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ABSTRACT The high cost of acquiring annotated histological slides for breast specimens entails exploiting
an ensemble of models appropriately trained on small datasets. Histological Image Classification ensembles
strive to accurately detect abnormal tissues in the breast samples by determining the correlation between
the predictions of its weak learners. Nonetheless, the state-of-the-art ensemble methods, such as boosting
and bagging, count merely on manipulating the dataset and lack intelligent ensemble decision making.
Furthermore, the methods mentioned above are short of the diversity of the weak models of the ensemble.
Likewise, other commonly used voting strategies, such as weighted averaging, are limited to how the
classifiers’ diversity and accuracy are balanced. Hence, In this paper, we assemble a Neural Network
ensemble that integrates the models trained on small datasets by employing biologically-inspired methods.
Our procedure is comprised of two stages. First, we train multiple heterogeneous pre-trained models on
the benchmark Breast Histopathology Images for Invasive Ductal Carcinoma (IDC) classification dataset.
In the second meta-training phase, we utilize the differential Cartesian Genetic Programming (dCGP) to
generate a Neural Network that merges the trained models optimally. We compared our empirical outcomes
with other state-of-the-art techniques. Our results demonstrate that improvising a Neural Network ensemble
using Cartesian Genetic Programming transcended formerly published algorithms on slim datasets.

INDEX TERMS Cartesian genetic programming, hyparameters optimization, ensemble, CNNs, histol-
pathaological image classification.

I. INTRODUCTION
Histopathology images carcinoma classification for breast
specimens, stained with hematoxylin and eosin (H&E), has
been investigated broadly due to the significance of the prob-
lem, the shortage of annotated images, and the increased
expense of hiring radiologists [1], [2], [3], [4]. Breast cancer
is one of the most deadly types of cancer. Around four-fifths
of the deaths induced by breast cancer are caused by Invasive
Ductal Carcinoma (IDC) [4]. IDC’s diagnosis and progno-
sis demand examining Whole Slide Images (WSI) of breast
biopsies stained with H&E for visual features improvements.
The WSI are high-resolution images of the sample, usually
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divided into smaller sub-images for trainingmachine learning
(ML) classifiers.

As a result of the importance of the breast cancer auto-
matic detection, several Machine Learning techniques have
been suggested in the histopathology image classification
literature.

Machine Learning has been broadly employed to solve
scientific computational problems, data science, and predic-
tive modeling in various domains over the past decades [5].
Deep Learning has also been used in the area of medical
image classification as well as countless applications such as
brain-computer interface using Graph Convolutional Neural
Networks GCNs-Net [6].

The earliest methods relied on uniting several useful
features to represent the image better. These features are
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handcrafted by observing how the negative IDC patches differ
visually from the positive ones [4]. Many of these approaches
centered around the nuclei features via nuclei segmentation
such as nuclei position, centroid, density, glands segmenta-
tion, Voronoi-based features, Gabor filter, and the HSI color
space [4]. Most of the handcrafted-based approaches depend
on a composite of numerous characteristics mentioned ear-
lier that extend the distinguishability of the categories.
Cruz-Roa et al. [4] presented one of the foremost Convo-
lutional Neural Network (CNN) models to categorize the
BHI samples with a CNN [4]. CNN revealed an unprece-
dented advancement over the handcrafted feature approaches
in histopathology image classification [1]. Nevertheless, the
IDC classification of histopathology images stays challeng-
ing as a result of the insufficiency of data and the increased
need of CNNs for labeled samples. Accordingly, more
evolved techniques are needed to fetch the most precise pre-
dictions, such as transfer learning, domain adaptation, and
ensemble optimization [1].

Equivalent to blending the handcrafted features, ensemble
learning is concentrated on integrating a set of diverse clas-
sifiers into a more accurate and robust model. The concept is
to reduce variance and biases in the classifiers leading to a
more generalized model that would function better on unseen
samples.

