network (RNN), long-term memory
(LSTM) and Seq2Seq. LR is a predictive method that finds
weights that minimize the sum of squares of the residual
[13]. GAM is a predictive model that considers non-linear
relationships while increasing variance to improve the critical
point where the linear model has a high bias [14]. RF is
a methodology proposed to solve the overfitting problem
by applying the ensemble method to the proposed decision
tree [15]. SVR is a predictive model that has the advantage
of encoding the non-linear relationship of input-output data
by mapping the input data into a high-dimensional space
[16]. The RNN is a natural generation of feedforward
neural network to sequences [27]. The RNN is configured
to transmit the information of the hidden layer to the next
layer. Owing to these characteristics, the RNN is mainly used
to predict time-series data. LSTM is a neural network that
improves the vanishing gradient problem of the RNN and
is also widely used for time-series data prediction [17]. The
RNN exhibits the limitation that the output length should
be fixed. Seq2Seq is known as a model that overcomes
these shortcomings [27]. Seq2Seq is a neural network that
offers the advantage of deriving a variable-length output value
from the sequence data prediction problem. In this study, the
PWM that was constructed exhibited excellent performance
compared with LR, GAM, RF, and SVR in temperature
change prediction, and its performance was also compared
with that of RNN, LSTM and Seq2Seq.

FIGURE 1. Banbury mixer.

III. METHODS AND MATERIALS
In this section, we introduce a new method of predicting
the temperature change during the kneading operation and
the quality of synthetic rubber. This method comprises two
parts: first, an ML-based predictive model using historical
experimental and recipe information, called PWM, was
developed to predict the temperature changes appearing in the
time series. PWM uses MLmodels to predict the temperature
changes during the kneading operation. The temperature
changes consist of five features: max temperature, max tem-
perature time, minimum temperature, minimum temperature
time, and end temperature. A temperature trajectory can be
generated using these five features. Second, a cross-updating
method for predicting the quality of the rubber product as the
output of the kneading operation was introduced. The cross-
updating method can improve the predictive performance of
theMLmodel by continuously updating the predictions using
each other’s prediction values.

A. DATA DESCRIPTION
PWM uses historical information from the experiments and
recipe information of the kneading operations as inputs. The
kneading operation uses a Banbury mixer machine, which
operates two rotors and mixes the rubber. Figure 1 shows a
Banbury mixer and its primary components: the hopper, ram,
rotor, and discharge door. In the Banbury mixer, the materials
are first inserted through the hopper. If the machine’s
temperature is high because of previous work, it needs to be
sufficiently cooled. Then, a worker lowers the ram to apply
pressure and turns the rotor to start mixing. When the rotor
begins to rotate, the temperature inside the channel rises with
the mixing of rubber, and when the temperature is too high,
the worker lifts the ram to cool down the system. Thereafter,
the worker repeats the operation according to the recipe.
During the kneading operation, the Banbury mixer records
the temperature and voltage every second.
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FIGURE 2. Temperature change of channels during kneading operations.

The features extracted from the kneading operation are
summarized as follows:
Ji: A job sequence of the i-th recipe, Ji = {jin| n = 1,

. . . ,N }, jin is the n-th job in Ji
tink : The k-th time during the execution of jin,

k = 1, 2, · · · ,K
tpink : Temperature recorded at tink
vink : Voltage recorded at tink
rin: Binary variable representing whether ram is open

during jin (rin = 1 when ram is open, otherwise rin = 0)
δi: Tan-delta value of Ji
ht i: High torque value of Ji
lt i: Low torque value of Ji
hd i: Hausdorff distance between the reference schedule

and trajectory of Ji
dtwi: Dynamic time-wrapping distance between reference

schedule and trajectory of Ji
frei: Frechet inception distance between the reference

schedule and trajectory of Ji
Ji refers to the recipe for the i-th kneading operation and

it comprises several work schedules (jin). For each schedule,
the kneading operation time (tink ), temperature (tpink ), and
voltage (vink ) are recorded. rin is also recorded to indicate
whether ram was open or closed at the time. The kneading
operation is performed for approximately 3–300 s, as shown
in Figure 2. Figure 2 shows the data collected during the
operation of the Banbury mixer. For Ji, the x-axis represents
the kneading operation time (tink ) and the y-axis represents
the temperature (tpink ), which is affected by the voltage and
operation time of the rotor, and whether the ram is open or
closed.