Ensemble optimization has been successfully applied into
numerous applications such as anomaly detection, cyber
security, image classification and a diverse set of applica-
tions [7]. Ensemble learning is one of the most successful
machine learning practices [8]. Linking a group of comple-
mentary classifiers will generally result in a model that is at
least more accurate than any of its components [9]. Com-
plementary classifiers have to be both diverse and accurate
enough for the resulting ensemble to be more robust.

While ensemble learning produces more accurate net-
works, training multiple classifiers is time-consuming [8].
To overcome this impediment, Huang et al. [8] proposed
saving snapshots of the model during training instead of
training multiple heterogenous models. Huang et al. method
reduces the training time significantly by generating a group
of the same model with different weights. However, the
problem with homogeneous classifiers is that they are more
inclined to overfit the dataset’s peculiarities and are deprived
of the diversity of the models. Additional ensemble learning
methods were presented in the literature, such as Bayesian
Averaging, bagging, boosting, vertical voting, and horizontal
stacking [8], [9], [10], [11].

Due to the successful implementations of Evolutionary
Algorithms (EA) in optimizing stacked ensembles estab-
lished in the literature, a more adaptable EA seems excep-
tionally advantageous [1], [2], [11].

Biologically inspired methods have been verified to be
robust and extensible. Numerous bio-inspired techniques
have been extended to different variants that suit specific
problems. For instance, PSO was improved to solve complex
multi-objective optimization problems, which extended PSO

to Multi-Objective Particle Swarm Optimization (MOPSO)
algorithm by introducing the Space Expanding Strategy
(SES) andmutation. The improvedMOPSOwas used to solve
multiple optimization problems and was superior to three
other commonly used multi-objective PSO methods [12].
The Random Neighbor Elite Guided Differential Evolution
(RNEGDE) algorithm is another example of Evolutionary
Algorithms extensibility [13]. RNEGDE produced optimal
solutions compared to other state-of-the-art methods [13].
Hence, we emphasize leveraging the existing differential
Cartesian Genetic Programming Artificial Neural Network
(dCGPANN) to reach a competitive solution to the ensemble
optimization problem for histological image classification.

The domain of medical image classification has acquired
immense emphasis from the research community in the past
decades. Numerousmethods have been suggested to solve the
invasive ductal detection problem. One of the earlier methods
to automate the detection of IDC in histological images was
proposed by Cruz-Roa et al. [4]. Cruz-Roa et al. compared the
performance of two primary approaches for IDC classifica-
tion which were a three-layer CNN and a variety of extracted
morphological and additional visual features [4]. The CNN
surpassed the feature engineering strategy [4].

Zhang et al. examined diverse techniques for large-scale
medical classification [14]. Zhang et al. presented the Com-
bined Deep and Handcrafted Visual Feature (CDHVF) algo-
rithm to categorize medical images into 30 classes using
the ImageCLEF 2016 dataset [14]. The procedure consists
of four phases. The first phase is to extract deep features
by fine-tuning three pre-trained classifiers [14]. The second
phase is to compute multiple handcrafted descriptors, while
the third phase is to apply the Principal Component Analysis
(PCA) to downsize the feature space [14]. The last phase is
to produce an ensemble that optimally blends the selected
features to conclude the correct category [14].

Harshvardhan et al. employed various ResNet, VGG,
MobileNet, DenseNet, and LeNet-5 configurations, as well
as an optimized CNN architecture to solve the problem of
IDC detection [15]. They reported that the best optimized
CNN (Cbest) delivered the best sensitivity, and VGG16 had
the most satisfactory performance on all other metrics [15].

Zhang et al. used a Multi-Scale Residual Convolutional
Neural Network (MSRCNN) as a feature extractor and imple-
mented an SVM model to classify the deep features [16].
They first tested with a different number of MSRCNN blocks
to observe the improvement in the accuracy of the test
data [16]. As the number of MSRCNNs increases, the accu-
racy rises until they reach five blocks, after which the accu-
racy declines by 5% [16]. They analogized the performance
of four MSRCNN blocks with and without an SVM classi-
fier [16]. They declared that using an SVM classifier slightly
enhanced the accuracy and F1-score [16].

This paper illustrates the utilization of an evolu-
tionary algorithm to automate selecting the best Neu-
ral Network (NN) configuration with its corresponding
weights during meta-training. The meta-training shrinks the
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hyper-parameters search space considerably, accelerating
convergence during the comprehensive training stage. It fur-
thermore displays an intuitive measure of heterogeneity and
automatic optimization of the horizontally stacked prediction
vector’s wights.

The existing state-of-the-art transfer learning techniques
for microscopy image classification lack the systematic
detachment of the task-dependent layers from the trans-
ferrable ones, resulting in overfitting when training over a
limited quantity of samples.Moreover, their ensembles have a
high number of hyper-parameters, making it challenging and
time-consuming to pick the optimal ones manually.

It was established in earlier research that ensemble learning
is indispensable for improving the accuracy of the overall
system. Ensemble learning aspires to enhance the perfor-
mance of a meta-classifier which is composed of weak clas-
sifiers. The arrangement of the meta-classifier delivers more
acceptable prediction accuracy than any of the individual
models. Furthermore, it was also used for transient stability
of power systems and demonstrated superior performance
to other state-of-the-art methods in term of time efficiency,
feature space reduction and accuracy [17].

This paper presents a novel approach of utilizing the Carte-
sian Genetic Programming Algorithm (CGP) for stacked
ensemble optimization. Our pipeline consists of two primary
parts. The first part deals with training Convolutional Neural
Networks with different setups on the Breast Histopathology
Imaging (BHI) dataset. In the second portion, we define a
cartesian Neural Network with a number of the NN topology
parameters and evolve them using the Differential Cartesian
Genetic Programming. Section II describes our proposed
methods. Our approach outperforms previously published
algorithms as demonstrated in section IV.
The remaining sections are arranged as follows: Section II

elaborates on the training of individual classifiers and the
meta-training of the ensemble strategy. Section III illustrates
in detail the experimental setup, the evaluation metrics, the
benchmark dataset and the used computational resources.
Section IV exhibits the experimentations and their results
compared with diverse state-of-the-art published methodolo-
gies. Section V concludes the paper with our findings, the
constraints of our approach, and future research suggestions.

II. PROPOSED METHOD
A. OVERVIEW
This section comprehensively describe the differential
Cartesian Genetic Programming Artificial Neural Network
(dCGPANN) and how it was employed to acquire the
optimum topology and utilize the gradients for error
back-propagation to update the weights and biases. It also
examines the implementation details of the individual clas-
sifier’s training. Besides, it depicts the multiple stages of
training the ensemble.

Evolutionary Algorithms, in general, are used to optimize
the parameters of a particular system or to conceive a better

architecture [18]. The principal emphasis of the earlier pro-
posed methods was to fine-tune the parameters of the ensem-
ble strategy. In numerous algorithms, the numbers of nodes
and the connections are fixed, while the ANN weights are
evolved. Different algorithms only evolve the weights of the
ANN using EA. Nonetheless, stochastic gradient descent is
far more potent in correcting the weights in the course of
training than any other technique.

For the ensemble to be more accurate than its com-
posing classifiers, it must be diverse and accurate. Nev-
ertheless, diverse and accurate classifiers do not always
guarantee a better performing ensemble [7]. Assembling
a diversity-accuracy balanced ensemble is not a straight-
forward process. Thus, a more advanced ensemble tech-
nique is needed. This chapter concentrates on deciding
the most optimum architecture of the stacked ensemble as
well as its weights and biases through the standard error
back-propagation using the gradient information obtained by
the dCGPANN algorithm [19], [20], [21].

The proposed method is composed of two stages. The first
stage is to fine-tune and train end-to-end multiple heteroge-
neous classifiers on the training datasets to ensure diversity
amongst models. Then we select the best-performing models.
The test dataset patches are then augmented to 5000 images.
The classifiers’ predictions of the 5000 images are used to
train the stacked ensemble using dCGPANN. The CGP inputs
are an 8×1 vector of stacked prediction of the best performing
models. The test dataset is used to evaluate the performance
of our method against different cutting-edge algorithms.