For example, in Figure 2, the temperature in the first work
schedule (ji1) decreases because the ram is opened for cooling
before operating the rotor from 0–100 s. In this case, because
ram is open, it is expressed as ri1 = 1. After the cooling

is finished, the worker injects the material and turns on the
rotor, and the heat rises (ji2). In the 5th work schedule (ji5), the
temperature rapidly increases because the ram is closed, and
the rotor is operating. It should be noted that the temperature
is affected not only by the ram being open but also by the
voltage (vink ).
To measure the quality level of synthetic rubber, three

indicators are used. The first is tan-delta (δi), which is a value
defined by the loss and storage moduli, and it numerically
represents the elasticity and viscosity of rubber. The other
two are low torque (lt i) and high torque (ht i). Low torque
(lt i) is defined as the torque value when tan delta (δi) is in the
lower 10%, whereas high torque (ht i) is defined as the torque
value when tan delta (δi) is in the upper 10%. The quality
of synthetic rubber is measured by the torque values, which
represent the force required for rotation. From the torque
values, we can conclude that the viscosity increases as the
synthetic rubber is mixed.

One of our goals is to predict the quality of synthetic rubber
products from the kneading process.

To predict quality measurements such as δi, lt i, and
ht i, we use a reference trajectory and the similarity of
each trajectory to the reference. Three additional indicators:
Hausdorff distance (hd i), Dynamic time wrapping (dtwi) and
Frechet inception (frei), were also used. These indicators are
detailed in Section III.C.

B. DATA PRE-PROCESSING
To train the proposed prediction algorithm, the input data
must be pre-processed. Noise and outliers were removed from
the experimental data. To predict the temperature change and
quality according to the recipe, raw data were changed to the
form of a schedule. This process is illustrated in Figure 3.
The table on the upper-left side of Figure 3 lists the raw
data described in Section III.A. The raw data contains the job
number (Ji), schedule number (Jin), machine operation time
(tink ), temperature of Banbury machine (tpink ), input voltage
(vink ), and whether Ram is open or not (rin). The table on the
lower left side lists the result parameters of pre-processing the
raw data. The temperature at the start, maximum, minimum,
and endpoints of each work schedule of the recipe were
prepared as the trained data of our learning algorithm. Next,
the time to reach the maximum andminimum temperatures of
eachwork plan was calculated, and the total working time and
voltage were obtained. In the plot on the right in Figure 3, the
red circles indicate the start, maximum, minimum, and end
temperatures for each work schedule. The x-axis represents
the time taken to reach the temperature and the total time.
When the prediction was completed for all work schedules,
a temperature trajectory was generated.

C. METHODOLOGY
The quality of synthetic rubber can be predicted by evaluating
the temperature change during a process because this
temperature substantially affects rubber quality. This study
aims to predict the temperature change within the rubber
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FIGURE 3. Data pre-processing and result of PWM.

FIGURE 4. Methodology.

manufacturing process. A single process of the synthetic pro-
cess usually consists ofmultiple jobs. The first job starts when
Ram opens and ends when it closes, and simultaneously,
the next job starts. The following job lasts until it opens
again. Therefore, each job consists of temperature changes
between two Ram operations. We conduct predictive analysis
for each job by forecasting the maximum temperature
(y1), minimum temperature (y2), endpoint temperature (y3),
time at maximum temperature (y4), and time at minimum

temperature (y5). If we connect these results of every
job, we can generate a trajectory. We call this procedure
PWM, and we apply cross-updating prediction methods to
better predict the quality of synthetic rubber for kneading
operations. Figure 4 shows the proposed methodology for
predicting temperature change and quality according to the
recipe of the kneading operation.