The genes are then evolved using crossover and muta-
tion operators based on predefined parameters as explained
in II-B. The motive of this method is to overcome the
limitation that the previous methods had by using the
derivatives of the loss function. We believe that the reduc-
tion of software bloat and the representational capability
of the dCGPANN can produce state-of-the-art competitive
ensemble topologies.

One of the merits of our approach is its scalability.
The accelerated technological advancements in GPUs and
the increasing number of open medical datasets necessitate
design scalability [22]. The accuracy increases as the number
of heterogeneous weak learners in an ensemble grow. The
more data and computational resources become available,
the more learners can be fine-tuned and, therefore, leading
to larger CGP-based Neural Network ensemble. Due to the
separation between the fine-tuning and the ensemble net-
work, the learners can be trained synchronously using par-
allel data approaches. Also, the learning done in a particular
CGP ensemble can be further extended easily by cascading
it to another CGP ensemble network. The above fact ensures
that as the computational resources or the available data for
histological image classification increase, the training that
was already done can be re-utilized and incorporated into
even more extensive ensembles. Hence, our approach per-
mits data-parallel training to utilize large-scale computational
resources through distributed computing efficiently.
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FIGURE 1. A randomly generated ensemble topology by CGP.

B. THE DIFFERENTIAL CARTESIAN GENETIC
PROGRAMMING
Genetic Programming (GP) is one of the most success-
fully applied Evolutionary Algorithm in the optimization
domain [11]. It is exceptionally suitable for binary classi-
fication problems due to its syntax [11]. One of the con-
straints that impedes the performance of GP is program bloat
and duplicative calculation of the same node every time it
is needed [23]. Another drawback is their lack of ability
to evolve topologies. Since its invention, researchers have
developed numerous versions of GP. Several GP algorithms
have been developed such as stacking, tree-based Genetic
Programming, Grammatical Evolution, linear Genetic Pro-
gramming and CGP.

The Cartesian Genetic Programming (CGP) was first
formed to evolve circuit design in the late 90s [24], [25], [26].
The CGP technique offers more flexibility to realize better
ensemble topologies. The most prominent advantage of CGP
over other variants of Genetic Programming is its ability to
express the solution candidates as a cyclic graphs rather than
the tree-based variant in the standard GP. CGP is known to
reduce redundant computations [25]. Unlike standard tree-
based GP, a solution can be represented in a Cartesian form,
as shown in Figure 1. Figure 1 displays a randomly generated
ensemble topology by the Cartesian Genetic Programming.

The capacity of the CGP to represent a candidate solutiona
in two-dimensional gene was revolutionary. Comparable to
electrical circuits for which the CGP was used to evolve, the
evolution of an ANN was investigated. Figure 2 portrays the
standard CGP encoding of the ANN where Miller et al. used
CGP to evolve the ANN architecture [27].

Figure 2 displays how the Neural Network is encoded in
standard CGP. Each node represents a non-linear activation
function randomly selected from a predefined list [27]. The
Cartesian network grid with r × c nodes has connections
that link the nodes according to the set arity a, which is the
number of inputs to each node [27]. The first column from
the left of the NN is the input layer, which consists of n
number of features. The last layer is the output layer. Where
r is the number of the rows, c is the number of the columns,

FIGURE 2. The standard CGP representation of the Neural Network and
the encoded gene [27].

FIGURE 3. The dCGP representation of the Neural Network and the
additions of weights and biases to the encoded gene [20].

n is the number of the features, and m is the number of the
classes.

The inputs of the Neural Network is the output predictions
of the four models that compose the ensemble. The output
of the Neural Network is the final output probabilities of the
whole ensemble. It is known in the literature that the weights
are better updated using the gradient descent methods which
established its supremacy over the past decades [19]. Another
deficiency of the original use of CGP is the absence of biases
which is vital to the learning process. Izzo et al. [19], [20],
[21] established a remarkably innovative idea that permits
the evolution of the topology with CGP and updating the
weights and biases using Stochastic Gradient Descent at the
same time [20]. The concept is to split the gene into two
parts. The first portion encodes the neural network nodes,
connections, and activation functions. The second portion of
the gene encodes the weights and the biases of the ANN
connections [20]. Figure 3 pictures how the modified CGP
incorporated the weights and biases.

In the dCGPANN variant, a gene X representing a candi-
date solution consists of two portions. XI contains the evolu-
tionary part of the gene which is evolved by the CGP, while
XR contains the weights and biases of the ANN as indicated
in equation 1 and 2 respectively [20].

XI = [F0,C0,0,C0,1, . . . ,C0,a,F1,C1,0,

. . . ,C1,a, . . . ,O1, . . . ,Om] (1)

XR= [b0,w0,0,w0,1, . . . ,w0,a0 , b1,w1,0, . . . ,w1,a1 , . . .] (2)

where XI ∈ natural number is a vector that encodes the
evolutionary part of the ANN, XR ∈ real numbers is a vec-
tor for the biases b and weights w, F represents functions,
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Algorithm 1 dCGPANN
Require: r , c, n, m, l, a, Kernels, epochs, cycles

Randomly Initialize N dCGPANNs
for dCGPANN in population N do
Compute the Loss

end for
for j in cycles do
Select the best dCGPANN of the previous generation
Delete other dCGPANNs
for i in population N do

Mutate the best dCGPANN’s functions using µa
Mutate the best dCGPANN’s connections using µc
for epoch in epochs do
Run SGD on dCGPANNi

end for
end for

end for

C represent the connections and O represent the terminal
output nodes.

Based on the dCGPANN, the output of each node in the
ANN is expressed in equation 3 [20].

Ni = Fi(
ai∑
j=0

wi,jCNi,j + bi) (3)

where Ni is the output of the node N with id i, Fi is the
activation function, ai is the arity of the node i which is the
number of connections to that node, Ci,j is the connection
between note i in the current layer and node j in the previous
layer and bi is the bias associated with the activation function
Fi in node Ni. The number of connections to each node, arity,
is assumed equal by default in all nodes unless it gets defined
by a list that specifies the number of connections each node
should have in a particular layer. The arity list is a {1xc}
vector that assigns the arity of the nodes in each column c.
The evolutionary operators µc and µa are applied on the

XI part of the gene that expresses the dCGPANN. µc and µa
are fractions to be mutated in active connections genes and
active function genes respectively. Each mutant goes through
a predefined number of stochastic gradient descent (SGD)
training epochs during which only XR is learned, and XI is
fixed. Algorithm 1 illustrates the steps of how the dCGPANN
was operated to optimize the structure of the ensemble as
well as its weights and biases θ . The loss function which
the dCGPANN is minimizing is the categorical cross-entropy
which is defined in equation 4 [28].

Loss = −
N∑
i=1

C∑
j=1

yi,j × log ˆyi,j (4)

whereN is the number of the input images,C is the number of
classes, yi,j is the true label of image i belongs to class jwhich
is 1 if Xi ∈ j and 0 otherwise and ˆyi,j is the output probability
that image i ∈ class j.

C. IMPLEMENTATION DETAILS
This section outlines the implementation details and the
handpicked classifiers’ and the dCGPANN’s learning hyper-
parameters. Table 1, 2, 3 and 4 tabulate the classifiers’
hyper-parameters used for the first phase of our approach.
Table 5 lists the the dCGPANN hyper-parameters used for the
ensemble optimization in the second phase of the proposed
method. The first stage of the training, multiple classifiers
with different configurations were trained on the IDC dataset.
Amongst the trained classifiers, the best four performing
models were chosen to construct the ensemble. The first
model was a Resnet50 pretrained on ImagNet which was
trained using Transfer Learning [29], [30], [31]. We froze
all layers except the last 69 layer which included the last
new fully connected layer that was adopted to the new binary
labels. The learning rate (LR) was high due to the fact that
most of the domain-specific layers were frozen. The second
model was also a Resnet50 but was trained end-to-end. The
third and the fourth models were VGG19 and Densenet121
respectively whose training parameters are shown in Table 3
and Table 4 [32].

TABLE 1. Hyper-parameters for Classifier 1.

TABLE 2. Hyper-parameters for Classifier 2.