According to Figure 4, the quality prediction is made
through two stages. The first is to predict the temperature
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Algorithm 1 Prediction Walk Model for Generating Temper-
ature Trajectory

Set a recipe Ji consisting of N -th jobs.
n← 1
y1n, y2n, y3n,, y4n, y5n← 0, for all n
1: while n <= N do
2: if n = 1
3: tin1← 1, tpin1← 20
4: else
5: tin1← ti(n−1)K + 1, tpin1← tpi,n−1,K
6: read tinK , rin,

∑
vink

7: y1n ← f1(tinK − tin1, tpin1, rin,
∑
vink ) # max

temperature
8: y2n ← f2(tinK − tin1, tpin1, rin,

∑
vink ) # min

temperature
9: y3n ← f3(tinK − tin1, tpin1, rin,

∑
vink ) # end

temperature
10: y4n ← f4(tinK − tin1, tpin1, rin,

∑
vink ) # max

temperature time
11: y5n ← f5(tinK − tin1, tpin1, rin,

∑
vink ) # min

temperature time
12: if y1n < max(y2n, y3n); y1n← max(y2n, y3n)
13: if y2n< min(y1n, y3n); y2n← min(y1n, y3n)
14: if y4n > tinK ; y4n← tinK ; y1n, y3n← mean (y1n, y3n)
15: if y5n > tinK ; y5n← tinK ; y2n, y3n← mean(y2n, y3n)
16: n← n+ 1
17: end while
18: Generate the temperature trajectory

change of the Banbury mixer using the PWM. PWM is
an algorithm that generates temperature change trajectory
after training job schedule. Before the kneading operation,
operation environments must be set, which include the start
temperature (tin1), total time (tinK − tin1), total voltage
(sumvink ), and whether to open or close Ram (rin). Using
these features, the PWM predicts the five output variables:
maximum temperature (y1), minimum temperature (y2), end-
point temperature (y3), maximum temperature achievement
time (max time, y4), and minimum temperature achievement
time (min time, y5) of each work schedule. ML models
are used to predict the five values (y1, y2, y3, y4, y5), and
the model with the best performance is selected. After the
prediction is completed for all work schedules, a temperature
trajectory is generated by connecting the endpoint of the
previous job to the start point of the next job. After
generating the trajectory, ML models are used again to
predict the quality of rubber using cross updating method.
From the generated trajectory, three descriptive features can
be obtained: maximum temperature (max tpink ), minimum
temperature (min tpink ), and total job time (tinK ). Thereafter,
three similar measures between the two trajectories are
prepared: Hausdorff distance (hd i), dynamic time wrapping
(dtwi), and Frechet inception distance (frei). These six
features are used for quality prediction. The objective values

FIGURE 5. Temperature trajectory generated by PWM.

for quality prediction of synthetic rubber are tan-delta (δi),
low torque (lt i), and high torque (ht i), which are described
in Section III.A. It was discovered that these three values
have a high correlation with each other; therefore, using this,
we introduced a method to improve performance by cross-
updating their prediction results.

D. TEMPERATURE TRAJECTORY GENERATION USING
THE PWM
As shown in Figure 4, the PWM predicts five values to
generate a trajectory representing the temperature change.
Additionally, as explained in Figure 4, because one recipe
consists of n work schedules, the PWM predicts for all n
schedules. The features used for prediction utilize the total
time (tinK − tin1), starting temperature (tpin1), ram state (rin),
and total voltage (

∑
vink ).