TABLE 3. Hyper-parameters for Classifier 3.
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TABLE 4. Hyper-parameters for Classifier 4.

TABLE 5. dCGP parameters.

The possible kernels used for the dCGPANN are the Sig,
ReLu, tanh, ELU and ISRU functions which are defined by
equations 5, 6, 7, 8 and 9 respectively [36], [37].

Sig(x) =
1

1+ exp(−x)
(5)

ReLu(x) = max(0, x) =

{
xi if xi ≥ 0
0 if xi < 0

(6)

tanh(x) =
exp(x)− exp(−x)
exp(x)+ exp(−x)

(7)

ELU (x) =

{
x if x > 0
α exp(x)− 1 if xi ≤ 0

(8)

ISRU (x) = x
1

√
(1+ αx2)

(9)

Setting up the parameters for the dCGPANN is a challeng-
ing task and demands a trial-and-error approach. Nonethe-
less, the literature on Cartesian Genetic Programming pro-
vides a general direction for parameter selection. CGP
Research has shown that setting the mutation to 1% for each
100 nodes is recommended [27]. However, setting the muta-
tion to half of the recommended value during experimen-
tation has produced more competitive topologies. Multiple
experiments have also shown that setting r and c to 20 and
5 provided the best designs for this particular ensemble. The
number of iterations and epochs were set to 100 and 150 to
limit the time required to train the models and to avoid
over-training the ensemble, which might result in overfitting.

III. EXPERIMENTAL SETUP
A. DATASET AND THE EXPERIMENTAL SETUP
The dataset contains patches extracted from the whole slides
of Two hundred seventy-nine patients were diagnosed with

FIGURE 4. Dataset Statistics [38].

FIGURE 5. IDC negative samples [38].

FIGURE 6. IDC positive samples [38].

IDC. The total number of the extracted non-overlapping of
50 × 50 pixels patches is 277524, which are labeled into
IDC and non-IDC regions. The number of patches and the
percentage of IDC annotations per patient vary significantly;
thus, the labels of the images are not equal. Fig 4 shows
the patches and IDC annotation percentage histogram. Some
visual features distinguish IDC from non-IDC patches, such
as tissue coloration as shown in Figure 5 and figure 6, which
shows negative and positive IDC, respectively. Figure 7
shows the colormaps of annotatedwhole slideswhere the yel-
low regions indicate the presence of IDC, and figure 8 shows
a whole slide that was reconstructed using the coordinates
information provided by the dataset. The darker mask points
to the IDC regions on the whole slide image (WSI) [38].
Data visualization of the training image set is shown in
figures 4, 5, 6, 7 and 8 [38].

The dataset was divided into three sets. 70% of the patients’
slides were used as a training dataset, and the remaining
patients’ slides were divided into a validation dataset and a
test dataset with 15% of the slides each. Our model and the
base models to which our method was compared to were
implemented using PyTorch, dcgpy and scikit-learn [21],
[39], [40]. Our method was compared to two voting strategies
which are the maximum and the weighted average.
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FIGURE 7. IDC Colormap in a WSI [38].

FIGURE 8. Reconstructed Annotated WSI [38].

B. EVALUATION METRICS
The evaluation metrics used for our assessment are the
F1-score, the Balanced Accuracy and the overall accuracy as
defined in equations 10, 15 and 13 respectively [41], [42].

F1 =
2

1
Recall +

1
Precision

=
2Precision× Recall
Precision+ Recall

(10)

where Recall and Precesion are defined in 11 and 12 [41].

Recall = Sensitivity =
TP

TP+ FP
(11)

Note that TP is number of correctly positively classified
samples and FP is the incorrectly positively classified ones.

Precision =
TP

TP+ FN
(12)

BAC =
Sensitivity+ Specificity

2
(13)

where Specivity is defined by equation 14.

Specivity =
TN

TN + FP
(14)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(15)

• Macro-average: is the sum of each class’ precision
divided by the number of classes.

• Micro-average: is the sum of the true positives of all
classes divided by the number of samples.