y1 = max tpink = f1
(
tinK − tin1, tpin1, rin,

∑
vink

)
(1)

y2 = min tpink = f2
(
tinK − tin1, tpin1, rin,

∑
vink

)
(2)

y3 = tpinK = f3
(
tinK − tin1, tpin1, rin,

∑
vink

)
(3)

y4 = argmax
tink

tpink= f4
(
tinK−tin1, tpin1, rin,

∑
vink

)
(4)

y5 = argmin
tink

tpink= f1
(
tinK−tin1, tpin1, rin,

∑
vink

)
(5)

Equations (1)–(5) represent each ML predictive model that
predicts the five target values using four features. After the
five ML predictive models complete predictions for all work
schedules, the prediction values are corrected for trajectory
generation. This process is described in Algorithm 1.
According to Algorithm 1, the start time of the first work
schedule (ti11) was set to 1 s, and the start temperature (tpi11)
was set to 20◦. The start time (tin1) and the start temperature
(tpin1) of the next work schedule were set to the end time and
end temperature of the previous work schedule, respectively.
Line 6 indicates the process of setting the work schedule
information used for prediction. In lines 7-11, the five pre-
trained ML predictive models predicted each target value.
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FIGURE 6. Correlation among quality indicators.

Then, in lines 12-15, correction is performed for predicted
values, which are out of the normal range. For example,
if the predicted maximum temperature (y1n) is lower than
the other predicted temperatures, it will be reset as the
highest value among the lowest and endpoint temperatures.
Similarly, if the time to achieve the maximum temperature
exceeds the end time of the work schedule, the time will
be reset as the mean of the minimum and end temperature.
Figure 5 shows the trajectory generated by PWM according
to Algorithm 1. In Figure 5, the vertical line is dividing
the work schedules (jin) of the recipe (Ji1). The red dots
indicate the temperature predicted by PWM. The black line
connects the red dots. In a certain work schedule, when the
predicted values are corrected according to Algorithm 1,
the five values are summarized as one or two predicted
values.

δi← fδ(lt i, ht i, fδ(max tempi,min tempi, tinK , hd i,

dtwi, frei)) (6)

lt i← fδ(δi, ht i, flt (max tempi,min tempi, tinK , hd i,

dtwi, frei)) (7)

ht i← fδ(δii , lt i, fδ(max tempi,min tempi, tinK , hd i,

dtwi, frei)) (8)

Figure 6 shows the linear relationship between the tan delta,
low torque, and high torque. The values have positive sig-
nificant coefficient correlations of 0.75, 0.40, and 0.79 with
each other. We devised a cross-updating prediction using the
similarity of the target values.

E. QUALITY PREDICTION USING CROSS-UPDATING
PREDICTION
After a trajectory indicating the temperature change using
the PWM is created, the quality of the synthetic rubber
is predicted. Because the quality of synthetic rubber is
extremely sensitive to the temperature change during the
kneading operation, six features were defined, as shown in
Figure 4. The global maximum (max tpink ) and minimum
temperatures (min tpink ), and job time (tinK ) are calculated

using the generated trajectories. Hausdorff distance (hd i),
dynamic time wrapping (dtwi) and the Frechet inception
distance (frei) that indicate the similarity of the trajectories
are compared with one reference trajectory and the remaining
n-1 trajectories. Predictive ML models used to predict tan-
delta (δi), low torque (lt i), and high torque (ht i) are trained
using the defined features. When training was complete,
the predictions were cross-updated to improve performance
by continuously updating the predictions using each other’s
prediction values.

IV. RESULT AND DISCUSSION
In this section, we describe the temperature change pre-
diction of the kneading operation and experimental results
of the quality prediction of synthetic rubber. To prove
the performance of the PWM presented in this study,
we compared the performance of the proposed model with
that of an RNN, LSTM and Seq2Seq-based ensemble
model (RNN + ENS, LSTM + ENS, Seq2Seq + ENS).
Next, the quality prediction results according to the defined
features and cross-updating prediction results are described.
The proposed methodology has been verified with the
kneading operation data provided by DRB, which is a
rubber production company in South Korea. 400 kneading
operation records were used for learning, of which 70%
were used for training, and the remaining 30% were set as
test data.

A. PREDICTION ERROR (MAE) FOR TEMPERATURE
PREDICTION
To generate the temperature trajectory using the PWM, the
predicted values of the time, and the maximum, minimum,
and end temperatures are required. For each predictive goal,
a performance experiment was performed on fourMLmodels
(LR, GAM, RF, and SVM) to construct a PWM that predicts
the temperature during the kneading operation, and the results
are summarized in Table 1 and Figure 7. Table 1 summarizes
the mean absolute errors (MAE) of predictions of the four
ML models for each prediction target, and Figure 7 shows
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TABLE 1. Prediction error (MAE) for temperature prediction.

FIGURE 7. Prediction error of ML predictive model.

the distribution of the prediction errors for each model.
According to Table 1, the RF shows the best performance for
five prediction targets. LR showed the lowest performance
among the four ML models, and SVM has a substantial error
in minimum temperature prediction. The RF shows the most
stable prediction results for five prediction targets. As shown
in Figure 7, the dotted points are outliers, which indicate a
large error, and there are cases where the predicted value of
the ML model is exceptionally incorrect. If there is a large
error in each prediction goal, there is a problem in generating
a temperature trajectory.

For example, if the predicted maximum or minimum
temperature time is too large, the correction must be
performed according to Algorithm 1 because it exceeds
the job time (tinK ) assumed by the kneading operation
recipe. Therefore, the PWM should be configured using
an ML model that is suitable for predicting the minimum
and maximum temperature times. Table 1 shows that RF
has the highest performance for all the predictive goals.
This is because RF is a representative ensemble model that
can overcome the overfitting problem. LR and GAM are
based on linear relationships and exhibit low performance in
maximum/minimum temperature time prediction with non-
linear relationships. SVMcan predict non-linear relationships
through kernel transformation, but it is observed to overfit
in the maximum temperature prediction. We configured the
PWM with RF models that show the highest prediction
performance.

B. TEMPERATURE TRAJECTORY GENERATION
After configuring the PWM, it receives the recipe information
and generates a temperature trajectory for the synthetic
rubber quality. To predict the quality, it is necessary to
generate an accurate temperature trajectory. In this section,
we describe the experimental results obtained using the
proposed methodology. To prove the limitations of the time-
series prediction model mentioned in Section II.B, and
the necessity of PWM, we compared it with the LSTM
methodology for temperature prediction. To overcome the
problem of insufficient data, after receiving the initial
temperature value suggested in a previous study, the
individually trained model predicted the future temperature
change and proceededwith the ensemblemethod to aggregate
the results [18]. Table 2 describes the prediction errors of
PWM’s, RNN + ENS’s. LSTM + ENS’s and Seq2Seq +
ENS’s generated trajectory results. The error prediction of
the PWM was smaller than that of the RNN + ENS, LSTM
+ ENS and Seq2Seq + ENS at all intervals. Because the
temperature increases as the kneading operation progresses,
the prediction error increases as time passes. According to
Table 2, The Seq2Seq case shows that the prediction error is
substantially larger than the other methods. RNN and LSTM
also have absolute errors greater than 10% as the operation
time increases. In contrast, PWM has an absolute error of less
than 10% for all operation time.

In Figure 8, the gray lines represent the real temperatures
during the kneading operations. The black lines are the
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TABLE 2. Prediction error for generated temperature trajectory.

FIGURE 8. Result of generated temperature trajectory.

temperature predicted by each methodology. The red dots
indicate the predicted time by PWM.

The trajectory generated by the PWM is closer to the actual
trajectory compared with that generated by the RNN, LSTM
and Seq2Seq + LSTM model.