IV. RESULTS
This section shows the results of our experiments. The per-
formance of phase 1 trained classifiers as well as the base
models on the validation set are shown in Table 6.

TABLE 6. Confusion matrices of various models on the validation set.

Our experiments were conducted using an AMD Ryzen
Threadripper 1950X 16-Core Processor, which operates on
two threads per core and 32 Numa nodes, and an NVIDIA
GeForce RTX 2080 with 8GB of video RAM. The maximum
and average voting ensembles didn’t demand training. The
evolution of theDGP networkwas significantly time-efficient
compared to the time cost of training the weak classifiers. The
training time of each architecture was 1.2450 seconds. Each
iteration required 8.71533 seconds and the overall training of
the ensemble took 880.24 seconds.
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TABLE 7. Performance of the weighted voting on the test dataset.

TABLE 8. Performance of the Maximum voting on the test dataset.

TABLE 9. Performance of dCGPANN voting on the test dataset.

TABLE 10. Comparison of the proposed method with other published
methods in the standard evaluation metrics.

Our technique was compared to the average voting and
the Maximum voting schemes. The outcomes on the held-out
test dataset are reported in Table 7, 8, and 9. The results
demonstrate a clear advantage of the dCGPANN ensemble
over all other voting strategies, as shown in Table 9.
To the best of our knowledge, the dCGPANN approach has

never been implemented to optimize ensemble ANN for his-
tology image classification. The findings of our experiments
were compared with the state-of-the-art methods that were
proposed in [4], [15], and [16] in Table 10. The number of test
samples used to evaluate our proposed method was 38183,
which resembles the extracted 50×50 patches from the slides
of 42 randomly selected patients. The number of IDC test
samples was 13434, while the number of No IDC test samples
was 24749. As explained earlier, the classes of the dataset are
unbalanced. There are far more negative patches than positive
ones. Table 10 demonstrate the significance of the improve-
ment of our method compared to other competitive models
reported in the literature. OurMethod yielded superior results

TABLE 11. Comparison of the proposed method with other published
methods in Recall Precesion, and Specificity.

in accuracy, balanced accuracy and F1 score by a significant
margin. The accuracy of our technique exceeded the best
performing method by 5% percent. More importantly, the
BAC and F1-score improved by 4.3% and 5.6% respectively.
Moreover, the ensemble yielded much higher improvement
in the confusion matrix to the weak classifiers as shown in
Table 6 and 9. Tables 10 and 11 provide a summary of the
performance of our proposed method compared to the state-
of-the-art methods in terms of the most reported evaluation
metrics in this field.

V. CONCLUSION
The accuracy of the Deep Learning models is a cornerstone
to the CAD systems. It is evident that the advancements
of Deep Learning and GPUs enabled computers to perform
better or at least equal to human experts. Thus, computerized
cancer detection can at the very least increase the speed
of diagnosis. Our proposed method addresses the scarcity
of labeled data by implementing a bio-inspired algorithm
to construct a more reliable ensemble. The ensemble learns
the correct class based on the misclassifications of the pre-
trained models. The differential Cartesian Genetic Program-
ming was used to acquire the most optimum ensemble rule to
compensate for the insufficient quantity of images available
for multi-stage training, which is required to infer accurate
mapping between intricate features and correct classes. Due
to its cabability to assign weights and biases to ANNs and
to use SGD for learning them, the dCGPANN proves to be a
powerful tool to optimize the ensemble topology as well as
its hyperparameters.

We demonstrated the accuracy and time efficiency of our
proposed method to classify invasive ductal carcinoma using
the breast histology image dataset. A statistical evaluation
of our results was also provided on the benchmark dataset
to further demonstrate the applicability of our methods. The
experimental findings exceeded previous hyperparameters
search methods. The evidence from this study implies that
dCGPANN ensemble produce better results than any indi-
vidual weak classifier as well as other recently published
ensemble methods.

Based on the results reported, we recommend future
research to be focused on the application of CGP on
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optimizing CNNs. The viability of designing GCP-based
ensemble networks using Convolutional kernels that combine
features extracted by fine-tuned pre-trained learners should
be investigated.
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