The trajectory generated by the PWM follows the trend
of temperature rise and fall during the kneading operation,
whereas that generated by RNN, LSTM and Seq2Seq +
LSTM generally shows a temperature rising trend. In the case

TABLE 3. Result of cross updating prediction.

of the LSTM+ENS model, the temperature was predicted
to be higher than the actual temperature. As mentioned
in Section II, the time-series prediction model has poor
prediction accuracy and reliability in various situations and
has a limitation in that it cannot find a global optimum,
especially when the data are not sufficiently secured. The
PWM predicts the temperature decrease as well as the
temperature increase. Therefore, when predicting the quality
of synthetic rubber, PWM-generated information may yield
better results.

C. RESULTS OF QUALITY PREDICTION
In this section, the quality of synthetic rubber is predicted
using the trajectory generated by the PWM. For this,
features such as the global maximum temperature (max tpink ),
minimum temperature (min tpink ), and total job time (tinK )
were used, which were presented in Section III.A and
Figure 4. Additionally, three trajectory similarity indicators,
Hausdorff distance (hd i), dynamic time wrapping (dtwi), and
Frechet inception distance (frei) are used in the prediction.
Cross-updating of the prediction was performed to improve
the synthetic rubber quality prediction performance, and the
results are summarized in Table 3.

Table 3 presents the prediction results of the three quality
measures using the cross-updating method. Because the
quality of the synthetic rubber is sensitive and changes
depending on these three values, more accurate predictions
can be made to perform a more efficient kneading operation
recipe simulation. By applying the cross-updating method,
we achieved improved prediction performance. In the predic-
tion of tan-delta (δi) and high torque (ht i), a reduced error was
achieved by applying the cross-updating method. Low torque
(lt i) also shows a performance improvement, which is not as
significant as those of δi and ht i.

V. CONCLUSION
Because synthetic rubber is an essential material in various
industries, rubber production companies are constantly
experimenting with producing products of various qualities.
However, approximately 3–5 months and equivalent costs
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are required to create one optimal recipe. Additionally, the
working environment of synthetic rubber manufacturing has
side effects that adversely affect workers’ health. Therefore,
a crucial economic and environmental issue is determining
the recipe design method that reduces the number of
experiments. In this study, a new approach was proposed to
reduce the number of experiments and costs required for the
production of optimal synthetic rubber recipes.

A new data-driven method that can predict the results
of the kneading operation during the recipe design stage
without experimentation was developed. The PWM method
was proposed to predict the temperature change of the
Banbury mixer and cross-update the prediction to predict
the synthetic rubber quality. In the temperature change
prediction, a comparison with the widely used time-series
prediction model was performed to validate the performance
of the proposed method. The experiments revealed that our
proposed methodology outperforms the time-series predic-
tion methodology. The PWM predicts the temperature better
than the time-series prediction methodology and reflects
the time point of the temperature change. In summary,
as opposed to the time-series model, our proposed method
trains the nonlinear relationship between features effectively.
Additionally, the cross-updating prediction method was
applied for synthetic rubber quality prediction, and it was
proved that it performed better than the general learning
method. A more accurate prediction method reduces costs
and errors in the relevant field. The methodology presented in
this paper is expected to be useful in various manufacturing
industries where data collection and reflection are imperative.
The data used in this study are limited in that they do not
utilize the information on materials used in the manufacture
of synthetic rubber.

It is expected that the methodology presented in this paper
will exhibit better performance if the material information is
used in the experiment and if a more detailed experimental
schedule can be used. The methodology we present in this
study is to predict the planned recipe accurately. It is helpful
for the recipe generation test because predictions can bemade
quickly for various recipes.

The proposed methodology has the advantage of acceler-
ating experimental data collection by performing simulations
by changing parameters in various ways without consuming
time and costs. Because various attempts can be tested
without risk, experimental design using PWM is economical.
Moreover, environmental benefits arise because workers can
reduce the number of experiments. The promising results
presented in this paper can be exploited to build a system that
designs the optimal recipe for kneading operation. Therefore,
future study will focus on quickly designing the optimal
recipe using PWM.
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